WO1994023936A1 - Flat laminated plate molding method in photohardening molding method - Google Patents

Flat laminated plate molding method in photohardening molding method Download PDF

Info

Publication number
WO1994023936A1
WO1994023936A1 PCT/JP1993/000489 JP9300489W WO9423936A1 WO 1994023936 A1 WO1994023936 A1 WO 1994023936A1 JP 9300489 W JP9300489 W JP 9300489W WO 9423936 A1 WO9423936 A1 WO 9423936A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
molding method
flat plate
forming
cured
Prior art date
Application number
PCT/JP1993/000489
Other languages
French (fr)
Japanese (ja)
Inventor
Jie Wei
Naoichiro Saito
Seiji Hayano
Original Assignee
Cmet, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cmet, Inc. filed Critical Cmet, Inc.
Priority to PCT/JP1993/000489 priority Critical patent/WO1994023936A1/en
Publication of WO1994023936A1 publication Critical patent/WO1994023936A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C2037/90Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/005Compensating volume or shape change during moulding, in general

Definitions

  • the present invention relates to a photo-curing molding method, and more particularly, to a laminated plate molding method in a photo-curing molding method capable of forming a flat plate without causing warpage.
  • light-curing molding In order to form a three-dimensional model or a three-dimensional image, light-curing molding is used.c In this light-curing molding, the lowest cross section of the stereoscopic image is usually formed on the surface of the liquid resin that cures when irradiated with light. First, a cross-section hardened layer corresponding to the lowermost cross-section is formed by irradiating light to a region corresponding to. After that, an uncured liquid resin is introduced on top of it, and this time, light is applied to the area corresponding to the cross section immediately above, and a cross-section hardened layer is laminated. By repeating this process, a stacked three-dimensional image is formed.
  • a flat plate such as a desk top plate
  • FIG. 10 when a flat plate such as a desk top plate is formed by using such a technique, as shown in FIG. 10, light is first radiated to the entire region 99 corresponding to the flat plate, and The bottom layer 24 is formed.
  • reference numeral 9 in the drawing denotes a scanning locus of light.
  • the uncured liquid resin is introduced, and the whole area is irradiated again to form a layer 25 thereon. (Here, 24 and 25 are separated from each other for clarity. , But actually stick). By repeating this, a laminated flat plate is formed.
  • Fig. 11 (a) (26 in the figure indicates each irradiation area)
  • the upper hardened layer 25 needs to be integrated with the lower hardened layer 24.
  • the lower hardened layer 24, especially the upper surface side is irradiated while being overlapped during the irradiation for forming the upper hardened layer 25 (the double irradiated area is indicated by reference numeral 26 a).
  • the upper side of one hardened layer hardens harder and shrinks accordingly. Since this tendency affects all layers, the laminated flat plate is likely to have an unintended and distorted shape in which both ends are curved upward (see Fig. 11 (c)).
  • the present invention proposes a laminated plate forming method in a photo-curing molding method capable of forming a laminated plate having a shape faithful to the design without causing warpage.
  • the first invention comprises a step of forming a layer leaving an uncured portion by irradiating separately when forming a laminated flat plate by a photocuring molding method, and a step of curing an upper layer thereof. And a step of curing the uncured portion, wherein a laminated flat plate is molded while canceling distortion caused by curing.
  • a layer with an uncured portion is interposed, and the uncured portion is cured when the upper layer is formed, so that the shrinkage stress accompanying the curing is offset, and a flat plate with less distortion is formed.
  • the second invention is a laminated flat plate molding method in the photocuring molding method according to the first invention, wherein a beam is applied to the entire surface of a plane portion of the liquid resin corresponding to the laminated flat plate. Irradiating without gaps to form a first cured layer, and leaving an uncured part by irradiating the flat part of the liquid resin introduced on the first cured layer with a beam separately A second cured layer is formed, and shrinkage stress is caused by dual irradiation of the beam irradiation for forming the first cured layer and the beam irradiation for forming the second cured layer on the upper part of the first cured layer.
  • Forming a first hardened layer contraction stress acting portion acting on the third hardened layer by irradiating the flat portion of the liquid resin introduced on the second hardened layer with no gap.
  • Forming step By curing the liquid resin in the uncured portion of the second cured layer without replenishing the liquid resin from the outside, the second cured layer has a contraction stress that offsets the contraction stress of the contraction stress acting portion of the first cured layer. Forming a second hardened layer shrinkage stress acting portion acting on the second hardened layer.
  • the first hardened layer formed on the first hardened layer has a reduced contraction stress acting portion.
  • the shrinkage stress and the shrinkage stress of the second hardened layer contraction stress acting portion formed in the second hardened layer are canceled out, and a flat plate with less distortion is formed.
  • the third invention is a laminated flat plate molding method in the photocuring molding method according to the second invention, wherein the scanning locus of the beam when forming the second cured layer and the first By making the scanning trajectory of the beam different when forming the third hardened layer, the first hardened layer acts on the first hardened layer contraction stress and the second hardened layer in the second hardened layer.
  • the hardened layer contraction stress acting portion is formed at a position off the same vertical line.
  • the contraction stress of the first hardened layer contraction stress acting portion and the contraction stress of the second cured layer contraction stress acting portion are offset, and a flat plate with less distortion is formed.
  • the fourth invention is a laminated flat plate molding method in the photocuring molding method according to the first invention, wherein a path adjacent to a plane portion of the liquid resin corresponding to the laminated flat plate is provided.
  • Forming a second hardened layer by scanning the beam along a grid-like path that is finer than in the case of the hardened layer and does not overlap the beam trajectory in adjacent paths; and forming a second hardened layer on the second hardened layer.
  • Forming a third cured layer by scanning the beam along a lattice-shaped path in which the beam trajectory overlaps the path adjacent to the plane portion in the introduced liquid resin.
  • the beams are irradiated multiple times at appropriate places of the plurality of cured layers to form a multiple irradiation stress acting portion where a contraction stress acts, and the beam is not irradiated to the appropriate places of the plurality of cured layers.
  • the remaining liquid resin is cured without replenishment of the liquid resin from the outside to form a non-irradiation shrinkage stress acting portion on which a contraction stress acting on the multiple irradiation stress acting portion is offset.
  • the contraction stress of the multiple irradiation stress acting portion and the contraction stress of the non-irradiation contraction stress acting portion cancel each other, and a flat plate with little distortion is formed.
  • FIG. 1 is an enlarged cross-sectional view taken along line a-a of the laminate in the first embodiment shown in FIG. One one
  • FIG. 2 is a schematic diagram of a method of forming a laminate by a photocuring molding method.
  • FIG. 3 is a diagram showing a laminated plate and a beam scanning method for each layer of the laminated plate.
  • FIG. 4 is a diagram showing a beam scanning method of the laminated plate of the second embodiment and each layer of the laminated plate
  • FIG. 5 is an enlarged sectional view of the laminated plate of FIG.
  • FIG. 7 is a diagram corresponding to a diagram showing a state of cancellation of contraction stress.
  • FIG. 6 is a diagram correspondingly showing an enlarged cross-sectional view taken along the line c-c of the laminated plate of FIG. 4, a diagram showing the action of contraction stress, and a diagram showing the state of cancellation of contraction stress.
  • FIG. 7 is a perspective view showing a beam scanning method and an irradiation area of the first layer of the laminate of the third embodiment.
  • FIG. 8 is a perspective view showing a beam scanning method of the second layer and an irradiation region.
  • FIG. 9 is a perspective view showing a beam scanning method of the third layer and an irradiation region.
  • FIG. 10 is a perspective view showing a beam scanning method in a conventional molding method.
  • FIG. 11 is a diagram in which an enlarged cross-sectional view of the laminated plate by the conventional molding method, an action diagram of the contraction stress, and a diagram showing a state in which the contraction stress is offset are associated with each other.
  • the three-dimensional shape of the laminated flat plate 12 is designed using a three-dimensional CAD system.
  • the three-dimensional CAD system defines the three-dimensional shape information of the laminated plate 12.
  • the shape of the cross section when the laminated flat plate 12 is horizontally sliced with a certain thickness is defined.
  • a laminated surface is formed.
  • the surface of a liquid photo-curable resin 8 is irradiated with a powerful laser beam 9 to cure the resin 8 in the irradiated area. It is intended to create a three-dimensional cured resin image by stacking multiple layers of resin. The resulting shape is determined by the trajectory of beam 9.
  • the photo-curable resin filled in the tank 8 A portion of the surface is solidified by applying a spot of the laser beam 9 to the surface of the laser beam and moving the laser beam 9 two-dimensionally by the scanner 10. Thereafter, the solidified material is settled from the liquid surface by the thickness of one layer by the stage 11, and a single liquid resin 8 is introduced onto the solidified portion. Next, the liquid portion is similarly solidified. This solidified image is laminated and integrated on the lower solidified image. This is repeated one after another.
  • the laser beam 9 can be freely scanned on the liquid surface by the scanner 10.
  • the inside of the outline of the cross-sectional shape is irradiated based on the data of the three-dimensional CAD system, and three layers are laminated to form a laminated flat plate 12.
  • the spot shape of the laser beam 9 used is circular and the diameter is 0.5 mm.
  • the laser beam 9 can reach the liquid resin 8 in a parabolic manner to a depth of about 7 times the thickness of one layer (however, in FIG. The resin 8 is not shown in the figure, and the areas irradiated by the laser beam 9 are indicated by reference numerals 4, 5, and 7.) o
  • the laminated flat plate 12 shown in FIG. 3A is a laminated flat plate having a thickness of 0.6 mm, for example, and is formed in a three-layer structure including 0.2 mm layers.
  • the beam 9 is scanned by the scanner 10 on the surface of the liquid resin 8 corresponding to the inside of the contour based on the cross-sectional shape information of the first layer 1 of the laminated plate 12 as shown in FIG. 3 (b). Is done. That is, the inside of the contour is run in a folded shape in parallel to the X direction in FIG. 3 (b). At this time, the interval between the centers of the beams 9 is 0.8 times the diameter, and is actually 0.4 mm. Therefore, the beams 8 are irradiated while overlapping each other by 0.1 mm. Therefore, the entire surface of the first layer 1 is irradiated without any gap.
  • the c- beam 9 whose irradiation state on the cross section in the Y direction of the first layer 1 of the laminated flat plate 12 is shown in FIG. 1 reaches the liquid resin 8 in a parabolic manner, and the irradiation area 4 is formed in the resin 8. Form.
  • the beam 9 irradiates the entire first layer in a thickness range of 0.2 mm, and the area 4 immediately starts polymerization and is hardened by laser light stimulation. Normally, when a certain amount of the liquid resin 8 hardens, the volume of the hardened resin 8 decreases and shrinks. Power, then, first In the layer, since the periphery is filled with the liquid resin 8, distortion is unlikely to occur.
  • a new resin 8 is introduced onto the first layer 1.
  • a beam 9 is scanned on the surface of the resin 8 in parallel with the X direction based on the cross-sectional shape information of the second layer 2.
  • the center of the beam 9 is scanned in a folded shape inside the contour at an interval of 1.5 times the diameter. That is, the distance between the centers of the adjacent beams 9 is 0.75 mm, and the beams 9 are radiated at a distance without overlapping.
  • the irradiation area 5 by the beam 9 is formed in a band shape.
  • the resin 8 in the beam irradiation area 5 in the second layer is immediately polymerized and hardened.
  • the depth of the laser beam of this beam 9 reaches about 1.7 times the layer thickness. Therefore, the laser beam of the beam 9 of the second layer 2 is partially irradiated to a depth of about 70% above the already hardened first layer.
  • the resin that has been cured once is polymerized by receiving light stimulation again. C Therefore, the degree of polymerization of the resin is increased in this part 4a.
  • the resin is not replenished from the surrounding area, so it hardens and shrinks by pulling the surrounding area. That is, as shown in FIG. 1 (b), a stress that contracts on the upper surface acts on the entire first layer 1 to cause upward warpage at both ends.
  • this arrow illustrates the Y direction, contraction stress is actually acting in all directions around the arrow.
  • an uncured portion 6 is formed between the irradiation regions 5 in a band shape having a half width (0.25 mm) of the diameter of the beam 9.
  • the second layer 2 is further lowered by the stage 11 to introduce a new liquid resin 8.
  • the beam 10 is scanned by the scanner 10 in parallel to the X direction on the surface of the liquid resin 8 based on the cross-sectional shape information of the third layer 3.
  • the scanning method in the third layer 3 is the same as that in the first layer 1. That is, the beam 9 irradiates the entire surface without any gap while overlapping each other by 0.1 mm. By this irradiation, an irradiation area 7 as shown in FIG. 1 is formed. Beam 9 reaches over this layer thickness --
  • the entire third layer 3 is cured by this irradiation.
  • this beam 9 reaches about 70% above the second layer 2, a double irradiation area 5 a is partially formed above the irradiation area 5 of the second layer 2.
  • the polymerization proceeds further, so that a contraction stress acts on this region 5a.
  • the uncured portion 6 of the second layer 2 is newly irradiated by this irradiation, and an irradiation area 6a is formed in the second layer.
  • this irradiation area 6a the liquid resin 8 is immediately cured.
  • no strain stress is generated during curing because the liquid resin 8 in the region 6b of the uncured portion 6 that has not been irradiated this time is still present.c
  • the beam 9 is still unirradiated.
  • the polymerization proceeds slowly but hardens due to the surrounding polymerization stimulus. There is not enough resin 8 in this part 6b and it is not refilled. Therefore, at the time of hardening, the surrounding hardened parts are strongly pulled to try to polymerize. That is, strong contraction stress acts on the uncured portion 6b.
  • a laminated flat plate 13 (see FIG. 4 (a)) formed by the irradiation method shown in FIG. 4 (b) will be described as an example.
  • a laminated flat plate 13 formed by laminating three layers having a thickness of 0.2 mm is formed.
  • the apparatus and the basic operation in the photocuring molding method are the same as those in the first embodiment.
  • the scanning method of the force beam 9 is different.
  • the inside of the cross section of the cross section of the first layer 14 based on the three-dimensional shape information is parallel to the X direction shown, and the irradiation interval is set to 9 beams. It is scanned back and forth as 0.8 times the diameter of. For this reason, the beam 9 is irradiated on the first layer 14 so that the entire surface has no gap and the scanned trajectories partially overlap (by 0.1 mm).
  • the irradiation state of the cross section of the first layer 14 of the laminated flat plate 13 in the Y direction is shown in FIGS. 5 (a) and 6 (a).
  • the beam 9 reaches the liquid resin 8 in a parabolic manner, and forms an irradiation area 17 in the resin 8.
  • This beam 9 irradiates the entire first layer in a range of 0.2 mm in thickness, and this area 17 starts polymerization immediately by light stimulation and cures.c
  • a certain amount of liquid resin 8 cures
  • the volume of the cured resin 8 decreases and shrinks.
  • no distortion occurs because the periphery is filled with the liquid resin 8. Therefore, no stress acts on this layer 14.
  • a new resin 8 is introduced onto the first layer 14.
  • the surface of the resin 8 is further scanned with a beam 9 in parallel with the Y direction based on the cross-sectional shape information of the second layer 15.
  • the inside of the contour is scanned in a folded shape so that the center of the beam 9 is spaced 1.5 times the diameter. That is, the distance between the centers of the adjacent beams 9 is 0.75 mm, and the beams 9 are irradiated at a distance without overlapping.
  • Figs. 5 (a) and 6 One one
  • the irradiation area 18 by the beam 9 is formed in a band shape.
  • the beam irradiation area 18 in the second layer 15 immediately overlaps and hardens.
  • the beam 9 irradiating the second layer 15 partially irradiates to a depth of about 70% above the already cured first layer 14 as shown in FIG. Will be done.
  • the once cured resin 8 is again photostimulated and polymerized. Therefore, in this portion 17a, the degree of polymerization of the resin 8 is increased. Therefore, as in the first embodiment, as shown in FIG. 5 (b), contraction stress acts in all directions on the double irradiation area 17a, that is, on the upper surface side of the first layer 14.
  • the uncured part of the irradiation area 18 of the second layer 15 was strip-shaped with half the width of the beam 9 (0.25 mm). 19 is formed.
  • a new liquid resin 8 is introduced on the second layer 15 as a third layer 16 c.
  • the beam 9 is again applied to the third layer 16 in parallel with the X direction.
  • the entire cross section is scanned at the same irradiation interval as 14.
  • the third layer 16 is rapidly cured by this irradiation.
  • a double irradiation area 18a is formed in the second layer 15, and as in the first embodiment, the contraction stress in all directions shown in FIG. Works.
  • the b section of the second layer 15 is warped upward, and as shown in FIG. 5C, the b section of the first layer 14 and the second layer 15 is combined. Try to cause upward warpage.
  • the beam 9 also reaches the uncured portion 19, and the resin 8 is cured in the irradiation region 19a.
  • the portion of the second layer, which is centered on the lower part of the uncured portion 19, has a portion 19b to which the beam 9 does not reach even when the third layer 16 is irradiated.
  • a shortage of the resin 8 occurs as in the first embodiment. That is, curing gradually proceeds in a state where there is no longer enough resin 8 capable of filling the uncured portion 19b. Therefore, as it hardens, it tries to harden while pulling the surrounding hardened area. In other words, as shown in Fig. 6 (b), strong contraction stress acts on this part 19b. -1 o-
  • the uncured portion 19b is interposed by the remote irradiation. It is exactly the same that can be done. Accordingly, the effect of canceling or correcting the contraction stress by the uncured portion 19b can be obtained in the same manner.
  • the upward warping stress generated in the section b of the laminated flat plate 13 and the downward warping stress generated in the section c cancel each other out, so that the warpage as a whole is reduced. No laminated plate 13 is formed.
  • a laminated flat plate 20 shown in FIG. 9B will be described as a third embodiment.
  • a laminated flat plate 20 formed by laminating three layers each having a layer thickness of 0.2 mm is manufactured.
  • the apparatus and the basic operation in the photocuring molding method are the same as those of the above-mentioned embodiments, but the method of scanning the beam 9 is different.
  • the inside of the contour of the cross section of the first layer 21 based on the three-dimensional shape information is turned back at an interval of 2.0 times the diameter in parallel to the X direction shown in the figure. Is scanned. That is, the distance between the centers of the adjacent beams 9 is 1.0 mm, and as shown in FIG. 7 (b), the irradiation areas 21a by the respective beams 9 do not overlap each other and are spaced apart from each other. When it is irradiated, Further, thereafter, scanning is performed in a folded manner at the same irradiation interval in parallel with the Y direction in the figure.
  • the beam 9 is irradiated in a band shape with a gap at the same interval (0.5 mm) as the diameter, forming a grid-shaped irradiation region 21a.
  • the resin 8 is rapidly cured.c.
  • an uncured part 21b is formed at an interval corresponding to the diameter of the beam 9. Is done.
  • the stage 11 is lowered, the first layer 21 is lowered by the thickness of one layer, and a new resin 8 is introduced on the first layer 21.
  • the inside of the outline is illuminated based on the cross-sectional shape information of the second layer 22.
  • the irradiation interval was set to be 1.3 times the diameter of the beam 9 in parallel with the X direction, and turned back. Scanned. That is, scanning is performed so that the distance between the centers of the beams 9 is 0.65 mm. Further, the beam is scanned in a folded manner in parallel with the Y direction at the same irradiation interval. That is, in the second layer 22, as shown in FIG.
  • the beam 9 has a diameter in both the X and Y directions. Irradiated in a band leaving 0.3 times the gap (0.15 mn) c. As a result, an irradiated area 22 a is formed leaving a slight uncured portion 22 b. This area 2 Most of 2a is a double irradiation area, but since irradiation is performed in a state where the resin 8 can be replenished, the resin 8 cures without the action of shrinkage stress.
  • a double or triple irradiation region is also formed on the upper side of the first layer 21.
  • contraction stress acts on the surroundings as in the first and second embodiments.
  • the upper side is partially cured by the irradiation of the second layer 22, but is not irradiated mainly on the lower side of the second layer 22.
  • shortage of the resin 8 occurs as in the first and second embodiments. That is, curing proceeds gradually in a state where there is no longer enough resin to fill the uncured portion. Therefore, as it cures, it tries to cure while pulling the surrounding cure zone.
  • a strong contraction stress acts partially on the lower side of the first layer 21. Since the effect of the lower contraction stress is greater than the upper contraction stress of the first layer 21, the first layer 21 will be subjected to a downward warping stress c .
  • a new resin 8 is introduced onto the second layer 22.
  • the inside of the contour of the resin 8 is further illuminated on the surface of the resin 8 based on the cross-sectional shape information of the third layer 23.
  • the irradiation of the third layer 23 is performed in a folded manner in parallel with the X direction with an irradiation interval of 1.1 times the diameter of the beam 9.
  • the beam 9 has a gap (0.05 mm) of 0.1 times the diameter in both the X and Y directions. Irradiated in a band. As a result, an irradiated area 23a is formed leaving a very small uncured portion 23b. Most of this area 23a is a double irradiation area, but irradiation with resin 8 is possible. --
  • a double or triple irradiation area is also formed on the upper side of the second layer 22.
  • contraction stress acts on the surroundings as in the first and second embodiments.
  • the upper portion of the uncured portion 2 2 b of the second layer 22 is partially cured by the irradiation of the third layer 23, but is not irradiated mainly around the lower side of the second layer 22.
  • shortage of the resin 8 occurs as in the first and second embodiments. That is, a strong contraction stress acts partially on the lower side of the second layer 22.
  • the contraction stress in this layer 22 has only a small effect on the whole laminated flat plate as compared with the first layer 21. This is because the uncured portion 22 b itself is small in the second layer 22, and the portion where light does not reach even by the irradiation of the third E 23 is small. Therefore, unlike the first layer 21, the second layer 22 is warped upward. As a result, the first layer 21 acts to cancel or correct the warpage, and the laminated flat plate 20 having no warp as a whole is formed.
  • the uncured portion 21b, 22 b can be interposed. Further, by changing the irradiation interval in each layer, the ratio of the uncured portion can be adjusted, and the degree of the action of the shrinkage stress can be adjusted.
  • the number of layers having an uncured portion and the number of layers having an uncured portion and a combination of the layers having no uncured portion with respect to a layer which has been irradiated entirely and have no uncured portion are determined by irradiation. Depends on scanning interval, direction setting, beam intensity, scanning speed, and other conditions. Therefore, in order to obtain a laminated flat plate having no warp, a plurality of irradiation layers may be required for one layer having an uncured portion, or vice versa. In addition, the layer having the uncured portion may be interposed alone or laminated and interposed.
  • a new contraction stress is generated by interposing a layer having an uncured portion without being irradiated with a beam.
  • this contraction stress warpage due to the conventional contraction stress One —

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)

Abstract

When a flat laminated plate is molded by a photohardening molding method in the present invention, a step of forming layers with unhardened portions left therein, by irradiating the layers with light in a spaced manner, and a step of hardening the unhardened portions while an upper layer is hardened, are used to form a flat laminated plate while offsetting the strain occurring due to the hardening operation. This enables a flat laminated plate the shape of which is faithful to a design to be molded without causing warpage to occur therein.

Description

一 一  One one
明 細 書 光硬化造形法における積層平板造形法 技術分野 Description Laminated flat plate molding method in light curing molding
本発明は光硬化造形法に関するものであり、 特に、 反りを生じさせないで積 11 平板を造形することができる光硬化造形法における積層平板造形法に関するもの である。  The present invention relates to a photo-curing molding method, and more particularly, to a laminated plate molding method in a photo-curing molding method capable of forming a flat plate without causing warpage.
背景技術 Background art
3次元のモデルないしは立体像を造形するために、 光硬化造形法が用いられる c この光硬化造形法では、 通常、 光を照射すると硬化する液状の樹脂の液表面で立 体像の最下断面に相当する領域に光を照射して、 まず最下断面に相当する断面硬 化層を形成する。 その後その上に未硬化の液状の樹脂を導入し、 今度はその直上 断面に相当する領域に光を照射して断面硬化層を積層していく。 これを繰り返し ていく ことにより、 積層された立体像が造形される。  In order to form a three-dimensional model or a three-dimensional image, light-curing molding is used.c In this light-curing molding, the lowest cross section of the stereoscopic image is usually formed on the surface of the liquid resin that cures when irradiated with light. First, a cross-section hardened layer corresponding to the lowermost cross-section is formed by irradiating light to a region corresponding to. After that, an uncured liquid resin is introduced on top of it, and this time, light is applied to the area corresponding to the cross section immediately above, and a cross-section hardened layer is laminated. By repeating this process, a stacked three-dimensional image is formed.
このような技術で、 例えば机の天板等の平板を造形する場合には、 図 1 0に示 すように、 まず平板に相当する領域 9 9内の全域に光を照射し、 平板中の最下層 2 4を造形する。 ここで図中 9は光の走査軌跡を示している。 そのうえに未硬化 の液状樹脂を導入し再度全域を照射し、 その上の層 2 5を形成する (ここで 2 4 と 2 5は図示の明瞭化のために上下に分離して図示されているが、 実際には密着 する) 。 これを繰り返すことにより積層された平板が造形される。  For example, when a flat plate such as a desk top plate is formed by using such a technique, as shown in FIG. 10, light is first radiated to the entire region 99 corresponding to the flat plate, and The bottom layer 24 is formed. Here, reference numeral 9 in the drawing denotes a scanning locus of light. Then, the uncured liquid resin is introduced, and the whole area is irradiated again to form a layer 25 thereon. (Here, 24 and 25 are separated from each other for clarity. , But actually stick). By repeating this, a laminated flat plate is formed.
しかしながら、 光硬化造形法で、 積層平板を造形する場合に、 図 1 1 ( c ) に 示されるように、 積層平板 Pの端部が上方に湾曲した形に歪みやすい。 この理由 は次にように推定される。  However, when the laminated plate is formed by the photo-curing molding method, the end of the laminated plate P is easily distorted into an upwardly curved shape as shown in FIG. 11 (c). The reason is presumed as follows.
この光硬化造形法では、 図 1 1 ( a ) に例示するように (図中 2 6は各照射領 域を示す) 、 上部の硬化層 2 5を下部の硬化層 2 4上に形成するばかりでなく、 上部硬化層 2 5を下部硬化層 2 4に一体化する必要がある。 このため、 上部硬化 層 2 5の造形のための照射中に下部硬化層 2 4、 特にその上表面側が重ねて照射 される (その二重照射領域が符号 2 6 aで示される) 。 このため、 図 1 1 ( b ) に示すように、 一枚の硬化層のうち、 上側がより強固 に硬化し、 その分大きく収縮しやすい。 このような傾向が全部の層について作用 するため、 積層された平板は、 その両端側が上方に湾曲 (図 1 1 ( c ) 参照) し た意図しない歪んだ形状となりやすいと考えられる。 In this photocuring molding method, as shown in Fig. 11 (a) (26 in the figure indicates each irradiation area), only the upper hardened layer 25 is formed on the lower hardened layer 24. Instead, the upper hardened layer 25 needs to be integrated with the lower hardened layer 24. For this reason, the lower hardened layer 24, especially the upper surface side, is irradiated while being overlapped during the irradiation for forming the upper hardened layer 25 (the double irradiated area is indicated by reference numeral 26 a). For this reason, as shown in FIG. 11 (b), the upper side of one hardened layer hardens harder and shrinks accordingly. Since this tendency affects all layers, the laminated flat plate is likely to have an unintended and distorted shape in which both ends are curved upward (see Fig. 11 (c)).
発明の開示 Disclosure of the invention
そこで、 本発明は、 反りを生じずに、 設計に忠実な形状の積層平板を造形する ことのできる光硬化造形法における積層平板造形法を提案する。  Therefore, the present invention proposes a laminated plate forming method in a photo-curing molding method capable of forming a laminated plate having a shape faithful to the design without causing warpage.
( 1 ) 第 1の発明は、 光硬化造形法で積層平板を造形する際に、 離隔的に照射す ることによって未硬化部分を残した層を形成する工程と、 その上部層の硬化の際 に前記未硬化部分を硬化させる工程とを有し、 硬化に伴う歪みを相殺しつつ積層 された平板を造形することを特徴とする光硬化造形法における積層平板造形法で あ 。  (1) The first invention comprises a step of forming a layer leaving an uncured portion by irradiating separately when forming a laminated flat plate by a photocuring molding method, and a step of curing an upper layer thereof. And a step of curing the uncured portion, wherein a laminated flat plate is molded while canceling distortion caused by curing.
この方法によると、 未硬化部分が残った層が介在し、 この未硬化部分が上部層 の形成時に硬化されるために、 硬化にともなう収縮応力が相殺され、 歪みの少な い平板が造形される。  According to this method, a layer with an uncured portion is interposed, and the uncured portion is cured when the upper layer is formed, so that the shrinkage stress accompanying the curing is offset, and a flat plate with less distortion is formed. .
( 2 ) また、 第 2の発明は、 上記第 1の発明に係る光硬化造形法における積層平 板造形法であって、 液状樹脂における前記積層平板に対応する平面部分の全面に 対してビームを隙間なく照射して第 1硬化層を形成する工程と、 その第 1硬化層 の上に導入された液状樹脂における前記平面部分に対してビームを離隔的に照射 することによって未硬化部分を残した第 2硬化層を形成し、 かつ前記第 1硬化層 のうちの上部に前記第 1硬化層形成の際のビーム照射と当該第 2硬化層形成の際 のビーム照射との二重照射によって収縮応力の作用する第 1硬化層収縮応力作用 部分を形成する工程と、 その第 2硬化層の上に導入された液状樹脂における前記 平面部分に対してビームを隙間なく照射することによって第 3硬化層を形成する 工程とを有し、 前記第 2硬化層における未硬化部分の液状樹脂を外部からの当該 液状樹脂の補給なしで硬化させることによって、 同第 2硬化層に前記第 1硬化層 収縮応力作用部分の収縮応力と相殺する収縮応力の作用する第 2硬化層収縮応力 作用部分を形成することを特徴とする。  (2) Further, the second invention is a laminated flat plate molding method in the photocuring molding method according to the first invention, wherein a beam is applied to the entire surface of a plane portion of the liquid resin corresponding to the laminated flat plate. Irradiating without gaps to form a first cured layer, and leaving an uncured part by irradiating the flat part of the liquid resin introduced on the first cured layer with a beam separately A second cured layer is formed, and shrinkage stress is caused by dual irradiation of the beam irradiation for forming the first cured layer and the beam irradiation for forming the second cured layer on the upper part of the first cured layer. Forming a first hardened layer contraction stress acting portion acting on the third hardened layer by irradiating the flat portion of the liquid resin introduced on the second hardened layer with no gap. Forming step By curing the liquid resin in the uncured portion of the second cured layer without replenishing the liquid resin from the outside, the second cured layer has a contraction stress that offsets the contraction stress of the contraction stress acting portion of the first cured layer. Forming a second hardened layer shrinkage stress acting portion acting on the second hardened layer.
この方法によると、 第 1硬化層に形成された第 1硬化層収縮応力作用部分の収 一 — According to this method, the first hardened layer formed on the first hardened layer has a reduced contraction stress acting portion. One —
縮応力と第 2硬化層に形成された第 2硬化層収縮応力作用部分の収縮応力とが相 殺され、 歪みの少ない平板が造形される。 The shrinkage stress and the shrinkage stress of the second hardened layer contraction stress acting portion formed in the second hardened layer are canceled out, and a flat plate with less distortion is formed.
( 3 ) また、 第 3の発明は、 上記第 2の発明に係る光硬化造形法における積層平 板造形法であって、 前記第 2硬化層を形成する際のビームの走査軌跡と前記第 1 及び第 3硬化層を形成する際のビームの走査軌跡とを異なるものとすることによ つて、 同第 1硬化層における前記第 1硬化層収縮応力作用部分と同第 2硬化層に おける前記第 2硬化層収縮応力作用部分とが同一鉛直線上から外れた位置に形成 されていることを特徴とする。  (3) Further, the third invention is a laminated flat plate molding method in the photocuring molding method according to the second invention, wherein the scanning locus of the beam when forming the second cured layer and the first By making the scanning trajectory of the beam different when forming the third hardened layer, the first hardened layer acts on the first hardened layer contraction stress and the second hardened layer in the second hardened layer. (2) It is characterized in that the hardened layer contraction stress acting portion is formed at a position off the same vertical line.
この方法によっても、 上記第 2の発明と同様に、 第 1硬化層収縮応力作用部分 の収縮応力と第 2硬化層収縮応力作用部分の収縮応力とが相殺され、 歪みの少な い平板が造形される。  According to this method, as in the second aspect, the contraction stress of the first hardened layer contraction stress acting portion and the contraction stress of the second cured layer contraction stress acting portion are offset, and a flat plate with less distortion is formed. You.
( 4 ) また、 第 4の発明は、 上記第 1の発明に係る光硬化造形法における積層平 板造形法であって、 液状樹脂における前記積層平板に対応する平面部分に対して 隣合う経路においてビーム軌跡が重ならない格子状の経路に沿ってビームを走査 させて第 1硬化層を形成する工程と、 その第 1硬化層の上に導入された液状樹脂 における前記平面部分に対して前記第 1硬化層の場合よりも目が細かくかつ隣合 う経路においてビーム軌跡が重ならない格子状の経路に沿ってビームを走査させ て第 2硬化層を形成する工程と、 その第 2硬化層の上に導入された液状樹脂にお ける前記平面部分に対して隣合う経路においてビーム軌跡が重なり合う格子状の 経路に沿ってビームを走査させて第 3硬化層を形成する工程とを有し、 前記各ビ ーム照射の際に前記複数の硬化層のうちの適所にそれらビームが多重に照射され て収縮応力の作用する多重照射応力作用部分を形成し、 かつ前記複数の硬化層の うちの適所に前記ビームの照射を受けずに残った液状樹脂を外部からの当該液状 樹脂の補給なしで硬化させ前記多重照射応力作用部分の収縮応力と相殺する収縮 応力の作用する不照射収縮応力作用部分を形成することを特徴とする。  (4) Further, the fourth invention is a laminated flat plate molding method in the photocuring molding method according to the first invention, wherein a path adjacent to a plane portion of the liquid resin corresponding to the laminated flat plate is provided. Forming a first hardened layer by scanning the beam along a lattice-shaped path where the beam trajectory does not overlap; and forming the first hardened layer with respect to the planar portion of the liquid resin introduced on the first hardened layer. Forming a second hardened layer by scanning the beam along a grid-like path that is finer than in the case of the hardened layer and does not overlap the beam trajectory in adjacent paths; and forming a second hardened layer on the second hardened layer. Forming a third cured layer by scanning the beam along a lattice-shaped path in which the beam trajectory overlaps the path adjacent to the plane portion in the introduced liquid resin. Before irradiation The beams are irradiated multiple times at appropriate places of the plurality of cured layers to form a multiple irradiation stress acting portion where a contraction stress acts, and the beam is not irradiated to the appropriate places of the plurality of cured layers. The remaining liquid resin is cured without replenishment of the liquid resin from the outside to form a non-irradiation shrinkage stress acting portion on which a contraction stress acting on the multiple irradiation stress acting portion is offset.
この方法によると、 多重照射応力作用部分の収縮応力と不照射収縮応力作用部 分の収縮応力とが相殺され、 歪みの少ない平板が造形される。  According to this method, the contraction stress of the multiple irradiation stress acting portion and the contraction stress of the non-irradiation contraction stress acting portion cancel each other, and a flat plate with little distortion is formed.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 図 3に示す第 1実施例における積層板の a - a線拡大断面図と収縮応 一 一 FIG. 1 is an enlarged cross-sectional view taken along line a-a of the laminate in the first embodiment shown in FIG. One one
力の作用図と収縮応力の相殺状態を示す図を対応させた図である。 It is the figure which matched the action figure of a force, and the figure showing the state of cancellation of contraction stress.
図 2は、 光硬化造形法による積層板の造形法の模式図である。  FIG. 2 is a schematic diagram of a method of forming a laminate by a photocuring molding method.
図 3は、 積層板と積層板の各層のビーム走査方法を示す図である。  FIG. 3 is a diagram showing a laminated plate and a beam scanning method for each layer of the laminated plate.
図 4は、 第 2実施例の積層板と積層板の各層のビーム走査方法を示す図である ( 図 5は、 図 4の積層板の b— b線拡大断面図と収縮応力の作用図と収縮応力の 相殺状態を示す図を対応させた図である。  FIG. 4 is a diagram showing a beam scanning method of the laminated plate of the second embodiment and each layer of the laminated plate (FIG. 5 is an enlarged sectional view of the laminated plate of FIG. FIG. 7 is a diagram corresponding to a diagram showing a state of cancellation of contraction stress.
図 6は同じく図 4の積層板の c 一 c線拡大断面図と収縮応力の作用図と収縮応 力の相殺状態を示す図を対応させた図である。  FIG. 6 is a diagram correspondingly showing an enlarged cross-sectional view taken along the line c-c of the laminated plate of FIG. 4, a diagram showing the action of contraction stress, and a diagram showing the state of cancellation of contraction stress.
図 7は、 第 3実施例の積層板の第 1層のビームの走査方法と照射領域を示す斜 視図である。  FIG. 7 is a perspective view showing a beam scanning method and an irradiation area of the first layer of the laminate of the third embodiment.
図 8は、 同じく第 2層のビームの走査方法と照射領域を示す斜視図である。 図 9は、 同じく第 3層のビームの走査方法と照射領域を示す斜視図である。 図 1 0は、 従来の造形法におけるビームの走査方法を示す斜視図である。  FIG. 8 is a perspective view showing a beam scanning method of the second layer and an irradiation region. FIG. 9 is a perspective view showing a beam scanning method of the third layer and an irradiation region. FIG. 10 is a perspective view showing a beam scanning method in a conventional molding method.
図 1 1は、 その従来の造形法による積層板の拡大断面図と収縮応力の作用図と 収縮応力の相殺状態を示す図を対応させた図である。  FIG. 11 is a diagram in which an enlarged cross-sectional view of the laminated plate by the conventional molding method, an action diagram of the contraction stress, and a diagram showing a state in which the contraction stress is offset are associated with each other.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
<第 1実施例 >  <First embodiment>
以下、 本発明の第 1実施例として図 3 ( a ) に示す積層平板 1 2を造形する場 合を例として説明する。  Hereinafter, as a first embodiment of the present invention, a case where a laminated flat plate 12 shown in FIG. 3A is formed will be described as an example.
まず、 最初に 3次元の C A Dシステムを用いて積層平板 1 2の 3次元形状を設 計する。 この結果、 3次元 C A Dシステムによって積層平板 1 2の 3次元の形状 情報が定義される。 そして、 この積層平板 1 2を一定の厚みで水平にスライスし た際の断面の形状が定義される。 この断面形状に基づいて、 液状樹脂の表面をレ 一ザ光で照射していく ことにより、 積層面が形成されていくのである。  First, the three-dimensional shape of the laminated flat plate 12 is designed using a three-dimensional CAD system. As a result, the three-dimensional CAD system defines the three-dimensional shape information of the laminated plate 12. Then, the shape of the cross section when the laminated flat plate 12 is horizontally sliced with a certain thickness is defined. By irradiating the surface of the liquid resin with laser light based on this cross-sectional shape, a laminated surface is formed.
光硬化造形法は、 図 2に例示されるように液状の光硬化性樹脂 8の表面に強力 なレーザ光のビーム 9を照射することにより、 照射された領域の樹脂 8を硬化さ せ、 これを幾層にも積層することにより 3次元の樹脂硬化像を創成するものであ る。 得られる形状はビーム 9の軌跡により決定される。  In the photo-curing molding method, as shown in FIG. 2, the surface of a liquid photo-curable resin 8 is irradiated with a powerful laser beam 9 to cure the resin 8 in the irradiated area. It is intended to create a three-dimensional cured resin image by stacking multiple layers of resin. The resulting shape is determined by the trajectory of beam 9.
すなわち、 図 2に模式的に示されるように、 槽内に満たされた光硬化性樹脂 8 の表面にレーザ光 9のスポッ トを当てて、 スキャナ 1 0によってレーザ光 9を 2 次元的に移動することにより表面の一部が固体化される。 その後、 固体化したも のを一層の厚み分だけステージ 1 1 により液面より沈下させ、 固体化した部分の 上に一層分の液状の樹脂 8を導入する。 次にこの液状部が同様に固化される。 こ の固化像は下層の固化像上に積層されて一体化される。 これを繰り返して一層ず つ重ねられる。 That is, as schematically shown in FIG. 2, the photo-curable resin filled in the tank 8 A portion of the surface is solidified by applying a spot of the laser beam 9 to the surface of the laser beam and moving the laser beam 9 two-dimensionally by the scanner 10. Thereafter, the solidified material is settled from the liquid surface by the thickness of one layer by the stage 11, and a single liquid resin 8 is introduced onto the solidified portion. Next, the liquid portion is similarly solidified. This solidified image is laminated and integrated on the lower solidified image. This is repeated one after another.
この場合、 スキャナ 1 0によってレーザ光 9は、 液表面において自在に走査可 nn乙"あ o 0  In this case, the laser beam 9 can be freely scanned on the liquid surface by the scanner 10.
本実施例では、 3次元 C A Dシステムのデータに基づいてこの断面形状の輪郭 内部を照射し、 これを 3層積層することにより積層平板 1 2を造形する。 使用さ れるレーザ光 9のスポッ トの形状は円形でその直径は 0 . 5 m mである。 そのレ 一ザ光 9は図 1 ( a ) に示されるように、 一層の厚みの約 7倍の深さまで液 状樹脂 8中に放物線状に到達し得るものである (但し、 図 1中液状樹脂 8は図示 省略されている。 かわってレーザ光 9による照射領域が符号 4 , 5 , 7で示され ている) o  In the present embodiment, the inside of the outline of the cross-sectional shape is irradiated based on the data of the three-dimensional CAD system, and three layers are laminated to form a laminated flat plate 12. The spot shape of the laser beam 9 used is circular and the diameter is 0.5 mm. As shown in FIG. 1 (a), the laser beam 9 can reach the liquid resin 8 in a parabolic manner to a depth of about 7 times the thickness of one layer (however, in FIG. The resin 8 is not shown in the figure, and the areas irradiated by the laser beam 9 are indicated by reference numerals 4, 5, and 7.) o
また、 図 3 ( a ) に示される積層平板 1 2は例えば、 厚みが 0 . 6 ミ リの積層 平板であって各層 0 . 2 ミ リの層からなる 3層構造に形成されている。  The laminated flat plate 12 shown in FIG. 3A is a laminated flat plate having a thickness of 0.6 mm, for example, and is formed in a three-layer structure including 0.2 mm layers.
まず、 この積層板 1 2の第 1層 1の断面形状情報に基づく輪郭内部に対応する 液状樹脂 8の表面に対して図 3 ( b ) に示されるように、 スキャナ 1 0によって ビーム 9が走査される。 すなわち、 図 3 ( b ) の X方向に平行に、 輪郭内部を折 り返し状に走查される。 このときの、 ビーム 9の中心同士の間隔は、 直径の 0 . 8倍であって、 実際には 0 . 4 m mの間隔となる。 したがって、 ビーム 8は互い に 0 . 1 m mずつ重なり合いながら照射される。 このため、 この第 1層 1 は隙間 なく、 全面が照射される。  First, the beam 9 is scanned by the scanner 10 on the surface of the liquid resin 8 corresponding to the inside of the contour based on the cross-sectional shape information of the first layer 1 of the laminated plate 12 as shown in FIG. 3 (b). Is done. That is, the inside of the contour is run in a folded shape in parallel to the X direction in FIG. 3 (b). At this time, the interval between the centers of the beams 9 is 0.8 times the diameter, and is actually 0.4 mm. Therefore, the beams 8 are irradiated while overlapping each other by 0.1 mm. Therefore, the entire surface of the first layer 1 is irradiated without any gap.
この積層平板 1 2の第 1層 1 の Y方向の断面の照射状態が図 1 に示されている c ビーム 9は、 放物線状に液状樹脂 8内に到達し、 樹脂 8中に照射領域 4を形成す る。 このビーム 9は第 1層の 0 . 2 m mの厚みの範囲をすベて照射し、 この領域 4はレーザ光刺激により直ちに重合を開始し、 硬化する。 通常、 一定量の液状樹 脂 8が硬化するとき、 硬化した樹脂 8の体積は減少し、 収縮する。 し力、し、 第 1 層においては、 周囲が液状樹脂 8によって満たされているので、 歪みは生じにく い。 The c- beam 9 whose irradiation state on the cross section in the Y direction of the first layer 1 of the laminated flat plate 12 is shown in FIG. 1 reaches the liquid resin 8 in a parabolic manner, and the irradiation area 4 is formed in the resin 8. Form. The beam 9 irradiates the entire first layer in a thickness range of 0.2 mm, and the area 4 immediately starts polymerization and is hardened by laser light stimulation. Normally, when a certain amount of the liquid resin 8 hardens, the volume of the hardened resin 8 decreases and shrinks. Power, then, first In the layer, since the periphery is filled with the liquid resin 8, distortion is unlikely to occur.
次に、 ステージ 1 1を降下させて、 第 1層 1を 1層分の厚み ( 0 . 2 m m ) だ け降下させると、 この第 1層 1上に新たな樹脂 8が導入される。 図 3 ( b ) に示 されるように、 この樹脂 8の表面に、 さらに第 2層 2の断面形状情報に基づいて、 X方向に平行にビーム 9が走査される。 このときビーム 9の中心は、 直径の 1 . 5倍の間隔で輪郭内部を折り返し状にスキャンされる。 すなわち、 隣合うビーム 9の中心同士の間隔は 0 . 7 5 m mとなり、 ビーム 9同士の重なりを生じること なく離隔的に照射されていく。 この結果、 図 1の Y方向断面図に示されるように、 ビーム 9による照射領域 5が帯状に形成される。 この第 2層におけるビーム照射 領域 5の樹脂 8は直ちに重合し、 硬化する。  Next, when the stage 11 is lowered to lower the first layer 1 by the thickness of one layer (0.2 mm), a new resin 8 is introduced onto the first layer 1. As shown in FIG. 3B, a beam 9 is scanned on the surface of the resin 8 in parallel with the X direction based on the cross-sectional shape information of the second layer 2. At this time, the center of the beam 9 is scanned in a folded shape inside the contour at an interval of 1.5 times the diameter. That is, the distance between the centers of the adjacent beams 9 is 0.75 mm, and the beams 9 are radiated at a distance without overlapping. As a result, as shown in the sectional view in the Y direction of FIG. 1, the irradiation area 5 by the beam 9 is formed in a band shape. The resin 8 in the beam irradiation area 5 in the second layer is immediately polymerized and hardened.
図 1に示されるように、 このビーム 9のレーザ光の深度が層厚の約 1 . 7倍ま で到達する。 このため、 第 2層 2のビーム 9のレーザ光によって、 すでに硬化し た第 1層の上側約 7 0 %の深さまで部分的に照射されることになる。 このような 2重照射領域 4 aにおいては、 一度硬化した樹脂が再度光刺激を受けて重合する c このため、 この部分 4 aでは樹脂の重合度が高められる。 しかし、 第 1回目の硬 化と異なり、 周囲から新たに樹脂が補充されるわけではないので、 周囲を引っ張 るようにして硬化 ·収縮する。 すなわち、 第 1層 1全体としては、 図 1 ( b ) に 示すように上面側に収縮する応力が作用し、 両端部の上方への反りを生じさせよ うとする。 なお、 この矢印は Y方向を例示しているが、 実際には周囲の全方向に 収縮応力が作用している。  As shown in FIG. 1, the depth of the laser beam of this beam 9 reaches about 1.7 times the layer thickness. Therefore, the laser beam of the beam 9 of the second layer 2 is partially irradiated to a depth of about 70% above the already hardened first layer. In such a double irradiation area 4a, the resin that has been cured once is polymerized by receiving light stimulation again. C Therefore, the degree of polymerization of the resin is increased in this part 4a. However, unlike the first hardening, the resin is not replenished from the surrounding area, so it hardens and shrinks by pulling the surrounding area. That is, as shown in FIG. 1 (b), a stress that contracts on the upper surface acts on the entire first layer 1 to cause upward warpage at both ends. Although this arrow illustrates the Y direction, contraction stress is actually acting in all directions around the arrow.
—方、 同時に、 この照射領域 5の間に、 ビーム 9の直径の半分の幅 ( 0 . 2 5 m m ) で帯状に未硬化部分 6が形成される。  At the same time, an uncured portion 6 is formed between the irradiation regions 5 in a band shape having a half width (0.25 mm) of the diameter of the beam 9.
次に、 この第 2層 2をステージ 1 1によってさらに降下させ、 新たな液状樹脂 8を導入する。 この液状樹脂 8の表面に第 3層 3の断面形状情報に基づいて、 X 方向に平行にスキャナ 1 0によりビーム 9が走査される。 この第 3層 3における 走査方法は第 1層 1 と同様である。 すなわち、 ビーム 9は互いに 0 . l m mずつ 重なり合いながら、 全面を隙間なく照射する。 この照射によって、 図 1 に示され るような照射領域 7が形成される。 ビーム 9はこの層厚にわたって到達している - - Next, the second layer 2 is further lowered by the stage 11 to introduce a new liquid resin 8. The beam 10 is scanned by the scanner 10 in parallel to the X direction on the surface of the liquid resin 8 based on the cross-sectional shape information of the third layer 3. The scanning method in the third layer 3 is the same as that in the first layer 1. That is, the beam 9 irradiates the entire surface without any gap while overlapping each other by 0.1 mm. By this irradiation, an irradiation area 7 as shown in FIG. 1 is formed. Beam 9 reaches over this layer thickness --
ので、 第 3層 3の全体がこの照射によって、 硬化される。 Therefore, the entire third layer 3 is cured by this irradiation.
また、 このビーム 9は第 2層 2の上側約 7 0 %まで到達するものであるので、 第 2層 2の照射領域 5の上側に部分的に二重照射領域 5 aが形成される。 二重照 射領域 5 aにおいては、 第 1層 1の場合と同様に、 さらに重合が進行することに なるので、 この領域 5 aには収縮応力が作用する。  Further, since this beam 9 reaches about 70% above the second layer 2, a double irradiation area 5 a is partially formed above the irradiation area 5 of the second layer 2. In the double irradiation region 5a, as in the case of the first layer 1, the polymerization proceeds further, so that a contraction stress acts on this region 5a.
さらに、 今回の照射によって第 2層 2の未硬化部分 6が新たに照射され、 第 2 層に照射領域 6 aが形成される。 この照射領域 6 aでは、 液状の樹脂 8が直ちに 硬化する。 この領域 6 aにおいては、 未硬化部分 6のうち今回も照射されなかつ た領域 6 bの液状樹脂 8があるために、 硬化に際しての歪み応力は生じさせない c しかしながら、 依然としてビーム 9が未照射の部分 6 bにおいては、 周囲の重合 刺激により、 ゆっく りとではあるが重合が進行し硬化する。 この部分 6 bにはす でに充分な樹脂 8はなく、 しかも新たに補充されることもない。 したがって、 硬 化の際には、 周囲の硬化部分を強く引っ張って重合しょうとする。 すなわち、 こ の未硬化部分 6 bには強い収縮応力が作用することになる。  Further, the uncured portion 6 of the second layer 2 is newly irradiated by this irradiation, and an irradiation area 6a is formed in the second layer. In this irradiation area 6a, the liquid resin 8 is immediately cured. In this region 6a, no strain stress is generated during curing because the liquid resin 8 in the region 6b of the uncured portion 6 that has not been irradiated this time is still present.c However, the beam 9 is still unirradiated. In 6b, the polymerization proceeds slowly but hardens due to the surrounding polymerization stimulus. There is not enough resin 8 in this part 6b and it is not refilled. Therefore, at the time of hardening, the surrounding hardened parts are strongly pulled to try to polymerize. That is, strong contraction stress acts on the uncured portion 6b.
結果として、 第 2層 2の上側の二重照射領域 5 aに収縮応力が作用するととも に、 下側を中心として形成された未硬化部分 6 bにはより強い収縮応力が作用す る。 このため、 第 2層 2全体としては、 図 1 ( b ) に示す矢印のような収縮が生 じ、 結果として下方への反りを生じさせようとする。 図 1 ( b ) の矢印は Y方向 を例示しているが、 実際には周囲の全方向に収縮する。 したがって、 第 2層 2の 応力と第 1層 1の応力は相殺するように作用することになる。 この結果、 全体と して、 図 1 ( c ) に示すように反りが相殺された積層平板 1 2が造形される。 従来のように、 各層 1、 2、 3の全面を等間隔で隙間なくスキャンする照射方 法では一律に、 各層の上部が部分的に二重照射領域となって、 各層 1、 2、 3の 上面側に収縮応力が作用していた。 しかし、 本実施例においては、 図 1 に示され る積層平板 1 2の Y方向断面図において明らかなように、 二重照射領域 4 a、 5 aに作用する収縮応力よりもさらに強い収縮応力が作用する未硬化部分 6 bを有 する層 2を介在させることによって、 二重照射領域 4 aを有する第 1層 1 におけ る反りが未硬化部分 6 bを有する第 2層 2の反りで相殺されている。  As a result, a contraction stress acts on the double irradiation area 5a on the upper side of the second layer 2, and a stronger contraction stress acts on the uncured portion 6b formed around the lower side. For this reason, the entire second layer 2 contracts as shown by the arrow in FIG. 1 (b), and as a result, tends to cause downward warpage. The arrow in Fig. 1 (b) illustrates the Y direction, but actually contracts in all directions. Therefore, the stress of the second layer 2 and the stress of the first layer 1 act to cancel each other. As a result, as a whole, the laminated flat plate 12 in which the warpage is offset is formed as shown in FIG. 1 (c). In the conventional irradiation method, which scans the entire surface of each of the layers 1, 2, and 3 at equal intervals without any gap, the upper part of each layer becomes a partially double irradiation area, and the layers 1, 2, and 3 Shrinkage stress was acting on the upper surface side. However, in this example, as is apparent from the cross-sectional view in the Y direction of the laminated flat plate 12 shown in FIG. 1, a contraction stress stronger than the contraction stress acting on the double irradiation regions 4a and 5a is observed. By interposing the layer 2 having the acting uncured portion 6b, the warpage of the first layer 1 having the double irradiation area 4a is offset by the warpage of the second layer 2 having the uncured portion 6b. Have been.
このようにして、 離隔的照射層 2を形成することにより、 層の下側において強い 一 一 In this way, by forming the remote irradiation layer 2, a strong lower layer is formed. One one
収縮作用を有する未硬化部分 6 bが形成されることになり、 積層された層 1 の収 縮応力を補正し、 相殺することができる。 しかも、 この相殺効果は全方向に作用 し、 積層平板 1 2全体の形状に反りが生じなくなる。 As a result, an uncured portion 6b having a shrinking action is formed, and the shrinkage stress of the laminated layer 1 can be corrected and offset. In addition, this canceling effect acts in all directions, so that the entire shape of the laminated flat plate 12 does not warp.
<第 2実施例〉  <Second embodiment>
次に、 本発明の第 2実施例として、 図 4 (b) に示す照射方法によって造形さ れる積層平板 1 3 (図 4 (a) 参照) を例として説明する。 本実施例では、 第 1 実施例と同様、 層厚 0. 2mmの層が 3層積層されて形成された積層平板 1 3を 造形する。 光硬化造形法における装置及び基本的操作は第 1実施例と同様である 力 ビーム 9の走査方法が異なる。  Next, as a second embodiment of the present invention, a laminated flat plate 13 (see FIG. 4 (a)) formed by the irradiation method shown in FIG. 4 (b) will be described as an example. In this embodiment, as in the first embodiment, a laminated flat plate 13 formed by laminating three layers having a thickness of 0.2 mm is formed. The apparatus and the basic operation in the photocuring molding method are the same as those in the first embodiment. The scanning method of the force beam 9 is different.
先ず、 図 4 (b) に示されるように、 第 1実施例と同様、 3次元形状情報に基 づく第 1層 1 4の断面の輪郭内部が図示 X方向と平行に、 照射間隔をビーム 9の 直径の 0. 8倍として折り返し状に走査される。 このため、 第 1層 1 4において は、 全面が隙間なく、 かつ各走査された軌跡が一部 ( 0. 1 mmずつ) 重なるよ うにビーム 9が照射される。  First, as shown in FIG. 4 (b), similarly to the first embodiment, the inside of the cross section of the cross section of the first layer 14 based on the three-dimensional shape information is parallel to the X direction shown, and the irradiation interval is set to 9 beams. It is scanned back and forth as 0.8 times the diameter of. For this reason, the beam 9 is irradiated on the first layer 14 so that the entire surface has no gap and the scanned trajectories partially overlap (by 0.1 mm).
この積層平板 1 3の第 1層 1 4の Y方向の断面の照射状態が図 5 ( a) 及び図 6 ( a ) に示されている。 ビーム 9は、 放物線状に液状樹脂 8内に到達し、 樹脂 8中に照射領域 1 7を形成する。 このビーム 9は第 1層の 0. 2mmの厚みの範 囲をすベて照射し、 この領域 1 7は光刺激により直ちに重合を開始し、 硬化する c 通常、 一定量の液状樹脂 8が硬化するとき、 硬化した樹脂 8の体積は減少し、 収 縮する。 し力、し、 第 1層 1 4においては、 周囲が液状樹脂 8によって満たされて いるので、 歪みは生じない。 したがって、 この層 1 4にはなんら応力は作用しな い。 The irradiation state of the cross section of the first layer 14 of the laminated flat plate 13 in the Y direction is shown in FIGS. 5 (a) and 6 (a). The beam 9 reaches the liquid resin 8 in a parabolic manner, and forms an irradiation area 17 in the resin 8. This beam 9 irradiates the entire first layer in a range of 0.2 mm in thickness, and this area 17 starts polymerization immediately by light stimulation and cures.c Normally, a certain amount of liquid resin 8 cures Then, the volume of the cured resin 8 decreases and shrinks. In the first layer 14, no distortion occurs because the periphery is filled with the liquid resin 8. Therefore, no stress acts on this layer 14.
次に、 ステージ 1 1 を降下させて、 第 1層 1 4を 1層分の厚み ( 0. 2 mm) だけ降下させると、 この第 1層 1 4上に新たな樹脂 8が導入される。 図 4 (b) に示されるように、 この樹脂 8の表面に、 さらに第 2層 1 5の断面形状情報に基 づいて、 Y方向に平行にビーム 9が走査される。 このときビーム 9の中心が、 直 径の 1. 5倍の間隔になるように輪郭内部を折り返し状に走査される。 すなわち、 隣合う ビーム 9の中心同士の間隔は 0. 7 5 mmとなり、 ビーム 9同士の重なり を生じることなく離隔的に照射されていく。 この結果、 図 5 ( a ) 及び図 6 ( 一 一 Next, when the stage 11 is lowered to lower the first layer 14 by the thickness of one layer (0.2 mm), a new resin 8 is introduced onto the first layer 14. As shown in FIG. 4B, the surface of the resin 8 is further scanned with a beam 9 in parallel with the Y direction based on the cross-sectional shape information of the second layer 15. At this time, the inside of the contour is scanned in a folded shape so that the center of the beam 9 is spaced 1.5 times the diameter. That is, the distance between the centers of the adjacent beams 9 is 0.75 mm, and the beams 9 are irradiated at a distance without overlapping. As a result, Figs. 5 (a) and 6 ( One one
a ) の Y方向断面図の第 2層 1 5に示されるように、 ビーム 9による照射領域 1 8が帯状に形成される。 この第 2層 1 5におけるビーム照射領域 1 8は直ちに重 合し、 硬化する。 As shown in the second layer 15 in the Y-direction cross-sectional view of a), the irradiation area 18 by the beam 9 is formed in a band shape. The beam irradiation area 18 in the second layer 15 immediately overlaps and hardens.
また、 図 5 ( a ) に示されるように、 第 2層 1 5を照射するビーム 9の光によ つて、 すでに硬化した第 1層 1 4の上側約 7 0 %の深さまで部分的に照射される ことになる。 このような二重照射領域 1 7 aにおいては、 一度硬化した樹脂 8が 再度光刺激を受けて重合する。 このため、 この部分 1 7 aでは樹脂 8の重合度が 高められる。 したがって、 第 1実施例と同様、 図 5 ( b ) に示すように、 この二 重照射領域 1 7 a、 すなわち、 第 1層 1 4の上面側においては全方向に収縮応力 が作用する。  In addition, as shown in FIG. 5 (a), the beam 9 irradiating the second layer 15 partially irradiates to a depth of about 70% above the already cured first layer 14 as shown in FIG. Will be done. In such a double irradiation area 17a, the once cured resin 8 is again photostimulated and polymerized. Therefore, in this portion 17a, the degree of polymerization of the resin 8 is increased. Therefore, as in the first embodiment, as shown in FIG. 5 (b), contraction stress acts in all directions on the double irradiation area 17a, that is, on the upper surface side of the first layer 14.
一方、 同時に、 図 6 ( a ) に示されるように、 第 2層 1 5の照射領域 1 8の問 に、 ビーム 9の直径の半分の幅 ( 0 . 2 5 m m ) で帯状に未硬化部分 1 9が形成 されていく。  On the other hand, at the same time, as shown in Fig. 6 (a), the uncured part of the irradiation area 18 of the second layer 15 was strip-shaped with half the width of the beam 9 (0.25 mm). 19 is formed.
次に、 第 3層 1 6として、 この第 2層 1 5上に新たな液状樹脂 8が導入される c この第 3層 1 6には、 再び、 ビーム 9が X方向に平行に第 1層 1 4 と同じ照射間 隔で断面全面が走査される。 図 5 ( a ) に示されるように、 この照射によって、 第 3層 1 6は速やかに硬化する。 また、 第 2層 1 5において、 二重照射領域 1 8 aが形成され、 第 1実施例と同様、 第 2層 1 5の上側には図 5の (b ) に示す全 方向への収縮応力が作用する。 この結果、 第 2層 1 5の b断面には、 上方への反 りが生じ、 図 5 ( c ) に示されるように第 1層 1 4及び第 2層 1 5を合わせた b 断面としては、 上方への反りを生じさせようとする。  Next, a new liquid resin 8 is introduced on the second layer 15 as a third layer 16 c. The beam 9 is again applied to the third layer 16 in parallel with the X direction. The entire cross section is scanned at the same irradiation interval as 14. As shown in FIG. 5A, the third layer 16 is rapidly cured by this irradiation. Further, a double irradiation area 18a is formed in the second layer 15, and as in the first embodiment, the contraction stress in all directions shown in FIG. Works. As a result, the b section of the second layer 15 is warped upward, and as shown in FIG. 5C, the b section of the first layer 14 and the second layer 15 is combined. Try to cause upward warpage.
さらに、 図 6 ( a ) に示されるように、 未硬化部分 1 9においてもビ一厶 9が 到達し、 この照射領域 1 9 aにおいて樹脂 8が硬化される。 そして、 第 2層の未 硬化部分 1 9の下部を中心とする部分は第 3層 1 6の照射に際しても、 ビーム 9 が到達しない部分 1 9 bがある。 この未硬化部分 1 9 bにおいては、 第 1実施例 と同様、 樹脂 8の不足が起きる。 すなわち、 この未硬化部分 1 9 bを充塡しうる 充分な樹脂 8がすでに存在しない状態で硬化が徐々に進行する。 したがって、 硬 化するにつれ、 周囲の硬化域を引っ張りながら硬化しょうとする。 すなわち、 図 6 ( b ) に示されるように、 この部分 1 9 bには強い収縮応力が作用することに - 1 o - Further, as shown in FIG. 6 (a), the beam 9 also reaches the uncured portion 19, and the resin 8 is cured in the irradiation region 19a. The portion of the second layer, which is centered on the lower part of the uncured portion 19, has a portion 19b to which the beam 9 does not reach even when the third layer 16 is irradiated. In the uncured portion 19b, a shortage of the resin 8 occurs as in the first embodiment. That is, curing gradually proceeds in a state where there is no longer enough resin 8 capable of filling the uncured portion 19b. Therefore, as it hardens, it tries to harden while pulling the surrounding hardened area. In other words, as shown in Fig. 6 (b), strong contraction stress acts on this part 19b. -1 o-
なる。 この結果、 図 6 ( c ) に示されるように第 1層 1 4及び第 2層 1 5を合わ せた C断面としては、 下方への反りを生じさせようとする。 Become. As a result, as shown in FIG. 6 (c), the C section including the first layer 14 and the second layer 15 tends to be warped downward.
このように、 第 1層 1 4、 第 2層 1 5及び第 3層 1 6において、 それぞれの層 におけるビーム 9の走査方向が直交する場合でも、 離隔的照射により未硬化部分 1 9 bを介在させることができることについては、 全く同様である。 したがって、 この未硬化部分 1 9 bによる収縮応力の相殺あるいは補正効果も同様に得ること ができる。 この結果、 本実施例においては、 積層平板 1 3の b断面に生じる上方 に反ろうとする応力と c断面に生じる下方に反ろうとする応力が互いに他方を相 殺されることにより、 全体として、 反りのない積層平板 1 3が造形される。  As described above, in the first layer 14, the second layer 15 and the third layer 16, even when the scanning direction of the beam 9 in each layer is orthogonal, the uncured portion 19b is interposed by the remote irradiation. It is exactly the same that can be done. Accordingly, the effect of canceling or correcting the contraction stress by the uncured portion 19b can be obtained in the same manner. As a result, in the present embodiment, the upward warping stress generated in the section b of the laminated flat plate 13 and the downward warping stress generated in the section c cancel each other out, so that the warpage as a whole is reduced. No laminated plate 13 is formed.
ぐ第 3実施例 >  Third embodiment>
次に、 第 3実施例として図 9 ( b ) に示す積層平板 2 0を製造する場合を例と して説明する。 本実施例では、 第 1実施例及び第 2実施例と同様、 層厚 0 . 2 m mの層が 3層積層されて形成された積層平板 2 0を製造する。 光硬化造形法にお ける装置及び基本的操作は前記両実施例と同様であるが、 ビーム 9の走査方法が 異なっている。  Next, a case of manufacturing a laminated flat plate 20 shown in FIG. 9B will be described as a third embodiment. In this embodiment, as in the first and second embodiments, a laminated flat plate 20 formed by laminating three layers each having a layer thickness of 0.2 mm is manufactured. The apparatus and the basic operation in the photocuring molding method are the same as those of the above-mentioned embodiments, but the method of scanning the beam 9 is different.
先ず、 図 7 ( a ) に示されるように、 3次元形状情報に基づく第 1層 2 1の断 面の輪郭内部が図示 X方向と平行に照射間隔が直径の 2 . 0倍の間隔で折り返し 状に走査される。 すなわち、 隣合うビーム 9の中心同士の間隔が 1 . 0 m mとな り、 図 7 ( b ) に示されるように、 各ビーム 9による照射領域 2 1 aは互いに重 なり合うことなく、 離隔的に照射される とになる。 さらに、 この後、 図示 Y方 向に平行に同様の照射間隔で折り返し状に走査される。 この結果、 ビーム 9は直 径と同間隔 ( 0 . 5 m m ) の隙間を残して帯状に照射され、 格子状の照射領域 2 1 aが形成される。 この照射領域 2 1 aにおいては、 樹脂 8は速やかに硬化する c そして、 この格子状の照射領域 2 1 aの間には未硬化部分 2 1 bがビーム 9の直 径の間隔をおいて形成される。 First, as shown in Fig. 7 (a), the inside of the contour of the cross section of the first layer 21 based on the three-dimensional shape information is turned back at an interval of 2.0 times the diameter in parallel to the X direction shown in the figure. Is scanned. That is, the distance between the centers of the adjacent beams 9 is 1.0 mm, and as shown in FIG. 7 (b), the irradiation areas 21a by the respective beams 9 do not overlap each other and are spaced apart from each other. When it is irradiated, Further, thereafter, scanning is performed in a folded manner at the same irradiation interval in parallel with the Y direction in the figure. As a result, the beam 9 is irradiated in a band shape with a gap at the same interval (0.5 mm) as the diameter, forming a grid-shaped irradiation region 21a. In the irradiation area 21a, the resin 8 is rapidly cured.c. And, between the lattice-shaped irradiation areas 21a, an uncured part 21b is formed at an interval corresponding to the diameter of the beam 9. Is done.
次に、 ステージ 1 1を降下させ、 第 1層 2 1を 1層の厚み分だけ降下させて、 第 1層 2 1の上に新たな樹脂 8を導入する。 第 2層 2 2の断面形状情報に基づい て、 その輪郭内部を照射する。 今回の照射は、 まず、 図 8 ( a ) に示されるよう に、 X方向に平行に照射間隔をビーム 9の直径の 1 . 3倍として、 折り返し状に 走査される。 すなわち、 ビーム 9の中心同士の間隔が 0 . 6 5 m mとなるように、 走査される。 さらに、 Y方向に平行に同様の照射間隔で折り返し状に走査される つまり、 第 2層 2 2においては、 図 8 ( b ) に示すように、 X方向にも Y方向に もビーム 9は直径の 0 . 3倍の隙間 ( 0 . 1 5 m n を残して帯状に照射される c この結果、 わずかな未硬化部分 2 2 bを残して、 照射領域 2 2 aが形成される。 この領域 2 2 aのほとんどは二重照射領域となるが、 樹脂 8の補充が可能な状態 での照射であるので、 収縮応力が作用することなく硬化する。 Next, the stage 11 is lowered, the first layer 21 is lowered by the thickness of one layer, and a new resin 8 is introduced on the first layer 21. The inside of the outline is illuminated based on the cross-sectional shape information of the second layer 22. In this irradiation, as shown in Fig. 8 (a), the irradiation interval was set to be 1.3 times the diameter of the beam 9 in parallel with the X direction, and turned back. Scanned. That is, scanning is performed so that the distance between the centers of the beams 9 is 0.65 mm. Further, the beam is scanned in a folded manner in parallel with the Y direction at the same irradiation interval. That is, in the second layer 22, as shown in FIG. 8 (b), the beam 9 has a diameter in both the X and Y directions. Irradiated in a band leaving 0.3 times the gap (0.15 mn) c. As a result, an irradiated area 22 a is formed leaving a slight uncured portion 22 b. This area 2 Most of 2a is a double irradiation area, but since irradiation is performed in a state where the resin 8 can be replenished, the resin 8 cures without the action of shrinkage stress.
また、 この第 2層 2 2の照射により、 第 1層 2 1においても、 その上側に二重 あるいは三重照射領域が形成される。 この二重あるいは三重照射領域においては、 図示はしないが、 前記第 1及び第 2実施例と同様に周囲に収縮応力が作用する。 さらに、 第 1層 2 1の未硬化部分 2 1 bでは、 第 2層 2 2の照射によって、 その 上側が部分的に硬化するが、 第 2層 2 2の下側を中心とした照射されなかった部 分については、 第 1実施例及び第 2実施例と同様、 樹脂 8の不足が起きる。 すな わち、 この未硬化部分を充填しうる充分な樹脂がすでに存在しない状態で硬化が 徐々に進行する。 したがって、 硬化するにつれ、 周囲の硬化域を引っ張りながら 硬化しょうとする。 すなわち、 第 1層 2 1の下側に部分的に強い収縮応力が作用 することになる。 第 1層 2 1の上側の収縮応力に比較して下側の収縮応力の作用 が大であるので、 第 1層 2 1 には、 下方へ反ろうとする応力が生じることになる c 次に、 ステージ 1 1を降下させて、 第 2層 2 2を 1層分の厚み ( 0 . 2 m m ) だけ降下させると、 この第 2層 2 2上に新たな樹脂 8が導入される。 図 9 ( a ) に示されるように、 この樹脂 8の表面に、 さらに第 3層 2 3の断面形状情報に基 づいて、 その輪郭内部を照射する。 第 3層 2 3の照射は、 まず、 X方向に平行に 照射間隔をビーム 9の直径の 1 . 1倍として、 折り返し状に走査される。 すなわ ち、 ビーム 9の中心同士の間隔が 0 . 5 5 m mとなるように、 走査される。 さら に、 Y方向に平行に同様の照射間隔で折り返し状に走査される。 つまり、 第 3層 2 3においては、 図 9 ( b ) に示すように、 X方向にも Y方向にもビーム 9は直 径の 0 . 1倍の隙間 ( 0 . 0 5 m m ) を残して帯状に照射される。 この結果、 ご くわずかな未硬化部分 2 3 bを残して、 照射領域 2 3 aが形成される。 この領域 2 3 aのほとんどは二重照射領域となるが、 樹脂 8の補充が可能な状態での照射 - - Due to the irradiation of the second layer 22, a double or triple irradiation region is also formed on the upper side of the first layer 21. In this double or triple irradiation area, though not shown, contraction stress acts on the surroundings as in the first and second embodiments. Further, in the uncured portion 2 1b of the first layer 21, the upper side is partially cured by the irradiation of the second layer 22, but is not irradiated mainly on the lower side of the second layer 22. In the portion where the resin 8 is located, shortage of the resin 8 occurs as in the first and second embodiments. That is, curing proceeds gradually in a state where there is no longer enough resin to fill the uncured portion. Therefore, as it cures, it tries to cure while pulling the surrounding cure zone. That is, a strong contraction stress acts partially on the lower side of the first layer 21. Since the effect of the lower contraction stress is greater than the upper contraction stress of the first layer 21, the first layer 21 will be subjected to a downward warping stress c . When the stage 11 is lowered to lower the second layer 22 by one layer thickness (0.2 mm), a new resin 8 is introduced onto the second layer 22. As shown in FIG. 9A, the inside of the contour of the resin 8 is further illuminated on the surface of the resin 8 based on the cross-sectional shape information of the third layer 23. First, the irradiation of the third layer 23 is performed in a folded manner in parallel with the X direction with an irradiation interval of 1.1 times the diameter of the beam 9. That is, scanning is performed so that the distance between the centers of the beams 9 is 0.55 mm. Furthermore, scanning is performed in a folded shape at the same irradiation interval in parallel with the Y direction. That is, in the third layer 23, as shown in FIG. 9 (b), the beam 9 has a gap (0.05 mm) of 0.1 times the diameter in both the X and Y directions. Irradiated in a band. As a result, an irradiated area 23a is formed leaving a very small uncured portion 23b. Most of this area 23a is a double irradiation area, but irradiation with resin 8 is possible. --
であるので、 収縮応力が作用することなく硬化する。 Therefore, it cures without the action of shrinkage stress.
また、 この第 3層 2 3の照射により、 第 2層 2 2においても、 その上側に二重 あるいは三重照射領域が形成される。 この二重あるいは三重照射領域においては. 図示はしないが、 前記第 1及び第 2実施例と同様に周囲に収縮応力が作用する。 さらに、 第 2層 2 2の未硬化部分 2 2 bでは、 第 3層 2 3の照射によって、 その 上側が部分的に硬化するが、 第 2層 2 2の下側を中心とした照射されなかった部 分については、 第 1実施例及び第 2実施例と同様、 樹脂 8の不足が起きる。 すな わち、 第 2層 2 2の下側に部分的に強い収縮応力が作用することになる。 しかし、 この層 2 2における収縮応力は第 1層 2 1 に較べて積層平板全体としては小さい 作用でしかない。 第 2層 2 2においては未硬化部分 2 2 b自体が少なく、 第 3 E; 2 3の照射によっても光が到達しない部分が少ないからである。 したがって、 第 1層 2 1 と違って第 2層 2 2には、 上方への反りが生じる。 この結果、 第 1層 2 1の反りを相殺あるいは補正するように作用し、 全体として反りのない積層平板 2 0が造形される。 Due to the irradiation of the third layer 23, a double or triple irradiation area is also formed on the upper side of the second layer 22. In this double or triple irradiation area, although not shown, contraction stress acts on the surroundings as in the first and second embodiments. Further, in the uncured portion 2 2 b of the second layer 22, the upper portion of the uncured portion 2 2 b is partially cured by the irradiation of the third layer 23, but is not irradiated mainly around the lower side of the second layer 22. In the portion where the resin 8 is located, shortage of the resin 8 occurs as in the first and second embodiments. That is, a strong contraction stress acts partially on the lower side of the second layer 22. However, the contraction stress in this layer 22 has only a small effect on the whole laminated flat plate as compared with the first layer 21. This is because the uncured portion 22 b itself is small in the second layer 22, and the portion where light does not reach even by the irradiation of the third E 23 is small. Therefore, unlike the first layer 21, the second layer 22 is warped upward. As a result, the first layer 21 acts to cancel or correct the warpage, and the laminated flat plate 20 having no warp as a whole is formed.
このように、 第 1層 2 1、 第 2層 2 2及び第 3層 2 3において、 各層内でビー ム 9の走査方向を直交させる場合においても、 離隔的照射により未硬化部分 2 1 b、 2 2 bを介在させることができる。 また、 これらの照射間隔を各層において 変えることによって、 未硬化部分の割合を調整して、 収縮応力の作用の程度を調 節することができる。  Thus, in the first layer 21, the second layer 22, and the third layer 23, even when the scanning direction of the beam 9 is orthogonal in each layer, the uncured portion 21b, 22 b can be interposed. Further, by changing the irradiation interval in each layer, the ratio of the uncured portion can be adjusted, and the degree of the action of the shrinkage stress can be adjusted.
なお、 全面照射されて未硬化部分を有しない層に対して未硬化部分を有する層 を幾層、 そしてどのように組み合わせて介在させれば、 反りのない積層平板が得 られるかは、 照射の走査間隔、 方向の設定、 ビームの強度、 走査スピー ド等の条 件による。 したがって、 反りのない積層平板を得るには、 未硬化部分を有する層 が 1層に対して照射層が複数層必要である場合もあり、 また逆の場合もある。 さ らに、 未硬化部分を有する層は単独で介在させたり、 積層して介在させたりする 場合 ¾める。  The number of layers having an uncured portion and the number of layers having an uncured portion and a combination of the layers having no uncured portion with respect to a layer which has been irradiated entirely and have no uncured portion are determined by irradiation. Depends on scanning interval, direction setting, beam intensity, scanning speed, and other conditions. Therefore, in order to obtain a laminated flat plate having no warp, a plurality of irradiation layers may be required for one layer having an uncured portion, or vice versa. In addition, the layer having the uncured portion may be interposed alone or laminated and interposed.
上述したように、 本発明によれば、 光硬化造形法によって積層平板を造形する 際に、 ビームが照射されないで未硬化の部分を有する層を介在させることにより、 新たな収縮応力を生じさせて、 この収縮応力により従来の収縮応力による反りの 一 — As described above, according to the present invention, when forming a laminated flat plate by the light curing molding method, a new contraction stress is generated by interposing a layer having an uncured portion without being irradiated with a beam. However, due to this contraction stress, warpage due to the conventional contraction stress One —
作用を補正し、 相殺することができる。 このため、 歪みの少ない正確な形状を造 形できる。 The effects can be compensated and offset. For this reason, an accurate shape with little distortion can be formed.

Claims

請 求 の 範 囲 The scope of the claims
( 1 ) 光硬化造形法で積層平板を造形する際に、 (1) When forming a laminated plate by light curing molding method,
離隔的に照射することによって、 未硬化部分を残した層を形成する工程と、 その上部層の硬化の際に、 前記未硬化部分を硬化させる工程とを有し、 硬化に伴う歪みを相殺しつつ積層された平板を形成することを特徴とする光硬 化造形法における積層平板造形法。  By irradiating at a distance, a step of forming a layer leaving an uncured portion and a step of curing the uncured portion at the time of curing the upper layer, offsetting the distortion caused by curing. A laminated flat plate molding method in a photo-hardening molding method, wherein a flat plate laminated while being formed is formed.
( 2 ) 上記 ( 1 ) に記載の光硬化造形法における積層平板造形法であって、 液状樹脂における前記積層平板に対応する平面部分の全面に対してビームを隙 間なく照射して第 1硬化層を形成する工程と、  (2) The laminated flat plate molding method in the photocurable molding method according to (1), wherein the first curing is performed by irradiating a beam to the entire surface of the flat portion of the liquid resin corresponding to the laminated flat plate without any gap. Forming a layer;
その第 1硬化層の上に導入された液状樹脂における前記平面部分に対してビー ムを離隔的に照射することによって未硬化部分を残した第 2硬化層を形成し、 か つ前記第 1硬化層のうちの上部に前記第 1硬化層形成の際のビーム照射と当該第 2硬化層形成の際のビーム照射と 二重照射によって収縮応力の作用する第 1硬 化層収縮応力作用部分を形成する工程と、  By irradiating the beam separately to the flat portion of the liquid resin introduced on the first cured layer, a second cured layer leaving an uncured portion is formed, and the first cured layer is formed. A first hardened layer contraction stress acting portion where a shrinkage stress is applied is formed on the upper part of the layer by the double irradiation with the beam irradiation for forming the first hardened layer and the beam irradiation for forming the second hardened layer. The process of
その第 2硬化層の上に導入された液状樹脂における前記平面部分に対してビー ムを隙間なく照射することによって第 3硬化層を形成する工程とを有し、 前記第 2硬化層における未硬化部分の液状樹脂を外部からの当該液状樹脂の補 給なしで硬化させることによって、 同第 2硬化層に前記第 1硬化層収縮応力作用 部分の収縮応力と相殺する収縮応力の作用する第 2硬化層収縮応力作用部分を形 成することを特徴とする光硬化造形法における積層平板造形法。  Forming a third cured layer by irradiating a beam to the flat portion of the liquid resin introduced on the second cured layer without gaps, and forming an uncured part of the second cured layer. By curing the liquid resin in the portion without external supply of the liquid resin, the second cured layer acts on the second cured layer with a contraction stress acting on the first cured layer and a contraction stress offsetting the contraction stress on the portion. A laminated flat plate molding method in a light curing molding method, wherein a layer contraction stress acting portion is formed.
( 3 ) 上記 ( 2 ) に記載の光硬化造形法における積層平板造形法であって、 前記第 2硬化層を形成する際のビームの走査軌跡と前記第 1及び第 3硬化層を 形成する際のビームの走査軌跡とを異なるものとすることによって、 同第 1硬化 層における前記第 1硬化層収縮応力作用部分と同第 2硬化層における前記第 2硬 化層収縮応力作用部分とが同一鉛直線上から外れた位置に形成されていることを 特徴とする光硬化造形法における積層平板造形法。  (3) The laminated flat plate molding method in the light curing molding method according to the above (2), wherein the scanning locus of a beam when forming the second cured layer and the first and third cured layers are formed. By making the beam scanning trajectory different, the first hardened layer contraction stress acting portion in the first hardened layer and the second hardened layer contraction stress acting portion in the second hardened layer are the same vertical. A laminated flat plate molding method in a light curing molding method, which is formed at a position off the line.
( 4 ) 上記 ( 1 ) に記載の光硬化造形法における積層平板造形法であって、 液状樹脂における前記積層平板に対応する平面部分に対して隣合う経路におい てビーム軌跡が重ならない格子状の経路に沿ってビームを走査させて第 1硬化層 を形成する工程と、 (4) A laminated flat plate molding method in the photocuring molding method according to (1), wherein a path adjacent to a plane portion of the liquid resin corresponding to the laminated flat plate is provided. Forming a first cured layer by scanning the beam along a lattice-like path where the beam trajectories do not overlap;
その第 1硬化層の上に導入された液状樹脂における前記平面部分に対して前記 第 1硬化層の場合よりも目が細かくかつ隣合う経路においてビーム軌跡が重なら ない格子状の経路に沿ってビームを走査させて第 2硬化層を形成する工程と、 その第 2硬化層の上に導入された液状樹脂における前記平面部分に対して隣合 う経路においてビーム軌跡が重なり合う格子状の経路に沿ってビームを走査させ て第 3硬化層を形成する工程とを有し、  With respect to the planar portion of the liquid resin introduced on the first hardened layer, along a grid-like path where the eyes are finer than in the case of the first hardened layer and the beam trajectories do not overlap in adjacent paths. Forming a second cured layer by scanning the beam; and forming a second cured layer along a lattice-shaped path in which a beam trajectory overlaps with a path adjacent to the plane portion in the liquid resin introduced on the second cured layer. Forming a third cured layer by scanning the beam with
前記各ビーム照射の際に前記複数の硬化層のうちの適所にそれらビームが多重 に照射されて収縮応力の作用する多重照射応力作用部分を形成し、 かつ前記複数 の硬化層のうちの適所に前記ビームの照射を受けずに残った液状樹脂を外部から の当該液状樹脂の補給なしで硬化させ前記多重照射応力作用部分の収縮応力と相 殺する収縮応力の作用する不照射収縮応力作用部分を形成することを特徴とする 光硬化造形法における積層平板造形法。  At the time of each of the beam irradiations, the beams are irradiated in multiple places at the appropriate positions of the plurality of cured layers to form a multiple irradiation stress acting portion where a contraction stress acts, and at the appropriate places of the plurality of cured layers. The liquid resin remaining without receiving the beam irradiation is cured without replenishment of the liquid resin from the outside, and the non-irradiation shrinkage stress acting portion where the shrinkage stress acting to cancel the shrinkage stress of the multiple irradiation stress acting portion acts. A laminated flat plate molding method in a photo-curing molding method characterized by being formed.
PCT/JP1993/000489 1993-04-15 1993-04-15 Flat laminated plate molding method in photohardening molding method WO1994023936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/000489 WO1994023936A1 (en) 1993-04-15 1993-04-15 Flat laminated plate molding method in photohardening molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/000489 WO1994023936A1 (en) 1993-04-15 1993-04-15 Flat laminated plate molding method in photohardening molding method

Publications (1)

Publication Number Publication Date
WO1994023936A1 true WO1994023936A1 (en) 1994-10-27

Family

ID=14070235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000489 WO1994023936A1 (en) 1993-04-15 1993-04-15 Flat laminated plate molding method in photohardening molding method

Country Status (1)

Country Link
WO (1) WO1994023936A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666235A1 (en) * 2003-09-11 2006-06-07 Nabtesco Corporation Optical 3-dimensional object formation and device
CN115464151A (en) * 2021-06-10 2022-12-13 株式会社沙迪克 Method for forming laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224124A (en) * 1988-07-13 1990-01-26 Mitsui Eng & Shipbuild Co Ltd Optical shaping method
JPH02111528A (en) * 1988-10-19 1990-04-24 Matsushita Electric Works Ltd Forming method of three-dimensional form
JPH03193433A (en) * 1989-12-25 1991-08-23 Matsushita Electric Works Ltd Method of formation of three-dimensional shape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224124A (en) * 1988-07-13 1990-01-26 Mitsui Eng & Shipbuild Co Ltd Optical shaping method
JPH02111528A (en) * 1988-10-19 1990-04-24 Matsushita Electric Works Ltd Forming method of three-dimensional form
JPH03193433A (en) * 1989-12-25 1991-08-23 Matsushita Electric Works Ltd Method of formation of three-dimensional shape

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666235A1 (en) * 2003-09-11 2006-06-07 Nabtesco Corporation Optical 3-dimensional object formation and device
EP1666235A4 (en) * 2003-09-11 2009-09-02 Nabtesco Corp Optical 3-dimensional object formation and device
US7931851B2 (en) 2003-09-11 2011-04-26 Nabtesco Corporation Stereolithographic method and apparatus
CN115464151A (en) * 2021-06-10 2022-12-13 株式会社沙迪克 Method for forming laminate
CN115464151B (en) * 2021-06-10 2024-04-30 株式会社沙迪克 Lamination shaping method

Similar Documents

Publication Publication Date Title
JP6486189B2 (en) Three-dimensional printing apparatus and three-dimensional printing method
JP4799575B2 (en) Imprint method
JP3955448B2 (en) Method for forming a three-dimensional object
JPH02111528A (en) Forming method of three-dimensional form
JP2004284346A (en) Method for producing molded article by using powder stereolithographic process or sintering process
JPH0794149B2 (en) Laminated flat plate molding method in photo-curing molding method
JP3515419B2 (en) Optical three-dimensional molding method and apparatus
WO1994023936A1 (en) Flat laminated plate molding method in photohardening molding method
JPH06155587A (en) Method for molding of three dimensional shape molded product
JP3155156B2 (en) 3D shape forming method
JP3458593B2 (en) Method for forming a three-dimensional shape
JPH0671761A (en) Formation of three-dimensional form
JP2010052318A (en) Light shaping method
KR20150106322A (en) Method for forming film and apparatus for forming the same
JPH09226010A (en) Method for optical molding
JP2671534B2 (en) 3D shape forming method
JP6651716B2 (en) Method for manufacturing molded article and apparatus for producing molded article
JPH058307A (en) Optically shaping method
JP6022493B2 (en) Stereolithography method, stereolithography apparatus, and generation program
KR0183038B1 (en) Improved stereolithographic construction techniques
JP2746235B2 (en) Photocuring molding method and molding apparatus
JPH10138349A (en) Method for laminating stereo lithography
JP3088046B2 (en) Molding method for three-dimensional shaped objects
JP3664200B2 (en) Stereolithography method
JPH0514839Y2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 351240

Date of ref document: 19941207

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA