WO1994025633A1 - Method of dissolving and recovering metal - Google Patents

Method of dissolving and recovering metal Download PDF

Info

Publication number
WO1994025633A1
WO1994025633A1 PCT/JP1994/000698 JP9400698W WO9425633A1 WO 1994025633 A1 WO1994025633 A1 WO 1994025633A1 JP 9400698 W JP9400698 W JP 9400698W WO 9425633 A1 WO9425633 A1 WO 9425633A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
solvent
dissolving
noble metal
soluble
Prior art date
Application number
PCT/JP1994/000698
Other languages
French (fr)
Japanese (ja)
Inventor
Yukimichi Nakao
Tsutomu Sugiura
Hidetoshi Kawabuchi
Hiroyuki Nakazawa
Original Assignee
Japan As Represented By Director General Of Agency Of Industrial Science And Technology
Nihon Tennen Gas Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5101317A external-priority patent/JPH06340932A/en
Priority claimed from JP5101316A external-priority patent/JPH0711353A/en
Application filed by Japan As Represented By Director General Of Agency Of Industrial Science And Technology, Nihon Tennen Gas Kogyo Co., Ltd. filed Critical Japan As Represented By Director General Of Agency Of Industrial Science And Technology
Publication of WO1994025633A1 publication Critical patent/WO1994025633A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for dissolving a precious metal and, if necessary, recovering the precious metal.
  • the present invention relates to a method for industrially producing a gold-plated material such as a waste electronic component, a platinum-based catalyst used in a petrochemical industry, a waste jewelry, etc.
  • a noble metal raw material a noble metal was reacted with a simple halogen in the presence of a soluble halogen compound in a mixed solution of two or more solvents to dissolve it, and further, the desired noble metal was distributed to an aqueous phase or an organic solvent phase. It relates to a method for efficiently recovering precious metals in a state.
  • the present invention also relates to a method for selectively dissolving and recovering a noble metal.
  • a noble metal raw material contains a base metal and a noble metal
  • a single solvent in which a soluble compound and a simple halogen are dissolved is used.
  • the base metal is not substantially dissolved or the solubility of the base metal is reduced.
  • the present invention relates to a method for selectively dissolving a noble metal in a sufficiently low state, and a method for reducing and recovering the selectively dissolved noble metal.
  • Dissolution of precious metals is an indispensable process for extracting and recovering valuable precious metals from various materials containing precious metals (for example, waste industrial materials such as semiconductors and lead frames). It is regarded as industrially important as a technology for recovering precious metals useful in, for example, platinum group such as Au, Ag, Pt, Pd, and Ru for effective use of resources.
  • the method (2) of dissolving with an alkali cyanide solution is also highly dangerous, and may dissolve even a base metal, and is expensive and economical for wastewater treatment of a spent alkali cyanide solution. L ,.
  • the method (3) using a mixed aqueous solution of iodine and iodide, or the method (4) using a solution consisting of a simple substance of a halogen, a halide salt, water and a polar organic solvent has a limit in dissolving ability to a noble metal. Yes, and because it is necessary to select a polar solvent that sufficiently dissolves the halide salt to be used, the type and amount of the halide salt that can be used are restricted, and the amount of solvent used is large, and oxidizing agents and reduction Due to the large amount of drug used, there are still many issues to be solved on an industrial scale.
  • the present inventor has realized a process that is highly safe, can use a small amount of chemicals and the like, can realize an inexpensive process, and is suitable for an industrial-scale process. We have done diligent research on the law.
  • the present inventor considers this point of view as a first point of interest.
  • a method of dissolving a noble metal as a noble metal complex using a simple halogen and a halide salt two types having low mutual solubility, which were not expected at all from the prior art.
  • a method for effectively eliminating the above-mentioned restrictions has been found, and the present invention has been completed.
  • a first object of the present invention made based on the first point of interest is to use the above-mentioned halogen unit and halide salt by using a mixed solution of two or more solvents having a low solubility in each other.
  • this dissolving treatment allows the solvent phase in which the noble metal complex is dissolved at a relatively high concentration, preferably one solvent phase containing the noble metal complex at a high concentration, to be easily separated from the other solvent phases. It is an object of the present invention to provide a method that enables separation and allows subsequent treatment such as recovery of precious metal to be performed easily and efficiently.
  • Another object of the present invention in which a mixed solution of two or more solvents having a low solubility in each other is used is to stir a mixed solution of two or more solvents having a low solubility in each other. It is an object of the present invention to provide a method which can reduce restrictions on the solubility of a halogen or a halogen compound which acts on dissolution of a noble metal in a solvent when used in a mixed state as described below.
  • Another object of the present invention using a mixed solution comprising two or more solvents having a low solubility in each other is to use a combination of a hardly soluble solvent and a readily soluble solvent of a noble metal complex, By dissolving the compound at a high concentration so as to be unevenly distributed in a readily soluble solvent, thereby providing a method that can perform the above-mentioned processes such as recovery more efficiently.
  • Another object of the present invention is not only to facilitate the dissolution and recovery of the target noble metal, but also to facilitate the regeneration of the halogen alone and the repeated use of the halogen compound and the organic solvent used in this method.
  • Wastewater treatment can be drastically reduced or substantially omitted, and wastewater treatment equipment can be eliminated or downsized, and the cost can be reduced by drastically reducing the amount of chemicals used. It is intended to provide a method that can effectively realize the implementation in the field.
  • the second point of interest of the present invention which enables selective dissolution of the target noble metal without substantially dissolving such contaminating metals, can be realized, the recovery by simultaneous dissolution of metals other than the target noble metal This eliminates or reduces the complicated operation of removing unnecessary metals from precious metals, reduces the recovery rate of the target precious metals, and reduces the burden on recovery equipment and recovery costs.
  • contamination metals can be reduced. This is because the possibility of reusing valuable contaminant metals can be advantageously achieved by enabling the solids to be recovered separately from the precious metals.
  • the method for selectively dissolving a noble metal according to the present invention is based on such knowledge, and its purpose is to dissolve a noble metal capable of selectively dissolving only a noble metal from a metal raw material in which a noble metal and a base metal coexist. It is to provide a dissolution method.
  • Another object of the present invention is to provide a recovery method capable of selectively and efficiently recovering a target noble metal using the above-described dissolution method.
  • Still another object of the present invention is to provide a solution for selectively dissolving only the noble metal according to the first object, comprising a combination of two or more solvents having a low mutual solubility.
  • a method in which the recovery of the noble metal can be facilitated by separating the solvent phase after dissolution, and in particular, by using a mixed solvent of a noble metal complex and a solvent that is sparingly soluble in the noble metal complex It is an object of the present invention to provide a method capable of dissolving a noble metal complex at a high concentration.
  • One of the features of the method for dissolving a noble metal using a mixture of two or more solvents having low mutual solubility to achieve the above-described first object of the present invention is that at least two kinds of solvents selected from an organic solvent and water are used. At least one solvent constituting the mixture dissolves a simple halogen, and at least one other solvent constituting the mixture or at least one other solvent comprises a soluble halogen compound. At least one solvent that dissolves and forms a mixture of parentheses is a mixture comprising a combination of solvents that dissolve the polyhalogeno noble metal anion complex. The soluble halogen compound is dissolved, and the noble metal raw material is immersed while stirring the mixture.
  • the target precious metal When a halogen atom is given from the halogen, a metal halide is generated, and this is converted into a highly soluble polyhalogeno metal anion complex by the action of a soluble haeogen compound, and the solvent phase of the mixed solution, for example, an aqueous phase And dissolves in organic solvent phase.
  • Another feature of the present invention that achieves the first object is that following the step of dissolving the noble metal as a complex, the method of dissolving the noble metal as a complex utilizing the property that the mutual solubility of solvents is low. After the mixture is allowed to stand and each solvent phase is separated, a process is carried out in which the noble metal complex dissolved in any of the solvent phases at a high concentration is reduced and the noble metal is efficiently recovered.
  • the reason for adopting such a structure in the method for recovering a noble metal using the above-mentioned mixed solution of the present invention is that the noble metal complex (polyhalogenometal anion complex) generated by the reaction is biased to any phase of the mixed solution. If they are present, the treatment efficiency can be greatly improved by performing the subsequent process, reduction precipitation only on the phase in which the high concentration is dissolved. Further, by using a mixture of solvents having different properties, there is also obtained an advantage that a solvent having a different solubility of the simple halogen and the soluble halide required for dissolving the noble metal can be appropriately selected and used. The difference in solubility of the noble metal complex in each solvent of the mixed solution, and the magnitude of the difference are not necessarily essential in the present invention.
  • each solvent forming the mixed solution means that when the mixed solution is allowed to stand, it is easily separated into upper and lower phases and each phase is separated as a solvent.
  • the solvent of each phase can be easily removed separately by, for example, separating the liquid from the upper and lower parts by standing still and switching the flow path while flowing the liquid from the lower part of the storage tank.
  • the solvent of the phase in which the noble metal complex is dissolved at a high concentration as described above is collected independently for the purpose of improving the subsequent treatment, etc., preferably within a few minutes or several tens of minutes.
  • At least two types of solvents selected from organic solvents and water are selected as a combination of water and an organic solvent or a combination of organic solvents.From the viewpoint of running costs, for example, water and water It is preferable to use a combination of organic solvents having low solubility in water.
  • Examples of the organic solvent constituting the mixed solution of the present invention include liquid hydrocarbons, esters, ketones, nitriles, and halogenated hydrocarbons.
  • liquid hydrocarbons for example, methyl acetate, ethyl acetate, Methyl ethyl ketone is particularly suitable.
  • the mixing ratio of the solvents having low mutual solubility is not uniformly determined by the solubility of the solvent with respect to a simple halogen, but is generally 1: 9 to 9: 1, preferably 2: 8 to 8: 2, and furthermore, Preferably, it can be used in the range of 4: 6 to 6: 4.
  • the mixed solution is used in combination with a solvent having low mutual solubility as described above. It is necessary to use a mixture.
  • the mixing method is not particularly limited, but as a general means on an industrial scale, a stirring blade device can be used.
  • At least two kinds of solvents forming the mixed solution are a readily soluble solvent in which the noble metal complex is dissolved at a high concentration, a low solubility of the noble metal complex, and a simple halogen or a soluble halogen compound. It is particularly preferable to use a readily soluble solvent in combination.
  • the noble metal can be dissolved in one solvent at a high concentration and not dissolved in the other solvent as much as possible. If only the phase in which the noble metal or the like is dissolved at a high concentration is taken out, the subsequent recovery operation can be performed with higher efficiency. Since the phase in which the noble metal complex is dissolved at a low concentration contains a high concentration of the unreacted component of a simple halogen or a soluble halogen compound, it can be recycled to the dissolution step and used for the next dissolution step as described above. .
  • the degree is not particularly limited. Is more than 3 Z 7 times, preferably 2/8 In many cases, it is preferable that the ratio be twice or more.
  • One of the features of the method for selectively dissolving a noble metal that achieves the second object of the present invention is that a metal material in which a noble metal and a base metal coexist is immersed in a solution in which a simple halogen and a soluble halogen compound are dissolved. Then, when the halogen is generated by the oxidation reaction of the metal with the simple halogen and the polyhalogenometal anion complex is formed by the soluble halogen compound, the noble metal complex generated by the above reaction is dissolved in the solution.
  • the base metal is constituted by using a solvent having a property of substantially not dissolving.
  • noble metal selectively dissolved by the selective melting method examples include gold, silver, and platinum group metals (platinum, palladium, etc.).
  • base metal is a generic term for metals other than noble metals, and typically includes metals such as iron, nickel, cobalt, and copper, and alloys thereof.
  • the dissolving solution which can be used in the selective dissolving method of the present invention is a solvent having a property capable of dissolving a simple halogen and a soluble haegen compound and dissolving a noble metal complex from the above solvents.
  • a solvent having a property capable of dissolving a simple halogen and a soluble haegen compound and dissolving a noble metal complex from the above solvents is selectively adopted and is not uniformly determined, it is possible to use, for example, a single polar organic solvent, or a mixture of an organic solvent and water, such as alcohols and liquid hydrocarbons. , Esters, ketones, and halogenated hydrocarbons are suitable.
  • methyl alcohol methyl acetate, ethyl acetate, methyl ethyl ketone, etc., selectively dissolve noble metals and do not dissolve base metals.
  • a solvent for selectively dissolving only noble metal from a target material in which a noble metal such as gold and palladium and a base metal such as copper and nickel coexist for example, a single solvent of methanol and tetraiodide
  • a single solvent of methanol and tetraiodide examples include a combination of ethylammonium and iodine, or a mixed solvent of water and methyl nitrate, and a combination of iodide and iodine such as tetraethylammonium iodide, potassium iodide, and ammonium iodide. be able to.
  • the solution in which the noble metal is dissolved does not substantially dissolve the base metal, not to mention that the concentration of the base metal complex contained in the solution is zero, but the base metal contained in the target metal raw material is not limited to this. Includes cases where the dissolution rate is as low as 10% or less. With such a low concentration, the burden of post-treatment after dissolution can be sufficiently reduced as compared with the conventional method in which a noble metal and a base metal are simultaneously dissolved.
  • the dissolution solution does not dissolve the base metal, the mechanism is that the dissolution reaction does not occur except for the above-mentioned dissolution reaction due to hachigen alone or soluble haematogenide in the dissolution solution. It may be any case where the solubility of the base metal complex in the solvent used is low.
  • a mixed solution of two or more selected from water and an organic solvent having a low mutual solubility as described above may be used as the dissolution solution.
  • two or more kinds of solvents are composed of a combination of a readily soluble solvent and a slightly soluble solvent of the polyhalogeno noble metal anion complex for the same reason as described above.
  • the target metal raw material can be immersed in a solution in a stirring state (using a stirring blade device or in a turbulent state).
  • the noble metal complex can be dissolved in one of the solvent phases (ethyl acetate) at a higher concentration than the aqueous phase, and these solvents are easily separated by standing.
  • the precious metal is reduced and recovered from the solvent phase after being dissolved to a concentration, and the other aqueous phase is recycled to the next dissolution process, thereby recovering a high rate of the precious metal and reducing the volume of the liquid during the reduction recovery. Phenomenon and, consequently, reduction of reducing agent and downsizing of equipment can be realized.
  • the method for selectively dissolving a noble metal according to the present invention achieves the object by performing a pretreatment for forming an oxide film on the surface of a base metal of the target metal material prior to the dissolution treatment of the target metal material.
  • a pretreatment for forming an oxide film on the surface of a base metal of the target metal material prior to the dissolution treatment of the target metal material can be.
  • the method of forming such an oxide film on the metal surface varies depending on the types of the noble metal and the base metal contained in the target metal raw material, but for example, a method of heating and oxidizing the target metal raw material can be used.
  • a method of heating and oxidizing the target metal raw material can be used.
  • noble metal raw materials Is preferably performed by shredding.
  • a simple halogen, or a soluble halogen compound By subjecting the target metal raw material that has been subjected to the pretreatment for forming such an oxide film to a dissolution treatment using the above-described solution, a simple halogen, or a soluble halogen compound, only the noble metal can be selectively dissolved.
  • an appropriate solvent can be selected as the solvent to be used without being restricted to dissolving the base metal complex.
  • the simple halogen used for dissolving the noble metal includes chlorine (C 1), bromine (Br), and iodine (I), and iodine is particularly preferably used.
  • the concentration of the halogen simple substance is preferably at least 0.25 times the mole of the target noble metal, and more preferably at least 0.5 times the mole in order to promote the dissolution reaction.
  • Examples of the soluble halogen compound include the following, that is, those in which the constituent cation is any of the following (a) to (c).
  • R 2 , R 3 and R 4 are a hydrogen atom or a hydrocarbon group having 6 or less carbon atoms
  • (c) Compounds obtained by adding a hydrogen halide to an aminopolycarboxylic acid, such as glycine hydroaodiide.
  • the amount of the soluble halogen compound is preferably at least 0.5 times, preferably at least equimolar, the amount of the target noble metal to be dissolved in order to promote the dissolution reaction and to improve the stability of the resulting complex.
  • the time required for dissolving the noble metal varies depending on the target noble metal, the soluble halogen compound to be used, the type and concentration of the halogen alone, and the type of the mixture of water and the organic solvent.
  • the melting point is lower than the boiling point of the metal. The end point of the noble metal dissolution can be easily confirmed by the invisible charged noble metal.
  • a noble metal is dissolved in an aqueous phase or an organic solvent phase, and a complex of the noble metal is further reduced. It can be recovered by ordinary methods such as drying and drying.
  • the reducing agent used in the reduction may be any as long as it does not inhibit the reaction of the present invention by reducing the target noble metal, and examples thereof include sodium borohydride, hydrazine and its salts, sulfurous acid and its salts, and sodium hydrogen sulfite. it can.
  • the reduction reaction can be performed, for example, on a phase in which the target noble metal is dissolved, after separating the aqueous phase or the organic solvent phase, for example.
  • the treatment temperature is selected below the boiling point of the target phase, generally in the range of room temperature to 40 ° C and 50 ° C.
  • the end point of the reduction reaction may be performed, for example, until no new precipitation phenomenon is observed while the reducing agent is being added.
  • the solvent after completion of the above reduction reaction and recovery of the target noble metal can be regenerated and used as a solution for the next dissolution step.
  • the aqueous phase or the organic solvent phase is oxidized, and then both phases are mixed to prepare a predetermined solution composition, which can be reused as a solution (the above-mentioned mixture).
  • aqueous phase and the organic solvent phase are mixed again to form a regenerated mixed solution, it is necessary to adjust the oxidation ratio of the halogen compound so that the concentration of the halogen alone becomes a predetermined concentration.
  • the oxidizing agent used in this oxidation reaction may be any oxidizing agent that has an oxidizing ability with respect to the halogen compound used within a range that does not inhibit the reaction of the present invention.
  • examples include sodium chlorite, hydrogen peroxide, and sodium nitrite.
  • the method of the present invention involves the use of expensive noble metals such as gold, silver, and platinum groups (platinum, palladium, ruthenium). Dissolution of tin, rhodium, etc.) Used effectively for recovery.
  • noble metals such as gold, silver, and platinum groups (platinum, palladium, ruthenium). Dissolution of tin, rhodium, etc.) Used effectively for recovery.
  • the present invention relates to a gold-plated material such as a waste industrial material in which a noble metal is added to a waste electronic component, a base metal or an alloy thereof, a platinum-based catalyst used in the petrochemical industry, a waste jewelry, and the like. It can be used for recovery, and when precious metals are exposed on the surface, these industrial raw materials can be used without shredding or shredded to an appropriate size suitable for immersion treatment. If the noble metal is not exposed on the surface of the raw material, the noble metal may be exposed on the surface by shredding or grinding. It can also be applied to crushing ore containing precious metals to extract precious metals. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram schematically showing an outline of the configuration of an apparatus used to carry out the method of the present invention.
  • Examples 1 to 7 shown below are examples corresponding to the first object of the present invention using a mixture of two or more types of water and organic solvents having low mutual solubility.
  • FIG. 1 schematically shows an outline of an apparatus in which the following examples were performed.
  • two kinds of predetermined solvents were charged into a reaction tank 1 using the apparatus shown in FIG.
  • a simple noble metal material and a soluble halogen compound are added, and a predetermined noble metal material is added to these mixed solvents while being stirred by the stirring blade device 4 to be dissolved.
  • the stirring blade device 4 is stopped and allowed to stand, and the two kinds of solvents are separated into upper and lower two phases.
  • the on-off valves 5 and 6 are opened, and the separated phase (for example, a phase containing a high concentration of halogen alone and little dissolution of noble metal) in the lower part of the reaction tank 1 is transferred to the solution storage tank 2.
  • the on-off valves 5 and 7 are opened, and the separated phase (for example, halogen (A phase in which the concentration of precious metals is low and the precious metal is dissolved in a high concentration) is transferred to the reduction / regeneration tank 3.
  • a reducing agent is added to the reducing and regenerating tank 3, and the desired noble metal is deposited under stirring by the stirring blade device 10, and the valve 8 is opened to let the precipitated noble metal flow downward to be drawn. Recover by filtration without filtration. Valve 8 closes as soon as the precious metal precipitates out.
  • the concentration of the simple halogen is adjusted by performing a predetermined treatment such as oxidizing the solution in the solution storage tank 2 and the reduction and regeneration tank 3. These liquids are returned to the reaction tank 1 via 9 to prepare for the next dissolving operation.
  • This mixed solution is placed in a reaction tank, and sufficiently stirred with a stirring blade device.
  • a 2 mm gold wire (0.0421 g) was heated at reflux near the boiling point for 15 minutes. After the heating was completed, the mixture was allowed to stand for 1 minute.After the solvent was separated into two phases, each phase was separated and taken out. The concentration of the gold complex dissolved in each of the solvents was measured.
  • the measurement of the gold complex was carried out by means of an ICP emission spectrometry (the same applies to the following examples).
  • the ethyl acetate phase of the mixed solution in which gold was dissolved in the dissolution step of (1-1) was taken out and the gold was added by adding sodium borohydride.
  • the aqueous phase was reused as the aqueous phase in the next dissolution step.
  • This mixed solution was placed in a reaction vessel, and a 0.2 mm diameter gold wire (0.0408 g) was refluxed and heated near the boiling point for 15 minutes while sufficiently stirring with a stirring blade device. After the heating was completed, the mixture was allowed to stand for 1 minute.After the solvent separated into two phases, each phase was separated and taken out. The concentration of the gold complex dissolved in each solvent was measured. 10 Omg / kg, 260 Omg / kg gold was dissolved in the aqueous phase.
  • the mixture was allowed to stand for 1 minute to separate the solvent into two phases, and the concentration of the palladium complex dissolved in each phase after the separation was measured.
  • the concentration was 290 Omg / kg for the methylethylketone phase and 290 Omg / kg for the aqueous phase. Had 14 Omg / kg of palladium dissolved.
  • hydrazine was added to methyl ethyl ketone in which palladium separated as described above was dissolved as a complex to reduce and recover palladium, and the recovery was 100%.
  • Potassium iodide (lmmo1) and iodine (0.5 mmol) were dissolved in 5 g of methyl ethyl ketone and 5 g of water.
  • Potassium iodide was highly soluble in water, and iodine was highly soluble in methylethylketone.
  • This mixed solution was placed in a reaction vessel, and a palladium wire (0.0201 g) having a diameter of 0.2 mm was refluxed and heated at about the boiling point for 15 minutes while sufficiently stirring with a stirring blade device. After heating was completed, the solvent was allowed to stand for 1 minute to separate the solvent into two phases, and the concentration of the palladium complex dissolved in each phase after the separation was measured.
  • the separated aqueous phase was acidified, sodium hypochlorite was added to release 0.5 mmo 1 of iodine, and the above methyl ethyl ketone phase was mixed to obtain a regenerating solution.
  • the palladium wire having a diameter of 0.2 mm is redissolved in this reconstituted solution as described in (4) above. -When the same operation as in 1) was performed, the same solubility as the first time was obtained.
  • Ammonium iodide (1 mmo1) and iodine (0.5 mmo1) were dissolved in carbon tetrachloride (5 g) and water (5) to prepare two solutions having the same composition.
  • Ammonium iodide was highly soluble in water, and iodine was highly soluble in carbon tetrachloride.
  • Each of these mixed liquids was placed in a separate reaction tank, and while stirring sufficiently with a stirring blade device, a gold wire (0.0804 g) having a diameter of 0.2 mm was added to each, and the mixture was heated at reflux near the boiling point for 15 minutes. After heating was completed, the solution was allowed to stand for 1 minute to separate each solution into two phases, and the concentration of the gold complex dissolved in each phase after the separation was measured. 330 kg / kg of gold was dissolved in the / kg and the aqueous phase, respectively.
  • the aqueous phase and the carbon tetrachloride phase were separated, and sodium hydrogen sulfite was added only to the aqueous phase to reduce and recover the gold.
  • the amount of sodium bisulfite used was approximately 0.026 g.
  • the other solution in which gold was dissolved was added with sodium bisulfite and the gold was reduced and recovered while coexisting without separating the aqueous phase and the carbon tetrachloride phase.
  • the amount of sodium bisulfite used was It was about 0.048 g.
  • the amount of reducing agent used is reduced to about 12 in the case of separating and recovering gold by separating the phase in which the gold complex is dissolved at a high concentration, compared to the case where the phase is not separated. It was confirmed that reduction was possible.
  • Sodium hypochlorite is added to the aqueous phase solution from which the gold was recovered by adding the above reducing agent to release iodine, and combined with the separated carbon tetrachloride phase to form a prescribed solution
  • the amount of sodium hypochlorite (5%) used was approximately 0.22 g.
  • the reducing agent was added without separating the aqueous and carbon tetrachloride phases while keeping both phases coexisting.
  • sodium hypochlorite was added to the solution from which the gold was recovered to release iodine and regenerated to the prescribed solution composition, the amount of sodium hypochlorite used was about 0.50.
  • the amount of the oxidizing agent used is reduced by about 1 to 2 compared to the case where the phases are not separated. It was confirmed that the amount could be reduced.
  • a 0.2 mm diameter gold wire (0.0804 g) was heated to reflux near the boiling point for 15 minutes in the reconstituted lysate. After the heating was completed, the mixture was allowed to stand for 1 minute to separate the solvent into two phases. When the concentration of the gold complex dissolved in the solvent was measured, about 150 mg / kg of gold was dissolved in the carbon tetrachloride phase and about 330 Omg / kg in the aqueous phase.
  • Ammonium iodide 1 Ommo 1 and iodine 5 mmo 1 were dissolved in a mixed solvent of 40 g of methyl acetate and 10 g of water to prepare a solution.
  • a solution was prepared by dissolving 1 mmol of tetraethylammonium iodide and 0.5 mm of iodine in 10 g of methanol.
  • gold wire prior to dissolving each 2000 o C 5 seconds diameter 0. 2 mm was subjected to combustion treatment of copper wire, nickel wire (gold wire 0. 0412 g, copper 0. 0228 g, nickel wire 0 0246 g) was prepared.
  • the above solution was placed in three reaction tanks, and the gold, copper, and nickel wires subjected to the above combustion treatment were immersed under stirring, and all were heated at reflux near the boiling point for 15 minutes.
  • 50 Omg of the gold complex was dissolved in the solution of the reaction vessel in which the gold wire was immersed, but copper and nickel were dissolved in the solution of the reaction vessel in which these were immersed. Without detection.
  • a solution was prepared by dissolving ammonium iodide lmmo 1 and iodine 0.5 mmol in a mixed solvent of 5 g of methyl acetate and 5 g of water.
  • Parajiu beam 10 parts was subjected to combustion treatment in each 2000 e C 5 seconds prior to the dissolution, 45 parts of aluminum, were prepared 0. 1 g of the metal material obtained by mixing 45 parts of zinc (powder).
  • the metal material subjected to the above-mentioned combustion treatment was immersed in the reaction vessel containing the above solution, heated under reflux near the boiling point, and the dissolution state was measured.As a result, 100 pmg of the palladium complex was dissolved in the solution. However, aluminum and zinc did not dissolve and were not detected.
  • a dissolution solution was prepared by dissolving 1 mmo 1 of potassium iodide and 0.5 mmo 1 of iodine in 10 g of methanol.
  • 0.1 g of a metal raw material was prepared by mixing 10 parts of palladium, 45 parts of aluminum, and 45 parts of subaluminum, each of which was subjected to a combustion treatment at 2000 ° C. for 5 seconds before melting.
  • the metal material subjected to the above combustion treatment was immersed in the reaction vessel containing the above solution, heated under reflux near the boiling point, and the dissolution state was measured.
  • the solution contained 180 Omg Zkg of the palladium complex. but but it had been dissolved, aluminum, zinc 1 Oh out non-detection does not dissolve
  • Ammonium iodide 2.511111101 and iodine 1.25 mmo 1 were dissolved in a mixed solvent of 8.5 g of ethyl ethyl and 1.5 g of water to prepare a solution.
  • a solution was prepared by dissolving 2 mm 01 of tetraethylammonium iodide and 1 mmo 1 of iodine in 10 g of methanol.
  • the operation is simple as shown in Examples 1 to 7 above.
  • Gold, silver, platinum group and other precious metals can be recovered efficiently and efficiently with extremely high efficiency, reducing the amount of halogen compounds, simple halogens, and solvents used, and further reducing the amount of repeated use.
  • the following various effects, such as improvement of safety and economy, can be obtained.
  • the target metal and the target noble metal can be arbitrarily distributed to the organic solvent phase or aqueous phase.
  • the solvent can be easily separated into two phases (or more), and this can reduce the amount of solvent used in the precious metal recovery process.
  • the operation is simple, and the selective dissolution can be performed without the simultaneous dissolution of the base metal coexisting with the gold, silver, and platinum groups. Since the noble metal is selectively dissolved without substantially dissolving the metal, the subsequent separation and purification step can be omitted or reduced, and the effect of reducing costs can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A method of dissolving and, if necessary, further recovering noble metals efficiently from industrial raw materials including gold plated materials such as waste electronic parts, platinum catalysts used in the petrochemical industry, and waste ornaments. The conventional dissolving methods using aqua regia, an alkali cyanide solution and so forth are dangerous and necessitate complicated procedures for separating dissolved matters. The invention method comprises dissolving a simple substance of halogen and a soluble halogen compound in a mixture of two solvents that are selected from the group consisting of organic solvents and water and are lowly soluble in each other, immersing raw noble metal materials in the resulting solution to dissolve them in the form of a complex, leaving the solution at rest to cause phase separation, reducing the noble metal complex dissolved in the solvent phase in a high concentration, and recovering the reduced noble metal.

Description

明 細 書 金属の溶解方法及び回収方法 技術分野 .  Technical field Metal dissolution method and recovery method.
本発明は、 貴金属の溶解、 更に必要に応じてその回収を行なう方法に関するも のであり、 廃電子部品などの金メッキ材料、 石油化学工業などで利用される白金 系触媒、 廃宝飾品等を工業的な貴金属原料として、 2種以上の溶媒の混合液中で 可溶性ハロゲン化合物の存在下に貴金属をハロゲン単体と反応させて溶解し、 更 には、 目的貴金属を水相あるいは有機溶媒相に分配させた状態で効率よく貴金属 を回収する方法に関する。  The present invention relates to a method for dissolving a precious metal and, if necessary, recovering the precious metal. The present invention relates to a method for industrially producing a gold-plated material such as a waste electronic component, a platinum-based catalyst used in a petrochemical industry, a waste jewelry, etc. As a noble metal raw material, a noble metal was reacted with a simple halogen in the presence of a soluble halogen compound in a mixed solution of two or more solvents to dissolve it, and further, the desired noble metal was distributed to an aqueous phase or an organic solvent phase. It relates to a method for efficiently recovering precious metals in a state.
また本発明は、 貴金属の選択的溶解方法及び回収方法に関するものでもあり、 詳しくは、 上記の貴金属原料が卑金属と貴金属を含む場合に、 可溶性ハロゲン化 合物及びハロゲン単体を溶解した単一の溶媒からなる溶解液、 あるいは 2種以上 の溶媒の混合液中で可溶性ハロゲン化合物の存在下に貴金属をハロゲン単体と反 応させて溶解させることで、 卑金属を実質的に溶解しないか又は卑金属の溶解度 は十分に低い状態で、 貴金属を選択的に溶解させる方法及びこの選択的に溶解し た貴金属を還元して回収する方法に関するものである。 背景技術  The present invention also relates to a method for selectively dissolving and recovering a noble metal. Specifically, when the above-mentioned noble metal raw material contains a base metal and a noble metal, a single solvent in which a soluble compound and a simple halogen are dissolved is used. By dissolving the noble metal by reacting it with a simple halogen in the presence of a soluble halogen compound and dissolving it in a dissolving solution consisting of or a mixture of two or more solvents, the base metal is not substantially dissolved or the solubility of the base metal is reduced. The present invention relates to a method for selectively dissolving a noble metal in a sufficiently low state, and a method for reducing and recovering the selectively dissolved noble metal. Background art
貴金属の溶解は、 貴金属を含有する種々の材料 (例え.ば半導体やリードフレー ム等の廃工業材料など) から有価貴金属を抽出、 回収するためには不可欠の工程 であって、 従来から、 高価で有用な貴金属、 例えば A u、 A g、 P t , P d , R u 等の白金族等の回収技術として、 資源の有効利用を図るために産業上重要とされ ている。  Dissolution of precious metals is an indispensable process for extracting and recovering valuable precious metals from various materials containing precious metals (for example, waste industrial materials such as semiconductors and lead frames). It is regarded as industrially important as a technology for recovering precious metals useful in, for example, platinum group such as Au, Ag, Pt, Pd, and Ru for effective use of resources.
この有価貴金属を回収するために必要とされる貴金属の溶解法として従来知ら れる方法としては、 (1 ) 貴金属を王水や塩酸などの無機酸の水溶液に溶解する 方法、 (2 ) シアン化アルカリ溶液で溶解する方法、 或いは (3 ) ヨウ素とヨウ 化物とを含む混合水溶液により溶解する方法 (特開昭 5 9 - 7 6 8 3 4号、 特開 平 1 一 2 4 2 7 3 0号) が知られ、 また最近の技術としては、 (4 ) ハロゲン単 体と可溶性ハロゲン化塩及び、 水, 極性溶媒から成る溶媒に接触させる方法 (特 開平 4一 2 1 7 2 6号 (対応米国特許第 5 1 3 9 7 5 2号) ) などが提案されて いる。 Conventionally known methods for dissolving precious metals required to recover this valuable precious metal include (1) dissolving the precious metals in an aqueous solution of an inorganic acid such as aqua regia or hydrochloric acid, and (2) alkali cyanide. Dissolution in solution, or (3) Iodine and iodine A method of dissolving with a mixed aqueous solution containing a compound (Japanese Patent Application Laid-Open No. 59-76834, Japanese Patent Application Laid-Open No. H11-242730) is known. ) A method of contacting a halogen alone with a soluble halide salt and a solvent composed of water and a polar solvent (Japanese Patent Application Laid-Open No. 4-121726 (corresponding US Pat. No. 5,139,752)), etc. Proposed.
しかし、 上記した従来の技術はこれを工業的に実施するにはそれぞれ欠点があ る。'例えば、 上記 (1 ) の王水等を用いる貴金属の溶解方法は、 用いる溶液が強 酸性で危険性が高いうえ、 夾雑する卑金属まで溶解してしまい、 回収工程で貴金 属と卑金属の分離操作が煩雑となる欠点がある。  However, the conventional techniques described above have drawbacks for industrially implementing this. 'For example, in the method for dissolving precious metals using aqua regia or the like described in (1) above, the solution used is strongly acidic and dangerous, and even the contaminated base metal is dissolved, and the precious metal and base metal are separated in the recovery process. There is a disadvantage that the operation is complicated.
シアン化アルカリ溶液で溶解する上記 (2 ) の方法も、 同様に危険性が高いう え、 卑金属まで溶解することがあり、 かつ使用済みシアン化アルカリ溶液の排水 処理に費用が嵩み経済的でな L、。  The method (2) of dissolving with an alkali cyanide solution is also highly dangerous, and may dissolve even a base metal, and is expensive and economical for wastewater treatment of a spent alkali cyanide solution. L ,.
ヨウ素とヨウ化物の混合水溶液を用いる上記 (3 ) の方法、 あるいはハロゲン 単体、 ハロゲン化塩、 水及び極性有機溶媒からなる溶解液を用いる上記 (4 ) の 方法は、 貴金属に対する溶解能力に限界があり、 また、 使用するハロゲン化塩が 十分に溶解する極性溶媒を選択しなければならないという問題から、 使用できる ハロゲン化塩の種類や量が制約され、 溶媒の使用量が多く、 酸化剤, 還元剤の使 用量も多いために、 工業的規模での実施には未だ解決すべき問題が多い。  The method (3) using a mixed aqueous solution of iodine and iodide, or the method (4) using a solution consisting of a simple substance of a halogen, a halide salt, water and a polar organic solvent, has a limit in dissolving ability to a noble metal. Yes, and because it is necessary to select a polar solvent that sufficiently dissolves the halide salt to be used, the type and amount of the halide salt that can be used are restricted, and the amount of solvent used is large, and oxidizing agents and reduction Due to the large amount of drug used, there are still many issues to be solved on an industrial scale.
本発明者は、 以上のような従来技術の現状に鑑み、 安全性が高くしかも使用す る薬剤等の量を少なく出来て安価な処理が実現できて、 工業的規模での実施に適 した処理法につき鋭意研究を重ねた。  In view of the above-mentioned current state of the art, the present inventor has realized a process that is highly safe, can use a small amount of chemicals and the like, can realize an inexpensive process, and is suitable for an industrial-scale process. We have done diligent research on the law.
そしてその研究の過程で、 上記特開平 4 - 2 1 7 2 6号等で提案された極性溶 媒中でハロゲン単体、 ハロゲン化塩を用いて処理する方法が、 ハロゲンによって 目的貴金属を金属ハロゲン化物とし、 これをハ口ゲン化塩によってポリハロゲノ 金属陰イオン錯体として極性溶媒に溶解させる反応を基本とする優れた方法であ るが、 溶媒としてハロゲン単体、 ハロゲン化塩、 ポリハロゲノ金属陰イオン錯体 (以下 「貴金属錯体」 という) をいずれも十分に溶解させる性質のものを用いな ければならないという制約があり、 これによつて使用できるハロゲン化塩の種類 や量が限定されたり、 使用する溶媒量を多くしなければならず、 ひいては還元剤 等の薬剤使用量も多いという問題を招く結果になる点に着目した。 In the course of that research, a method of treating a target noble metal with a metal halide using a halogen alone or a halide in a polar solvent proposed in Japanese Patent Application Laid-Open No. 4-21726, etc. This is an excellent method based on the reaction of dissolving this in a polar solvent as a polyhalogeno metal anion complex with a halogenated salt. All of which have the property of sufficiently dissolving the “noble metal complex”), and the types of halide salts that can be used It was noted that the amount of solvent used was limited, and the amount of solvent to be used had to be increased, resulting in the problem of using a large amount of chemicals such as a reducing agent.
すなわち、 ハロゲン単体及びハロゲン化塩を用いた処理法において、 使用する 溶媒に対する上記制約が解消できれば、 種々の問題が一挙に解決され、 工業的規 模での実施に極めて有効であるからである。  That is, in a treatment method using a simple substance of halogen and a halide salt, if the above-mentioned restrictions on the solvent to be used can be eliminated, various problems can be solved at once, and it is extremely effective for implementation on an industrial scale.
本発明者はかかる観点を第 1の着目点として、 ハロゲン単体及びハロゲン化塩 を用いて貴金属を貴金属錯体として溶解する方法において、 従来技術からは全く 予想されなかった、 相互の溶解度が低い 2種以上の溶媒を組み合わせて用いるこ とにより、 上記制約を効果的に解消できる方法を見出して本発明を完成するに至 つたものである。  The present inventor considers this point of view as a first point of interest. In a method of dissolving a noble metal as a noble metal complex using a simple halogen and a halide salt, two types having low mutual solubility, which were not expected at all from the prior art. By using a combination of the above-mentioned solvents, a method for effectively eliminating the above-mentioned restrictions has been found, and the present invention has been completed.
すなわち上記第 1の着目点に基づいてなされた本発明の第 1の目的は、 相互に 溶解度が低い関係にある 2種以上の溶媒からなる混合液を用いて上記ハロゲン単 体及びハロゲン化塩による貴金属錯体の溶解を行わせると共に、 この溶解処理に よって貴金属錯体を比較的高濃度に溶解している溶媒相好ましくは貴金属錯体を 高濃度に含む一つの溶媒相を、 他の溶媒相から容易に分離できるようにして、 そ の後の貴金属の回収などの処理を容易かつ効率よく行なうことができる方法を提 供するところにある。  That is, a first object of the present invention made based on the first point of interest is to use the above-mentioned halogen unit and halide salt by using a mixed solution of two or more solvents having a low solubility in each other. In addition to dissolving the noble metal complex, this dissolving treatment allows the solvent phase in which the noble metal complex is dissolved at a relatively high concentration, preferably one solvent phase containing the noble metal complex at a high concentration, to be easily separated from the other solvent phases. It is an object of the present invention to provide a method that enables separation and allows subsequent treatment such as recovery of precious metal to be performed easily and efficiently.
また、 上記の相互に溶解度が低い関係にある 2種以上の溶媒からなる混合液を 用いる本発明の別の目的は、 相互に溶解度が低い関係にある 2種以上の溶媒から なる混合液を撹拌下の混合状態で用いることにより、 貴金属の溶解に作用するハ ロゲンやハロゲン化合物の溶媒に対する溶解性の選択の制約を少なくできる方法 を提供するところにある。  Another object of the present invention in which a mixed solution of two or more solvents having a low solubility in each other is used is to stir a mixed solution of two or more solvents having a low solubility in each other. It is an object of the present invention to provide a method which can reduce restrictions on the solubility of a halogen or a halogen compound which acts on dissolution of a noble metal in a solvent when used in a mixed state as described below.
また更に上記相互に溶解度が低い関係にある 2種以上の溶媒からなる混合液を 用いる本発明の別の目的は、 貴金属錯体の難溶性溶媒と易溶性溶媒の組合せを用 いることによって、 貴金属錯体を易溶性溶媒に偏在するように高濃度に溶解させ ることで、 上記回収などの処理を一層効率よく行なうことができる方法を提供す ると ろ  Further, another object of the present invention using a mixed solution comprising two or more solvents having a low solubility in each other is to use a combination of a hardly soluble solvent and a readily soluble solvent of a noble metal complex, By dissolving the compound at a high concentration so as to be unevenly distributed in a readily soluble solvent, thereby providing a method that can perform the above-mentioned processes such as recovery more efficiently.
上記相互に溶解度が低い関係にある 2種以上の溶媒からなる混合液を用いる本 発明の他の目的は、 目的貴金属の溶解, 回収を容易とするだけでなく、 この方法 に使用するハロゲン単体の再生、 ハロゲン化合物, 有機溶媒の繰り返し使用を容 易とでき、 これによつて、 排水処理の大幅な削減ないし実質的な省略を可能とで きて、 排水処理設備の廃止ないし小型化の実現、 使用薬剤量の大幅な低減による 低コスト化を実現可能とし、 これらを通じて工業的規模での実施を有効に実現で きる方法を提供するところにある。 A book that uses a mixture of two or more solvents that have a low solubility Another object of the present invention is not only to facilitate the dissolution and recovery of the target noble metal, but also to facilitate the regeneration of the halogen alone and the repeated use of the halogen compound and the organic solvent used in this method. Wastewater treatment can be drastically reduced or substantially omitted, and wastewater treatment equipment can be eliminated or downsized, and the cost can be reduced by drastically reducing the amount of chemicals used. It is intended to provide a method that can effectively realize the implementation in the field.
また、 本発明者が上記のハロゲン単体と可溶性ハロゲン化塩を用いて行う貴金 属の溶解、 更には回収の工業的な実施に際しての効率を向上させるための研究を 進めた過程において、 上記の相互の溶解度が低い 2種以上の溶媒を混合した混合 液 (溶解液) を用いることとは別に、 対象材料 (廃貴金属工業材料等) が含んで いることがある夾雑金属 (貴金属以外の金属) が目的貴金属と同時に溶解してし まうという問題を解消できれば、 目的貴金属を選択的に溶解, 回収できるという 点からも、 あるいは場合によっては貴金属と共存する有価な夾雑金属の再利用の 点からも有益であることを知見した。 つまり、 かかる夾雑金属を実質的に溶解せ ずに目的貴金属の選択的溶解を可能にするという本発明の第 2の着目点を実現で きれば、 目的貴金属以外の金属が同時に溶解することによる回収貴金属からの不 要金属の除去という煩雑な操作を不要ないし軽減することや、 目的貴金属の回収 率の低下や回収設備, 回収コストの負担増を軽減できるし、 晒に加えて、 夾雑金 属が貴金属とは別に固体のままで回収することを可能とすることで、 有価な夾雑 金属の再利用の可能性を有利にできるからである。  In addition, in the course of the research conducted by the present inventor to improve the efficiency of dissolving precious metals using the above-described halogen alone and a soluble halide salt, and furthermore, to improve the efficiency of industrial recovery, Apart from using a mixture of two or more solvents with low mutual solubility (dissolution solution), contaminated metals (metals other than precious metals) that may be included in the target material (waste precious metal industrial materials, etc.) Can be dissolved simultaneously with the target precious metal, so that the target precious metal can be selectively dissolved and recovered, and in some cases, from the viewpoint of recycling valuable contaminant metals that coexist with the precious metal. It was found to be beneficial. In other words, if the second point of interest of the present invention, which enables selective dissolution of the target noble metal without substantially dissolving such contaminating metals, can be realized, the recovery by simultaneous dissolution of metals other than the target noble metal This eliminates or reduces the complicated operation of removing unnecessary metals from precious metals, reduces the recovery rate of the target precious metals, and reduces the burden on recovery equipment and recovery costs. In addition to bleaching, contamination metals can be reduced. This is because the possibility of reusing valuable contaminant metals can be advantageously achieved by enabling the solids to be recovered separately from the precious metals.
しかしながら、 複数の金属が共存する材料から目的貴金属だけを選択的に溶解 できる工業的に実施可能な技術は、 現在までのところ提案はされていない。 本発明者は上記した目的貴金属のみの選択的溶解法を求めて、 種々研究を重ね However, an industrially feasible technology that can selectively dissolve only the target noble metal from a material in which multiple metals coexist has not yet been proposed. The present inventor has conducted various studies in search of a method for selectively dissolving only the target noble metal described above.
〜o ~ O
その結果、 上述したハロゲン単体及び可溶性ハロゲン化合物により貴金属をポ リハロゲノ金属陰イオン錯体 (貴金属錯体) として溶解させる方法において、 適 当な溶媒により調製した溶解液中で貴金属の溶解を行なわせる場合には、 卑金属 の溶解を伴わずに目的貴金属のみを選択的に溶解させることができる現象を見出 した。 As a result, in the above-described method of dissolving a noble metal as a polyhalogenometal anion complex (noble metal complex) with a simple halogen and a soluble halogen compound, when the noble metal is dissolved in a dissolving solution prepared with an appropriate solvent, A phenomenon that only the target precious metal can be selectively dissolved without dissolving the base metal. did.
また貴金属と卑金属の性質の違いを利用することで、 対象金属原料に適当な前 処理を行なつた場合には、 上記ハ口ゲン単体と可溶性ハロゲン化合物により貴金 属のみを貴金属錯体として溶解できる方法を見出した。  In addition, by utilizing the difference in the properties of noble metals and base metals, if the target metal raw material is appropriately pretreated, only the noble metal can be dissolved as a noble metal complex by the above-mentioned simple substance and soluble halogen compound. Found a way.
本発明の貴金属の選択的溶解方法はこのような知見に基づいてなされたもので あり、 その目的は、 貴金属と卑金属が共存する金属原料から、 貴金属のみを選択 的に溶解することができる貴金属の溶解方法を提供することにある。  The method for selectively dissolving a noble metal according to the present invention is based on such knowledge, and its purpose is to dissolve a noble metal capable of selectively dissolving only a noble metal from a metal raw material in which a noble metal and a base metal coexist. It is to provide a dissolution method.
また本発明の別の目的は、 上記の溶解方法を利用して、 目的貴金属を選択的に 効率よく回収できる回収方法を提供するところにある。  Another object of the present invention is to provide a recovery method capable of selectively and efficiently recovering a target noble metal using the above-described dissolution method.
更に本発明の別の目的は、 貴金属のみを選択的に溶解する溶解液を上記第 1の 目的に合わせて達成すべく、 相互の溶解度が低い関係にある二種以上の溶媒の組 合せで構成し、 溶解後の溶媒相の分離によつて貴金属の回収処理を容易化できる 方法、 特に、 これらの混合溶媒を貴金属錯体の易溶性溶媒と難溶性溶媒の組合せ とすることで、 一方の溶媒に偏って貴金属錯体を高濃度に溶解させることができ る方法を提供するところにある。 発明の開示 '  Still another object of the present invention is to provide a solution for selectively dissolving only the noble metal according to the first object, comprising a combination of two or more solvents having a low mutual solubility. A method in which the recovery of the noble metal can be facilitated by separating the solvent phase after dissolution, and in particular, by using a mixed solvent of a noble metal complex and a solvent that is sparingly soluble in the noble metal complex, It is an object of the present invention to provide a method capable of dissolving a noble metal complex at a high concentration. DISCLOSURE OF THE INVENTION ''
本発明者は上記の目的を達成するために上記特許請求範囲の各請求項に記載し た本発明を完成した。  The present inventor has accomplished the present invention described in each claim of the above claims in order to achieve the above object.
本発明の上記した第 1の目的を達成する相互の溶解度が低い 2種以上の溶媒か らなる混合液を用いる貴金属の溶解方法の特徴の一つは、 有機溶媒及び水から選 ばれた少なくとも 2種類の溶媒を混合してなり、 この混合液を構成する少なくと も一つの溶媒はハロゲン単体を溶解し、 該溶媒あるいはこの混合液を構成する少 なくとも他の一つの溶媒は可溶性ハロゲン化合物を溶解し、 かっこの混合液を構 成する少なくとも一つの溶媒はポリハロゲノ貴金属陰イオン錯体を溶解する溶媒 の組合せからなる混合液であつて、 これらの溶媒相互の溶解度が低い混合液に、 ハロゲン単体と可溶性ハロゲン化合物を溶解し、 該混合液の撹拌下で貴金属原料 を浸漬するようにしたところにある。 この操作によって、 目的の貴金属に対し、 ハロゲンからハロゲン原子が与えられことにより金属ハロゲン化物が生成し、 こ れが可溶性ハ口ゲン化合物の働きで溶解性の高いポリハロゲノ金属陰ィォン錯体 に変換されて、 混合液の溶媒相、 例えば水相や有機溶媒相に溶解する。 One of the features of the method for dissolving a noble metal using a mixture of two or more solvents having low mutual solubility to achieve the above-described first object of the present invention is that at least two kinds of solvents selected from an organic solvent and water are used. At least one solvent constituting the mixture dissolves a simple halogen, and at least one other solvent constituting the mixture or at least one other solvent comprises a soluble halogen compound. At least one solvent that dissolves and forms a mixture of parentheses is a mixture comprising a combination of solvents that dissolve the polyhalogeno noble metal anion complex. The soluble halogen compound is dissolved, and the noble metal raw material is immersed while stirring the mixture. By this operation, the target precious metal When a halogen atom is given from the halogen, a metal halide is generated, and this is converted into a highly soluble polyhalogeno metal anion complex by the action of a soluble haeogen compound, and the solvent phase of the mixed solution, for example, an aqueous phase And dissolves in organic solvent phase.
そして上記第 1の目的を達成する本発明のもう一つの特徴は、 上記の貴金属を 錯体として溶解させる工程に続き、 溶媒相互の溶解度が低いという性質を利用し て、 貴金属を錯体として溶解した該混合液を静置して各溶媒相を分離した後、 い ずれかの溶媒相に高濃度に溶解している貴金属錯体を還元して貴金属を効率よく 回収する工程を行なうところにある。  Another feature of the present invention that achieves the first object is that following the step of dissolving the noble metal as a complex, the method of dissolving the noble metal as a complex utilizing the property that the mutual solubility of solvents is low. After the mixture is allowed to stand and each solvent phase is separated, a process is carried out in which the noble metal complex dissolved in any of the solvent phases at a high concentration is reduced and the noble metal is efficiently recovered.
本発明の上記混合液を用いた貴金属回収方法においてこのような構成を採用し た理由は、 反応により生成される貴金属錯体 (ポリハロゲノ金属陰イオン錯体) を混合液のいずれかの相に偏よらせて存在させれば、 その後の処理である還元析 出をその高濃度に溶解している相についてだけ行なうことで、 処理効率を大幅に 向上できるからである。 またこのような異なる性質の溶媒を混合して用いること により、 貴金属を溶解させるに必要な上記ハロゲン単体及び可溶性ハロゲン化合 物の溶解度が異なっている溶媒を適宜選択して使用できる利点も得られる。 混合液の各溶媒に対する貴金属錯体の溶解性の差、 ないしその差の大小は、 本 発明においては必ずしも必須とされるものではない。 これは例えば溶解が比較的 低濃度である相については、 適当な処理の後に溶解工程に循環させて次回の溶解 工程に利用することで、 全体としての貴金属の回収率を低下させることなく本発 明の利点を有効に利用できるからである。  The reason for adopting such a structure in the method for recovering a noble metal using the above-mentioned mixed solution of the present invention is that the noble metal complex (polyhalogenometal anion complex) generated by the reaction is biased to any phase of the mixed solution. If they are present, the treatment efficiency can be greatly improved by performing the subsequent process, reduction precipitation only on the phase in which the high concentration is dissolved. Further, by using a mixture of solvents having different properties, there is also obtained an advantage that a solvent having a different solubility of the simple halogen and the soluble halide required for dissolving the noble metal can be appropriately selected and used. The difference in solubility of the noble metal complex in each solvent of the mixed solution, and the magnitude of the difference are not necessarily essential in the present invention. This is because, for example, the phase in which the concentration is relatively low is circulated to the dissolution step after appropriate treatment and used for the next dissolution step, so that the precious metal recovery rate as a whole is not reduced. This is because the advantages of Ming can be effectively used.
上記において、 混合液を形成する各溶媒の 「相互の溶解度が低い」 とは、 該混 合液を静置したときに容易に上下の相に概ね分離して各相を各々の溶媒として分 離して回収できる、 例えば静置することによって上下に分離して、 これを貯留し た槽の下部から流出させる途中で流路を切換える等の操作で各相の溶媒を別々に 容易に取出すことができる程度の関係にあることをいい、 好ましくは数分以下な いし数十分程度で上記したように貴金属錯体が高濃度に溶解した相の溶媒をその 後の処理の向上等の目的で単独に回収できる程度に分離できるものであれば足り る o 有機溶媒及び水の内から選択される少なくとも 2種類の溶媒とは、 水と有機溶 媒の組合せ、 あるいは有機溶媒同士の組合せとして選択されるが、 ランニングコ スト等の面からは、 水と、 水に対する溶解度が低い有機溶媒の組合せを用いるこ とが好ましい。 In the above description, "the mutual solubility is low" of each solvent forming the mixed solution means that when the mixed solution is allowed to stand, it is easily separated into upper and lower phases and each phase is separated as a solvent. For example, the solvent of each phase can be easily removed separately by, for example, separating the liquid from the upper and lower parts by standing still and switching the flow path while flowing the liquid from the lower part of the storage tank. The solvent of the phase in which the noble metal complex is dissolved at a high concentration as described above is collected independently for the purpose of improving the subsequent treatment, etc., preferably within a few minutes or several tens of minutes. It is enough if it can be separated as much as possible o At least two types of solvents selected from organic solvents and water are selected as a combination of water and an organic solvent or a combination of organic solvents.From the viewpoint of running costs, for example, water and water It is preferable to use a combination of organic solvents having low solubility in water.
本発明の上記混合液を構成する有機溶媒としては、 液状の炭化水素類、 エステ ル類、 ケトン類、 二トリル類、 ハロゲン化炭化水素類を挙げることができ、 例え ば酢酸メチル、 酢酸ェチル、 メチルェチルケトンが特に適している。  Examples of the organic solvent constituting the mixed solution of the present invention include liquid hydrocarbons, esters, ketones, nitriles, and halogenated hydrocarbons. For example, methyl acetate, ethyl acetate, Methyl ethyl ketone is particularly suitable.
相互の溶解度が低い溶媒の混合比は、 溶媒のハロゲン単体に対する溶解性等に よって一律に定まらないが、 一般的には 1 : 9〜9 : 1、 好ましくは 2 : 8〜8 : 2、 さらに好ましくは 4 : 6〜6 : 4の範囲で使用することができる。  The mixing ratio of the solvents having low mutual solubility is not uniformly determined by the solubility of the solvent with respect to a simple halogen, but is generally 1: 9 to 9: 1, preferably 2: 8 to 8: 2, and furthermore, Preferably, it can be used in the range of 4: 6 to 6: 4.
上記混合液を用 t、る本発明にお t、ては、 以上のように相互の溶解度が低い溶媒 を組み合わせて用 t、ることとの関係で、 反応に際してはこれらの混合液を十分に 混合して用いることが必要である。 混合方法は特に限定されないが、 工業的規模 での一般的手段としては撹拌羽根装置を用いることができる。  In the present invention, the mixed solution is used in combination with a solvent having low mutual solubility as described above. It is necessary to use a mixture. The mixing method is not particularly limited, but as a general means on an industrial scale, a stirring blade device can be used.
また上記混合液を用いる本発明において、 混合液を形成する少なくとも 2種類 の溶媒は、 貴金属錯体が高濃度に溶解する易溶性溶媒と、 貴金属錯体の溶解度が 低く、 かつハロゲン単体又は可溶性ハロゲン化合物が易溶性の溶媒を組合せて用 いることが特に好ましい。  Further, in the present invention using the above mixed solution, at least two kinds of solvents forming the mixed solution are a readily soluble solvent in which the noble metal complex is dissolved at a high concentration, a low solubility of the noble metal complex, and a simple halogen or a soluble halogen compound. It is particularly preferable to use a readily soluble solvent in combination.
このような溶媒の組合せを用いることによって、 貴金属を一方の溶媒に高濃度 に溶解させ、 かつ他方の溶媒にはできるだけ溶解させないようにでき、 これによ つて上記のように相分離した溶媒のうちで、 貴金属などが高濃度に溶解した相の みを取出すようにすれば、 その後の回収操作をより高効率で行なうことができる からである。 貴金属錯体が低濃度に溶解した相は、 ハロゲン単体又は可溶性ハロ ゲン化合物の未反応分を高濃度に含有しているので、 上述のように溶解工程に循 環して次回の溶解工程に利用できる。  By using such a combination of solvents, the noble metal can be dissolved in one solvent at a high concentration and not dissolved in the other solvent as much as possible. If only the phase in which the noble metal or the like is dissolved at a high concentration is taken out, the subsequent recovery operation can be performed with higher efficiency. Since the phase in which the noble metal complex is dissolved at a low concentration contains a high concentration of the unreacted component of a simple halogen or a soluble halogen compound, it can be recycled to the dissolution step and used for the next dissolution step as described above. .
このような貴金属錯体の溶解度が異なる溶媒を使用する場合には、 両者の貴金 属錯体に対する溶解度にできるだけ大きな差があることが望ましく、 その程度は 特に限定されないが、 一般的には溶解度の比が 3 Z 7倍以上、 好ましくは 2 / 8 倍以上であることが好ましい場合が多い。 In the case of using a solvent in which the solubility of the noble metal complex is different, it is desirable that there is a difference as large as possible between the solubility of the two noble metal complexes, and the degree is not particularly limited. Is more than 3 Z 7 times, preferably 2/8 In many cases, it is preferable that the ratio be twice or more.
本発明の第 2の目的を達成する貴金属の選択的溶解方法の特徴の一つは、 貴金 属と卑金属とが共存する金属原料をハロゲン単体及び可溶性ハロゲン化合物を溶 解した溶解液に浸漬して、 ハロゲン単体による金属への酸化反応でハ口ゲン化金 属を生成させ次いで可溶性ハロゲン化合物によりポリハロゲノ金属陰イオン錯体 を生成させるに際し、 溶解液に、 上記反応で生成する貴金属錯体は溶解するが、 卑金属は実質的に溶解しない性質を有する溶媒を用いて構成するところにある。 選択的溶解方法により選択的に溶解される貴金属としては、 例えば金, 銀, 白 金族 (白金, パラジウム等) が挙げられる。 また上記において卑金属とは、 貴金 属以外の金属を総称し、 例えば鉄、 ニッケル、 コバルト、 銅などの金属あるいは これらの合金などを代表的に挙げることができる。  One of the features of the method for selectively dissolving a noble metal that achieves the second object of the present invention is that a metal material in which a noble metal and a base metal coexist is immersed in a solution in which a simple halogen and a soluble halogen compound are dissolved. Then, when the halogen is generated by the oxidation reaction of the metal with the simple halogen and the polyhalogenometal anion complex is formed by the soluble halogen compound, the noble metal complex generated by the above reaction is dissolved in the solution. However, the base metal is constituted by using a solvent having a property of substantially not dissolving. Examples of the noble metal selectively dissolved by the selective melting method include gold, silver, and platinum group metals (platinum, palladium, etc.). In the above description, the term “base metal” is a generic term for metals other than noble metals, and typically includes metals such as iron, nickel, cobalt, and copper, and alloys thereof.
本発明の選択的溶解方法で用いることができる溶解液は以上のような溶媒中か らハロゲン単体及び可溶性ハ口ゲン化合物を溶解でき、 かつ貴金属錯体を溶解す ることができる性質を有する溶媒として選択的に採用され、 一律に決められるも のではないが例えば単一の極性有機溶媒、 有機溶媒と水の混合溶媒、 として構成 されたものを使用でき、 例えば、 アルコール類、 液状の炭化水素類、 エステル類、 ケトン類、 ハロゲン化炭化水素類が適し、 例えばメチルアルコール、 酢酸メチル、 酢酸ェチル、 メチルェチルケトン等のうちから、 貴金属を選択的に溶解しかつ卑 金属を溶解しないように、 対象となる金属原料に含有されている貴金属, 卑金属 の種類、 溶解されるハロゲン単体, 可溶性ハロゲン化合物の種類に応じ、 一律に 決められるものではないが、 目的貴金属に対する選択的な溶解性と卑金属に対す る不溶解性をもつ適性な溶媒、 可溶性ハロゲン化合物, ハロゲン単体の組み合わ せで得ることができる。 より具体的に例えば、 金, パラジウム等の貴金属と、 銅, ニッケル等の卑金属とが共存する対象材料から貴金属のみを選択的に溶解させる 際の溶媒としては例えば、 メタノールの単独溶媒とヨウ化テトラェチルアンモニ ゥム及びヨウ素の組合せ、 あるいは、 水と齚酸メチルの混合溶媒と、 ヨウ化テト ラエチルアンモニゥム, ヨウ化カリウム, ヨウ化アンモニゥム等のヨウ化物及び ヨウ素の組合せなどを例示することができる。 上記において、 貴金属を溶解する溶解液が卑金属は実質的に溶解しないという' のは、 溶解液に含まれる卑金属錯体の濃度がゼロである場合は勿論であるが、 対 象金属原料に含まれる卑金属の溶解率が 1 0 %程度以下の可及的に低濃度である 場合を含む。 このような低濃度であれば、 従来の貴金属と卑金属を同時に溶解し ていた方法に比べて溶解後の後処理の負担を十分軽減することができる。 溶解液 が卑金属を溶解しな t、機構は、 溶解液中でハ口ゲン単体及び可溶性ハ口ゲン化物 による上記した溶解反応が生じない場合の他、 溶解反応は生ずるが、 この溶解液 を構成している溶媒に対する卑金属錯体の溶解度が小さい場合のいずれであって もよい。 The dissolving solution which can be used in the selective dissolving method of the present invention is a solvent having a property capable of dissolving a simple halogen and a soluble haegen compound and dissolving a noble metal complex from the above solvents. Although it is selectively adopted and is not uniformly determined, it is possible to use, for example, a single polar organic solvent, or a mixture of an organic solvent and water, such as alcohols and liquid hydrocarbons. , Esters, ketones, and halogenated hydrocarbons are suitable. For example, among methyl alcohol, methyl acetate, ethyl acetate, methyl ethyl ketone, etc., selectively dissolve noble metals and do not dissolve base metals. Uniform depending on the type of noble metal and base metal contained in the target metal material, the type of dissolved halogen alone, and the type of soluble halogen compound Without being determined, but can be for purposes noble suitability solvent with insoluble against the selective solubility and base metal, a soluble halogen compounds, may in the combination of simple halogen. More specifically, for example, as a solvent for selectively dissolving only noble metal from a target material in which a noble metal such as gold and palladium and a base metal such as copper and nickel coexist, for example, a single solvent of methanol and tetraiodide Examples include a combination of ethylammonium and iodine, or a mixed solvent of water and methyl nitrate, and a combination of iodide and iodine such as tetraethylammonium iodide, potassium iodide, and ammonium iodide. be able to. In the above description, the solution in which the noble metal is dissolved does not substantially dissolve the base metal, not to mention that the concentration of the base metal complex contained in the solution is zero, but the base metal contained in the target metal raw material is not limited to this. Includes cases where the dissolution rate is as low as 10% or less. With such a low concentration, the burden of post-treatment after dissolution can be sufficiently reduced as compared with the conventional method in which a noble metal and a base metal are simultaneously dissolved. When the dissolution solution does not dissolve the base metal, the mechanism is that the dissolution reaction does not occur except for the above-mentioned dissolution reaction due to hachigen alone or soluble haematogenide in the dissolution solution. It may be any case where the solubility of the base metal complex in the solvent used is low.
本発明の選択的溶解方法においては、 溶解液として上記した相互の溶解度が低 い関係にある水, 有機溶媒から選ばれた 2種以上を混合した混合液型のものを用 いることもできる。 特に、 二種類以上の溶媒を、 上述と同様の理由で、 ポリハロ ゲノ貴金属陰ィォン錯体の易溶性溶媒と難溶性溶媒の組合せで構成することが好 ましい。  In the selective dissolution method of the present invention, a mixed solution of two or more selected from water and an organic solvent having a low mutual solubility as described above may be used as the dissolution solution. In particular, it is preferable that two or more kinds of solvents are composed of a combination of a readily soluble solvent and a slightly soluble solvent of the polyhalogeno noble metal anion complex for the same reason as described above.
このような組合せの混合溶媒 (例えば齚酸ェチルと水の混合溶媒) を用いるこ とによって、 撹拌状態 (撹拌羽根装置を用いるか乱流状態) の溶解液に対象金属 原料を浸漬させることで、 一方の溶媒相 (酢酸ェチル) に水相よりも高濃度に貴 金属錯体を溶解させることができると共に、 これらの溶媒が静置によって容易に 分離するので、 静置後分離して貴金属錯体が高濃度に溶解して t、る溶媒相から貴 金属を還元回収し、 他方の水相は次ぎの溶解工程にリサイクルすることで、 貴金 属の高率の回収と、 還元回収時の液量の現象ひいては還元剤の削減や設備の小型 化などを実現できる。  By using a mixed solvent of such a combination (for example, a mixed solvent of ethyl ethyl and water), the target metal raw material can be immersed in a solution in a stirring state (using a stirring blade device or in a turbulent state). The noble metal complex can be dissolved in one of the solvent phases (ethyl acetate) at a higher concentration than the aqueous phase, and these solvents are easily separated by standing. The precious metal is reduced and recovered from the solvent phase after being dissolved to a concentration, and the other aqueous phase is recycled to the next dissolution process, thereby recovering a high rate of the precious metal and reducing the volume of the liquid during the reduction recovery. Phenomenon and, consequently, reduction of reducing agent and downsizing of equipment can be realized.
本発明の貴金属の選択的溶解方法は、 対象金属原料の溶解処理に先立って、 こ の対象金属原料のうちの卑金属表面に酸化皮膜を形成させる前処理を行うことに よっても目的を実現することができる。  The method for selectively dissolving a noble metal according to the present invention achieves the object by performing a pretreatment for forming an oxide film on the surface of a base metal of the target metal material prior to the dissolution treatment of the target metal material. Can be.
このような金属表面の酸化皮膜の形成法としては、 対象金属原料に含まれる貴 金属, 卑金属の種類によっても異なるが、 例えば対象金属原料を加熱して酸化さ せる方法を用いることができる。 この酸化皮膜を形成させる場合には貴金属原料 を細断して行うことが好ましい。 The method of forming such an oxide film on the metal surface varies depending on the types of the noble metal and the base metal contained in the target metal raw material, but for example, a method of heating and oxidizing the target metal raw material can be used. When this oxide film is formed, noble metal raw materials Is preferably performed by shredding.
そしてこのような酸化皮膜を形成する前処理を行なつた対象金属原料を、 上記 の溶解液、 ハロゲン単体、 可溶性ハロゲン化合物を用いて溶解処理することで、 貴金属のみを選択的に溶解できる。 なおこの場合には、 卑金属は酸化皮膜の存在 によって溶解反応しないので、 使用する溶媒については、 卑金属錯体を溶解しな いという制約を受けることなく適宜の溶媒を選択することができる。  By subjecting the target metal raw material that has been subjected to the pretreatment for forming such an oxide film to a dissolution treatment using the above-described solution, a simple halogen, or a soluble halogen compound, only the noble metal can be selectively dissolved. In this case, since the base metal does not undergo a dissolution reaction due to the presence of the oxide film, an appropriate solvent can be selected as the solvent to be used without being restricted to dissolving the base metal complex.
本発明において、 貴金属の溶解に用いられるハロゲン単体は、 塩素 (C 1 ) 、 臭素 (B r ) 、 ヨウ素 (I ) が挙げられるが、 特にヨウ素が好ましく使用される。 ハロゲン単体の濃度は目的貴金属濃度に対して 0 . 2 5倍モル以上、 好ましくは 0 . 5倍モル以上とすることが、 溶解反応を促進する上で好ましい。  In the present invention, the simple halogen used for dissolving the noble metal includes chlorine (C 1), bromine (Br), and iodine (I), and iodine is particularly preferably used. The concentration of the halogen simple substance is preferably at least 0.25 times the mole of the target noble metal, and more preferably at least 0.5 times the mole in order to promote the dissolution reaction.
また可溶性ハロゲン化合物としては、 以下のもの、 すなわち構成する陽イオン が以下の (a ) 〜(c ) のいずれかであるものを挙げることができる。  Examples of the soluble halogen compound include the following, that is, those in which the constituent cation is any of the following (a) to (c).
( a ) アルカリ金属イオン、 アルカリ土類金属イオン、 または下記一般式  (a) Alkali metal ion, alkaline earth metal ion, or the following general formula
R 2 R 2
R N -R R N -R
R R
(式中、 、 R2、 R3 及び R4 は水素原子または炭素数 6以下の炭化水素 基) で表されるイオンであり、 陰イオンが塩素イオン、 臭素イオン、 ヨウ素ィォ ンである塩が適し、 具体的にはヨウ化テトラェチルアンモニゥム、 ヨウ化力リウ ム、 ヨウ化アンモニゥムなどが挙げられる。 (Wherein, R 2 , R 3 and R 4 are a hydrogen atom or a hydrocarbon group having 6 or less carbon atoms) and a salt wherein the anion is a chloride ion, a bromine ion or an iodine ion Suitable are, for example, tetraethylammonium iodide, lithium iodide, and ammonium iodide.
( b ) 脂肪族、 及び芳香族のモノ及びポリアミンに塩化水素、 臭化水素、 ヨウ化 水素等を付加させた化合物、 例えばエチレンジアミンジハイ ドロアィォダイドな どが挙げられる。  (b) Compounds obtained by adding hydrogen chloride, hydrogen bromide, hydrogen iodide, and the like to aliphatic and aromatic mono- and polyamines, for example, ethylenediamine dihydroaideide.
( c ) アミノポリカルボン酸にハロゲン化水素を付加させた化合物、 例えばグリ シンハイ ドロアィォダイ ドなどが挙げられる。 この可溶性ハロゲン化合物は、 溶解すべき目的貴金属に対して、 0 . 5倍モル 以上、 好ましくは等モル以上とすることが溶解反応の促進と生成する錯体の安定 性を向上させる上で好ましい。 (c) Compounds obtained by adding a hydrogen halide to an aminopolycarboxylic acid, such as glycine hydroaodiide. The amount of the soluble halogen compound is preferably at least 0.5 times, preferably at least equimolar, the amount of the target noble metal to be dissolved in order to promote the dissolution reaction and to improve the stability of the resulting complex.
貴金属の溶解に要する時間は、 目的とする貴金属、 用いる可溶性ハロゲン化合 物及び、 ハロゲン単体の種類及び濃度、 水と有機溶媒の混合液の種類などにより 異なり、 処理温度は常温程度から水, 有機溶媒の沸点以下の範囲で選ばれるが、 処理温度が高いほど金属の溶解が促進される。 貴金属の溶解の終点は、 仕込んだ 貴金属が見えなくなることで容易に確認できる。  The time required for dissolving the noble metal varies depending on the target noble metal, the soluble halogen compound to be used, the type and concentration of the halogen alone, and the type of the mixture of water and the organic solvent. The melting point is lower than the boiling point of the metal. The end point of the noble metal dissolution can be easily confirmed by the invisible charged noble metal.
本発明の 2種以上の溶媒を混合した混合液を用いる方法、 あるいは選択的溶解 方法によれば、 貴金属を水相或いは有機溶媒相に溶解させ、 更に貴金属の錯体を 還元し、 例えば貴金属として濾過、 乾燥等の通常の方法により回収することがで きる。 還元に用いられる還元剤は、 目的貴金属の還元で本発明の反応を阻害しな いものであればよく、 例えば水素化ホウ素ナトリウム、 ヒドラジン及びその塩、 亜硫酸及びその塩、 亜硫酸水素ナトリウムを挙げることができる。 還元反応は例 えば水相あるいは有機溶媒相を分離した後、 任意に目的貴金属が溶解している相 を対象に行うことができる。 処理温度は対象相の沸点以下、 一般的には常温〜 4 0 °C, 5 0 °Cの範囲で選ばれる。 還元反応の終点は例えば還元剤を添加している途 中で新たな析出現象が認められなくなるまで行えばよい。  According to the method using a mixed solution of two or more solvents of the present invention or a selective dissolution method, a noble metal is dissolved in an aqueous phase or an organic solvent phase, and a complex of the noble metal is further reduced. It can be recovered by ordinary methods such as drying and drying. The reducing agent used in the reduction may be any as long as it does not inhibit the reaction of the present invention by reducing the target noble metal, and examples thereof include sodium borohydride, hydrazine and its salts, sulfurous acid and its salts, and sodium hydrogen sulfite. it can. The reduction reaction can be performed, for example, on a phase in which the target noble metal is dissolved, after separating the aqueous phase or the organic solvent phase, for example. The treatment temperature is selected below the boiling point of the target phase, generally in the range of room temperature to 40 ° C and 50 ° C. The end point of the reduction reaction may be performed, for example, until no new precipitation phenomenon is observed while the reducing agent is being added.
上記の還元反応が終了し目的貴金属を回収した後の溶媒は、 再生して次回の溶 解工程の溶解液として用いることができる。 例えば、 貴金属を回収分離した後の 水相或いは有機溶媒相を酸化した後、 両相を混合して所定の溶解液組成に調製し て溶解液 (上記混合液) として再利用できる。 水相と有機溶媒相を再び混合し再 生混合液とする際には、 所定のハロゲン単体濃度となる様にハロゲン化合物の酸 化率を調製することが必要である。 この酸化反応において用いられる酸化剤とし ては、 本発明の反応を阻害しない範囲で、 使用されるハロゲン化合物に対して酸 化能力を保持する酸化剤であれば良く、 例えば過マンガン酸カリウム、 次亜塩素 酸ナトリウム、 過酸化水素、 亜硝酸ナトリウム等が挙げられる。  The solvent after completion of the above reduction reaction and recovery of the target noble metal can be regenerated and used as a solution for the next dissolution step. For example, after the noble metal is recovered and separated, the aqueous phase or the organic solvent phase is oxidized, and then both phases are mixed to prepare a predetermined solution composition, which can be reused as a solution (the above-mentioned mixture). When the aqueous phase and the organic solvent phase are mixed again to form a regenerated mixed solution, it is necessary to adjust the oxidation ratio of the halogen compound so that the concentration of the halogen alone becomes a predetermined concentration. The oxidizing agent used in this oxidation reaction may be any oxidizing agent that has an oxidizing ability with respect to the halogen compound used within a range that does not inhibit the reaction of the present invention. Examples include sodium chlorite, hydrogen peroxide, and sodium nitrite.
本発明方法は、 高価な貴金属、 例えば金、 銀、 白金族 (白金, パラジウム, ル テニゥム, ロジウム等) 等の溶解. 回収に有効に用いられる。 The method of the present invention involves the use of expensive noble metals such as gold, silver, and platinum groups (platinum, palladium, ruthenium). Dissolution of tin, rhodium, etc.) Used effectively for recovery.
本発明は、 廃電子部品、 卑金属又はその合金に貴金属がメツキされた廃工業材 料などの金メッキ材料、 石油化学工業などで利用される白金系触媒、 廃宝飾品等 を貴金属原料とした貴金属の回収に適用でき、 貴金属が表面に露出している場合 にはこれらの工業原料を細断することなく、 あるいは浸漬処理に適した適当な大 きさに細断して用いることができる。 また貴金属が原料表面に露出していない場 合には細断、 粉碎などにより貴金属を表面に露出させて用いればよい。 また貴金 属を含有する鉱石を粉砕して貴金属を取り出すことにも適用できる。 図面の簡単な説明  The present invention relates to a gold-plated material such as a waste industrial material in which a noble metal is added to a waste electronic component, a base metal or an alloy thereof, a platinum-based catalyst used in the petrochemical industry, a waste jewelry, and the like. It can be used for recovery, and when precious metals are exposed on the surface, these industrial raw materials can be used without shredding or shredded to an appropriate size suitable for immersion treatment. If the noble metal is not exposed on the surface of the raw material, the noble metal may be exposed on the surface by shredding or grinding. It can also be applied to crushing ore containing precious metals to extract precious metals. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の方法を実施するために用いた装置の構成概要を模式的に示 した図である。 発明を実施するための最良の形態  FIG. 1 is a diagram schematically showing an outline of the configuration of an apparatus used to carry out the method of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 実施例により本発明を詳細に説明する。  Next, the present invention will be described in detail with reference to examples.
以下に示す実施例 1〜7は、 相互の溶解度が低い 2種以上の水, 有機溶媒を混 合して用いた本願発明の第 1の目的に対応した実施例を示す。  Examples 1 to 7 shown below are examples corresponding to the first object of the present invention using a mixture of two or more types of water and organic solvents having low mutual solubility.
実施例 1 Example 1
図 1は、 以下の実施例を行なった装置の概要を模式的に示したものであり、 こ の図の装置を用いて、 まず反応槽 1に 2種の所定の溶媒を充填すると共に、 ハロ ゲン単体と可溶性ハロゲン化合物を添加し、 撹拌羽根装置 4で撹拌しながら、 こ れらの混合溶媒中に所定の貴金属材料を添加して溶解を行なわせる。  FIG. 1 schematically shows an outline of an apparatus in which the following examples were performed. First, two kinds of predetermined solvents were charged into a reaction tank 1 using the apparatus shown in FIG. A simple noble metal material and a soluble halogen compound are added, and a predetermined noble metal material is added to these mixed solvents while being stirred by the stirring blade device 4 to be dissolved.
貴金属材料の溶解が目視によつて完了したことが確認された時点で撹拌羽根装 置 4を停止させて静置し、 2種の溶媒を上下 2相に分離させる。  When it is confirmed that the dissolution of the noble metal material has been completed visually, the stirring blade device 4 is stopped and allowed to stand, and the two kinds of solvents are separated into upper and lower two phases.
この後、 開閉バルブ 5, 6を開いて、 反応槽 1内部の下側に分離した相 (例え ばハロゲン単体が高濃度に含まれ、 貴金属の溶解が少ない相) を溶解液貯槽 2に 移送し、 下側の相の移送が終了した時点で上記開閉バルブ 5, 6を閉じる。 次い で開閉バルブ 5 , 7を開いて、 溶解槽 1内部の上側に分離した相 (例えばハロゲ ン単体は低濃度で、 貴金属が高濃度に溶解している相) を還元及び再生兼用槽 3 に移送する。 After that, the on-off valves 5 and 6 are opened, and the separated phase (for example, a phase containing a high concentration of halogen alone and little dissolution of noble metal) in the lower part of the reaction tank 1 is transferred to the solution storage tank 2. When the transfer of the lower phase is completed, close the on-off valves 5 and 6 above. Next, the on-off valves 5 and 7 are opened, and the separated phase (for example, halogen (A phase in which the concentration of precious metals is low and the precious metal is dissolved in a high concentration) is transferred to the reduction / regeneration tank 3.
液の移送終了後、 還元及び再生兼用槽 3に還元剤を添加し、 撹拌羽根装置 10 による撹拌下において目的貴金属の析出を行なわせ、 バルブ 8を開いて沈澱した 貴金属を下方に流出させて図示しない濾過装置によって濾過回収する。 なおバル ブ 8は貴金属の沈澱物が流出した時点で直ちに閉じる。  After the transfer of the liquid is completed, a reducing agent is added to the reducing and regenerating tank 3, and the desired noble metal is deposited under stirring by the stirring blade device 10, and the valve 8 is opened to let the precipitated noble metal flow downward to be drawn. Recover by filtration without filtration. Valve 8 closes as soon as the precious metal precipitates out.
以上によって貴金属の溶解回収処理を終了した後、 上記溶解液貯槽 2と還元及 び再生兼用槽 3の液を酸化する等の所定の処理を行なつてハロゲン単体の濃度を 調整し、 バルブ 8, 9を介してこれらの液を反応槽 1に戻して次ぎの溶解操作に 備える。  After the dissolution and recovery processing of the noble metal is completed as described above, the concentration of the simple halogen is adjusted by performing a predetermined treatment such as oxidizing the solution in the solution storage tank 2 and the reduction and regeneration tank 3. These liquids are returned to the reaction tank 1 via 9 to prepare for the next dissolving operation.
以上の図 1の装置を用いて以下の貴金属の溶解と、 回収を行なった。  The following noble metal was dissolved and recovered using the apparatus shown in Fig. 1.
(1 - 1) 溶解工程  (1-1) Dissolution process
酢酸ェチル 5 gと水 5 gに、 ヨウ化テトラェチルアンモニゥム 1 mmo 1及び ヨウ素 0. 5mmo lを溶解した。 ヨウ化テトラェチルアンモニゥムは水相に高 濃度に溶解し、 ョゥ素は酢酸ェチルに高濃度に溶解した。  1 mmol of tetraethylammonium iodide and 0.5 mmol of iodine were dissolved in 5 g of ethyl acetate and 5 g of water. Tetraethylammonium iodide was dissolved in the aqueous phase at a high concentration, and iodine was dissolved in the ethyl acetate at a high concentration.
この混合液を反応槽に入れて撹拌羽根装置で十分撹拌させながら、 直径 0. This mixed solution is placed in a reaction tank, and sufficiently stirred with a stirring blade device.
2 mmの金線 (0. 0421 g) を沸点付近で 15分間還流加熱した。 加熱終了 後 1分間静置し、 溶媒が二相に分離した後に、 各相を分離して取出し、 夫々の溶 媒に溶解している金錯体の濃度をそれぞれ測定したところ、 酢酸ェチル相にはA 2 mm gold wire (0.0421 g) was heated at reflux near the boiling point for 15 minutes. After the heating was completed, the mixture was allowed to stand for 1 minute.After the solvent was separated into two phases, each phase was separated and taken out. The concentration of the gold complex dissolved in each of the solvents was measured.
334 Omg/k g、 水相には 125 Omg/k gの金が溶解していた。 334 Omg / kg and 125 Omg / kg of gold were dissolved in the aqueous phase.
なお金錯体の測定は I CP発光分析法によって行なった (以下の実施例におい て同じ) 。  The measurement of the gold complex was carried out by means of an ICP emission spectrometry (the same applies to the following examples).
(1一 2) 回収工程  (1-1-2) Collection process
次ぎに、 上記のように分離した金を錯体として溶解した酢酸ェチル相、 及び水 相の各相に、 水素化ホウ素ナトリウムを添加して金を還元させ、 析出した金を濾 過して回収した。  Next, sodium borohydride was added to each of the ethyl acetate phase and the aqueous phase in which the gold separated as above was dissolved as a complex to reduce gold, and the deposited gold was collected by filtration. .
金を濾過した後の酢酸ェチル相、 及び水相中の金錯体の濃度を測定したところ、 残存する金は検出されず回収率は 100%であった。 (1 -3) 2回目の溶解工程 When the concentration of the gold complex in the ethyl acetate phase and the aqueous phase after gold filtration was measured, no residual gold was detected, and the recovery was 100%. (1 -3) Second dissolution step
上記 (1—2) の回収工程に代えて、 ( 1— 1 ) の溶解工程で金を溶解させた 混合液のうちの酢酸ェチル相については、 これを取出して水素化ホウ素ナトリゥ ム添加による金の還元を行なわせ、 他方水相については次回の溶解工程の水相と して再利用した。  Instead of the recovery step of (1-2) above, the ethyl acetate phase of the mixed solution in which gold was dissolved in the dissolution step of (1-1) was taken out and the gold was added by adding sodium borohydride. The aqueous phase was reused as the aqueous phase in the next dissolution step.
この水相を用いた他は、 上記 (1一 1) と同様にして行なった 2回目の溶解ェ 程において、 酢酸ェチル相には 345 Omg_ k g、 水相には 1 180mgZkg の金が溶解しており、 以上の操作の繰返しにより金を無駄なく回収で ることが 確認された。  Except using this aqueous phase, 345 Omg_kg of gold was dissolved in the ethyl acetate phase and 1180 mgZkg of gold was dissolved in the aqueous phase in the second dissolution step performed in the same manner as in (1-1) above. Therefore, it was confirmed that the gold could be collected without waste by repeating the above operations.
実施例 2 Example 2
(2- 1) 溶解工程  (2-1) Dissolution process
シクロへキサン 5 gと水 5 に、 エチレンジアミンジハイ ドロアィォダイ ド 1 mmo 1及びヨウ素 0. 5mmo 1を溶解した。 エチレンジァミンジハイ ドロ アイオダィ ドは水に高濃度に溶解し、 ヨウ素はシクロへキサンに高濃度に溶解し た。  In 5 g of cyclohexane and 5 of water, 1 mmo 1 of ethylenediamine dihydroaodide and 0.5 mmo 1 of iodine were dissolved. Ethylenediamine dihydroiodide was highly soluble in water and iodine was highly soluble in cyclohexane.
この混合液を反応槽に入れて撹拌羽根装置で十分撹拌させながら、 直径 0. 2 mmの金線 (0. 0408 g) を沸点付近で 15分間還流加熱した。 加熱終了 後 1分間静置し、 溶媒が二相に分離した後に、 各相を分離して取出し、 夫々の溶 媒に溶解している金錯体の濃度を測定したところ、 シクロへキサン相には 10 Omg/k g、 水相には 260 Omg/k gの金が溶解していた。  This mixed solution was placed in a reaction vessel, and a 0.2 mm diameter gold wire (0.0408 g) was refluxed and heated near the boiling point for 15 minutes while sufficiently stirring with a stirring blade device. After the heating was completed, the mixture was allowed to stand for 1 minute.After the solvent separated into two phases, each phase was separated and taken out. The concentration of the gold complex dissolved in each solvent was measured. 10 Omg / kg, 260 Omg / kg gold was dissolved in the aqueous phase.
(2-2) 回収工程  (2-2) Recovery process
次ぎに上記のように分離した金を錯体として溶解している水相にヒドラジンを 添加して金を還元、 回収したところ、 回収率は 100%であった。  Next, hydrazine was added to the aqueous phase in which the gold separated as described above was dissolved as a complex to reduce and recover the gold. The recovery was 100%.
実施例 3 Example 3
(3- 1) 溶解工程  (3-1) Dissolution process
メチルェチルケトン 5 gと水 5 gに、 ヨウ化アンモニゥム 1 mmo 1及びヨウ 素 0. 5mmo lを溶解した。 ヨウ化アンモニゥムは水に高濃度に溶解し、 ヨウ 素はメチルェチルケトンに高濃度に溶解した。 この混合液を反応槽に入れて撹拌羽根装置で十分撹拌させながら、 直径 0. 2mmのパラジウム線 (0. 0200 g) を沸点付近で 15分間還流加熱した。 加熱終了後、 1分間静置して溶媒を二相に分離させ、 分離後の各相に溶解してい るパラジゥム錯体の濃度を測定したところ、 メチルェチルケ トン相には 290 Omg/k g、 水相には 14 Omg/k gのパラジゥムが溶解していた。 In 5 g of methyl ethyl ketone and 5 g of water, 1 mmol of ammonium iodide and 0.5 mmol of iodine were dissolved. Ammonium iodide was highly soluble in water and iodine was highly soluble in methyl ethyl ketone. This mixed solution was put into a reaction tank, and a palladium wire (0.0200 g) having a diameter of 0.2 mm was refluxed and heated at about the boiling point for 15 minutes while sufficiently stirring with a stirring blade device. After heating, the mixture was allowed to stand for 1 minute to separate the solvent into two phases, and the concentration of the palladium complex dissolved in each phase after the separation was measured.The concentration was 290 Omg / kg for the methylethylketone phase and 290 Omg / kg for the aqueous phase. Had 14 Omg / kg of palladium dissolved.
3-2 (回収工程)  3-2 (Recovery process)
次ぎに上記のように分離したパラジウムを錯体として溶解しているメチルェチ ルケトンにヒドラジンを添加してパラジウムを還元、 回収したところ、 回収率は 100%であった。  Next, hydrazine was added to methyl ethyl ketone in which palladium separated as described above was dissolved as a complex to reduce and recover palladium, and the recovery was 100%.
実施例 4 Example 4
(4- 1) 溶解工程  (4-1) Dissolution process
メチルェチルケトン 5 gと水 5 gに、 ヨウ化カリウム lmmo 1及びヨウ素 0. 5mmo lを溶解した。 ヨウ化カリウムは水に高濃度に溶解し、 ヨウ素はメチル ェチルケトンに高濃度に溶解した。  Potassium iodide (lmmo1) and iodine (0.5 mmol) were dissolved in 5 g of methyl ethyl ketone and 5 g of water. Potassium iodide was highly soluble in water, and iodine was highly soluble in methylethylketone.
この混合液を反応槽に入れて撹拌羽根装置で十分撹拌させながら、 直径 0. 2 mmのパラジウム線 (0. 0201 g) を沸点付近で 15分間還流加熱した。 加熱終了後、 1分間静置して溶媒を二相に分離させ、 分離後の各相に溶解してい るパラジウム錯体の濃度をそれぞれ測定したところ、 メチルェチルケトン相には This mixed solution was placed in a reaction vessel, and a palladium wire (0.0201 g) having a diameter of 0.2 mm was refluxed and heated at about the boiling point for 15 minutes while sufficiently stirring with a stirring blade device. After heating was completed, the solvent was allowed to stand for 1 minute to separate the solvent into two phases, and the concentration of the palladium complex dissolved in each phase after the separation was measured.
3 10 Omg/k g、 水相には 10 OmgZk gのパラジウムが溶解していた。 3 10 Omg / kg and 10 OmgZkg of palladium were dissolved in the aqueous phase.
(4- 2) 回収工程  (4-2) Recovery process
次ぎに上記のように分離したパラジウムを錯体として溶解しているメチルェチ ルケトン相に、 水素化ホウ素ナトリウムを添加してパラジウムを還元、 回収した ところ、 回収率は 100%であった。  Next, sodium borohydride was added to the methyl ethyl ketone phase in which palladium separated as a complex was dissolved as described above to reduce and recover palladium. The recovery was 100%.
(4-3) 溶解液再生工程  (4-3) Solution regeneration process
上記の分離した水相を酸性にして次亜塩素酸ナトリウムを添加して 0. 5mmo 1相当のヨウ素を遊離させ、 先のメチルェチルケトン相を混合し、 再生 溶解液とした。  The separated aqueous phase was acidified, sodium hypochlorite was added to release 0.5 mmo 1 of iodine, and the above methyl ethyl ketone phase was mixed to obtain a regenerating solution.
この再生溶解液に、 直径 0. 2 mmのパラジウム線を再度溶解させる上記 (4 - 1 ) と同じ操作を行なったところ、 初回と同等の溶解性が得られた。 The palladium wire having a diameter of 0.2 mm is redissolved in this reconstituted solution as described in (4) above. -When the same operation as in 1) was performed, the same solubility as the first time was obtained.
実施例 5 Example 5
(5- 1) 溶解工程  (5-1) Dissolution process
四塩化炭素 5 gと水 5 に、 ヨウ化アンモニゥム 1 mmo 1及びヨウ素 0.5mmo 1を溶解しこ同一組成の溶解液を 2液調製した。 ヨウ化アンモニゥムは 水に高濃度に溶解し、 ヨウ素は四塩化炭素に高濃度に溶解した。  Ammonium iodide (1 mmo1) and iodine (0.5 mmo1) were dissolved in carbon tetrachloride (5 g) and water (5) to prepare two solutions having the same composition. Ammonium iodide was highly soluble in water, and iodine was highly soluble in carbon tetrachloride.
これらの混合液をそれぞれ別々の反応槽に入れて撹拌羽根装置で十分撹拌させ ながら、 それぞれに直径 0. 2 mmの金線 (0. 0804 g) を入れて沸点付近 で 15分間還流加熱した。 加熱終了後、 1分間静置して各溶解液を二相に分離さ せ、 分離後の各相に溶解している金錯体の濃度を測定したところ、 四塩化炭素相 にはそれぞれ約 20 Omg/k g、 水相にはそれぞれ 330 Omg/k gの金が 溶解していた。  Each of these mixed liquids was placed in a separate reaction tank, and while stirring sufficiently with a stirring blade device, a gold wire (0.0804 g) having a diameter of 0.2 mm was added to each, and the mixture was heated at reflux near the boiling point for 15 minutes. After heating was completed, the solution was allowed to stand for 1 minute to separate each solution into two phases, and the concentration of the gold complex dissolved in each phase after the separation was measured. 330 kg / kg of gold was dissolved in the / kg and the aqueous phase, respectively.
(5— 2) 回収工程  (5-2) Recovery process
金を溶解した二液の一つの液については、 水相と四塩化炭素相を分離し、 水相 だけに亜硫酸水素ナトリウムを添加し金を還元回収したところ、 亜硫酸水素ナト リウムの使用量は約 0. 026 gであった。  For one of the two solutions in which gold was dissolved, the aqueous phase and the carbon tetrachloride phase were separated, and sodium hydrogen sulfite was added only to the aqueous phase to reduce and recover the gold.The amount of sodium bisulfite used was approximately 0.026 g.
他方、 金を溶解したもう一方の液は、 水相と四塩化炭素相を分離せずに共存さ せたまま亜硫酸水素ナトリウムを添加して金を還元回収したところ、 亜硫酸水素 ナトリウムの使用量は約 0. 048 gであった。  On the other hand, the other solution in which gold was dissolved was added with sodium bisulfite and the gold was reduced and recovered while coexisting without separating the aqueous phase and the carbon tetrachloride phase.The amount of sodium bisulfite used was It was about 0.048 g.
これらの比較により、 金錯体が高濃度に溶解している相を分離して金の還元回 収を行なう場合には、 相を分離しない場合に比べて還元剤の使用量を約 1 2量 に削減できることが確認された。  Based on these comparisons, the amount of reducing agent used is reduced to about 12 in the case of separating and recovering gold by separating the phase in which the gold complex is dissolved at a high concentration, compared to the case where the phase is not separated. It was confirmed that reduction was possible.
(5-3) 溶解液再生工程  (5-3) Solution regeneration process
上記の還元剤を添加して金を回収した水相の液に、 次亜塩素酸ナトリウムを添 加してヨウ素を遊離させ、 分離しておいた四塩化炭素相と合わせ所定の溶解液組 成に再生したところ、 次亜塩素酸ナトリウム (5%) の使用量は約 0. 22 gで あつた o  Sodium hypochlorite is added to the aqueous phase solution from which the gold was recovered by adding the above reducing agent to release iodine, and combined with the separated carbon tetrachloride phase to form a prescribed solution The amount of sodium hypochlorite (5%) used was approximately 0.22 g.
他方、 水相と四塩化炭素相を分離せずに両相を共存させたまま還元剤を添加し て金を回収した液に、 次亜塩素酸ナトリゥムを添加してヨウ素を遊離させ所定の 溶解液組成に再生したところ、 次亜塩素酸ナトリウムの使用量は約 0. 50 で あつ,こ。 On the other hand, the reducing agent was added without separating the aqueous and carbon tetrachloride phases while keeping both phases coexisting. When sodium hypochlorite was added to the solution from which the gold was recovered to release iodine and regenerated to the prescribed solution composition, the amount of sodium hypochlorite used was about 0.50.
これらの比較により、 二相を分離して所定の回収操作を行ない、 その回収済み の液を再利用する場合には、 相を分離しない場合に比べて、 酸化剤の使用量を約 1ノ 2量に削減できることが確認された。  From these comparisons, when the two phases are separated and the specified recovery operation is performed, and the recovered liquid is reused, the amount of the oxidizing agent used is reduced by about 1 to 2 compared to the case where the phases are not separated. It was confirmed that the amount could be reduced.
(5- 4) 再溶解工程  (5-4) Re-dissolution process
再生溶解液に直径 0. 2 mmの金線 (0. 0804 g) を沸点付近で 15分間 還流加熱し、 加熱終了後、 1分間静置して溶媒を二相に分離させ、 分離後の各溶 媒に溶解している金錯体の濃度を測定したところ、 四塩化炭素相には約 150mg /k g、 水相には約 330 Omg/k gの金が溶解していた。  A 0.2 mm diameter gold wire (0.0804 g) was heated to reflux near the boiling point for 15 minutes in the reconstituted lysate. After the heating was completed, the mixture was allowed to stand for 1 minute to separate the solvent into two phases. When the concentration of the gold complex dissolved in the solvent was measured, about 150 mg / kg of gold was dissolved in the carbon tetrachloride phase and about 330 Omg / kg in the aqueous phase.
これによつて再生溶解液は、 初期の調整溶解液と同等の溶解能力を保有するこ とが確認された。  This confirmed that the reconstituted lysate had the same dissolving capacity as the initial adjusted lysate.
実施例 6 Example 6
酢酸メチル 9. 5 と水0. 5 gの混合溶媒にエチレンジァミンハイ ド口アイ オダイド 2. 5mmo lとヨウ素 1. 25 mm o 1を溶解して溶解液を調製した。 この溶解液を反応槽に入れて撹拌下に廃宝飾品材料 (18Kネックレス: Au •••78. 69%、 Ag…: I 1. 1 4%、 Cu…: I 0. 17%) 0. 1432 gを 浸漬し、 沸点近くで約 2. 5時間加熱還流した。 原形をとどめなくなるまで加熱 した後、 溶解液中の各成分を測定したところ、 金は 100%、 銅は 28. 5%、 銀は 7. 7%溶解していた。  In a mixed solvent of 9.5 methyl acetate and 0.5 g of water, 2.5 mmol of ethylenediamine hydrate and 1.25 mmol of iodine were dissolved to prepare a solution. Put this solution into the reaction tank and stir the waste jewelry material (18K necklace: Au ••• 78. 69%, Ag…: I 1.14%, Cu…: I 0.17%) 0. 1432 g was immersed and heated to reflux near the boiling point for about 2.5 hours. After heating until the original shape could not be retained, the components in the solution were measured. Gold was dissolved 100%, copper 28.5%, and silver 7.7%.
実施例 7 Example 7
酢酸メチル 40 gと水 10 gの混合溶媒にヨウ化アンモニゥム 1 Ommo 1と ヨウ素 5 mm o 1を溶解して溶解液を調製した。  Ammonium iodide 1 Ommo 1 and iodine 5 mmo 1 were dissolved in a mixed solvent of 40 g of methyl acetate and 10 g of water to prepare a solution.
この溶解液を反応槽に入れ、 撹拌下に廃パラジウム触媒 (品位 3% · · · アルミナペレッ トを担体としたもの) 36. 7036 gを浸潰し、 沸点近くで約 2時間加熱還流した後、 溶解率を測定したところ、 パラジウムは約 10%溶解し ており、 アルミニウムは痕跡程度であった。 次に、 貴金属を選択的に溶解する本発明の第 2の目的に対応した実施例 8~14 を示す。 This solution was put into a reaction tank, and 36. 7036 g of a waste palladium catalyst (grade 3% ··· using alumina pellets as a carrier) was immersed under stirring and heated to reflux near the boiling point for about 2 hours. When the dissolution rate was measured, about 10% of palladium was dissolved, and aluminum was only traces. Next, Examples 8 to 14 corresponding to the second object of the present invention in which a noble metal is selectively dissolved will be described.
実施例 8 Example 8
メタノール 10 gに、 ヨウ化テトラェチルアンモニゥム 1 mmo 1及びヨウ素 0. 5 mm 0 1を溶解して溶解液を調製した。  A solution was prepared by dissolving 1 mmol of tetraethylammonium iodide and 0.5 mm of iodine in 10 g of methanol.
この溶解液を三つの反応槽に入れて撹拌下に、 直径 2 mmの金線、 銅線、 二ッゲル線 (金線 0. 0 39 3 g, 銅線 0. 0 1 2 0 g, ニッゲル線 0 - 0130 g) を夫々別々に浸潰し、 いずれも沸点付近で 30分間還流加熱した後、 各金属線の溶解状態を重量減により測定したところ、 金線は 100%溶解したが、 銅線の溶解率は 6. 2%であり、 ニッケル線の溶解率は 3. 3%であった。 実施例 9  Put this solution into three reaction tanks and stir under agitation. 2 mm diameter gold wire, copper wire, Nigel wire (gold wire 0.0393 g, copper wire 0.0120 g, Nigel wire 0-0130 g) were separately immersed, and each was heated at reflux near the boiling point for 30 minutes.The dissolution state of each metal wire was measured by weight loss.The gold wire dissolved 100%, but the copper wire was dissolved. The dissolution rate was 6.2%, and the dissolution rate of the nickel wire was 3.3%. Example 9
酢酸メチル 5 gと水 5 gの混合溶媒に、 ヨウ化テトラェチルアンモニゥム 1 mm o 1、 及びヨウ素 0. 5 mm o 1を溶解して溶解液を調製した。  In a mixed solvent of 5 g of methyl acetate and 5 g of water, 1 mmol of tetraethylammonium iodide and 0.5 mmol of iodine were dissolved to prepare a solution.
この溶解液を三つの反応槽に入れて撹拌下に、 直径 0. 2 mmの金線、 銅線、 二ッゲル線 (金線 0. 04 1 8 g, 銅線 0. 0233 g, ニッゲル線 0. 0270 g) を夫々別々に浸潰し、 いずれも沸点付近で 15分間還流加熱した後、 各金属線の溶解状態を測定したところ、 .金線を浸漬した反応槽の溶解液には 150 Omgの金錯体が溶解していたが、 銅とニッケルはこれらを浸漬した反応 槽の溶解液では溶解せず不検出であった。 なお錯体の測定は I C P発光分析法に よって行なった (以下の実施例において同じ) 。  Put this solution into three reaction tanks and stir under stirring a gold wire, copper wire, and Nigel wire with a diameter of 0.2 mm (gold wire 0.04 18 g, copper wire 0.0233 g, Nigel wire 0 0270 g) were separately immersed, and each was heated at reflux near the boiling point for 15 minutes.The dissolution state of each metal wire was measured. The gold complex was dissolved, but copper and nickel were not dissolved in the reaction bath in which they were immersed and were not detected. The measurement of the complex was performed by ICP emission spectrometry (the same applies to the following examples).
実施例 10 Example 10
酢酸メチル 5 gと水 5 gの混合溶媒に、 ヨウ化カリウム lmmo 1、 及びヨウ 素 0. 5 mm o 1を溶解して溶解液を調製した。  Potassium iodide lmmo 1 and iodine 0.5 mmol were dissolved in a mixed solvent of 5 g of methyl acetate and 5 g of water to prepare a solution.
また、 溶解に先立って夫々 2000oC 5秒間の燃焼処理を行なった直径 0. 2 mmの金線、 銅線、 ニッケル線 (金線 0. 0412 g, 銅線 0. 0228 g, ニッケル線 0. 0246 g) を準備した。 Also, gold wire prior to dissolving each 2000 o C 5 seconds diameter 0. 2 mm was subjected to combustion treatment of copper wire, nickel wire (gold wire 0. 0412 g, copper 0. 0228 g, nickel wire 0 0246 g) was prepared.
上記の溶解液を三つの反応槽に入れて撹拌下に、 上記燃焼処理を行なつた金線、 銅線、 ニッケル線を浸潰し、 いずれも沸点付近で 1 5分間還流加熱した後、 各金 属線の溶解状態を測定したところ、 金線を浸漬した反応槽の溶解液には 50 Omg の金錯体が溶解していたが、 銅とニッケルはこれらを浸漬した反応槽の溶解液で は溶解せず不検出だった。 The above solution was placed in three reaction tanks, and the gold, copper, and nickel wires subjected to the above combustion treatment were immersed under stirring, and all were heated at reflux near the boiling point for 15 minutes. When the dissolution state of the metal wires was measured, 50 Omg of the gold complex was dissolved in the solution of the reaction vessel in which the gold wire was immersed, but copper and nickel were dissolved in the solution of the reaction vessel in which these were immersed. Without detection.
実施例 1 1 Example 1 1
. 酢酸メチル 5 gと水 5 gの混合溶媒に、 ヨウ化アンモニゥム lmmo 1、 及び ヨウ素 0. 5 mm o 1を溶解して溶解液を調製した。  A solution was prepared by dissolving ammonium iodide lmmo 1 and iodine 0.5 mmol in a mixed solvent of 5 g of methyl acetate and 5 g of water.
また、 溶解に先立って夫々 2000eC 5秒間の燃焼処理を行なったパラジゥ ム 10部、 アルミニウム 45部、 亜鉛 45部を混合した金属原料 (粉体) の 0. 1 gを準備した。 Further, Parajiu beam 10 parts was subjected to combustion treatment in each 2000 e C 5 seconds prior to the dissolution, 45 parts of aluminum, were prepared 0. 1 g of the metal material obtained by mixing 45 parts of zinc (powder).
上記の溶解液を入れた反応槽に上記燃焼処理をした金属原料を浸漬し、 沸点付 近で還流加熱した後、 溶解状態を測定したところ、 溶解液にはパラジウム錯体が 100 OmgZk g溶解していたが、 アルミニウムと亜鉛は溶解せず不検出であ つた。  The metal material subjected to the above-mentioned combustion treatment was immersed in the reaction vessel containing the above solution, heated under reflux near the boiling point, and the dissolution state was measured.As a result, 100 pmg of the palladium complex was dissolved in the solution. However, aluminum and zinc did not dissolve and were not detected.
実施例 12 Example 12
メタノール 10 gに、 ヨウ化力リウム 1 mmo 1、 及びヨウ素 0. 5 mm o 1 を溶解して溶解液を調製した。  A dissolution solution was prepared by dissolving 1 mmo 1 of potassium iodide and 0.5 mmo 1 of iodine in 10 g of methanol.
また溶解に先立って夫々 2000°C 5秒間の燃焼処理を行なったパラジウム 10部、 アルミニウム 45部、 亜 45部を混合した金属原料 (粉体) の 0. 1 g を準備した。  In addition, 0.1 g of a metal raw material (powder) was prepared by mixing 10 parts of palladium, 45 parts of aluminum, and 45 parts of subaluminum, each of which was subjected to a combustion treatment at 2000 ° C. for 5 seconds before melting.
上記の溶解液を入れた反応槽に上記燃焼処理をした金属原料を浸漬し、 沸点付 近で還流加熱した後、 溶解状態を測定したところ、 溶解液中には、 180 Omg Zk gのパラジウム錯体が溶解していたが、 アルミニウム、 亜鉛は溶解せず不検 出 1The metal material subjected to the above combustion treatment was immersed in the reaction vessel containing the above solution, heated under reflux near the boiling point, and the dissolution state was measured.The solution contained 180 Omg Zkg of the palladium complex. but but it had been dissolved, aluminum, zinc 1 Oh out non-detection does not dissolve
実施例 13 Example 13
酸ェチル 8. 5 と水 1. 5 gの混合溶媒にヨウ化アンモニゥム 2. 51111110 1及びョゥ素1. 25 mmo 1を溶解して溶解液を調製した。  Ammonium iodide 2.511111101 and iodine 1.25 mmo 1 were dissolved in a mixed solvent of 8.5 g of ethyl ethyl and 1.5 g of water to prepare a solution.
この溶解液を反応槽に入れて、 撹拌下に廃宝飾品 (18 K製ネックレス) 0. 0478 gを浸漬し、 沸点近くで約 80分間加熱還流した。 原形をとどめなくな るまで加熱した後、 溶解液を静置して溶媒を 2相に分離し、 分離後の各相に溶解 している各成分をそれぞれ測定したところ、 酢酸ェチル相中には金が全量の 93. 3%、 銀が全量の 1 %、 銅が全量の 7%溶解していた。 一方、 水相中には金が全 量の 6. 7%、 銀が全量の 99%、 銅が全量の 93%溶解していた。 This solution was placed in a reaction tank, and 0.0478 g of waste jewelry (18 K necklace) was immersed under stirring and heated to reflux near the boiling point for about 80 minutes. I can not stop the original form The solution was allowed to stand still, the solvent was allowed to stand, the solvent was separated into two phases, and the components dissolved in each of the separated phases were measured. The total amount of gold in the ethyl acetate phase was 93%. 3%, silver 1% of total amount and copper 7% of total amount. On the other hand, 6.7% of the total amount of gold, 99% of the total amount of silver and 93% of the total amount of copper were dissolved in the aqueous phase.
実施例 14 Example 14
メタノール 1 0 gにヨウ化テトラェチルアンモニゥム 2mm 0 1及びヨウ素 1 mmo 1を溶解して溶解液を調製した。  A solution was prepared by dissolving 2 mm 01 of tetraethylammonium iodide and 1 mmo 1 of iodine in 10 g of methanol.
この溶解液を反応槽に入れ、 鉄とコバル卜とニッゲルよりなる合金を基材とし た合金線に金メツキを施した廃工業材料 4. 9923 gを浸潰して、 撹拌下に沸 点近くで約 30秒間加熱したところ、 金色が消失して金が溶解したことを確認し た。 基材の合金線に対する溶解性を確認するために更に約 3分間の加熱還流を続 行した後、 溶解液中の各成分を測定したところ、 金は 450 OmgZkg溶解し ており、 鉄は 1 98 m g/k g、 コバルトは 9 9 m g/k g、 ニッゲルは 282mgZk g溶解していた。  Put this solution into a reaction tank, immerse 4.9923 g of waste industrial material obtained by applying gold plating to an alloy wire based on an alloy consisting of iron, cobalt and Niggel. Upon heating for about 30 seconds, it was confirmed that the gold color had disappeared and the gold had dissolved. After continuing heating and refluxing for about 3 minutes to confirm the solubility of the base material in the alloy wire, each component in the melt was measured. mg / kg, cobalt was 99 mg / kg, and Nigger was 282 mgZkg.
上記の溶解液に、 亜硫酸水素ナトリウム水溶液 (25 w/v -%) 2. Oml を添加し撹拌した後、 約 5時間放置して還元された金を回収した。 還元後の該溶 解液中の残存金を測定したところ痕跡程度であり、 回収率はほぼ 100%であつ た。 産業上の利用可能性  An aqueous solution of sodium bisulfite (25 w / v-%) 2. Oml was added to the above solution, and the mixture was stirred and left for about 5 hours to recover reduced gold. The residual gold in the solution after the reduction was measured, and was found to be about traces, and the recovery was almost 100%. Industrial applicability
本発明の 2相互の溶解度が低い 2種以上の溶媒の混合液を用いた貴金属の溶解 方法、 更には回収方法によれば、 上記実施例 1〜7に示したように、 操作が簡単 であり、 金、 銀、 白金族等の貴金属を容易な操作で極めて高い効率で能率よく回 収でき、 使用するハロゲン化合物、 ハロゲン単体、 溶媒の量の低減化、 繰り返し 使用による一層の低減化、 更には、 安全性、 経済性の向上という以下のような種々 の効果が得られる。  According to the method for dissolving a noble metal using a mixture of two or more solvents having low mutual solubility of the present invention, and further according to the recovery method, the operation is simple as shown in Examples 1 to 7 above. , Gold, silver, platinum group and other precious metals can be recovered efficiently and efficiently with extremely high efficiency, reducing the amount of halogen compounds, simple halogens, and solvents used, and further reducing the amount of repeated use. The following various effects, such as improvement of safety and economy, can be obtained.
①金属、 貴金属の溶解に際し、 目的金属, 目的貴金属を有機溶媒相あるいは水 相に任意に分配できる。 ②溶媒を容易に二相 (ないしそれ以上) に分離でき、 しかもこれにより貴金属 回収工程での溶媒処理量が減量化できる。 (1) When dissolving metals and noble metals, the target metal and the target noble metal can be arbitrarily distributed to the organic solvent phase or aqueous phase. (2) The solvent can be easily separated into two phases (or more), and this can reduce the amount of solvent used in the precious metal recovery process.
③上記②に伴って、 還元剤、 酸化剤の使用量を減量化できる。  ③ Along with the above ①, the amount of reducing agent and oxidizing agent used can be reduced.
④王水等の強酸性物質、 シァン化合物等の猛毒性物質を使用することがなく、 また有機溶媒の種類、 水との混合比を選択することによって引火性等の問題も大 幅に改善ないし解消でき、 安全性に優れている。  強 The use of highly acidic substances such as aqua regia and highly toxic substances such as cyanide compounds is not used, and flammability and other problems are not significantly improved by selecting the type of organic solvent and the mixing ratio with water. It can be eliminated and has excellent safety.
⑤ハロゲン単体、 ハロゲン化合物、 溶媒は再生して繰り返し使用できるので溶 解、 回収工程のコストが大幅に改善される。  単 体 Since the halogen alone, the halogen compound and the solvent can be regenerated and reused, the cost of the dissolution and recovery process is greatly improved.
⑥溶解、 回収工程から系外への排出が無いか大幅に低減できるので、 排水処理 負担の軽減が図れ、 ひいてはコストが低減される。  排出 Since discharge from the dissolution and recovery process to the outside of the system can be greatly reduced, the burden on wastewater treatment can be reduced, and the cost can be reduced.
また本発明の選択的溶解方法によれば、 操作が簡単であるうえ、 金、 銀、 白金 族を共存する卑金属の同時溶解を伴うことなく選択的に溶解することができ、 更 に、 夾雑する金属を実質的に溶解せずに貴金属を選択的に溶解するのでその後の 分離精製工程を省略、 ないし軽減することができ、 コストの低減が実現できると いう効果が得られる。  Further, according to the selective dissolution method of the present invention, the operation is simple, and the selective dissolution can be performed without the simultaneous dissolution of the base metal coexisting with the gold, silver, and platinum groups. Since the noble metal is selectively dissolved without substantially dissolving the metal, the subsequent separation and purification step can be omitted or reduced, and the effect of reducing costs can be achieved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 有機溶媒及び水から選ばれた少なくとも 2種類の溶媒を混合してなり、 この 混合液を構成する少なくとも一つの溶媒はハロゲン単体を溶解し、 該溶媒ある いはこの混合液を構成する少なくとも他の一つの溶媒は可溶性ハロゲン化合物 を溶解し、 かっこの混合液を構成する少なくとも一つの溶媒はポリハロゲノ貴 金属陰ィォン錯体を溶解する溶媒の組合せからなる混合液であつて、 これらの 溶媒相互の溶解度が低い混合液に、 ハロゲン単体と可溶性ハロゲン化合物を溶 解し、 該混合液の撹拌下で貴金属原料を浸漬することを特徴とする金属の溶解 方法。 1. A mixture of at least two kinds of solvents selected from an organic solvent and water, wherein at least one solvent constituting the mixture dissolves a simple halogen, and at least one solvent constituting the mixture or the mixture comprises Another solvent dissolves the soluble halogen compound, and at least one solvent constituting the mixture of the parentheses is a mixture comprising a combination of solvents dissolving the polyhalogeno noble metal anion complex. A method for dissolving a metal, comprising dissolving a simple halogen and a soluble halogen compound in a mixed solution having low solubility, and immersing a noble metal raw material while stirring the mixed solution.
2 . 請求項 1において、 混合液を形成する少なくとも 2種類の溶媒は、 ポリハロ ゲノ貴金属陰ィォン錯体の易溶性溶媒と、 ハロゲン単体の易溶性溶媒の組合せ であり、 かつ溶媒相互の溶解度が低いことを特徴とする金属の溶解方法。 2. In claim 1, at least two kinds of solvents forming the mixed solution are a combination of a readily soluble solvent of a polyhalogeno noble metal anion complex and a readily soluble solvent of a simple halogen, and have low mutual solubility of the solvents. A method for melting a metal, comprising:
3. 請求項 1において、 混合液が酢酸ェチルと水の組合せからなることを特徴と する金属の溶解方法。 3. The method for dissolving a metal according to claim 1, wherein the mixture comprises a combination of ethyl acetate and water.
4 . 請求項 1において、 シクロへキサンと水の組合せからなることを特徵とする 金属の溶解方法。  4. The method for dissolving a metal according to claim 1, comprising a combination of cyclohexane and water.
5 . 請求項 1において、 混合液がメチルェチルケトンと水の組合せからなること を特徴とする金属の溶解方法。  5. The method for dissolving a metal according to claim 1, wherein the mixed liquid comprises a combination of methyl ethyl ketone and water.
6 . 請求項 1において、 混合液が四塩化炭素と水の組合せからなることを特徴と する金属の溶解方法。  6. The method according to claim 1, wherein the mixed solution comprises a combination of carbon tetrachloride and water.
7 . 貴金属と卑金属とが共存する金属原料を、 ハロゲン単体及び可溶性ハロゲン 化合物を溶解した溶解液に浸漬して、 ハロゲン単体による金属への酸化反応で ハロゲン化金属を生成させ次いで可溶性ハロゲン化合物によりポリハロゲノ金 属陰ィォン錯体を生成させる溶解方法において、  7. Immerse the metal raw material in which the noble metal and the base metal coexist in a solution in which the simple halogen and the soluble halogen compound are dissolved, generate the metal halide by the oxidation reaction of the simple halogen to the metal, and then use the soluble halogen compound to generate the polyhalogeno. In a dissolution method for forming a metal yin complex,
上記溶解液に、 上記反応で生成する貴金属のポリハロゲノ金属陰イオン錯体 は溶解するが、 卑金属は実質的に溶解しな t、溶媒を用いることを特徴とする金 属の選択的溶解方法。 A method for selectively dissolving a metal, comprising using a solvent in which the polyhalogenometal anion complex of a noble metal produced by the above reaction is dissolved, but the base metal is not substantially dissolved.
. 貴金属と卑金属とが共存する金属原料を、 ハロゲン単体及び可溶性ハロゲン 化合物を溶解した溶解液に浸漬して、 ハロゲン単体による金属への酸化反応で ハロゲン化金属を生成させ次 t、で可溶性ノヽ口ゲン化合物によりポリハロゲノ金 属陰イオン錯体を生成させる溶解方法において、 A metal raw material in which a precious metal and a base metal coexist is immersed in a solution in which a simple halogen and a soluble halogen compound are dissolved, and a metal halide is generated by an oxidation reaction of the simple halogen to the metal. In a dissolution method for forming a polyhalogenogold anion complex with a gen compound,
上記の溶解に先立って、 上記金属原料の卑金属の表面に酸化皮膜を形成させ る前処理を行うことを特徴とする金属の選択的溶解方法。 A method for selectively dissolving a metal, which comprises performing a pretreatment for forming an oxide film on the surface of the base metal as the metal raw material before the dissolution.
. 請求項 7又は 8において、 溶解液を、 ハロゲン単体及び可溶性ハロゲン化合 物を溶解する極性有機溶媒により構成するか、 あるいは有機溶媒及び水から選 ばれた少なくとも二種類以上の混合溶媒により構成することを特徴とする金属 の選択的溶解方法。 Claim 7 or Claim 8, wherein the solution is composed of a polar organic solvent that dissolves a simple halogen and a soluble compound, or a mixed solvent of at least two or more kinds selected from an organic solvent and water. A method for selectively dissolving a metal, comprising:
0 . 請求項 9において、 溶解液がメタノールであることを特徴とする金属の選 択的溶解方法。 0. The method for selectively dissolving metals according to claim 9, wherein the dissolving solution is methanol.
1 . 請求項 9において、 溶解液が酢酸メチルと水の混合液であることを特徴と する金属の選択的溶解方法。  1. The method for selectively dissolving metals according to claim 9, wherein the dissolving solution is a mixture of methyl acetate and water.
2. 請求項 9において、 有機溶媒及び水から選ばれて混合溶媒として溶解液を 構成する少なくとも二種類の溶媒は、 相互の溶解度が低い溶媒の組合せからな ることを特徴とする金属の選択的溶解方法。 2. The method according to claim 9, wherein at least two kinds of solvents selected from an organic solvent and water to form a solution as a mixed solvent are a combination of solvents having low mutual solubility. Dissolution method.
3 . 請求項 1 2において、 混合溶媒として溶解液を構成する少なくとも二種類 の溶媒は、 ポリハロゲノ貴金属陰イオン錯体の易溶性溶媒と、 ポリハロゲノ貴 金属陰ィォン錯体は難溶性でかつハロゲン単体は易溶性の溶媒の組合せからな ることを特徴とする金属の選択的溶解方法。 3. In claim 12, at least two kinds of solvents constituting the solution as a mixed solvent are a polyhalogeno noble metal anion complex easily soluble solvent and a polyhalogeno noble metal anion complex are hardly soluble and halogen alone is easily soluble. A selective dissolution method of a metal, comprising a combination of the following solvents:
4 . 請求項 1 2において、 混合溶媒として溶解液を構成する少なくとも二種類 の溶媒は、 ポリハロゲノ貴金属陰イオン錯体の易溶性溶媒と、 ポリハロゲノ貴 金属陰ィォン錯体は難溶性でかつ可溶性ハロゲン化合物は易溶性の溶媒の組合 せからなることを特徴とする金属の選択的溶解方法。 4. In claim 12, at least two kinds of solvents constituting the solution as a mixed solvent are a readily soluble solvent of a polyhalogeno noble metal anion complex, and a poorly soluble polyhalogeno noble metal anion complex and a soluble halogen compound. A method for selectively dissolving a metal, comprising a combination of soluble solvents.
5 . 請求項 7乃至 1 4のいずれかの溶解方法により貴金属を選択的に溶解した 溶解液中のポリハロゲノ金属陰ィォン錯体を還元して、 貴金属を回収すること を特徴とする貴金属の選択的回収方法。 5. The selective recovery of a noble metal, wherein the noble metal is recovered by reducing the polyhalogenometal anion complex in the solution in which the noble metal has been selectively dissolved by any one of claims 7 to 14. Method.
6 . 有機溶媒及び水から選ばれた少なくとも 2種類の溶媒を混合してなり、 こ の混合液を構成する少なくとも一つの溶媒はハロゲン単体を溶解し、 該溶媒あ るいはこの混合液を構成する少なくとも他の一つの溶媒は可溶性ハ口ゲン化合 物を溶解し、 かっこの混合液を構成する少なくとも一つの溶媒はポリハロゲノ 貴金属陰ィォン錯体を溶解する溶媒の組合せからなる混合液であつて、 これら の溶媒相互の溶解度が低い混合液に、 ハロゲン単体と可溶性ハロゲン化合物を 溶解し、 該混合液の撹拌下で貴金属原料を浸漬してポリハロゲノ貴金属陰ィォ ン錯体として溶解させる工程と、 該工程の後に、 静置後各溶媒を分離していず れかの溶媒相に溶解している上記錯体を還元して貴金属として回収する工程と、 を備えたことを特徴とする金属の溶解回収方法。 6. A mixture of at least two kinds of solvents selected from an organic solvent and water, and at least one solvent constituting the mixture dissolves a simple halogen and constitutes the solvent or the mixture. At least one other solvent dissolves the soluble haeogen compound, and at least one solvent constituting the mixture of parentheses is a mixture comprising a combination of solvents dissolving the polyhalogeno noble metal anion complex. Dissolving a simple halogen and a soluble halogen compound in a mixed solution having low mutual solubility between solvents, immersing a noble metal material under stirring of the mixed solution to dissolve as a polyhalogeno noble metal anion complex; and after the step, A step of reducing the above-mentioned complex dissolved in any of the solvent phases after standing and separating each solvent and recovering the complex as a noble metal. Dissolution method of recovering the genus.
7 . 請求項 1 6において、 混合液を形成する少なくとも 2種類の溶媒は、 ポリ ハロゲノ貴金属陰ィォン錯体の易溶性溶媒と、 ハロゲン単体の易溶性溶媒の組 合せであり、 かつ溶媒相互の溶解度が低いことを特徴とする金属の溶解回収方 法。 7. In claim 16, at least two kinds of solvents forming the mixed solution are a combination of a readily soluble solvent of a polyhalogeno noble metal anion complex and a readily soluble solvent of a simple halogen, and the solubility between the solvents is high. A method for dissolving and recovering metals, which is characterized by low cost.
8. 請求項 1 6において、 混合液が酢酸ェチルと水の組合せからなることを特 徴とする金属の溶解方法。8. The method for dissolving metals according to claim 16, wherein the mixed solution comprises a combination of ethyl acetate and water.
9. 請求項 1 6において、 シクロへキサンと水の組合せからなることを特徴と する金属の溶解方法。9. The method for dissolving a metal according to claim 16, comprising a combination of cyclohexane and water.
0 . 請求項 1 6において、 混合液がメチルェチルケトンと水の組合せからなる ことを特徴とする金属の溶解方法。 0. The method according to claim 16, wherein the mixed solution comprises a combination of methyl ethyl ketone and water.
1 . 請求項 1 6において、 混合液が四塩化炭素と水の組合せからなることを特 徴とする金属の溶解方法。 1. The method for dissolving a metal according to claim 16, wherein the mixed solution comprises a combination of carbon tetrachloride and water.
PCT/JP1994/000698 1993-04-27 1994-04-26 Method of dissolving and recovering metal WO1994025633A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP5101317A JPH06340932A (en) 1993-04-27 1993-04-27 Method for selectively dissolving metal
JP5101316A JPH0711353A (en) 1993-04-27 1993-04-27 Dissolving method and recovering method for metal
JP5/101316 1993-04-27
JP5/101317 1993-04-27

Publications (1)

Publication Number Publication Date
WO1994025633A1 true WO1994025633A1 (en) 1994-11-10

Family

ID=26442210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000698 WO1994025633A1 (en) 1993-04-27 1994-04-26 Method of dissolving and recovering metal

Country Status (1)

Country Link
WO (1) WO1994025633A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294830A (en) * 1988-05-19 1989-11-28 Agency Of Ind Science & Technol Method for dissolving metal
JPH046229A (en) * 1990-04-24 1992-01-10 Agency Of Ind Science & Technol Method for dissolving metal
JPH0421726A (en) * 1990-05-15 1992-01-24 Agency Of Ind Science & Technol Method for melting metal
JPH0480335A (en) * 1990-07-24 1992-03-13 Tanaka Kikinzoku Kogyo Kk Method for separating tin in solution of platinum group metal
JPH04107230A (en) * 1990-08-28 1992-04-08 Agency Of Ind Science & Technol Method for extracting gold and silver from ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294830A (en) * 1988-05-19 1989-11-28 Agency Of Ind Science & Technol Method for dissolving metal
JPH046229A (en) * 1990-04-24 1992-01-10 Agency Of Ind Science & Technol Method for dissolving metal
JPH0421726A (en) * 1990-05-15 1992-01-24 Agency Of Ind Science & Technol Method for melting metal
JPH0480335A (en) * 1990-07-24 1992-03-13 Tanaka Kikinzoku Kogyo Kk Method for separating tin in solution of platinum group metal
JPH04107230A (en) * 1990-08-28 1992-04-08 Agency Of Ind Science & Technol Method for extracting gold and silver from ore

Similar Documents

Publication Publication Date Title
JP3741117B2 (en) Mutual separation of platinum group elements
EP2986746B1 (en) Compounds and methods to isolate gold
AU2017232739B2 (en) Recovery of precious and rare earth metals using cyclodextrin
US4107261A (en) Process for the separation of platinum group metals
RU2693285C1 (en) METHOD OF SEPARATING METALS FROM PLATINUM, PALLADIUM, RHODIUM Pt-Pd-Rh
Altansukh et al. Gold recovery from waste printed circuit boards by advanced hydrometallurgical processing
US3495976A (en) Method of separating a layer of gold from a base of non-ferrous or rare metals or their alloys
Nag et al. Rapid dissolution of noble metals in organic solvents
WO1994025633A1 (en) Method of dissolving and recovering metal
TW200925114A (en) Processes and systems for recovering catalyst promoter from catalyst substrates
BE897582Q (en) PROCESS FOR THE SOLUTION OF NON-FERROUS METALS CONTAINED IN OXYGENIC COMPOUNDS
JP3309794B2 (en) Method for separating and removing platinum and palladium
JP5777150B2 (en) Method for recovering platinum and palladium
JPH0711353A (en) Dissolving method and recovering method for metal
JPS6116326B2 (en)
JPH06340932A (en) Method for selectively dissolving metal
JP6205290B2 (en) Method for recovering gold or silver from cyanic waste liquid containing gold or silver
JPH10265863A (en) Method for recovering noble metals from smelting residue
JP5835579B2 (en) Method for treating aqueous bromic acid solution containing platinum group elements
FR3070691B1 (en) IMPROVED METHOD OF RECOVERING PALLADIUM FROM OTHER METALLIC ELEMENTS PRESENT IN A NITRIC AQUEOUS PHASE USING AS MALONAMIDE EXTRACTORS.
JP2019127627A (en) Method for recovering noble metal
JPS61238927A (en) Method for recovering palladium
JP2001032025A (en) Method for recovering platinum group metal from platinum group metal-containing solution
AU2012321049A2 (en) Improvements in recovery of metals from ores
JP2937184B1 (en) How to remove platinum and palladium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA