WO1994028298A1 - Dispositif installe dans une centrale electrique a cycles combines - Google Patents

Dispositif installe dans une centrale electrique a cycles combines Download PDF

Info

Publication number
WO1994028298A1
WO1994028298A1 PCT/FI1994/000210 FI9400210W WO9428298A1 WO 1994028298 A1 WO1994028298 A1 WO 1994028298A1 FI 9400210 W FI9400210 W FI 9400210W WO 9428298 A1 WO9428298 A1 WO 9428298A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
supercharger
pressure
turbine
exhaust gases
Prior art date
Application number
PCT/FI1994/000210
Other languages
English (en)
Inventor
Eero Juho Ilmari Kurki-Suonio
Original Assignee
Kurki Suonio Eero Juho Ilmari
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurki Suonio Eero Juho Ilmari filed Critical Kurki Suonio Eero Juho Ilmari
Publication of WO1994028298A1 publication Critical patent/WO1994028298A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B73/00Combinations of two or more engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an arrangement for in- creasing the overall efficiency by utilizing waste heat in a combined-cycle power plant, in which first electric generator or generators is / are powered by one or more supercharged internal combustion piston engine / engines, the exhaust gases whereof being first conducted at a pressure substantially higher than the atmospheric pressure into a steam boiler, comprising at least a steam drum and a superheater, for generating pressur ⁇ ized steam, said steam being carried through a steam turbine connected to a second electric generator further into the cycle, and the exhaust gases are first after the steam boiler conducted into the gas turbine or turbines of the supercharger of the intake air where they expand into the atmospheric pressure.
  • the primary circuit comprises an internal combustion engine and an electric generator.
  • the temperature of the exhaust gases whereof being relatively high, about 500°C, or clearly even higher, the waste heat of the exhaust gases can be used relatively effectively for steam generation, and further, for electricity generation.
  • Such arrangements are introduced e.g. in articles DIESEL & GAS TURBINE WORLDWIDE, January-February 1993: “Industrial CHP Plant Meet Flexible Steam Requirements", p. 20-22, and JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER, OCTOBER 1991, VOL. 113, P.
  • the steam turbine has been connected to a second electric generator, whereas the diesel engine has been connected to the first electric generator for producing electricity.
  • the exhaust gases discharged from the steam boiler are required to be at about 160 to 180°C tem ⁇ perature, not to cause condensation of sulphuric compounds with any detrimental consequences thereof.
  • the difference of temperature utilised in the steam boiler, about 170 °C, is thus very small, and above all, it occurs at the low temperature mentioned above, consequently, an increase in electric energy gained thereby is relatively small. Even though there were no temperature limitation as referred to above, caused by the sulphur contained in the heavy fuel, at lower temperatures it cannot be transformed substantially into energy of another form, i.e. steam, in a boiler plant.
  • Reference DE-310 329 discloses an exhaust gas cycle in which the exhaust gases are first conducted into a water preheater, and thereafter, into the turbine of the supercharger.
  • the exhaust gases do not drive the superheater, instead, in all embodiments of the reference, the superheating of the steam is performed in a separate part of the installation, in which the combustion of a second fuel is implemented irrespective of the diesel engine.
  • the aim is to reduce the operation temperature of the internal combustion engine, which operation, as well as the embodiments, result in lowered efficiency, which is entirely inappropriate.
  • the compulsory superheating in a separate boiler installation makes the entire arrangement com ⁇ plicated, large in size and costs-involving.
  • the objective of the present invention is therefore to provide an arrangement in which the efficiency of the electricity production of an electric power plant operating primarily with an internal combustion piston engine, and particularly with a supercharged diesel engine, of a so-called combined-cycle power plant can be increased, in which power plant the waste heat contained in the exhaust gases of said engine is utilised with the aid of steam power, typically a steam boiler and a steam turbine.
  • a second aim of the present invention is an arrangement in which the additional heating of the steam boiler is not necessary, or it is needed only to a very limited degree, or that waste heat at an extremely low temperature, i.e. below about 160 to 180°C, is produced minimally. The aim is therefore to produce energy of maximal refining degree, i.e. electricity, out of minimal overall fuel quantity.
  • a further aim of the invention is gained through an arrangement with which a remarkable portion also from an exhaust gas at a tem ⁇ perature substantially below 160 to 180°C, of the thermal energy thereof, is recovered thus increasing the efficiency of the electricity production, this taking place typically when low-sulphuric fuel, or even sulphurless fuel, is used in the diesel engine, whereby no lower limit, caused by corrosion, etc., concerns the temperature of the discharging exhaust gases.
  • the most essential advantage of the invention lies in that with an arrangement according thereto the tem ⁇ perature in the steam generating cycle can be raised compared with the state of art arrangements, so that the efficiency of the steam cycle in the electricity pro ⁇ duction increases remarkably.
  • a second advantage of the invention lies, particularly in a situation in which there is no lower limit for the exhaust gas temperature due to corrosion or equivalent, in that the heat of exhaust gases can be recovered when approaching the temperatures equivalent to the ambient temperature, in order to increase the efficiency of electricity production and the overall efficiency.
  • Fig. 1 presents schematically an arrangement according to the present invention for increasing the efficiency of electricity production in a combined-cycle power plant.
  • Fig. 2 presents schematically a second arrangement of the invention for increasing the efficiency of electricity production in a combined-cycle power plant.
  • Fig. 3 presents schematically a third arrangement according to the invention for increasing the efficiency of electricity production in a combined-cycle power plant.
  • Fig. 4 presents schematically a fourth arrangement according to the invention for increasing the efficiency of electricity production, illustra ⁇ ting merely part of the process.
  • Fig. 5 presents an arrangement of the invention implemented in a combined-cycle power plant containing a number of diesel engines.
  • Figs. 1-5 present a number of arrangements of the invention differing in details in a combined-cycle power plant.
  • the power plants consist of supercharged internal combustion piston engines used as power sources to provide the net power, such as diesel engines, gas engines or dual fuel engines, of which there may be one in a power plant, as in Figs. 1 to 4, or several, as in Fig. 5.
  • a diesel engine 3 drives a first electric generator 1 for the generation of electrical energy.
  • the intake air 8 of the diesel engine is supercharged by means of an exhaust gas supercharger 6, through the driving part 6 of which the exhaust gases are conducted, for which a gas turbine in general serves.
  • the super ⁇ charged and cooled air is supplied as combustion air 8' into the diesel engine.
  • hot pressurized steam 15a,b,c is used, said steam " being generated in the steam boiler 10 and conducted into the steam turbine 4.
  • the steam turbine 4 drives a second electric generator 2 for producing electricity.
  • Said hot steam 15a,b,c is in turn generated with the exhaust gases 5 of the diesel engine 3 by conducting them through the steam boiler 10.
  • the steam boiler 10 includes at least a steam generator 18a with equivalent boiler pipings 20 and a superheater 19a for high- pressure steam 15a supplied into the steam turbine 4.
  • the hot exhaust gases 5a of the diesel engine 3 are conducted directly from the engine first into the steam boiler 10 and only there- after from there to the driving side 7 of the super ⁇ charger 6 of the intake air 8.
  • an about 260°C difference of temperature in the temperature range of about 500 to 240°C can typically be utilised in the steam boiler 10.
  • the temperature of the exhaust gases thereof may be even higher, about 550°C, or as far as the development proceeds, even 700°C, whereby the efficiency of the use of steam rises even higher.
  • a consequence of the arrangement according to the invention is, however, that the temperature of the exhaust gases before the gas turbine of the supercharger is remarkably lower in an arrangement according to the invention than in a state of art arrangement. Since the power of a gas turbine operating at a given pressure ratio and mass flow of the gas is directly proportional to the absolute temperature, also the power of the supercharger is respectively lowered.
  • Such situation can according to the invention be solved either (a) by supplying the additional power required in the super ⁇ charger 6 by means of a connection 13 from the steam turbine 4, (b) by dimensioning (by selecting) the gas turbine 7 so that the pressure of the gas before the gas turbine is higher than the state of art value, or (c) by raising the temperature of the combustion gases by burning in the steam boiler 10 an additional fuel.
  • the alternatives (a) and (b) are more preferred alternatives in efficiency than (c) because the amount of the waste heat is not increased therein.
  • connection 13 of the steam turbine 4 to the driving shaft 9 of the supercharger 6 may, according to the invention, be performed in a number of ways.
  • the steam turbine 4 includes a high pressure section 14a and a low-pressure section 14c, of which the low-pressure section 14c has been connected to the shaft 9 of the supercharger by the drive shaft 12.
  • Such connection can be direct or it has been implemented by means of a gearbox 16 or equivalent.
  • the high-pressure steam turbine section 14a has been connected with a shaft 17 only to the second generator 2, but not to the supercharger.
  • the steam turbine composed of a high-pressure section 14a and a low-pressure section 14c has been connected 13 by the shaft 17 thereof with the aid of the gearbox 16 or equivalent indirectly or alternatively, directly without a gearbox to the drive shaft 9 of the supercharger 6.
  • Said embodiment is most advantageous according to the present concept because all power therein not needed by the supercharger (on partial engine power the supercharger needs abundantly additional power, while on the full power, the super ⁇ charger needs hardly any additional power) , drives the second electric generator.
  • the medium-pressure section 14b of the steam turbine 4 has been connected 13 directly to the drive shaft 9 of the supercharger 6.
  • the high pressure and low-pressure sections 14a of the steam turbine 4, respectively 14c have in turn been connected by the shaft 17 thereof directly to the second generator 2.
  • the steam cycle according to the invention includes high-pressure steam 15a and medium-pressure steam 15b and/or low-pressure steam 15c.
  • the high-pressure steam 15a can in general be used in its entirety on the high-pressure side 14a of the steam turbine 4 for generating electricity with the second generator 2 because the additional energy required by the supercharger 6 in the arrangement of the invention is however relatively small.
  • the additional energy needed by the supercharger 6 is extracted either from the section 14b of the steam turbine employing medium-pressure steam 15b, provided such arrangement has been arranged in the turbine, or from the low-pressure section 14c employing low-pressure steam 15c, or from both thereof, depending on the amount of the additional energy required and on the con- struction designed for the steam turbine.
  • Fig. 3 shows a different arrangement of the invention mentioned above, wherewith additional energy can be provided in the supercharger 6.
  • extra heat 21 is conducted into the steam boiler 10 by burning appropriate fuel with e.g. a burner not shown in the figure, such as the fuel in the diesel engine functioning as the main power source.
  • the pressure and temperature of the steam may in such case be raised to some extent as the temperature on the combustion chamber side 22 rises.
  • the temperature of the exhaust gases 5b extracted from the combustion chamber 22 side of the steam boiler can be arranged to be sufficiently high, e.g. about 300°C, whereby the temperature and amount of the exhaust gases 5b suffice for driving the supercharger 6 on the power required.
  • the amount of waste heat remaining after the supercharger somewhat exceeds the amount of the first design type of the present invention, but its significance is dependent on how said waste heat has been used or not used in a combined cycle power plant in each case, inter alia for heating purposes.
  • a second possibility for increasing the efficiency of the super ⁇ charger in an equivalent manner is to take steam at a point of the steam cycle and to supply it together with the exhaust gases into the turbine of the supercharger.
  • Said overpressure ⁇ p depends on resistance of flow of the operation side 7 of the super ⁇ charger 6, i.e. of the gas turbine 7 of the super ⁇ charger.
  • the same pressure of the combustion chamber 22 of the steam boiler is as such directed also at the exhaust gases 5a emitted from the diesel engine in the form of backpressure of the engine.
  • the overpressure of said combustion chamber 22 is according to the invention preferredly in about the range of 1.0 to 3 bar, but it may rise up to 6 bar, whereby the power of the gas turbine substantially increases and that of the engine decreases.
  • the diesel engine operates when said overpressure ⁇ p is of the order of magnitude of 2 bar.
  • Said overpressure can be provided to be of desired magnitude by designing and providing such flow cross-section area in the exhaust gas turbine 7 driving the supercharger 6 that the flow resistance leads to the overpressure intended.
  • the flow cross-section area of the exhaust gas turbine 7 can be dimensioned by the length of the turbine wings, though not described in detail in the present context, since it is a question of the state of art of its own.
  • a combined cycle-power plant comprises several internal combustion piston engines, such as supercharged diesel engines 3a,3b,3c, and respective electric generators 1, as shown in Fig. 5, it is in general preferred to use one steam boiler 10 only, to which the exhaust gases 5a from the engines 3a,3b,3c are together conducted. Similarly, it is in general preferred to use one supercharger 6 in common for said several engines, on the driving side 7 whereof all exhaust gases 5b from the steam boiler are conducted. Thus, the intake air 8 is conducted and distributed as supercharged and cooled combustion air 8' for all diesel engines. It is obvious that each diesel engine can be provided with a steam boiler or supercharger of its own, or a combined-cycle power plant may comprise one steam
  • RECTIFIED SHEET (RULE 91; boiler and a plurality of superchargers, or the numbers can be arranged differently. It is obvious that also in the present instance the additional energy required by the supercharger 6 or superchargers has been arranged according to the present invention, either by connecting the shaft 17 of the steam turbine 4 driving the second electric generator, or a shaft of a section 14a, b, c of the turbine to the shaft 9 of the supercharger, or by conducting additional thermal energy into the steam boiler 10, or by means of a combination of any of these.
  • the steam generating cycle according to the present invention includes a requisite number of, and as designed, also steam generators 18b and superheaters 19b for steam cycles 15b and 15c at lower pressures, and each time respective boiler pipings 20 in the the combustion chamber 22.
  • a steam generator cycle according to the invention may contain mixing preheaters 23, heat exchangers 24 and/or other potential components known themselves in the art.
  • Figs. 4 and 5 present all said additional components in block 25 which may include any prior art components used in the steam processes.
  • a state of art combined-cycle power plant is compared below with a combined-cycle power plant according to the invention regarding the electric power values obtained therein, and consequently, the efficiency of the electricity production.
  • a state of art combined-cycle power plant composed of a diesel engine and an electric generator is taken as a starting point in which the combined electric power of the generators is 100 MW.
  • the temperature of the exhaust gases immediately after the cylinders is 495°C, and directly after a subsequent turbosupercharger it is 325°C.
  • the lowest permitted temperature of the fuels is maintained at 160°C.
  • the power of the steam turbine must also be calculated in addition to the power generated by the diesel engine.
  • the pressures of the steam process after the supercharger are 20 bar and 6 bar, respective superheating temperatures, 300°C and 200 °C.
  • the isenthropic efficiency of the steam turbine ⁇ ⁇ 0.81.
  • the preheating of the feed water is performed with the aid of a preheater using the cooling water of the engine, an economizer and a mixing preheater.
  • an exhaust gas turbine positioned after the steam boiler generates less power in the supercharger than in a state of art supercharger, as described above, because the exhaust gases are cooled when arriving thereat.
  • the steam process is a two-pressure process, the pressures thereof being 80 bar and 23.2 bar; respectively, the superheating temperatures 470°C and 270°C.
  • the isenthropic efficiency of the turbine ⁇ ⁇ 0.83.
  • the preheating of the feed water consists of a preheater utilising the cooling water of the diesel engine and of three regenerative preheaters, the middlemost thereof being a mixing preheater.
  • the mechanical power generated by the steam turbine is 23.9 MW.
  • state of art installation 24.1 MW
  • installation according to the present invention 15.3 MW
  • the difference thereof being 8.8 MW.
  • this power is derived directly from the shaft of the steam turbine, whereby the net power from the steam turbine of the installation of the invention is 15.1 MW.
  • the increase of net power provided by the arrangement of the present invention is 5.7 MW, i.e. about 6% compared with the state of art arrangement initially described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Le dispositif selon l'invention permet d'augmenter l'efficacité globale d'une centrale électrique à cycles combinés par l'utilisation de la chaleur de déperdition. Ladite centrale est dotée d'un premier générateur électrique (1) commandé par un moteur à piston à combustion interne suralimenté (3) dont les gaz d'échappement (5) sont envoyés dans une turbine à gaz commandant le surcompresseur (6) pour l'air d'arrivée (8) du moteur, et d'une chaudière à vapeur (10) produisant de la vapeur sous pression (15) qui est envoyée dans une turbine à vapeur (4) reliée à un deuxième générateur électrique (2) situé plus loin dans le cycle. Les gaz d'échappement des moteurs à piston à combustion interne sont envoyés depuis le moteur d'abord (5a) dans la chaudière à vapeur (10) à une pression supérieure à la pression atmosphérique, puis (5b) dans la ou les turbines à gaz du surcompresseur pour l'air d'admission (8) dans lequel ils se détendent pour descendre à la pression atmosphérique de manière à augmenter la production d'électricité de la centrale électrique à cycles combinés.
PCT/FI1994/000210 1993-05-31 1994-05-26 Dispositif installe dans une centrale electrique a cycles combines WO1994028298A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI932474A FI94895C (fi) 1993-05-31 1993-05-31 Järjestely kombivoimalaitoksessa
FI932474 1993-05-31

Publications (1)

Publication Number Publication Date
WO1994028298A1 true WO1994028298A1 (fr) 1994-12-08

Family

ID=8538036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI1994/000210 WO1994028298A1 (fr) 1993-05-31 1994-05-26 Dispositif installe dans une centrale electrique a cycles combines

Country Status (2)

Country Link
FI (1) FI94895C (fr)
WO (1) WO1994028298A1 (fr)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408224A1 (fr) * 2002-10-10 2004-04-14 Hubert Antoine Moteur à piston combiné à un cycle de Joule
WO2004033859A1 (fr) * 2002-10-11 2004-04-22 Alpps Fuel Cell Systems Gmbh Procede et dispositif de recuperation d'energie
WO2004111412A1 (fr) 2003-06-13 2004-12-23 Kawasaki Jukogyo Kabushiki Kaisha Equipement d'alimentation electrique
WO2007113403A1 (fr) * 2006-04-05 2007-10-11 Nicolas Ugolin Systeme de transformation de l'energie thermique des moteurs a combustion interne en electricite (turbidyn)
WO2007115579A2 (fr) * 2006-04-12 2007-10-18 Man Diesel A/S Moteur diesel à turbocompresseur de grande taille doté d'un dispositif de récupération d'énergie
WO2008068060A1 (fr) * 2006-12-05 2008-06-12 Robert Bosch Gmbh Dispositif de suralimentation
EP2055912A2 (fr) * 2007-10-30 2009-05-06 Voith Patent GmbH Conducteur de commande, en particulier conducteur de commande de véhicule
JP2011027053A (ja) * 2009-07-28 2011-02-10 Mitsubishi Heavy Ind Ltd タービン発電機の制御方法および装置
GB2474021A (en) * 2009-09-30 2011-04-06 Stephen Francis Mongan Electricity-generating installation
EP2347211A2 (fr) * 2008-11-19 2011-07-27 Voith Patent GmbH Échangeur thermique et procédé de fabrication
GB2489753A (en) * 2011-04-08 2012-10-10 Cummins Generator Technologies Power generation system
US20120279218A1 (en) * 2009-10-16 2012-11-08 Michiyasu Ishida Miller cycle engine
JP2013029111A (ja) * 2012-09-28 2013-02-07 Mitsubishi Heavy Ind Ltd 発電方法、タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶
US8584459B2 (en) 2006-12-09 2013-11-19 Aeristech Limited Engine induction system
EP1674681B1 (fr) * 2004-12-27 2015-07-01 FPT Motorenforschung AG Procede pour reguler la temperature d'un système pour le traitement des gaz d'echappement pour moteur à combustion interne et moteur à combustion interne
DK178371B1 (da) * 2008-09-29 2016-01-18 Man Diesel & Turbo Deutschland Stor turboladet dieselmotor med energigenvindingsindretning
WO2017136214A1 (fr) * 2016-02-01 2017-08-10 Borgwarner Inc. Système et procédé de récupération de chaleur perdue d'un moteur à combustion interne
RU2635425C1 (ru) * 2017-02-09 2017-11-13 Никишин ГмбХ Устройство управления турбонаддувом двигателя внутреннего сгорания
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11421625B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US20220316453A1 (en) * 2021-04-02 2022-10-06 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE310329C (fr) *
DE2743149A1 (de) * 1977-09-24 1979-04-05 Rudolf Dr Wieser Verbrennungsmotor
EP0434419A2 (fr) * 1989-12-21 1991-06-26 Oy Wärtsilä Diesel International Ltd. Méthode et dispositif pour la récupération d'énergie calorifique dans un grand moteur diesel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE310329C (fr) *
DE2743149A1 (de) * 1977-09-24 1979-04-05 Rudolf Dr Wieser Verbrennungsmotor
EP0434419A2 (fr) * 1989-12-21 1991-06-26 Oy Wärtsilä Diesel International Ltd. Méthode et dispositif pour la récupération d'énergie calorifique dans un grand moteur diesel

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408224A1 (fr) * 2002-10-10 2004-04-14 Hubert Antoine Moteur à piston combiné à un cycle de Joule
WO2004033859A1 (fr) * 2002-10-11 2004-04-22 Alpps Fuel Cell Systems Gmbh Procede et dispositif de recuperation d'energie
WO2004111412A1 (fr) 2003-06-13 2004-12-23 Kawasaki Jukogyo Kabushiki Kaisha Equipement d'alimentation electrique
EP1643099A1 (fr) * 2003-06-13 2006-04-05 Kawasaki Jukogyo Kabushiki Kaisha Equipement d'alimentation electrique
EP1643099A4 (fr) * 2003-06-13 2009-11-11 Kawasaki Heavy Ind Ltd Equipement d'alimentation electrique
EP1674681B1 (fr) * 2004-12-27 2015-07-01 FPT Motorenforschung AG Procede pour reguler la temperature d'un système pour le traitement des gaz d'echappement pour moteur à combustion interne et moteur à combustion interne
WO2007113403A1 (fr) * 2006-04-05 2007-10-11 Nicolas Ugolin Systeme de transformation de l'energie thermique des moteurs a combustion interne en electricite (turbidyn)
FR2899646A1 (fr) * 2006-04-05 2007-10-12 Nicolas Gilbert Ugolin Systeme de transformation de l'energie thermique des moteurs a combustion interne en electricite (turbidyn)
CN101415908B (zh) * 2006-04-12 2013-03-13 曼柴油机和涡轮公司,德国曼柴油机和涡轮欧洲股份公司的联营公司 具有能量回收装置的大型涡轮增压柴油发动机
WO2007115579A2 (fr) * 2006-04-12 2007-10-18 Man Diesel A/S Moteur diesel à turbocompresseur de grande taille doté d'un dispositif de récupération d'énergie
WO2007115579A3 (fr) * 2006-04-12 2008-06-26 Man Diesel As Moteur diesel à turbocompresseur de grande taille doté d'un dispositif de récupération d'énergie
DK178133B1 (da) * 2006-04-12 2015-06-15 Man Diesel & Turbo Deutschland Stor turboladet dieselmotor med energigenvindingsindretning
WO2008068060A1 (fr) * 2006-12-05 2008-06-12 Robert Bosch Gmbh Dispositif de suralimentation
US8584459B2 (en) 2006-12-09 2013-11-19 Aeristech Limited Engine induction system
EP2055912A2 (fr) * 2007-10-30 2009-05-06 Voith Patent GmbH Conducteur de commande, en particulier conducteur de commande de véhicule
EP2055912A3 (fr) * 2007-10-30 2014-08-06 Voith Patent GmbH Conducteur de commande, en particulier conducteur de commande de véhicule
DK178371B1 (da) * 2008-09-29 2016-01-18 Man Diesel & Turbo Deutschland Stor turboladet dieselmotor med energigenvindingsindretning
EP2347211A2 (fr) * 2008-11-19 2011-07-27 Voith Patent GmbH Échangeur thermique et procédé de fabrication
JP2011027053A (ja) * 2009-07-28 2011-02-10 Mitsubishi Heavy Ind Ltd タービン発電機の制御方法および装置
GB2474021A (en) * 2009-09-30 2011-04-06 Stephen Francis Mongan Electricity-generating installation
GB2474021B (en) * 2009-09-30 2016-03-30 Stephen Francis Mongan Electricity-generating installation
US20120279218A1 (en) * 2009-10-16 2012-11-08 Michiyasu Ishida Miller cycle engine
GB2489753A (en) * 2011-04-08 2012-10-10 Cummins Generator Technologies Power generation system
JP2013029111A (ja) * 2012-09-28 2013-02-07 Mitsubishi Heavy Ind Ltd 発電方法、タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶
WO2017136214A1 (fr) * 2016-02-01 2017-08-10 Borgwarner Inc. Système et procédé de récupération de chaleur perdue d'un moteur à combustion interne
CN108779739A (zh) * 2016-02-01 2018-11-09 博格华纳公司 用于内燃机废热回收的系统和方法
RU2635425C1 (ru) * 2017-02-09 2017-11-13 Никишин ГмбХ Устройство управления турбонаддувом двигателя внутреннего сгорания
WO2018147766A1 (fr) * 2017-02-09 2018-08-16 Денис Валентинович НИКИШИН Dispositif de commande de turbocompresseur pour moteur à combustion interne
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11421625B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US20220316453A1 (en) * 2021-04-02 2022-10-06 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11542888B2 (en) 2021-04-02 2023-01-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11549402B2 (en) 2021-04-02 2023-01-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11572849B1 (en) 2021-04-02 2023-02-07 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11598320B2 (en) 2021-04-02 2023-03-07 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11624355B2 (en) 2021-04-02 2023-04-11 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11644015B2 (en) * 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11668209B2 (en) 2021-04-02 2023-06-06 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11680541B2 (en) 2021-04-02 2023-06-20 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11732697B2 (en) 2021-04-02 2023-08-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11761433B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11761353B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11773805B2 (en) 2021-04-02 2023-10-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11879409B2 (en) 2021-04-02 2024-01-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11905934B2 (en) 2021-04-02 2024-02-20 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933280B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11933279B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11946459B2 (en) 2021-04-02 2024-04-02 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11971019B2 (en) 2021-04-02 2024-04-30 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature

Also Published As

Publication number Publication date
FI94895C (fi) 1995-11-10
FI932474A (fi) 1994-12-01
FI94895B (fi) 1995-07-31
FI932474A0 (fi) 1993-05-31

Similar Documents

Publication Publication Date Title
WO1994028298A1 (fr) Dispositif installe dans une centrale electrique a cycles combines
CA1222668A (fr) Centrale a generateur de vapeur et turbine mue a l'air comprime
US5491969A (en) Power plant utilizing compressed air energy storage and saturation
US8205456B1 (en) Dual heat exchanger power cycle
US5133298A (en) Method and arrangement for effecting heat energy recovery from the exhaust gases of a diesel engine
US5111662A (en) Gas/steam power station plant
US6484501B1 (en) Method of heat transformation for generating heating media with operationally necessary temperature from partly cold and partly hot heat loss of liquid-cooled internal combustion piston engines and device for executing the method
US20070130952A1 (en) Exhaust heat augmentation in a combined cycle power plant
US20010039796A1 (en) Method of and apparatus for generating power
CN106050419A (zh) 燃气轮机压水堆蒸汽轮机联合循环系统
EP0636779A1 (fr) Machine thermique et son mode d'opération
CN1143993A (zh) 燃气和蒸汽轮机设备的运行方法及按此方法工作的设备
Ohji et al. Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and IGCC power plants
US4998408A (en) Apparatus for generating electrical and/or mechanical energy from at least a low grade fuel
US9500103B2 (en) Duct fired combined cycle system
EP0902168B1 (fr) Procédé et dispositif pour centrale combinée
AU674751B2 (en) Steam turbine
RU2237815C2 (ru) Способ получения полезной энергии в комбинированном цикле (его варианты) и устройство для его осуществления
RU101090U1 (ru) Энергетическая надстроечная парогазовая установка (варианты)
EP1172525A1 (fr) Méthode de rénovation de centrales à turbine et chaudière et centrales renovées à turbine et chaudière
CN106194431A (zh) 无汽水分离再热器的燃气轮机压水堆蒸汽轮机联合循环
Allen et al. Gas turbine cogeneration—principles and practice
Maghsoudi et al. Study of the effect of using duct burner on the functional parameters of the two repowered cycles through exergy analysis
EP0361065A1 (fr) Méthode pour la génération de puissance utilisant un combustible solide pour une turbine à gaz
Ohji et al. Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and integrated gasification-combined cycle power plants

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase