JPH046229A - Method for dissolving metal - Google Patents

Method for dissolving metal

Info

Publication number
JPH046229A
JPH046229A JP2108225A JP10822590A JPH046229A JP H046229 A JPH046229 A JP H046229A JP 2108225 A JP2108225 A JP 2108225A JP 10822590 A JP10822590 A JP 10822590A JP H046229 A JPH046229 A JP H046229A
Authority
JP
Japan
Prior art keywords
metal
cationic surfactant
solvent
org
mentioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2108225A
Other languages
Japanese (ja)
Other versions
JPH0694577B2 (en
Inventor
Yukimichi Nakao
幸道 中尾
Kyoji Kaeriyama
帰山 享二
Aizo Yamauchi
山内 愛造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2108225A priority Critical patent/JPH0694577B2/en
Publication of JPH046229A publication Critical patent/JPH046229A/en
Publication of JPH0694577B2 publication Critical patent/JPH0694577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To easily and economically dissolve a metal by bringing the metal into contact with a cationic surfactant, the paired anion of which is a halogen ion, a halogenic simple substance and an org. solvent. CONSTITUTION:The metal is brought into contact with a halogenic simple substance and an org. solvent in the presence of the cationic surfactant, the paired anion of which is the halogen ion. A quaternary ammonium compd., etc., is adequate as the above-mentioned cationic surfactant and is used at an equal molar ratio or above of the above-mentioned metal. Chlorine, bromine or iodine is used as the above-mentioned halogen simple substance and are used at about >=0.5 times mol the metal. Benzene, methanol, brombenzene, or the like is used as the above-mentioned org. solvent. The metal in contact therewith is converted to the easily soluble compd. which is dissolved in the org. solvent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属の溶解方法に間するものであり、詳しく
は、陽イオン性界面活性剤、ハロゲン単体及び有機溶媒
に接触させることを特徴とする金属の溶解方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for dissolving metals, specifically, the method is characterized by contacting a metal with a cationic surfactant, an elemental halogen, and an organic solvent. It relates to a method of melting metals.

従来の技術 金属を液体中に溶解することは、金属を含有する混合物
から金属を抽出、回収するために不可欠の工程であり、
産業上極めて重要である。この目的のため、従来は、金
属を塩酸などの無機酸の水溶液に溶解する方法がとられ
ていた。
Conventional Technology Dissolving metals in liquids is an essential process for extracting and recovering metals from metal-containing mixtures.
It is of great industrial importance. For this purpose, a conventional method has been to dissolve the metal in an aqueous solution of an inorganic acid such as hydrochloric acid.

また最近、陽イオン性界面活性剤の存在下に、ハロゲン
化炭化水素に接触させることにより、金属を溶解させる
方法が見出されている(特開平1294830号公報)
Recently, a method has been discovered for dissolving metals by bringing them into contact with halogenated hydrocarbons in the presence of a cationic surfactant (Japanese Unexamined Patent Publication No. 1294830).
.

発明が解決しようとする課題 従来の無機酸を用いる金属の溶解方法では、強酸性の水
溶液を扱うため、作業が危険となるうえ、多量の排水が
生じ、この排水の処理に多大の経費がかかる6 また、
陽イオン性界面活性剤の存在下にハロゲン化炭化水素に
接触させる方法は、溶媒がハロゲン化炭化水素に限られ
る上、その臭気や毒性が強いため作業に困難を伴うなど
の問題点があった。
Problems to be Solved by the Invention Conventional methods for dissolving metals using inorganic acids involve working with strongly acidic aqueous solutions, which makes the work dangerous and generates a large amount of wastewater, which requires a great deal of expense to dispose of. 6 Also,
The method of contacting halogenated hydrocarbons in the presence of a cationic surfactant has problems, such as the solvent being limited to halogenated hydrocarbons and its odor and strong toxicity making it difficult to work. .

課題を解決するための手段 本発明者は、こうした従来の方法の課題を解決するため
、無機酸を用いず、ハロゲン化炭化水素以外の有機溶媒
も用い得る金属の溶解方法を求めて種々検討した結果、
多くの金属が、陽イオン性界面活性剤の存在下に、ハロ
ゲン単体及び有機溶媒に接触させることにより溶解する
現象を見いだし、本発明に到達した。
Means for Solving the Problems In order to solve the problems of the conventional methods, the present inventor conducted various studies in search of a method for dissolving metals that does not use inorganic acids and can also use organic solvents other than halogenated hydrocarbons. result,
The present invention was achieved by discovering a phenomenon in which many metals dissolve when brought into contact with a simple halogen and an organic solvent in the presence of a cationic surfactant.

すなわち、本発明は、陽イオン性界面活性剤、ハロゲン
単体及び有機溶媒に接触させることを特徴とする金属の
溶解方法を提供するものである。
That is, the present invention provides a method for dissolving a metal, which is characterized by bringing the metal into contact with a cationic surfactant, an elemental halogen, and an organic solvent.

本発明方法においては、陽イオン性界面活性剤、ハロゲ
ン単体及び有機溶媒に金属を接触させることにより金属
を溶解しやすい化合物に変換する。
In the method of the present invention, metals are brought into contact with a cationic surfactant, a simple halogen, and an organic solvent to convert the metals into easily soluble compounds.

すなわち、目的の金属に対し、ハロゲン単体からハロゲ
ン原子が与えら・れることによって金属ハロゲン化物が
生成し、これが陽イオン性界面活性剤の働きでポリへロ
ゲノ金属陰イオン鉗体と長鎖アルキルアンモニウム陽イ
オンとのイオン対に変換されることにより有機溶媒に溶
解するわけである。
In other words, a metal halide is generated by adding a halogen atom from a single halogen to the target metal, and this is combined with a polyherogenometallic anion forceps and a long-chain alkyl ammonium by the action of a cationic surfactant. It dissolves in organic solvents by being converted into ion pairs with cations.

金属の溶解に要する時間は、目的とする金属、用いる陽
イオン性界面活性剤、ハロゲンの種類及び濃度、有機溶
媒の種類などにより異る。また、処理温度は有機溶媒の
沸点以下の範囲で選ばれるが、処理温度が高いほど金属
の溶解が促進される。
The time required to dissolve the metal varies depending on the target metal, the cationic surfactant used, the type and concentration of halogen, the type of organic solvent, etc. Further, the treatment temperature is selected within a range below the boiling point of the organic solvent, and the higher the treatment temperature, the more the dissolution of the metal is promoted.

金属の溶解の終点は、仕込んだ金属が見えなくなること
でN認できる。
The end point of metal melting can be recognized by the fact that the charged metal is no longer visible.

本発明方法において用いられる陽イオン性界面活性剤と
しては、一般式が、 [R,N”  R3]  ・χ− R。
The cationic surfactant used in the method of the present invention has the general formula: [R,N''R3] .chi.-R.

(式中、R2、R2、R3及びR4の少なくとも一つは
炭素数8〜18の炭化水素基であって、残りはメチル基
またはエチル基であり、かつ、その中の複数個が互いに
結合して環を形成していてもよい。
(In the formula, at least one of R2, R2, R3 and R4 is a hydrocarbon group having 8 to 18 carbon atoms, and the rest are methyl groups or ethyl groups, and a plurality of them are bonded to each other. may form a ring.

X−は塩素イオン、臭素イオンまたはヨウ素イオン)で
表わされる第四級アンモニウム化合物が適し、たとえば
、臭化n−オクチルトリメチルアンモニウム、臭化n−
ドデシルトリメチルアンモニウム、塩化n−ステアリル
トリメチルアンモニウム、臭化セチルピリジニウム、塩
化トリオクチルメチルアンモニウムなどが用いられる。
Suitable are quaternary ammonium compounds represented by X- (chlorine, bromide or iodide ion), such as n-octyltrimethylammonium bromide, n-bromide
Dodecyltrimethylammonium, n-stearyltrimethylammonium chloride, cetylpyridinium bromide, trioctylmethylammonium chloride, etc. are used.

陽イオン性界面活性剤は、溶解すべき金属に対して等モ
ル以上、ハロゲン単体は、溶解すべき金属に対して 0
.5倍モル量以上使用しなければならない、陽イオン性
界面活性剤は、全てが有機溶媒に溶解している必要はな
く、一部は懸濁状態で存在していてもよく、この場合は
、金属が溶解するに従って、陽イオン性界面活性剤も徐
々に溶解する。
The cationic surfactant should be used in an amount equal to or more than the mole of the metal to be dissolved, and the halogen should be in an amount of 0 or more relative to the metal to be dissolved.
.. The cationic surfactant, which must be used in an amount of 5 times the molar amount or more, does not need to be completely dissolved in the organic solvent, and some of it may be present in a suspended state; in this case, As the metal dissolves, the cationic surfactant also gradually dissolves.

本発明方法で、ハロゲン単体としては、塩素、臭素及び
ヨウ素の単体が用いられる。
In the method of the present invention, chlorine, bromine, and iodine are used as the halogens.

本発明方法で用いられる有機溶媒としては、液状の炭化
水素類、アルコール類、エステル類、エーテル類、ニト
リル類、ニトロ化炭化水素類、ハロゲン化炭化水素類が
適し、例えば、ベンゼン、トルエン、メタノール、酢酸
エチル、ジオキサン、アセトニトリル、ニトロベンゼン
、ブロムベンゼンなどが用いられる。
Suitable organic solvents used in the method of the present invention include liquid hydrocarbons, alcohols, esters, ethers, nitriles, nitrated hydrocarbons, and halogenated hydrocarbons, such as benzene, toluene, and methanol. , ethyl acetate, dioxane, acetonitrile, nitrobenzene, brombenzene, etc. are used.

本発明方法により溶解される金属は、典型金属及び遷移
金属の両方にわたり、たとえば、バナジウム、クロム、
マンガン、鉄、コバルト、二・メチル、銅、亜鉛、ゲル
マニウム、セレン、ジルコニウム、パラジウム、銀、イ
ンジウム、アンチモン、白金、金、水銀、鉛などである
The metals melted by the method of the present invention include both typical metals and transition metals, such as vanadium, chromium,
These include manganese, iron, cobalt, dimethyl, copper, zinc, germanium, selenium, zirconium, palladium, silver, indium, antimony, platinum, gold, mercury, and lead.

次に、実施例により、本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

実施例1〜15 ベンゼン10gに、臭化セチルピリジニウム1mmo 
I及び臭素Q 、 5 mmoIを加え、さらに表1に
示す金属の粉末Q 、 2g−atomを加えてかくは
んしながら、液温79℃で還流加熱した。ここで、金属
の粉末が残存していない場合には溶解率100%とし、
金属残金がある場合には、この残金を傾しやにより溶液
から分離し、メタノールで洗浄し乾燥した後秤量した。
Examples 1 to 15 1 mmo of cetylpyridinium bromide to 10 g of benzene
I and 5 mmol of bromine Q were added thereto, and 2 g-atom of the metal powder Q shown in Table 1 was added, and the mixture was heated under reflux at a liquid temperature of 79° C. while stirring. Here, if no metal powder remains, the dissolution rate is assumed to be 100%,
If there was any metal residue, this residue was separated from the solution using a decant, washed with methanol, dried, and then weighed.

こうして得た金属残金量と仕込量との差から金属の溶解
率を求めた。結果は表1の通りである。
The dissolution rate of the metal was determined from the difference between the amount of remaining metal obtained in this manner and the amount charged. The results are shown in Table 1.

表1 実施例 金属 加熱時間仙r) バナジウム クロム マンガン 鉄 コバルト ニッケル 鋼 亜鉛 ゲルマニウム セレン ジルコニウム パラジウム 銀 インジウム アンチモン 水銀 鉛 0.5 0.5 0.5 0.2 0.5 0.5 溶解率(%) 実施例18〜20 表2に示す有機溶媒Logに、ヨウ化セチルピリジニウ
ム1mmol及びヨウ素 0 、5 ma+olを加え
て溶解し、さらに0.2mmφの線状の金0 、2 g
−atomを加えて還流加熱したところ、いずれの場合
も、線状の金はすべて溶解した。
Table 1 Examples of metal heating time Examples 18-20 1 mmol of cetylpyridinium iodide and 0,5 ma+ol of iodine were added and dissolved in the organic solvent Log shown in Table 2, and further 0,2 g of linear gold with a diameter of 0.2 mm was added.
-atom was added and heated under reflux, all the linear gold was dissolved in both cases.

表2 実施例 有機溶媒  温度(”C)  加熱時間(hr
)18 アセトニトリル 80    219 酢酸エ
チル   770.5 20 ジオキサン  101    0.5実施例21 ベンゼンLogに、臭素0 、5 mmol及び塩化ト
リオクチルメチルアンモニウムl @molを加えて溶
解し、さらに白金粉末0 、2 g−atomを加えて
、79°Cで24時間還流加熱したところ、白金粉末の
30%が溶解した。
Table 2 Examples Organic solvent Temperature ("C) Heating time (hr
)18 Acetonitrile 80 219 Ethyl acetate 770.5 20 Dioxane 101 0.5 Example 21 0.5 mmol of bromine and 1@mol of trioctylmethylammonium chloride are added and dissolved in benzene Log, and further 0.2 g of platinum powder is added. -atom was added and heated under reflux at 79°C for 24 hours, and 30% of the platinum powder was dissolved.

実施例22 ニトロベンゼンLogに、臭素 0 、5 mmol及
び臭化n−オクチルトリメチルアンモニウム1mmol
を加えて溶解し、さらに0.2mnφの線状の金0 、
2 g−atomを加えて、100°Cで1時間加熱し
たところ、線状の金はすべて溶解した。
Example 22 Nitrobenzene Log contains 0,5 mmol of bromine and 1 mmol of n-octyltrimethylammonium bromide.
Add and dissolve, and further add 0.2 mmφ linear gold 0,
When 2 g-atom was added and heated at 100°C for 1 hour, all the linear gold was dissolved.

実施例23 ブロムベンゼン10gに、臭素0 、5 ■ol及び臭
化セチルピリジニウムlta+olを加えて溶解し、さ
らに0.2mmφの線状の金Q 、 2 g−ttom
を加えて、80℃で1時間加熱したところ、線状の金は
すべて溶解した。
Example 23 To 10 g of bromobenzene, 0.5 mol of bromine and lta+ol of cetylpyridinium bromide were added and dissolved, and then a 0.2 mmφ linear gold Q. 2 g-ttom was added.
was added and heated at 80° C. for 1 hour, and all the linear gold was dissolved.

実施例24 トルエン10gに塩化セチルピリジニウム1a+aol
を加えて溶解し、塩素ガス約100m1の共存下に、さ
らに0.2mmφの線状の金0 、2 g−atomを
加えて、100°Cで5時間加熱したところ、線状の金
はすべて溶解した。
Example 24 Cetylpyridinium chloride 1a + aol in 10g of toluene
0.2 g-atom of linear gold with a diameter of 0.2 mm was added in the coexistence of approximately 100 ml of chlorine gas, and heated at 100°C for 5 hours. All of the linear gold disappeared. Dissolved.

発明の効果 本発明に係る金属の溶解方法は、実施例に示した通り、
操作が簡単であるうえ、数多くの金属に対して適用でき
、使用する陽イオン性界面活性剤、ハロゲン単体及び有
機溶媒はいずれも安価なものである。従って、本方法に
よれば、経済的に金属の溶解ができる。
Effects of the Invention The metal melting method according to the present invention is as shown in the examples.
It is easy to operate, can be applied to many metals, and the cationic surfactant, simple halogen, and organic solvent used are all inexpensive. Therefore, according to this method, metals can be melted economically.

Claims (1)

【特許請求の範囲】[Claims] (1)金属を、(A)対陰イオンがハロゲンイオンであ
る陽イオン性界面活性剤、(B)ハロゲン単体及び(C
)有機溶媒に接触させることを特徴とする金属の溶解方
法。
(1) metal, (A) a cationic surfactant whose counter anion is a halogen ion, (B) an elemental halogen, and (C
) A method for dissolving metals characterized by contacting them with an organic solvent.
JP2108225A 1990-04-24 1990-04-24 Metal melting method Expired - Lifetime JPH0694577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2108225A JPH0694577B2 (en) 1990-04-24 1990-04-24 Metal melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2108225A JPH0694577B2 (en) 1990-04-24 1990-04-24 Metal melting method

Publications (2)

Publication Number Publication Date
JPH046229A true JPH046229A (en) 1992-01-10
JPH0694577B2 JPH0694577B2 (en) 1994-11-24

Family

ID=14479225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2108225A Expired - Lifetime JPH0694577B2 (en) 1990-04-24 1990-04-24 Metal melting method

Country Status (1)

Country Link
JP (1) JPH0694577B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025633A1 (en) * 1993-04-27 1994-11-10 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method of dissolving and recovering metal
JPH073351A (en) * 1993-06-18 1995-01-06 Agency Of Ind Science & Technol Gold refining method
JPH09118654A (en) * 1995-10-25 1997-05-06 Agency Of Ind Science & Technol Production of metal complex

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025633A1 (en) * 1993-04-27 1994-11-10 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method of dissolving and recovering metal
JPH073351A (en) * 1993-06-18 1995-01-06 Agency Of Ind Science & Technol Gold refining method
JPH09118654A (en) * 1995-10-25 1997-05-06 Agency Of Ind Science & Technol Production of metal complex

Also Published As

Publication number Publication date
JPH0694577B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JPS6034929A (en) Manufacture of carboxylic acid from olefin or vicinaldihydroxy compound as starting substance
JPH046229A (en) Method for dissolving metal
US5139752A (en) Method for extraction of gold and silver from ore with a solution containing a halogen, halogenated salt and organic solvent
JPH03158422A (en) Method for melting metal
JP2006104200A (en) Synthesis of pentafluorosulfanylnaphthalene
US4504666A (en) High yield preparation of aromatic amine oxides
JPH073351A (en) Gold refining method
US3405135A (en) Process for producing n:n'-disubstituted 4:4'-bipyridylium salts
JPH01294830A (en) Method for dissolving metal
JPH04107223A (en) Quaternary ammonium trihalide and method for dissolving metal by the above
JPH0421726A (en) Method for melting metal
JPS63141958A (en) Production of diphenylether compound
JPH03200769A (en) Preparation of pyridine chloride
Muathen Pyridinium dichlorobromate: A new stable brominating agent for aromatic compounds
JPH0747783B2 (en) Metal melting method
US3634520A (en) Nitration of aromatic ring-containing compositions
JPS59163327A (en) Production of diaryl
CZ245194A3 (en) Process for preparing chlorinated compounds of an acid
Edelbach et al. An Expedient Synthesis of 2, 4, 6-Tris (trifluoromethyl) aniline
JPS6089455A (en) Production of anthraquinone compound
JPH02304059A (en) Production of (trihalogenomethyl)phenyl sulfones
JPH02172982A (en) Production of n-propargylbenzoxazine derivative
JPH0539277A (en) Production of alpha,beta-epoxycarboxylic acid derivative
JPH01151565A (en) Production of 6-chloroisatoic anhydride
Waller Nucleophilic Substitution in Polyfluroarenes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term