WO1994020704A1 - Water-permeable concrete formwork - Google Patents

Water-permeable concrete formwork Download PDF

Info

Publication number
WO1994020704A1
WO1994020704A1 PCT/JP1994/000316 JP9400316W WO9420704A1 WO 1994020704 A1 WO1994020704 A1 WO 1994020704A1 JP 9400316 W JP9400316 W JP 9400316W WO 9420704 A1 WO9420704 A1 WO 9420704A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
water
concrete
resin layer
sheet
Prior art date
Application number
PCT/JP1994/000316
Other languages
French (fr)
Japanese (ja)
Inventor
Shohei Masui
Seiji Suzuki
Munehisa Togami
Takeo Kitayama
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to EP94907696A priority Critical patent/EP0646684A4/en
Publication of WO1994020704A1 publication Critical patent/WO1994020704A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G9/00Forming or shuttering elements for general use
    • E04G9/10Forming or shuttering elements for general use with additional peculiarities such as surface shaping, insulating or heating, permeability to water or air

Definitions

  • thermoplastic resin water-permeable concrete form having a surface layer having water permeability.
  • thermoplastic resin concrete formwork is usually made of a fiber reinforced thermoplastic resin sheet whose panel surface is reinforced with a thermoplastic resin sheet or a fiber such as glass fiber.
  • the sheet is manufactured by melting a thermoplastic resin or a mixture of the same with glass fiber and molding the sheet into a sheet shape. The surface of the sheet is completely covered with the resin. I'm wearing
  • the concrete formwork using such a thermoplastic resin as the panel surface does not cause global environmental problems due to the large amount of use of wood, and is made of wood-based concrete. It is lighter than a single formwork, and concrete is cast using the formwork. It has many advantages, such as excellent isolation from concrete later.
  • the present inventors have satisfied the characteristics required for a concrete formwork, and have been able to shorten the curing period of the concrete. As a result of studies to develop a concrete formwork, the present invention has been achieved.
  • thermoplastic resin permeable concrete formwork comprising a thermoplastic resin layer and a thermoplastic resin layer having water permeability provided on at least one surface thereof. It is provided.
  • FIG. 1 shows a cross-sectional structure of a water-permeable concrete formwork of the present invention in which a base material thermoplastic resin layer is a flat plate and a water-permeable thermoplastic resin layer is provided on both sides thereof.
  • FIG. 2 shows the cross-sectional structure of the water-permeable concrete mold of the present invention in which the base thermoplastic resin layer is a flat plate and has a water-permeable thermoplastic resin layer on one surface.
  • Figure 3 shows that the base thermoplastic resin layer is a flat plate with ribs.
  • the cross-sectional structure of the water-permeable concrete form of the present invention having a water-permeable thermoplastic resin layer on its flat plate side is as follows:
  • FIG. 4 shows a cross-sectional structure of the water-permeable concrete mold of the present invention in which the base thermoplastic resin layer is a flat plate with a rib and has a water-permeable thermoplastic resin layer on the rib side.
  • FIG. 5 shows a water-permeable concrete formwork of the present invention in which the base thermoplastic resin layer has a plastic step ball structure, and has water-permeable thermoplastic resin layers on both sides.
  • Fig. 6 shows the cross-sectional structure of the water-permeable concrete of the present invention in which the base thermoplastic resin layer has a plastic corrugated cardboard structure with small holes, and has water-permeable thermoplastic resin layers on both surfaces.
  • Fig. 7 shows a cross-sectional structure of the mold.
  • Fig. 7 shows a flat plate in which the base material thermoplastic resin layer is provided with a water guide groove, and a water permeable component of the present invention having a water permeable thermoplastic resin layer on the water guide groove side flat plate.
  • the cross-sectional structure of the lip form is shown below.
  • the permeable concrete formwork made of thermoplastic resin of the present invention, Thermoplastic resin layer as base material for concrete formwork
  • Substrate thermoplastic resin layer 1 and water-permeable thermoplastic resin layer (water-permeable thermoplastic resin layer) provided on its surface
  • the structure of the base thermoplastic resin layer is not particularly limited, and may be a flat plate (FIGS. 1 and 2) or a large number of ribs whose cross sections are comb-shaped. (Figs. 3 and 4) or a plastic corrugated cardboard type with a ladder-shaped cross section (Fig. 5).
  • grooves 5 for water introduction are provided on the surface of the base thermoplastic resin layer within a range that does not cause a significant decrease in strength (Fig. 7).
  • a small hole 4 is formed in the resin layer (Fig. 6), and the moisture from the cast concrete is permeable through the thermoplastic resin layer through these grooves and small holes.
  • Materials The backside of the thermoplastic resin layer or the gap between the ribs can be guided to the gaps between the ribs to facilitate the removal of water and shorten the curing period of the concrete.
  • the material constituting such a base thermoplastic resin layer is not particularly limited as long as the material satisfies the strength of the concrete formwork.
  • Thermoplastic resins such as vinyl chloride resin, PMMA, nylon, and polycarbonate resin are examples.
  • Polypropylene is preferred in terms of heat resistance, strength, economy, etc. Pyrene is preferred.
  • Such a base thermoplastic resin layer is formed of such a thermoplastic resin. Although it is made of fat, various reinforcing fibers, for example, glass fibers, are added to the resin to improve the mechanical and physical strength of the concrete formwork. It is very effective to use a fiber reinforced thermoplastic resin blended at about 70% by weight.
  • the water-permeable thermoplastic resin layer is provided on the surface of the base thermoplastic resin layer, and the surface of the base thermoplastic resin layer is in contact with the base thermoplastic resin layer when used as a mold.
  • the surface on the side in contact with the concrete is generally smooth in many cases, but may be on the rib side as shown in Fig.
  • the water-permeable thermoplastic resin layer may be provided not only on one side of the base thermoplastic resin layer but also on both sides thereof.
  • the water-permeable thermoplastic resin layer is in contact with the cast concrete surface, absorbs water in the cast concrete, and transmits water through the same layer. Any material having a function of accelerating the removal of water from the concrete by permeating it may be used as long as it has water permeability.
  • An expanded fiber-filled thermoplastic resin sheet obtained by expanding a filled thermoplastic resin sheet (stub bubble sheet) in the thickness direction is preferably used. You.
  • glass fiber is usually used as a fiber to be filled, but other fibers such as carbon fiber and alumina fiber may be used, and there is no particular limitation. No.
  • thermoplastic resin is not particularly limited as long as it is compatible with these fibers and has the strength and chemical resistance required for the formwork material. More specifically, for example, the same as the above-described base thermoplastic resin layer, for example, polypropylene, polyethylene, ABS resin, vinyl chloride resin, PMMA, nylon , Poly-force—A thermoplastic resin such as a bone resin is exemplified, and in particular, polypropylene is preferably used.
  • the fiber content in such a removable sheet is usually from 10 to 70% by weight, preferably from 20 to 50% by weight.
  • a typical example of such a sheet is a dry stampable sheet made of a blend of glass fiber and continuous fiber in polypropylene resin. Wet process star that contains glass fibers of a few millimeters to about 30 millimeters long in a sheet, polypropylene resin or polyethylene phthalate resin. Sheets referred to as removable sheets are known, and these sheets are usually sold as melt-pressed sheets.
  • any of these sheets can be used as a raw material for expanded fiber-filled thermoplastic resin sheets, but with a larger expansion ratio.
  • the wet processable sheet which can obtain a sheet having excellent permeability and excellent water permeability without extremely lowering the mechanical strength, is preferably used.
  • thermoplastic resin sheet suitable as a water-permeable thermoplastic resin layer is obtained by expanding the above-described stampable sheet in the thickness direction by expansion molding. Almost no water permeability.
  • Examples of the expansion molding method include a method of simply heating and expanding a stub bubble sheet and then cooling, and a method of heating and expanding in a predetermined space having a certain expansion ratio and then cooling. There are various methods, but the desired expansion ratio can be set accurately. Furthermore, from the point of view of workability, the pre-heated and expandable sheet is pre-heated and expanded to a thickness that achieves the predetermined expansion ratio. Compressing and cooling in this state is most preferred.
  • the expansion ratio is represented by the ratio of the thickness of the sheet after expansion to the thickness of the stub bubble sheet before expansion.
  • the sheet after expansion is the thickness of the sheet before expansion.
  • the expansion ratio becomes twice.
  • the expansion ratio is preferably as high as possible to improve water permeability, but if the expansion ratio is too high, the surface strength of the concrete form cannot be secured. Usually less than 3 times, preferably less than 2.5 times.
  • the lower limit is not particularly limited, since water permeability appears when the expansion ratio exceeds 1 times, but it is usually necessary to obtain good water permeability. It is 1.05 times, preferably 1.1 times.
  • a method of providing a water-permeable thermoplastic resin layer on the surface of the base thermoplastic resin layer and integrating them is as follows: the water-permeable thermoplastic resin layer and the base thermoplastic resin layer that have been manufactured in advance are bonded with an adhesive.
  • a basic thermoplastic resin layer is formed by placing in a mold, supplying a molten thermoplastic resin between the sheet and the mold surface, closing the mold, and press-cooling. At the same time, the surface is filled with expanded woven fiber thermoplastic.
  • various methods such as a method of producing a thermoplastic resin water-permeable concrete form to which a resin sheet is heat-sealed.
  • thermoplastic resin filled with fibers such as glass fiber is used as a base material as a deformation
  • only the surface layer of the base material on the side in contact with the concrete is heated and expanded. Then, by compressing or cooling without compressing, changing the surface portion of the base thermoplastic resin layer to a water-permeable thermoplastic resin layer involves joining work. It is also possible to provide a water-permeable thermoplastic resin layer.
  • the resin forming the water permeable thermoplastic resin layer is made of a heat-transferable base material.
  • the joining between the two resin layers becomes stronger and the strength as a concrete form is improved.
  • the workability is good, and the recycled concrete formwork can be recycled.
  • the overall thickness of the formwork is such that the required strength as the formwork is obtained.
  • the thickness When the layer has a rib structure, it is desirable that the thickness be in the range of 62 to 65 mm.
  • the thickness of the water-permeable thermoplastic resin layer cannot be expected to have a corresponding effect even if it is too thick, and the thickness of the entire mold is too thick. It is usually 15 thighs or less, preferably 10 mm or less, and the lower limit is not particularly limited as long as it has water permeability, but is usually 0.5 thighs, preferably 1 bandit.
  • the moisture in the concrete is removed by the water permeable thermoplastic resin layer.
  • the moisture in the concrete is removed and the curing period of the cast concrete is greatly shortened. It has the effect of being reduced.
  • test method in each case is as follows.
  • Bending test Performed by a three-point support method in accordance with JIS K7203.
  • Appearance evaluation Evaluated based on the number of pinholes (diameter 3 mm or more) per 0.25 square meter of concrete surface after mold release. The relationship between the number of pinholes and the evaluation is as follows.
  • Curing Time co down click time it takes for the compression strength of the co-down click rie bets rie preparative droplet after casting is ing to 6 0 kg / cm 2 (Moisture elimination time) was measured.
  • Compressive strength 100 mm in diameter from the cast concrete wall, 200 mm in height, 200 cm of columnar sample is withdrawn, and load is applied when the column is broken by applying pressure from the upper surface. was measured.
  • Rebound strength The concrete surface was measured with a Schmidt hammer (unit: R ⁇ )
  • Example 1 A stampable sheet containing 30% by weight of glass fiber with an average fiber length of 12 mm and an average glass fiber diameter of 10, and the matrix resin is polypropylene. (Capra Sheet Co., Ltd .: Cape La Sheet, weight per unit area: 1750 g Zm 2 , thickness 5 mm) is heated in a heating furnace until the surface of the sheet reaches 210 ° C. did. The thermal expansion sheet inflated up to 3 times in the thickness direction, set so in the mold of the plate, and a cooling press in earthenware pots by a thickness of 3 hide pressure 1 0 kg / cm 2 As a result, an expandable molded sheet of a stampable sheet having an expansion ratio of 2 was obtained.
  • Capra Sheet Co., Ltd .: Cape La Sheet, weight per unit area: 1750 g Zm 2 , thickness 5 mm is heated in a heating furnace until the surface of the sheet reaches 210 ° C. did.
  • the thermal expansion sheet inflated up to 3 times in the thickness direction, set so in
  • the expanded molded sheet obtained above has a plastic cardboard-like structure with a top plate thickness of 0.5 thigh, rib thickness of 0.5 mm, rib spacing of 5 mm, and a total thickness of 5 mm.
  • Table 1 shows the physical properties of the obtained concrete formwork.
  • This concrete formwork is used for the front and back, and the sides are made of wood timber plywood with a width of 300 thighs.
  • the concrete consisting of cement Z water Z sand Z pebble 3 Z 2/8 no 10 (weight ratio) is poured into the concrete form An experiment was conducted on the installation of the tank.
  • Example 2 Stanno containing 30% by weight of glass fiber with an average fiber length of 12 thighs and an average glass fiber diameter of 10, and a matrix resin of polypropylene.
  • a bull sheet Cape La Sheet Co., Ltd .: Cape La Sheet, weight per unit area: 400 g / m 2 , thickness: 3.4 mm
  • By lapping an expanded molded sheet having a width of 600 mm, a length of 900 mm and a thickness of 4 mm was obtained. The expansion ratio of this sheet is 1.2 times.
  • the lower mold is a 100-ton mold that is designed to be able to mold ribs with a thickness of 5 mm and a height of 10 mm at intervals of 504
  • a concrete formwork with ribs was manufactured by the following method.
  • the above-mentioned expansion molding sheet is placed between the upper and lower molds, and between the sheet and the lower mold surface, 20 weight of glass fiber is fed from a molten resin passage provided in the lower mold.
  • % Of polypropylene resin Silicone., Ltd .: Sumitomo Novel
  • the upper layer is an expanded molded sheet layer with a thickness of 4 mm
  • the upper layer is an expanded molded sheet layer with a thickness of 4 mm
  • the upper layer is integrally joined with a rib of 5 thighs and a height of 10 mm with a rib force of 54 mm.
  • a concrete formwork with ribs having a cross-sectional structure as shown in Fig. 3 was obtained.
  • Table 1 shows the physical properties of the obtained concrete formwork.
  • Stanno which has 30% by weight of glass fiber having an average fiber length of 12 mm and an average glass fiber diameter of 10, and has a matrix resin of polypropylene.
  • a bull sheet (Cape La Sheet Co., Ltd .: Cape La Sheet, weight per unit area: 2000 g / m 2 , thickness: 1.7 mm) is heated, and the obtained heat-expanded sheet is cooled.
  • an expanded molded sheet having a width of 60 mm, a length of 900 mm, and a thickness of 3 mm was obtained.
  • the expansion rate of this sheet is 1.8 times.
  • This expanded molded sheet was bonded to one side of a polymethylmethacrylate plate (Sumitomo Chemical Co., Ltd .: Sumipex sheet) with a thickness of 8 thighs with an adhesive, as shown in Fig. 2.
  • a concrete formwork having the cross-sectional structure as shown was obtained.
  • Table 1 shows the physical properties of the obtained concrete formwork.
  • Example 2 The same raw material stampable sheet as used in Example 1 was adhered to both sides of the 5-thigh bra staircase with the same adhesive as used in Example 1 with an adhesive to a thickness of 11 mm. A concrete formwork having the structure shown in Fig. 5 was obtained.
  • Table 1 shows the physical properties of the obtained concrete formwork.
  • the advantage of the plastic concrete formwork can be maintained without deteriorating the advantages of the conventional concrete formwork. It has the advantage that the curing period can be greatly reduced compared to plastic concrete formwork.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Abstract

A water-permeable concrete formwork of thermo-plastic resin characterized in that a thermoplastic resin layer having water permeability is provided on at least one of the surfaces of a basic thermoplastic resin layer, whereby removal of moisture from placed concrete is promoted by absorption and/or permeation of moisture of said concrete by and/or through said water-permeable thermoplastic resin layer, thereby making it possible to significantly reduce the curing time of concrete.

Description

明 細 透水性コ ン ク リ ー ト型枠 技 術 分 野  Fine Permeable concrete formwork technology field
本発明は、 表面層が透水性を有する熱可塑性樹脂製透 水性コ ン ク リ ー ト型枠に関する。 背 景 技 術  TECHNICAL FIELD The present invention relates to a thermoplastic resin water-permeable concrete form having a surface layer having water permeability. Background technology
従来よ り、 コ ン ク リ ー ト型枠と しては南洋材な どの木 材を使用 した型枠が大量に使用 されている。 しかし、 近 年の地球環境問題に鑑みて、 木質材に代わる コ ン ク リ ー ト型枠の開発が要求され、 その代表的な もの と して熱可 塑性樹脂製のコ ン ク リ ー ト型枠が提案されてい o  Conventionally, a large amount of formwork made of wood, such as southern seawood, has been used as concrete formwork. However, in view of global environmental problems in recent years, the development of concrete formwork that replaces wood is required, and a typical example is concrete made of thermoplastic resin. Formwork is proposed o
こ の熱可塑性樹脂製コ ン ク リ ー ト型枠は、 通常、 その パネル面が熱可塑性樹脂シー トゃガラス繊維等の繊維で 強度補強した繊維強化熱可塑性樹脂シ— トカヽらなる もの であって、 該シー ト は熱可塑性樹脂またはこれとガラス 繊維等との混合物を溶融し、 シー ト状に成形する こ とに よ り製造され、 その表面は樹脂で完全に覆われた構造と な つている。  This thermoplastic resin concrete formwork is usually made of a fiber reinforced thermoplastic resin sheet whose panel surface is reinforced with a thermoplastic resin sheet or a fiber such as glass fiber. The sheet is manufactured by melting a thermoplastic resin or a mixture of the same with glass fiber and molding the sheet into a sheet shape. The surface of the sheet is completely covered with the resin. I'm wearing
こ の よ う な熱可塑性樹脂をパネル面とする コ ン ク リ ー ト型枠は、 木材の大量使用に起因する地球環境問題を惹 起する こ と もな く 、 木質系のコ ン ク リ一 ト型枠に比べて 軽量であ り、 該型枠を使用 してコ ン ク リ ー トを打設した のちのコ ン ク リ ー 卜からの剝離性に も優れるな ど多 く の 長所を有している。 The concrete formwork using such a thermoplastic resin as the panel surface does not cause global environmental problems due to the large amount of use of wood, and is made of wood-based concrete. It is lighter than a single formwork, and concrete is cast using the formwork. It has many advantages, such as excellent isolation from concrete later.
しかし、 その一方で、 コ ン ク リ ー ト と接触するパネル 面が水分を吸収 した り透過させる こ とがないため、 コ ン ク リ ー ト打設後完全に硬化する までのいわゆる養生期間 が長 く なる という欠点があった。 発 明 の 開 示  However, on the other hand, since the panel surface in contact with the concrete does not absorb or transmit moisture, there is a so-called curing period until the concrete is completely cured after casting. The disadvantage was that it would be longer. Disclosure of the invention
このよ う な こ とから、 本発明者らはコ ン ク リ ー ト型枠 と しての要求特性を満た し、 しかも コ ン ク リ ー トの養生 期間が短縮でき る熱可塑性樹脂製コ ン ク リ一 ト型枠を開 発すべ く 検討の結果、 本発明に至った。  Thus, the present inventors have satisfied the characteristics required for a concrete formwork, and have been able to shorten the curing period of the concrete. As a result of studies to develop a concrete formwork, the present invention has been achieved.
すなわち、 本発明は、 熱可塑性樹脂層 と、 少な く と も その表面一方に設けられた透水性を有する熱可塑性樹脂 層よ り なる熱可塑性樹脂製透水性コ ン ク リ ー ト型枠を提 供する ものである。 図面の簡単な説明  That is, the present invention provides a thermoplastic resin permeable concrete formwork comprising a thermoplastic resin layer and a thermoplastic resin layer having water permeability provided on at least one surface thereof. It is provided. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 基材熱可塑性樹脂層が平板であ り、 その両 面に透水性熱可塑性樹脂層を有する本発明の透水性コ ン ク リ一 ト型枠の断面構造を、  FIG. 1 shows a cross-sectional structure of a water-permeable concrete formwork of the present invention in which a base material thermoplastic resin layer is a flat plate and a water-permeable thermoplastic resin layer is provided on both sides thereof.
第 2 図は、 基材熱可塑性樹脂層が平板であ り、 その片 面に透水性熱可塑性樹脂層を有する本発明の透水性コ ン ク リ 一 ト型枠の断面構造を、  FIG. 2 shows the cross-sectional structure of the water-permeable concrete mold of the present invention in which the base thermoplastic resin layer is a flat plate and has a water-permeable thermoplastic resin layer on one surface.
第 3 図は、 基材熱可塑性樹脂層が リ ブ付き平板であ り その平板側に透水性熱可塑性樹脂層を有する本発明の透 水性コ ン ク リ ー ト型枠の断面構造を、 Figure 3 shows that the base thermoplastic resin layer is a flat plate with ribs. The cross-sectional structure of the water-permeable concrete form of the present invention having a water-permeable thermoplastic resin layer on its flat plate side is as follows:
第 4 図は、 基材熱可塑性樹脂層が リ ブ付き平板であ り その リ ブ側に透水性熱可塑性樹脂層を有する本発明の透 水性コ ン ク リ 一 ト型枠の断面構造を、  FIG. 4 shows a cross-sectional structure of the water-permeable concrete mold of the present invention in which the base thermoplastic resin layer is a flat plate with a rib and has a water-permeable thermoplastic resin layer on the rib side.
第 5 図は、 基材熱可塑性樹脂層がプラスチ ッ ク段ボー ル構造を有し、 その両面に透水性熱可塑性樹脂層を有す る本発明の透水性コ ン ク リ ー ト型枠の断面構造を、 第 6 図は、 基材熱可塑性樹脂層が小孔付プラスチ ッ ク 段ボール構造を有 し、 その両面に透水性熱可塑性樹脂層 を有する本発明の透水性コ ン ク リ 一 ト型枠の断面構造を 第 7 図は、 基材熱可塑性樹脂層が導水溝を設けた平板 であ り、 その導水溝側平板に透水性熱可塑性樹脂層を有 する本発明の透水性コ ン ク リ一 ト型枠の断面構造をそれ ぞれ示す。  FIG. 5 shows a water-permeable concrete formwork of the present invention in which the base thermoplastic resin layer has a plastic step ball structure, and has water-permeable thermoplastic resin layers on both sides. Fig. 6 shows the cross-sectional structure of the water-permeable concrete of the present invention in which the base thermoplastic resin layer has a plastic corrugated cardboard structure with small holes, and has water-permeable thermoplastic resin layers on both surfaces. Fig. 7 shows a cross-sectional structure of the mold. Fig. 7 shows a flat plate in which the base material thermoplastic resin layer is provided with a water guide groove, and a water permeable component of the present invention having a water permeable thermoplastic resin layer on the water guide groove side flat plate. The cross-sectional structure of the lip form is shown below.
尚、 図中の数字はそれぞれ以下の意味を有する。  The numbers in the figure have the following meanings.
1 基材熱可塑性樹脂層  1 Substrate thermoplastic resin layer
2 透水性熱可塑性樹脂層  2 Water-permeable thermoplastic resin layer
3 リ ブ  3 Live
4 小孔  4 small holes
5 導水溝 発明を実施するための最良の形態 以下、 本発明を詳細に説明する。  5 BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
本発明の熱可塑性樹脂製透水性コ ン ク リ ー ト型枠は、 コ ン ク リ ー 卜型枠と しての基材となる熱可塑性樹脂層The permeable concrete formwork made of thermoplastic resin of the present invention, Thermoplastic resin layer as base material for concrete formwork
(基材熱可塑性樹脂層) 1 と、 その表面に設け られた透 水性を有する熱可塑性樹脂層 (透水性熱可塑性樹脂層)(Substrate thermoplastic resin layer) 1 and water-permeable thermoplastic resin layer (water-permeable thermoplastic resin layer) provided on its surface
2 とから構成されている。 And 2.
基材熱可塑性樹脂層の構造と しては特に限定されず、 平板であって も よい し (第 1 図、 第 2 図) 、 そ の断面が 櫛状である よ う な多数の リ ブ 3 を有する もの (第 3 図、 第 4 図) 、 あるいはその断面が梯子状であるプラスチ ッ ク段ボール型の ものであって も よい (第 5 図) 。 また、 これらの変形と して、 特段の強度低下を もた ら さない範 囲で、 た とえば基材熱可塑性樹脂層の表面に導水のため の溝 5 を設けた り (第 7 図) 、 樹脂層に小孔 4 を設けて (第 6 図) 、 打設したコ ン ク リ ー トからの水分を透水性 熱可塑性樹脂層を経由 してこれ ら溝や小孔を介 して基材 熱可塑性樹脂層の裏面ない しは リ ブ間の間隙に導いて、 水分の除去を助長 し、 コ ン ク リ ー ト の養生期間をよ り短 く する こ と もでき る。  The structure of the base thermoplastic resin layer is not particularly limited, and may be a flat plate (FIGS. 1 and 2) or a large number of ribs whose cross sections are comb-shaped. (Figs. 3 and 4) or a plastic corrugated cardboard type with a ladder-shaped cross section (Fig. 5). In addition, as a result of these deformations, for example, grooves 5 for water introduction are provided on the surface of the base thermoplastic resin layer within a range that does not cause a significant decrease in strength (Fig. 7). A small hole 4 is formed in the resin layer (Fig. 6), and the moisture from the cast concrete is permeable through the thermoplastic resin layer through these grooves and small holes. Materials The backside of the thermoplastic resin layer or the gap between the ribs can be guided to the gaps between the ribs to facilitate the removal of water and shorten the curing period of the concrete.
こ の よ う な基材熱可塑性樹脂層を構成する材料は、 そ れがコ ン ク リ ー ト型枠と しての強度を満足する ものであ れば特に制限されず、 た とえばポ リ エチ レ ン、 ポ リ プ。 ピ レ ン、 A B S樹脂-. 塩化ビニル樹脂、 P M M A、 ナ イ ロ ン 、 ポ リ カ ーボネー ト樹脂な どの熱可塑性樹脂が例示 されるが、 耐熱性、 強度、 経済性等の面からポ リ プロ ピ レ ン が好ま しい。  The material constituting such a base thermoplastic resin layer is not particularly limited as long as the material satisfies the strength of the concrete formwork. Polyethylene, lip. Pyrene, ABS resin-. Thermoplastic resins such as vinyl chloride resin, PMMA, nylon, and polycarbonate resin are examples. Polypropylene is preferred in terms of heat resistance, strength, economy, etc. Pyrene is preferred.
かかる基材熱可塑性樹脂層は、 こ の よ う な熱可塑性樹 脂からなる ものであるが、 コ ン ク リ ー ト型枠と しての機 械的、 物理的強度を向上させるために、 該樹脂中に各種 の補強繊維、 た とえばガラス繊維を 1 0〜 7 0 重量%程 度配合させた繊維強化熱可塑性樹脂を使用する こ とは非 常に有効である。 Such a base thermoplastic resin layer is formed of such a thermoplastic resin. Although it is made of fat, various reinforcing fibers, for example, glass fibers, are added to the resin to improve the mechanical and physical strength of the concrete formwork. It is very effective to use a fiber reinforced thermoplastic resin blended at about 70% by weight.
も ちろん、 このよ う な補強繊維の有無にかかわらず、 熱可塑性樹脂に通常配合される安定剤、 着色剤、 充塡剤 な どの各種配合剤が配合されていて も よいこ とはいう ま でもない。  Of course, regardless of the presence or absence of such reinforcing fibers, various compounding agents such as stabilizers, colorants, and fillers that are usually compounded in a thermoplastic resin may be compounded. Absent.
透水性熱可塑性樹脂層は、 基材熱可塑性樹脂層の表面 に設けられるが、 基材熱可塑性樹脂層の表面とは、 型枠 と しての使用時において該基材熱可塑性樹脂層がコ ン ク リ ー ト と接する側の面であって、 一般的にはその表面が 平滑である場合が多いが、 第 4 図に示される よ う に リ ブ 側であって も よ く 、 またこの透水性熱可塑性樹脂層は基 材熱可塑性樹脂層の片面のみな らず、 その両面に設け ら れていて も よい。  The water-permeable thermoplastic resin layer is provided on the surface of the base thermoplastic resin layer, and the surface of the base thermoplastic resin layer is in contact with the base thermoplastic resin layer when used as a mold. The surface on the side in contact with the concrete is generally smooth in many cases, but may be on the rib side as shown in Fig. The water-permeable thermoplastic resin layer may be provided not only on one side of the base thermoplastic resin layer but also on both sides thereof.
本発明において、 透水性熱可塑性樹脂層は、 打設され たコ ン ク リ ー ト面に接し、 打設コ ン ク リ ー ト 中の水分を 吸収した り、 同層を介 して水を透過させる こ とによ り、 コ ン ク リ 一 ト中の水分の除去を促進させる機能を有する ものであって、 透水性を有する ものであればいかなる も のであって も よいが、 通常繊維を充填した熱可塑性樹脂 シー ト (スタ ンバブルシー ト) を厚さ方向に膨張成形 し た膨張繊維充塡熱可塑性樹脂シー トが好ま し く 用い られ る。 In the present invention, the water-permeable thermoplastic resin layer is in contact with the cast concrete surface, absorbs water in the cast concrete, and transmits water through the same layer. Any material having a function of accelerating the removal of water from the concrete by permeating it may be used as long as it has water permeability. An expanded fiber-filled thermoplastic resin sheet obtained by expanding a filled thermoplastic resin sheet (stub bubble sheet) in the thickness direction is preferably used. You.
こ のス タ ンパブル ン一 卜 において、 充填さ れる繊維 と しては通常ガラス繊維が使用 さ れるが、 炭素繊維、 アル ミ ナ繊維等の他の繊維であ っ て も よ く 、 特に限定さ れな い。  In this stampable unit, glass fiber is usually used as a fiber to be filled, but other fibers such as carbon fiber and alumina fiber may be used, and there is no particular limitation. No.
ま た、 熱可塑性樹脂 と しては、 こ れ ら繊維 と馴染み、 型枠材料 と しての要求特性であ る強度な らびに耐薬品性 を有する も のであれば特に限定さ れず、 かかる樹脂 と し て具体的には前記 した基材熱可塑性樹脂層を構成する と 同様の、 た とえばボ リ プロ ピ レ ン、 ポ リ エチ レ ン、 A B S樹脂、 塩化 ビニル樹脂、 P M M A、 ナイ ロ ン、 ポ リ 力 —ボネ一 ト樹脂な どの熱可塑性樹脂が例示さ れ、 特にポ リ プロ ピ レ ンが好ま し く は使用 される。  The thermoplastic resin is not particularly limited as long as it is compatible with these fibers and has the strength and chemical resistance required for the formwork material. More specifically, for example, the same as the above-described base thermoplastic resin layer, for example, polypropylene, polyethylene, ABS resin, vinyl chloride resin, PMMA, nylon , Poly-force—A thermoplastic resin such as a bone resin is exemplified, and in particular, polypropylene is preferably used.
かかるス夕 ンパブルシー ト における繊維含量は通常 1 0 〜 7 0 重量%、 好ま し く 2 0 〜 5 0 重量%である。 こ の よ う なス 夕 ン ノ、'ブルシー ト の代表的な もの と して ボ リ プロ ピ レ ン樹脂中にガラ ス繊維の連続繊維を配合 し た ドラ イ 法ス タ ンパブルシ一 ト と称さ れる シー トゃ、 ポ リ プロ ピ レ ン樹脂やポ リ エチ レ ンテ レ フ タ レ ー ト樹脂中 に長さ数 ミ リ か ら 3 0 ミ リ 程度のガラ ス繊維を配合 した 湿式法ス タ ンパブル シー 卜 と称さ れる シー ト が知 られて お り 、 通常 こ れ ら シー ト は溶融プ レ ス された シー ト と し て市販さ れている。  The fiber content in such a removable sheet is usually from 10 to 70% by weight, preferably from 20 to 50% by weight. A typical example of such a sheet is a dry stampable sheet made of a blend of glass fiber and continuous fiber in polypropylene resin. Wet process star that contains glass fibers of a few millimeters to about 30 millimeters long in a sheet, polypropylene resin or polyethylene phthalate resin. Sheets referred to as removable sheets are known, and these sheets are usually sold as melt-pressed sheets.
こ の よ う な シー ト はいずれ も膨張繊維充填熱可塑性樹 脂シー ト の原料 と して使用でき るが、 よ り大き な膨張倍 率が得られ、 機械的強度を極度に低下させる こ とな く 透 水性に も優れたシー トを形成し易い湿式法スタ ンパブル シー トが好ま し く 使用される。 Any of these sheets can be used as a raw material for expanded fiber-filled thermoplastic resin sheets, but with a larger expansion ratio. The wet processable sheet, which can obtain a sheet having excellent permeability and excellent water permeability without extremely lowering the mechanical strength, is preferably used.
透水性熱可塑性樹脂層 と して好適な膨張繊維充填熱可 塑性樹脂シー ト は、 上記したよ う なスタ ンパブルシー ト を厚み方向に膨張成形した ものであ って、 膨張成形 しな い状態では透水性は殆ど有していない。  An expanded fiber-filled thermoplastic resin sheet suitable as a water-permeable thermoplastic resin layer is obtained by expanding the above-described stampable sheet in the thickness direction by expansion molding. Almost no water permeability.
膨張成形の方法と しては、 スタ ンバブルシー ト を単に 加熱、 膨張させたのち冷却する方法、 一定の膨張倍率と なる よ う な所定の空間内で加熱、 膨張させたのち冷却す る方法な ど各種の方法があるが、 所望の膨張倍率が正確 に設定可能であ り、 しかも作業性にす ぐれる と こ ろから スタ ンパブルシー トを予め加熱、 膨張させたのち、 所定 の膨張倍率となる厚みまで圧縮し、 こ の状態で冷却させ る方法が最も好ま しい。  Examples of the expansion molding method include a method of simply heating and expanding a stub bubble sheet and then cooling, and a method of heating and expanding in a predetermined space having a certain expansion ratio and then cooling. There are various methods, but the desired expansion ratio can be set accurately.Moreover, from the point of view of workability, the pre-heated and expandable sheet is pre-heated and expanded to a thickness that achieves the predetermined expansion ratio. Compressing and cooling in this state is most preferred.
こ こ で、 膨張倍率とは膨張前のス タ ンバブルシー ト の 厚みに対する膨張後の該シー 卜の厚みの比率で表わされ た とえば膨張前のシー ト厚に対して膨張後のシ一 卜の厚 みが 2 倍の時には、 膨張倍率は 2 倍となる。  Here, the expansion ratio is represented by the ratio of the thickness of the sheet after expansion to the thickness of the stub bubble sheet before expansion. For example, the sheet after expansion is the thickness of the sheet before expansion. When the thickness is twice, the expansion ratio becomes twice.
こ の膨張倍率は、 透水性の向上のためにはそれが高い ほ ど望ま しいが、 膨張倍率が高すぎる と コ ン ク リ ー ト型 枠と しての表面強度が確保できな く なるため、 通常 3 倍 以下、 好ま し く は 2 . 5 倍以下である。  The expansion ratio is preferably as high as possible to improve water permeability, but if the expansion ratio is too high, the surface strength of the concrete form cannot be secured. Usually less than 3 times, preferably less than 2.5 times.
下限は、 膨張倍率が 1 倍を越えれば透水性が現れるた め特に制限はないが、 良好な透水性を得るためには通常 1 . 0 5 倍、 好ま し く は 1 . 1 倍である。 The lower limit is not particularly limited, since water permeability appears when the expansion ratio exceeds 1 times, but it is usually necessary to obtain good water permeability. It is 1.05 times, preferably 1.1 times.
透水性熱可塑性樹脂層を基材熱可塑性樹脂層の表面に 設け、 これを一体化する方法と しては、 予め製造した透 水性熱可塑性樹脂層 と基材熱可塑性樹脂層を接着剤によ つて接合する方法、 両者を超音波接着法によ って接合す る方法、 両樹脂層の接着界面を溶融して熱融着させる方 法、 スタ ンバブルシー トを加熱膨張させた状態でこれに 基材熱可塑性樹脂層を重ね合わせ、 圧着 して膨張繊維充 墳熱可塑性樹脂シー 卜を形成せ しめる と同時に熱融着さ せる方法、 予め製造した膨張繊維充塡熱可塑性樹脂シ一 トを上下両金型内に載置し、 該シー ト と金型面との間に 溶融熱可塑性樹脂を供給 したのち金型を閉 じて、 プレス 冷却する こ とによ り、 基本熱可塑性樹脂層を形成せしめ る と同時に、 その表面に膨張織維充塡熱可塑性樹脂シー 卜が熱融着された熱可塑性樹脂製透水性コ ン ク リ ー ト型 枠を製造する方法な ど各種の方法が挙げられる。  A method of providing a water-permeable thermoplastic resin layer on the surface of the base thermoplastic resin layer and integrating them is as follows: the water-permeable thermoplastic resin layer and the base thermoplastic resin layer that have been manufactured in advance are bonded with an adhesive. A method of joining the two by ultrasonic bonding, a method of melting the adhesive interface of both resin layers and heat-sealing them, and a method of expanding the stub bubble sheet by heating and expanding. A method in which the thermoplastic resin layers are overlapped and pressed together to form an expanded fiber-filled thermoplastic resin sheet and heat-sealed at the same time. Both upper and lower prefabricated expanded fiber-filled thermoplastic resin sheets are used. A basic thermoplastic resin layer is formed by placing in a mold, supplying a molten thermoplastic resin between the sheet and the mold surface, closing the mold, and press-cooling. At the same time, the surface is filled with expanded woven fiber thermoplastic There are various methods such as a method of producing a thermoplastic resin water-permeable concrete form to which a resin sheet is heat-sealed.
また、 この変形と してガラ ス繊維等の繊維を充塡した 熱可塑性樹脂を基材とする場合に、 該基材の コ ン ク リ ー ト と接する側の表層部分のみを加熱、 膨張させたのち、 圧縮するか、 圧縮する こ とな く 冷却する こ とによ り、 基 材熱可塑性樹脂層の表面部分を透水性熱可塑性樹脂層に 変える こ とによ り、 接合作業を伴う こ とな く 透水性熱可 塑性樹脂層を設ける こ と もでき る。  When a thermoplastic resin filled with fibers such as glass fiber is used as a base material as a deformation, only the surface layer of the base material on the side in contact with the concrete is heated and expanded. Then, by compressing or cooling without compressing, changing the surface portion of the base thermoplastic resin layer to a water-permeable thermoplastic resin layer involves joining work. It is also possible to provide a water-permeable thermoplastic resin layer.
本発明の熱可塑性樹脂製透水性コ ン ク リ ー ト型枠にお いて、 透水性熱可塑性樹脂層を形成する樹脂が基材熱可 塑性樹脂層を形成する樹脂と同一である場合には、 両樹 脂層の接合がよ り強固な もの とな り、 コ ン ク リ ー ト型枠 と しての強度も向上するのみな らず作業性も良好とな り 更には使用済みコ ン ク リ 一 ト型枠の再生利用が可能とな るな ど実用上非常に有効である。 In the thermoplastic resin permeable concrete formwork of the present invention, the resin forming the water permeable thermoplastic resin layer is made of a heat-transferable base material. When the same resin is used to form the plastic resin layer, the joining between the two resin layers becomes stronger and the strength as a concrete form is improved. In addition, the workability is good, and the recycled concrete formwork can be recycled.
本発明の熱可塑性樹脂製透水性コ ン ク リ ー ト型枠にお いて、 型枠と しての全体の厚みは、 型枠と しての必要な 強度が得られる程度の厚みであれば特に制限はな 'く 、 通 常 1 0 〜 7 0 匪程度であるが、 使用時の作業性、 特に従 来よ り多用 されている木質系のコ ン ク リ ー ト型枠との関 係から、 第 1 図、 第 2 図および第 7 図に示される よ う な 平板のみからなる場合には 1 0 〜 1 5 mm、 第 3 〜第 6 図 に示される よ う な基材熱可塑性樹脂層が リ ブ構造を有す る場合には 6 2〜 6 5 mmの範囲である こ とが望ま しい。  In the thermoplastic resin permeable concrete formwork of the present invention, the overall thickness of the formwork is such that the required strength as the formwork is obtained. There is no particular limitation, usually about 10 to 70 bandits.However, the workability during use, especially in relation to the wood-based concrete formwork that has been used more frequently than before. From the above, it is 10 to 15 mm in the case of only the flat plate as shown in FIGS. 1, 2 and 7, and the base thermoplastic resin as shown in FIGS. 3 to 6. When the layer has a rib structure, it is desirable that the thickness be in the range of 62 to 65 mm.
また、 透水性熱可塑性樹脂層の厚みは、 それが厚 く な りすぎて もそれに見合っただけの効果も期待できず、 ま た型枠全体と しての厚みが厚 く な りすぎるため、 通常 1 5 腿以下、 好ま し く は 1 0 mm以下であ り、 下限はそれが 透水性を有する限り において特に制限はないが、 通常 0 5 腿、 好ま し く は 1 匪 である。  Also, the thickness of the water-permeable thermoplastic resin layer cannot be expected to have a corresponding effect even if it is too thick, and the thickness of the entire mold is too thick. It is usually 15 thighs or less, preferably 10 mm or less, and the lower limit is not particularly limited as long as it has water permeability, but is usually 0.5 thighs, preferably 1 bandit.
本発明の熱可塑性樹脂製透水性コ ン ク リ 一 ト型枠を用 いてコ ン ク リ 一 トを打設した場合には、 コ ン ク リ ー ト 中 の水分が透水性熱可塑性樹脂層によ り吸収され、 ま た同 層を透過するため、 コ ン ク リ ー ト 中の水分の除去が促進 され、 その結果打設コ ン ク リ ー トの養生期間が大幅に短 縮される とい う 効果を有する。 When the concrete is cast using the thermoplastic resin permeable concrete formwork of the present invention, the moisture in the concrete is removed by the water permeable thermoplastic resin layer. As a result, the moisture in the concrete is removed and the curing period of the cast concrete is greatly shortened. It has the effect of being reduced.
実施例 Example
以下、 実施例に よ り 本発明をさ らに詳細に説明するが 本発明がこ れに よ つ て限定さ れる ものでない こ とはい う ま で もない。  Hereinafter, the present invention will be described in more detail with reference to examples, but it is to be understood that the present invention is not limited to these examples.
なお、 各例中の試験法は以下の とお り である。  The test method in each case is as follows.
曲げ試験 : J I S K 7 2 0 3 に準拠 し、 3 点支持法 で行な っ た。  Bending test: Performed by a three-point support method in accordance with JIS K7203.
外観評価 : 型枠剝離後の コ ン ク リ ー ト表面 0 . 2 5 平 方メ ー ト ル当 り の ピ ンホール (直径 3 mm以 上) 数よ り評価 した。 ピ ンホール数 と評価 の関係は次の とお り である。  Appearance evaluation: Evaluated based on the number of pinholes (diameter 3 mm or more) per 0.25 square meter of concrete surface after mold release. The relationship between the number of pinholes and the evaluation is as follows.
ビンホ-ル 数 150 未満 ◎ (良好)  Less than 150 binholes ◎ (good)
150 〜300 〇 (木質系型枠並)  150 to 300 〇 (average of wooden formwork)
301 〜500 X (木質系型枠よ り劣る) 養生時間 : コ ン ク リ ー ト打設後のコ ン ク リ ー ト の圧縮 強度が 6 0 kg/cm2 にな る までに要する時 間 (水分消出時間) を測定 した。 301 to 500 X (inferior Ri by wooden formwork) Curing Time: co down click time it takes for the compression strength of the co-down click rie bets rie preparative droplet after casting is ing to 6 0 kg / cm 2 (Moisture elimination time) was measured.
圧縮強度 : 打設 した コ ン ク リ ー ト壁よ り直径 1 0 0 mm 高さ 2 0 0 讓の円柱状のサ ンプルを抜取 り 上面か ら圧力を加えて円柱が破壊する と き の荷重を測定 した。  Compressive strength: 100 mm in diameter from the cast concrete wall, 200 mm in height, 200 cm of columnar sample is withdrawn, and load is applied when the column is broken by applying pressure from the upper surface. Was measured.
反発強度 : コ ン ク リ ー ト表面をシュ ミ ッ ト ハ ンマーで 測定 した (単位 : R 〇)  Rebound strength: The concrete surface was measured with a Schmidt hammer (unit: R〇)
実施例 1 平均繊維長が 1 2 mm、 平均ガラ ス繊維径が 1 0 のガ ラ ス繊維を 3 0 重量%含み、 マ ト リ ッ クス樹脂がポ リ プ ロ ピ レ ンであ る ス タ ンパブルシ一 ト (ケープラ シ一 ト株 式会社製 : ケープラ シー ト、 目付量 1 7 5 0 g Zm 2 、 厚さ し 5 mm ) を、 加熱炉中でシー ト の表面が 2 1 0 °C になる まで加熱した。 厚さ方向で 3 倍程度にまで膨張し た加熱膨張シー トを平板の金型内にセ ッ ト し、 厚さが 3 隱となる よ う に圧力 1 0 kg/ cm2 で冷却プレス して、 膨 張倍率 2 倍のスタ ンパブルシー ト の膨張成形シー 卜 を得 た。 Example 1 A stampable sheet containing 30% by weight of glass fiber with an average fiber length of 12 mm and an average glass fiber diameter of 10, and the matrix resin is polypropylene. (Capra Sheet Co., Ltd .: Cape La Sheet, weight per unit area: 1750 g Zm 2 , thickness 5 mm) is heated in a heating furnace until the surface of the sheet reaches 210 ° C. did. The thermal expansion sheet inflated up to 3 times in the thickness direction, set so in the mold of the plate, and a cooling press in earthenware pots by a thickness of 3 hide pressure 1 0 kg / cm 2 As a result, an expandable molded sheet of a stampable sheet having an expansion ratio of 2 was obtained.
上記で得た膨張成形シー トを、 天板厚 0 . 5 腿、 リ ブ 厚 0 . 5 mm、 リ ブ間隔 5 mmで全体の厚みが 5 mmのプラス チ ッ ク製の段ボール様構造を有する物品の両面に接着剤 によ り接合 して幅 6 0 O mm、 高さ 9 0 O mm、 厚さ 1 1 mm の第 5 図に示すよ う な断面構造からなる コ ン ク リ ー ト型 枠を得た。  The expanded molded sheet obtained above has a plastic cardboard-like structure with a top plate thickness of 0.5 thigh, rib thickness of 0.5 mm, rib spacing of 5 mm, and a total thickness of 5 mm. A concrete type with a cross-sectional structure as shown in Fig. 5 with a width of 60 Omm, a height of 90 Omm, and a thickness of 11 mm, bonded to both sides of the article with an adhesive I got the frame.
得られたコ ン ク リ ー ト型枠の物性を表 1 に示す。  Table 1 shows the physical properties of the obtained concrete formwork.
こ のコ ン ク リ ー ト型枠を前面と後面に使用 し、 両側面 に幅 3 0 0 腿 の木質合板を使用 して 6 0 0 X 9 0 0 X 3 0 0 匪 の コ ン ク リ ー ト型枠を組み立て、 こ の中にセ メ ン ト Z水 Z砂 Z小石二 3 Z 2 / 8 ノ 1 0 (重量比) からな る コ ン ク リ ー ト を流し込んでコ ン ク リ ー 卜 の打設実験を 行な った。  This concrete formwork is used for the front and back, and the sides are made of wood timber plywood with a width of 300 thighs. After assembling the concrete formwork, the concrete consisting of cement Z water Z sand Z pebble 3 Z 2/8 no 10 (weight ratio) is poured into the concrete form An experiment was conducted on the installation of the tank.
結果を表 2 に示す。  Table 2 shows the results.
実施例 2 平均繊維長が 1 2 腿 1、 平均ガラ ス繊維径が 1 0 のガ ラ ス繊維を 3 0 重量%含み、 マ ト リ ッ ク ス樹脂がポ リ プ ロ ピ レ ンであ るス タ ンノ、。ブル シー ト (ケープラ シ一 ト株 式会社製 : ケープラ シー ト、 目付量 4 0 0 0 g / m 2 、 厚さ 3 . 4 mm ) を加熱 し、 得 られた加熱膨張 シー ト を冷 却プ レ ス して、 幅 6 0 0 mm、 長 さ 9 0 0 mm . 厚さ 4 讓 の スタ ンパブルシー ト の膨張成形シー ト を得た。 こ の シー 卜 の膨張倍率は 1 . 2 倍であ る。 Example 2 Stanno, containing 30% by weight of glass fiber with an average fiber length of 12 thighs and an average glass fiber diameter of 10, and a matrix resin of polypropylene. ,. A bull sheet (Cape La Sheet Co., Ltd .: Cape La Sheet, weight per unit area: 400 g / m 2 , thickness: 3.4 mm) is heated, and the obtained heat-expanded sheet is cooled. By lapping, an expanded molded sheet having a width of 600 mm, a length of 900 mm and a thickness of 4 mm was obtained. The expansion ratio of this sheet is 1.2 times.
上下金型か らな り 、 下金型には厚み 5 mm、 高さ 1 0 mm の リ ブが 5 4 讓間隔で成形でき る よ う に設計さ れている 1 0 0 0 ト ン の型締カを有する竪型プ レ ス成形機を使用 し、 以下の方法で リ ブ付き の コ ン ク リ ー ト型枠を製造 し た。 上下金型間に上記の膨張成形シー ト を載置 し、 該シ — ト と下金型面 との間に、 下金型内に設けた溶融樹脂通 路か らガラ ス繊維を 2 0 重量%含有する ポ リ プロ ピ レ ン 樹脂 (住友化学工業社製 : 住友ノ ーブ レ ン ) の溶融樹脂 を供給 したのち金型.を閉 じてプ レ ス し、 冷却 して板状部 分の厚みが 7 mm (上層部分が厚さ 4 匪の膨張成形シー ト 層) であ り 、 こ れに厚み 5 腿、 高さ 1 0 mmの リ ブ力 5 4 mm間隔で一体的に結合 している第 3 図に示すよ う な断面 構造の リ ブ付コ ン ク リ ー ト型枠を得た。  Consists of upper and lower molds, the lower mold is a 100-ton mold that is designed to be able to mold ribs with a thickness of 5 mm and a height of 10 mm at intervals of 504 Using a vertical press forming machine with a clamp, a concrete formwork with ribs was manufactured by the following method. The above-mentioned expansion molding sheet is placed between the upper and lower molds, and between the sheet and the lower mold surface, 20 weight of glass fiber is fed from a molten resin passage provided in the lower mold. % Of polypropylene resin (Sumitomo Chemical Co., Ltd .: Sumitomo Novel), and then the mold is closed, pressed, cooled, and cooled. With a thickness of 7 mm (the upper layer is an expanded molded sheet layer with a thickness of 4 mm), which is integrally joined with a rib of 5 thighs and a height of 10 mm with a rib force of 54 mm. A concrete formwork with ribs having a cross-sectional structure as shown in Fig. 3 was obtained.
得 られた コ ン ク リ 一 ト型枠の物性を表 1 に示す。  Table 1 shows the physical properties of the obtained concrete formwork.
こ の コ ン ク リ ー ト型枠を使用 し、 実施例 1 と同様に し て コ ン ク リ ー ト の打設実験を行な っ た。  Using this concrete formwork, an experiment of placing concrete was performed in the same manner as in Example 1.
結果を表 2 に示す。 実施例 3 Table 2 shows the results. Example 3
平均繊維長が 1 2 mm、 平均ガラ ス繊維径が 1 0 のガ ラ ス繊維を 3 0 重量%含み、 マ ト リ ッ ク ス樹脂がポ リ プ ロ ピレ ンであるスタ ンノ、。ブル シー ト (ケープラ シ一 ト株 式会社製 : ケープラ シー ト、 目付量 2 0 0 0 g / m 2 、 厚さ 1 . 7 mm ) を加熱し、 得られた加熱膨張シー トを冷 却プ レ ス して、 幅 6 0 O mm、 長さ 9 0 0 匪、 厚さ 3 mmの ス タ ンパブルシー ト の膨張成形シー ト を得た。 こ の シー 卜 の膨張倍率は 1 . 8 倍である。 Stanno, which has 30% by weight of glass fiber having an average fiber length of 12 mm and an average glass fiber diameter of 10, and has a matrix resin of polypropylene. A bull sheet (Cape La Sheet Co., Ltd .: Cape La Sheet, weight per unit area: 2000 g / m 2 , thickness: 1.7 mm) is heated, and the obtained heat-expanded sheet is cooled. As a result, an expanded molded sheet having a width of 60 mm, a length of 900 mm, and a thickness of 3 mm was obtained. The expansion rate of this sheet is 1.8 times.
こ の膨張成形シー トを厚さ 8 腿のポ リ メ チルメ タ ク リ レー ト板 (住友化学工業社製 : ス ミ ペッ ク シー ト) の片 面に接着剤で接合 し、 第 2 図に示すよ う な断面構造のコ ン ク リ ー ト型枠を得た。  This expanded molded sheet was bonded to one side of a polymethylmethacrylate plate (Sumitomo Chemical Co., Ltd .: Sumipex sheet) with a thickness of 8 thighs with an adhesive, as shown in Fig. 2. A concrete formwork having the cross-sectional structure as shown was obtained.
得られたコ ン ク リ ー ト型枠の物性を表 1 に示す。  Table 1 shows the physical properties of the obtained concrete formwork.
こ の コ ン ク リ ー ト型枠を使用 し、 実施例 1 と同様に し てコ ン ク リ ー ト の打設実験を行なった。  Using this concrete formwork, a concrete placing test was conducted in the same manner as in Example 1.
結果を表 2 に示す。  Table 2 shows the results.
比較例 1 Comparative Example 1
実施例 1 で用いた と同様の厚さ 5 腿のブラ段の両面に 実施例 1 で用いた と同 じ原料スタ ンパブルシー ト の各 2 枚づっを接着剤で貼り合わせて厚さ 1 1 mmの第 5 図に示 す構造のコ ン ク リ ー ト型枠を得た。  The same raw material stampable sheet as used in Example 1 was adhered to both sides of the 5-thigh bra staircase with the same adhesive as used in Example 1 with an adhesive to a thickness of 11 mm. A concrete formwork having the structure shown in Fig. 5 was obtained.
得られたコ ン ク リ ー ト型枠の物性を表 1 に示す。  Table 1 shows the physical properties of the obtained concrete formwork.
こ のコ ン ク リ ー ト型枠を使用 し、 実施例 1 と同様に し て コ ン ク リ ー ト の打設実験を行なった。 結果を表 2 に示す Using this concrete formwork, a concrete placing test was performed in the same manner as in Example 1. The results are shown in Table 2.
表 1 table 1
Figure imgf000016_0001
Figure imgf000016_0001
表 2 外 観 養生時周 圧 ^度 反発高度 Table 2 Appearance Curing pressure during curing ^ degree Rebound altitude
(打設 14日後) (R0) ビンホール数 評価 (hrs) (kg/cm2) 実施例 1 125 ◎ 18 207 21 実施例 2 110 ◎ 21 216 24 実施例 3 118 ◎ 16 195 23 比較例 1 425 X 65 205 18 産業上の利用可能性 (14 days after casting) (R0) Number of binholes (hrs) (kg / cm 2 ) Example 1 125 ◎ 18 207 21 Example 2 110 ◎ 21 216 24 Example 3 118 ◎ 16 195 23 Comparative example 1 425 X 65 205 18 Industrial applicability
透水性熱可塑性樹脂層を基材熱可塑性樹脂層上に設け る こ と によ り 、 プラ スチ ッ ク製のコ ン ク リ ー ト型枠の利 点を損 う こ とな く 、 従来のプラ スチ ッ ク製の コ ン ク リ ー ト型枠よ り も養生期間を大幅に短縮する こ とができ る と い う 利点を有する。  By providing the water-permeable thermoplastic resin layer on the base thermoplastic resin layer, the advantage of the plastic concrete formwork can be maintained without deteriorating the advantages of the conventional concrete formwork. It has the advantage that the curing period can be greatly reduced compared to plastic concrete formwork.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基材熱可塑性樹脂層 と、 少な く と もその表面の 一方に設けられた透水性を有する熱可塑性樹脂層よ り な る熱可塑性樹脂製透水性コ ン ク リ ー ト型枠。 1. A thermoplastic resin permeable concrete form comprising a base thermoplastic resin layer and a thermoplastic resin layer having water permeability provided on at least one of its surfaces.
2. 透水性を有する熱可塑性樹脂層が、 繊維充塡熱 可塑性樹脂シー 卜の膨張成形シー トである請求項 1 に記 載の透水性コ ン ク リ ー ト型枠。  2. The water-permeable concrete formwork according to claim 1, wherein the water-permeable thermoplastic resin layer is an expansion molded sheet of a fiber-filled thermoplastic resin sheet.
3. 膨張倍率が 1 . 0 5 〜 3 倍である請求項 2 に記 載の透水性コ ン ク リ ー ト型枠。  3. The permeable concrete formwork according to claim 2, wherein the expansion ratio is 1.05 to 3 times.
4. 繊維がガラス繊維である請求項 2 または 3 に記 載の透水性コ ン ク リ ー ト型枠。  4. The permeable concrete formwork according to claim 2, wherein the fibers are glass fibers.
PCT/JP1994/000316 1993-03-03 1994-02-28 Water-permeable concrete formwork WO1994020704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94907696A EP0646684A4 (en) 1993-03-03 1994-02-28 Water-permeable concrete formwork.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4301393A JPH06254825A (en) 1993-03-03 1993-03-03 Water-permeable concrete frame
JP5/43013 1993-03-03

Publications (1)

Publication Number Publication Date
WO1994020704A1 true WO1994020704A1 (en) 1994-09-15

Family

ID=12652106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000316 WO1994020704A1 (en) 1993-03-03 1994-02-28 Water-permeable concrete formwork

Country Status (3)

Country Link
EP (1) EP0646684A4 (en)
JP (1) JPH06254825A (en)
WO (1) WO1994020704A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19812517C2 (en) 1998-03-21 2000-06-21 Johns Manville Int Inc Concrete formwork for the production of concrete articles
DE102004014944A1 (en) * 2004-03-26 2005-10-13 Doka Industrie Gmbh formwork component
DE102008009019B4 (en) * 2008-02-13 2011-01-05 Technische Universität Berlin Formwork for the production of concrete bodies
JP6320980B2 (en) * 2015-10-14 2018-05-09 株式会社高洋商会 Permeable formwork for concrete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188104A (en) * 1985-02-15 1986-08-21 昭和電工株式会社 Formwork for concrete
JPH028459A (en) * 1988-02-26 1990-01-11 Idemitsu N S G Kk Form for concrete placing and its manufacture
JPH04347261A (en) * 1991-05-24 1992-12-02 Unitika Ltd Water-permeable concrete form and manufacture thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621092A (en) * 1969-02-20 1971-11-16 Union Carbide Corp Stamping process
GB8400292D0 (en) * 1984-01-06 1984-02-08 Wiggins Teape Group Ltd Fibre reinforced moulded plastics articles
EP0329200A3 (en) * 1984-01-06 1992-05-20 The Wiggins Teape Group Limited Moulded fibre reinforced plastics articles
GB8400294D0 (en) * 1984-01-06 1984-02-08 Wiggins Teape Group Ltd Fibre reinforced composite plastics material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188104A (en) * 1985-02-15 1986-08-21 昭和電工株式会社 Formwork for concrete
JPH028459A (en) * 1988-02-26 1990-01-11 Idemitsu N S G Kk Form for concrete placing and its manufacture
JPH04347261A (en) * 1991-05-24 1992-12-02 Unitika Ltd Water-permeable concrete form and manufacture thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0646684A4 *

Also Published As

Publication number Publication date
EP0646684A4 (en) 1995-07-05
EP0646684A1 (en) 1995-04-05
JPH06254825A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
CN101883675B (en) Method for forming composite products by pressure, related products and apparatus
JPH1044281A (en) Composite board and manufacture thereof
JPH01317754A (en) Form composite body and manufacture thereof
CN103917349A (en) An article of manufacture and method for its preparation
JPH08207190A (en) Plastic composite panel
JPH06307075A (en) Concrete formwork having transparency
CN108316063A (en) A kind of monoblock type fiber reinforcement polyurethane foaming composite sleeper and preparation method thereof
US20080199682A1 (en) Structural Elements Made From Syntactic Foam Sandwich Panels
WO1994020704A1 (en) Water-permeable concrete formwork
KR20100086237A (en) Composition panel and manufacturing method thereof
JPH0723539U (en) Architectural panel
GB1236414A (en) Improvements in and relating to panels
US5135806A (en) Process for the manufacture of a sandwich laminate and the resultant sandwich laminate
JPH0316268B2 (en)
RU2084370C1 (en) Method for manufacturing three-layer skin of hull structural member from reinforced plastic
JPH09189127A (en) Laminated sheet form for placing concrete
JPH02277623A (en) Preparation of laminated foam
US20080230962A1 (en) Method of creating high strength expanded thermoformable honeycomb structures with cementitious reinforcement
JP2883586B2 (en) Glass fiber reinforced gypsum product and method for producing the same
JPS60131234A (en) Method of molding sandwich structure
WO1998036897A1 (en) Composite structures
JPH0128695B2 (en)
JPH11182030A (en) Resin-made form for placing concrete
JPH0970809A (en) Form made of composite molded article and its manufacture
JP2002194890A (en) Concrete placing form made of resin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994907696

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994907696

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1994907696

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994907696

Country of ref document: EP