WO1994020673A1 - Method of bleaching pulp with chlorine-free chemicals - Google Patents

Method of bleaching pulp with chlorine-free chemicals Download PDF

Info

Publication number
WO1994020673A1
WO1994020673A1 PCT/FI1993/000222 FI9300222W WO9420673A1 WO 1994020673 A1 WO1994020673 A1 WO 1994020673A1 FI 9300222 W FI9300222 W FI 9300222W WO 9420673 A1 WO9420673 A1 WO 9420673A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulp
stage
recited
ozone
adt
Prior art date
Application number
PCT/FI1993/000222
Other languages
English (en)
French (fr)
Inventor
Kaj Henricson
Bertil Stromberg
Original Assignee
A. Ahlstrom Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8537491&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1994020673(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by A. Ahlstrom Corporation filed Critical A. Ahlstrom Corporation
Priority to DE69323566T priority Critical patent/DE69323566T2/de
Priority to CA002157109A priority patent/CA2157109C/en
Priority to EP93910051A priority patent/EP0687321B1/de
Priority to BR9307858A priority patent/BR9307858A/pt
Priority to RU95122814A priority patent/RU2126471C1/ru
Priority to AU53705/94A priority patent/AU5370594A/en
Priority to JP51962394A priority patent/JP3276083B2/ja
Publication of WO1994020673A1 publication Critical patent/WO1994020673A1/en
Priority to FI954093A priority patent/FI954093A/fi
Priority to NO953444A priority patent/NO953444L/no

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/1026Other features in bleaching processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/02Washing ; Displacing cooking or pulp-treating liquors contained in the pulp by fluids, e.g. wash water or other pulp-treating agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/1026Other features in bleaching processes
    • D21C9/1036Use of compounds accelerating or improving the efficiency of the processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/1026Other features in bleaching processes
    • D21C9/1042Use of chelating agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/1057Multistage, with compounds cited in more than one sub-group D21C9/10, D21C9/12, D21C9/16
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/147Bleaching ; Apparatus therefor with oxygen or its allotropic modifications
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/147Bleaching ; Apparatus therefor with oxygen or its allotropic modifications
    • D21C9/153Bleaching ; Apparatus therefor with oxygen or its allotropic modifications with ozone
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/16Bleaching ; Apparatus therefor with per compounds
    • D21C9/163Bleaching ; Apparatus therefor with per compounds with peroxides

Definitions

  • the present invention relates to a new kind of a bleaching method for pulp by using chlorine-free chemicals.
  • the invention is especially related to ozone bleaching of pulp without preceding removal of heavy metals.
  • Typical bleaching sequences by which pulp has earlier been bleached are, for example, OOAZEZPZ, OAZEZPZ, OOAZEZP and OAZEZP. These sequences thus include one or more oxygen bleaching stages (O) , an A-stage (acid washing), an ozone stage (Z), an extraction stage (E), a second ozone stage (Z) and a peroxide stage (P), and possibly a third ozone stage (Z).
  • the extraction stage (E) may be an oxidizing peroxide extraction stage or a conventional oxidizing extraction stage.
  • the ozone bleaching stages are preferably carried out with pulp having the consistency of about 5-18%.
  • washing stages in other words bleaching stages alternate with washing stages, i.e. washers, by which the chemicals separated from the fibers as reaction products or otherwise in each bleaching stage are removed from the suspension. Since the washers form a considerable part of the investment costs in a bleaching plant, the number of the washers should, of course, be limited as much as possible, if it is only possible without risking the quality of the final product.
  • a conventional bleaching + screening plant has thus included four or five bleaching stages and one screening and/or vortex cleaning stage, which the washing stage separates from each other.
  • the present invention compresses these five to six stages into three stages and thus almost halves the investment costs of a bleaching plant and a screening plant.
  • pulp is bleached with a sequence beginning with ozone and without the removal of heavy metals preceding the ozone stage.
  • pulp is bleached with a three-stage sequence (ZT) (EOP) (ZP) without the removal of heavy metals preceding the sequence, in which
  • ZT refers to a bleaching stage with ozone, which also includes treatment of heavy metals and which stage is followed by washing and/or thickening
  • EOP refers to a bleaching stage with peroxide or oxygen and peroxide in alkali conditions and the stage is followed by washing and/or thickening
  • ZP refers to bleaching stage with ozone and peroxide without a between stage washing and which stage is followed by washing and/or thickening.
  • FIG. 1 schematically illustrates a bleaching sequence in accordance with a first exemplary embodiment of the invention
  • FIG. 2 schematically illustrates a bleaching sequence in accordance with a second embodiment of the invention
  • FIG. 3 schematically illustrates the later part of a bleaching sequence in accordance with a third embodiment of the invention
  • Fig. 4 schematically illustrates another bleaching sequence in accordance with the present invention, and especially portions thereof where acid and/or alkali may be added;
  • FIG. 5 schematically illustrates a recirculation method for washing filtrates in accordance with another embodiment of the invention
  • FIG. 6 schematically illustrates a recirculation method for washing filtrates in accordance with the second embodiment of the invention illustrated in FIGURE 2; and Fig. 7 schematically illustrates results of a research carried out with a DRUM DISPLACERTM washer.
  • a bleaching sequence is provided using a high consistency pulp tower 10, from which pulp is discharged and fed, for example, with an MC® (i.e. fluidizing) pump 12 into an ozone reactor 14, from which pulp is preferably discharged by means of a gas separator 16 into a first reaction tower 18.
  • Pulp is preferably discharged from tower 18 into a washer 22 by means of an MC® pump 20.
  • the washer may be a conventional DRUM DISPLACERTM washer or a conventional pressure diffuser. Pulp is preferably pumped from washer 22 by an MC® pump 24 into an oxygen reactor 26, and from reactor 26 into a second reaction tower 28.
  • a second washer 32 preferably a DRUM DISPLACERTM
  • ozone in a carrier gas
  • oxygen may be mixed prior to the oxygen reactor 26 with mixer 62 and the mixture of ozone and carrier gas prior to the second ozone reactor 36.
  • the mixers 60, 62 are preferably AHLMIXERTM type fluidizing mixers, which are able to mix very large amounts of gas into fiber suspensions, including medium consistency suspensions.
  • Fig. 1 teaches how, in order to adjust the pH value of the pulp for the first ozone stage and the removal of heavy metals subsequent thereto, acid may be supplied into the pulp, for example, in the pump 12.
  • complex formers such as EDTA, and/or alkali may be added to the pulp. If too much magnesium is removed from the pulp by washer 22, it may be added, for example, with the alkali either in pump 24 and/or in the discharge from the oxygen reactor 26, or in any other appropriate way.
  • Another possibility to adjust the pH of the pulp for the second ozone treatment is to feed acid subsequent to the second washer 32 in pump 34 or in some other suitable way.
  • peroxide and/or magnesium may be added into the pulp, as illustrated in Fig. 1.
  • All the reaction towers 18, 28 and 40 in Fig. 1 are shown as of the down flow type. Alternatively, they may be of the up flow type, as is shown in Fig. 2.
  • the only significant difference between Figs. 1 and 2 is the flow direction of the reaction towers.
  • components functionally equivalent to or the same as the components in the Fig. 1 embodiment are illustrated by the same reference numeral, only preceded by a "1".
  • pumps 20, 30 and 42 of Fig. 1 are replaced by pumps 120', 130' and 142', because they have been relocated at the other side of the reaction tower, in other words instead of feeding washers 22, 32 and 44 as illustrated in Fig. 1 they feed pulp to the reaction towers 118, 128 and 140 in the embodiments of Fig. 2.
  • pulp is cooked, for example with a continuous EMCC digester, sold by Kamyr Inc., of Glens Falls, New York, to a low kappa number, whereafter the kappa number is further decreased by oxygen bleaching to a value of about 14 or below.
  • a continuous EMCC digester sold by Kamyr Inc., of Glens Falls, New York
  • oxygen bleaching to a value of about 14 or below.
  • hot alkali extraction and oxygen bleaching a kappa range of 14 - 5 is obtained both with soft wood and birch.
  • a kappa number of 14 is sufficient in order to carry our the final bleaching with chlorine-free bleaching chemicals and yet reach a full brightness defined by ISO 86 (preferably ISO 88).
  • ISO 86 preferably ISO 88
  • the kraft pulp is bleached subsequent to the pulp washing and according to the invention without a separate removal of heavy metals, for example, with a sequence in accordance with Fig. 1, which is described more in detail below.
  • Pulp may be treated, if so required, with enzymes prior to the sequence in accordance with the present invention.
  • Pulp is brought from the high consistency pulp tower 10 to the first bleaching stage, which is a (ZT) stage.
  • the first bleaching stage which is a (ZT) stage.
  • pulp is bleached with ozone, the dosing being about 2-10 kg/adt, pH about 2- 7, and temperature about 40-70°C.
  • the pH value of pulp is adjusted by adding acid to the bottom of the high consistency tower 10, pump 12 (or the discharge to pump 12 as seen in Fig. 1), or chemical mixer 60.
  • the ozone having reacted, the residual gas is removed from the pulp preferably in a gas separator 16 and the treatment of heavy metals begins in the first reaction tower 18 in the T portion
  • the T portion of the (ZT) stage may be carried out, for example, in the following ways.
  • the first alternative is to allow the pH value of the pulp to decrease to the range of 2 - 4, whereby the majority of the heavy metals are dissolved into the filtrate phase and may be washed off in the thickener or washer 22 following that stage.
  • the disadvantage here is that the majority of the magnesium (Mg) is also discharged, so that it is possible that magnesium must be added to the pulp, mostly in the form of magnesium sulphate, for the oxygen and/or peroxide stages following later on in the sequence.
  • T portion of the (ZT) stage Another way to carry out the T portion of the (ZT) stage is to use complex formers, for example, EDTA.
  • the T portion of the (ZT) stage is then carried out in the pH range of about 4-7 and it is advantageous also to have the pH of Z portion of the (ZT) stage preceding T portion above 4.
  • manganese which is harmful in the oxygen stages
  • Filtrate S. of the washer 22 subsequent to the (ZT) stage may be brought to pulp washing prior to the (ZT) stage, or passed to the sewer or to the recovery of cooking chemicals.
  • the (ZT) stage is followed in Fig. 1 by an (EOP) stage.
  • the oxygen dose is about 2-6 kg/adt and the peroxide dose about 10-20 kg/adt. In some special cases it is possible to run the process completely without oxygen.
  • Temperature in the (EOP) stage is about 60-95°C, pH about 9-12, and the duration is about 2-8 hours. If required, magnesium may be added as a protective chemical.
  • the (EOP) stage is followed by washing, which gives filtrate S 2 .
  • the filtrate S 2 may be taken to pulp washing prior to or subsequent to the (ZT) stage, sewer, or recovery of chemicals.
  • the (EOP) stage is followed in Fig. 1 by a second ozone bleaching stage, i.e. an (ZP) stage.
  • the ozone portion of the (ZP) stage is normally carried out in the processes in accordance with the prior art in cold, acid conditions in order to have the ozone react properly.
  • the P portion of the (ZP) stage is carried out according to the teachings of the prior art in hot, alkali conditions in order to have the peroxide react properly.
  • the combination thereof in an economically advantageous way according to the present concepts is conventionally considered impossible.
  • the (ZP) stage the following conditions may be utilized:
  • the temperature in the ozone stage may be 50-80°C, preferably, for example, 60-70°C.
  • the pH is 4-10, preferably about 6- 10.
  • the dose in the P portion of the (ZP) stage is also small, usually less than 10 kg/adt. Normally about 3-7 kg/adt is sufficient.
  • the temperature in the peroxide stage may be dropped to the range of 60-80°C, preferably to 70-80°C.
  • the pH is 9-11, preferably about 10.
  • the duration is about 1-6 hours.
  • the pulp is washed and a filtrate S 3 is obtained.
  • the filtrate S 3 may be used for the washing of pulp in connection with the earlier bleaching stages, discharged to the sewer, or led to the recovery of cooking chemicals.
  • a vortex cleaner 66 and/or a screening plant may be added according to Fig. 3 to the last stage of the bleaching plant to precede the thickener/washer 68, which in this case does not have to be an MC® washer, as in the earlier embodiments.
  • Pulp is diluted to the consistency range of about 0.5-1.5 % after the P-tower 140, when vortex cleaning or screening with a slotted screen is used.
  • a dilution to about 2-4% is usually sufficient.
  • FIG. 5 illustrates an oxygen delignification stage 80, which is followed by a two-stage washing 82. Pulp is transferred from the washing stage to the (ZT) stage 83, and from there via washing 84 to (EOP) stage 85, and from there via washing 86 to the (ZP) stage 87, which is followed by a washing stage 88.
  • the amount of effluent, which is brought to the effluent clarification, discharge channel 90, is 0-5 m3/adt. Part of the effluent may alternatively be transferred to the manufacture of cooking chemicals, via discharge channel 92, to be used instead of fresh water. Thus the amount of effluent that must be treated is minimized.
  • Fig. 5 may further be intensified by dividing the filtrates from the washer into two fractions with different pH according to Fig. 6.
  • Fig. 6 utilizes the reference numbers of Fig. 5 with a preceding "1".
  • the washers used in Fig. 6 are manufactured and marketed by A. Ahlstrom Corporation, and known as DRUM DISPLACERTM washers.
  • the pulp for the last washer 188 comes from the alkali (ZP) stage.
  • ZP alkali
  • the first outwashed filtrate 1881 is clearly alkaline and the filtrate 1882 coming out later is less alkaline or even neutral, because water 1880 flowing to the last washer 188 is generally neutral or slightly acid.
  • the pH of the filtrates may also be adjusted by adding acid or alkali to them before they are used again. In some cases it may, for example, be necessary to add alkali to the filtrates prior to their being brought to the brown stock washing or it may be necessary to add acid in order to maintain the pH low during the removal of the metals in the (ZT) stage (point 1840). It is possible that heavy metals are thickened again and attach to the fibers, if the pH increases during washing. Thus heavy metals are entrained to the P portion of the (ZP) stage following the Z portion and disturb the peroxide stage. Preferably the pH value is maintained less than 4, or at least maintained at 4, during the removal of heavy metals.
  • the pH values of the filtrates are close to the pH values of the entering and exiting pulp, preferably closer to these than to each other.
  • the present invention also includes a new method of arranging the screening subsequent to the pulp bleaching in such a way that a separate washing between the last washing stage and screening/vortex cleaning is unnecessary, but only dilution to screening/cleaning consistency. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Paper (AREA)
  • Detergent Compositions (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
PCT/FI1993/000222 1993-03-03 1993-05-25 Method of bleaching pulp with chlorine-free chemicals WO1994020673A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE69323566T DE69323566T2 (de) 1993-03-03 1993-05-25 Verfahren zum bleichen von zellstoff mit chlorfreien chemikalien
CA002157109A CA2157109C (en) 1993-03-03 1993-05-25 Method of bleaching pulp with chlorine-free chemicals
EP93910051A EP0687321B1 (de) 1993-03-03 1993-05-25 Verfahren zum bleichen von zellstoff mit chlorfreien chemikalien
BR9307858A BR9307858A (pt) 1993-03-03 1993-05-25 Processo para o processamento de polpa que contem metais pesados tais como manganês
RU95122814A RU2126471C1 (ru) 1993-03-03 1993-05-25 Способ производства целлюлозы без применения хлорных химикатов
AU53705/94A AU5370594A (en) 1993-03-03 1993-05-25 Method of bleaching pulp with chlorine-free chemicals
JP51962394A JP3276083B2 (ja) 1993-03-03 1993-05-25 塩素を含まない薬品によるパルプ漂白法
FI954093A FI954093A (fi) 1993-03-03 1995-08-30 Menetelmä massan käsittelemiseksi kloorittomilla kemikaaleilla
NO953444A NO953444L (no) 1993-03-03 1995-09-01 Fremgangsmåte for bleking av masse med klorfrie kjemikalier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI930954 1993-03-03
FI930954A FI93232C (fi) 1993-03-03 1993-03-03 Menetelmä massan valkaisemiseksi kloorivapailla kemikaaleilla

Publications (1)

Publication Number Publication Date
WO1994020673A1 true WO1994020673A1 (en) 1994-09-15

Family

ID=8537491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI1993/000222 WO1994020673A1 (en) 1993-03-03 1993-05-25 Method of bleaching pulp with chlorine-free chemicals

Country Status (13)

Country Link
EP (2) EP0687321B1 (de)
JP (1) JP3276083B2 (de)
AT (2) ATE228181T1 (de)
AU (1) AU5370594A (de)
BR (1) BR9307858A (de)
CA (1) CA2157109C (de)
DE (2) DE69332508T2 (de)
ES (2) ES2130260T3 (de)
FI (3) FI93232C (de)
NO (1) NO953444L (de)
PT (1) PT884415E (de)
RU (1) RU2126471C1 (de)
WO (1) WO1994020673A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766414A (en) * 1995-02-21 1998-06-16 Ahlstrom Machinery Oy Method of bleaching cellulose pulp with peroxide under elevated pressure in a first vessel and atmospheric pressure in second vessel
US6547923B1 (en) 1989-05-10 2003-04-15 Andritz Oy Process for bleaching medium consistency pulp with ozone using a pressurized fluidizing mixer
WO2008060519A2 (en) * 2006-11-15 2008-05-22 International Paper Company An improved bleaching process with at least one extraction stage
US9617686B2 (en) 2012-04-18 2017-04-11 Gp Cellulose Gmbh Use of surfactant to treat pulp and improve the incorporation of kraft pulp into fiber for the production of viscose and other secondary fiber products
US9719208B2 (en) 2011-05-23 2017-08-01 Gp Cellulose Gmbh Low viscosity kraft fiber having reduced yellowing properties and methods of making and using the same
US9777432B2 (en) 2009-05-28 2017-10-03 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US9951470B2 (en) 2013-03-15 2018-04-24 Gp Cellulose Gmbh Low viscosity kraft fiber having an enhanced carboxyl content and methods of making and using the same
US10000890B2 (en) 2012-01-12 2018-06-19 Gp Cellulose Gmbh Low viscosity kraft fiber having reduced yellowing properties and methods of making and using the same
US10138598B2 (en) 2013-03-14 2018-11-27 Gp Cellulose Gmbh Method of making a highly functional, low viscosity kraft fiber using an acidic bleaching sequence and a fiber made by the process
US10151064B2 (en) 2013-02-08 2018-12-11 Gp Cellulose Gmbh Softwood kraft fiber having an improved α-cellulose content and its use in the production of chemical cellulose products
US10865519B2 (en) 2016-11-16 2020-12-15 Gp Cellulose Gmbh Modified cellulose from chemical fiber and methods of making and using the same
SE2250748A1 (en) * 2022-06-20 2023-12-21 Valmet Oy Method for bleaching pulp from recycled textile material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910027B1 (fr) * 2006-12-13 2009-11-06 Itt Mfg Enterprises Inc Procede de blanchiment des pates papeteries chimiques par traitement final a l'ozone a haute temperature
FR3007044B1 (fr) * 2013-06-13 2016-01-15 Air Liquide Procede de traitement des pates papetieres chimiques par traitement a l'ozone en presence d'ions magnesium
AT515152B1 (de) * 2013-11-26 2015-12-15 Chemiefaser Lenzing Ag Verfahren zum Vorbehandeln von rückgewonnenen Baumwollfasern zur Verwendung bei der Herstellung von Formkörpern aus regenerierter Cellulose

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450044A (en) * 1978-04-04 1984-05-22 Myrens Verksted A/S Method for bleaching oxygen delignified cellulose-containing pulp with ozone and peroxide
EP0426652A1 (de) * 1989-10-30 1991-05-08 Lenzing Aktiengesellschaft Verfahren zum chlorfreien Bleichen von Zellstoffen
EP0512978A1 (de) * 1991-05-02 1992-11-11 VOEST-ALPINE Industrieanlagenbau GmbH Verfahren zum Bleichen von xylan- und lignocellulosehältigen Materialien

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310384A (en) * 1979-01-11 1982-01-12 Weyerhaeuser Company Reducing chemical transfer between treatment stages
FI74752C (fi) * 1986-03-20 1992-12-01 Ahlstroem Oy Foerfarande och anordning foer tvaettning av cellulosa
DE402335T1 (de) * 1989-06-06 1992-04-09 Eka Nobel Ab, Surte, Se Verfahren zum bleichen von lignocellulose enthaltenden zellstoffen.
US5567262A (en) * 1991-04-16 1996-10-22 Ahlstrom Machinery Inc. Two stage pressure diffuser
SE468355B (sv) * 1991-04-30 1992-12-21 Eka Nobel Ab Blekning av kemisk massa genom behandling med komplexbildare och ozon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450044A (en) * 1978-04-04 1984-05-22 Myrens Verksted A/S Method for bleaching oxygen delignified cellulose-containing pulp with ozone and peroxide
EP0426652A1 (de) * 1989-10-30 1991-05-08 Lenzing Aktiengesellschaft Verfahren zum chlorfreien Bleichen von Zellstoffen
EP0512978A1 (de) * 1991-05-02 1992-11-11 VOEST-ALPINE Industrieanlagenbau GmbH Verfahren zum Bleichen von xylan- und lignocellulosehältigen Materialien

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547923B1 (en) 1989-05-10 2003-04-15 Andritz Oy Process for bleaching medium consistency pulp with ozone using a pressurized fluidizing mixer
US5766414A (en) * 1995-02-21 1998-06-16 Ahlstrom Machinery Oy Method of bleaching cellulose pulp with peroxide under elevated pressure in a first vessel and atmospheric pressure in second vessel
WO2008060519A2 (en) * 2006-11-15 2008-05-22 International Paper Company An improved bleaching process with at least one extraction stage
WO2008060519A3 (en) * 2006-11-15 2008-08-14 Int Paper Co An improved bleaching process with at least one extraction stage
US10731293B2 (en) 2009-05-28 2020-08-04 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US10106927B2 (en) 2009-05-28 2018-10-23 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US9777432B2 (en) 2009-05-28 2017-10-03 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US9909257B2 (en) 2009-05-28 2018-03-06 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US9926666B2 (en) 2009-05-28 2018-03-27 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
USRE49570E1 (en) 2009-05-28 2023-07-04 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US9970158B2 (en) 2009-05-28 2018-05-15 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US11111628B2 (en) 2009-05-28 2021-09-07 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US9719208B2 (en) 2011-05-23 2017-08-01 Gp Cellulose Gmbh Low viscosity kraft fiber having reduced yellowing properties and methods of making and using the same
US10294613B2 (en) 2011-05-23 2019-05-21 Gp Cellulose Gmbh Softwood kraft fiber having improved whiteness and brightness and methods of making and using the same technical field
US10000890B2 (en) 2012-01-12 2018-06-19 Gp Cellulose Gmbh Low viscosity kraft fiber having reduced yellowing properties and methods of making and using the same
US10995453B2 (en) 2012-01-12 2021-05-04 Gp Cellulose Gmbh Low viscosity kraft fiber having reduced yellowing properties and methods of making and using the same
US10597819B2 (en) 2012-01-12 2020-03-24 Gp Cellulose Gmbh Low viscosity kraft fiber having reduced yellowing properties and methods of making and using the same
US9617686B2 (en) 2012-04-18 2017-04-11 Gp Cellulose Gmbh Use of surfactant to treat pulp and improve the incorporation of kraft pulp into fiber for the production of viscose and other secondary fiber products
US10407830B2 (en) 2012-04-18 2019-09-10 Gp Cellulose Gmbh Use of surfactant to treat pulp and improve the incorporation of kraft pulp into fiber for the production of viscose and other secondary fiber products
US10151064B2 (en) 2013-02-08 2018-12-11 Gp Cellulose Gmbh Softwood kraft fiber having an improved α-cellulose content and its use in the production of chemical cellulose products
US10138598B2 (en) 2013-03-14 2018-11-27 Gp Cellulose Gmbh Method of making a highly functional, low viscosity kraft fiber using an acidic bleaching sequence and a fiber made by the process
US10294614B2 (en) 2013-03-15 2019-05-21 Gp Cellulose Gmbh Low viscosity kraft fiber having an enhanced carboxyl content and methods of making and using the same
US10753043B2 (en) 2013-03-15 2020-08-25 Gp Cellulose Gmbh Low viscosity kraft fiber having an enhanced carboxyl content and methods of making and using the same
US10550516B2 (en) 2013-03-15 2020-02-04 Gp Cellulose Gmbh Low viscosity kraft fiber having an enhanced carboxyl content and methods of making and using the same
US10174455B2 (en) 2013-03-15 2019-01-08 Gp Cellulose Gmbh Low viscosity kraft fiber having an enhanced carboxyl content and methods of making and using the same
US9951470B2 (en) 2013-03-15 2018-04-24 Gp Cellulose Gmbh Low viscosity kraft fiber having an enhanced carboxyl content and methods of making and using the same
US10865519B2 (en) 2016-11-16 2020-12-15 Gp Cellulose Gmbh Modified cellulose from chemical fiber and methods of making and using the same
SE2250748A1 (en) * 2022-06-20 2023-12-21 Valmet Oy Method for bleaching pulp from recycled textile material
SE545759C2 (en) * 2022-06-20 2024-01-02 Valmet Oy Method for bleaching pulp from recycled textile material

Also Published As

Publication number Publication date
JP3276083B2 (ja) 2002-04-22
FI954093A0 (fi) 1995-08-30
BR9307858A (pt) 1996-02-27
CA2157109C (en) 2002-09-03
DE69323566D1 (de) 1999-03-25
FI930954A (fi) 1994-09-04
JPH08509781A (ja) 1996-10-15
ATE228181T1 (de) 2002-12-15
EP0687321A1 (de) 1995-12-20
CA2157109A1 (en) 1994-09-15
EP0884415B1 (de) 2002-11-20
FI934036A (fi) 1994-09-04
EP0884415A1 (de) 1998-12-16
NO953444L (no) 1995-10-19
FI98223B (fi) 1997-01-31
ES2186948T3 (es) 2003-05-16
DE69323566T2 (de) 1999-07-15
AU5370594A (en) 1994-09-26
FI93232B (fi) 1994-11-30
FI934036A0 (fi) 1993-09-15
NO953444D0 (no) 1995-09-01
FI930954A0 (fi) 1993-03-03
PT884415E (pt) 2003-03-31
RU2126471C1 (ru) 1999-02-20
ES2130260T3 (es) 1999-07-01
EP0687321B1 (de) 1999-02-17
FI954093A (fi) 1995-10-17
ATE176808T1 (de) 1999-03-15
FI93232C (fi) 1995-03-10
DE69332508D1 (de) 2003-01-02
DE69332508T2 (de) 2003-07-03

Similar Documents

Publication Publication Date Title
US6010594A (en) Method of bleaching pulp with chlorine-free chemicals wherein a complexing agent is added immediately after an ozone bleach stage
CA2157109C (en) Method of bleaching pulp with chlorine-free chemicals
CA2235325C (en) Acid treatment of pulp at high temperature in connection with bleaching
US4946556A (en) Method of oxygen delignifying wood pulp with between stage washing
WO1994012721A1 (en) Process for delignification of lignocellulose-containing pulp
US6514380B1 (en) Treatment of chemical pulp
CA2111519C (en) Oxygen/ozone/peracetic acid delignification and bleaching of cellulosic pulps
RU2148118C1 (ru) Двустадийная делигнификация лигноцеллюлозной массы кислородом
CA2031848C (en) Method of bleaching pulp
US6605181B1 (en) Peroxide bleach sequence including an acidic bleach stage and including a wash stage
RU95122814A (ru) Способ производства целлюлозы без применения хлорных химикатов
AU665461B2 (en) Method of treating process water
CA2031850C (en) Method of bleaching pulp
CA2163116C (en) Method of bleaching pulp without using chlorine chemicals
EP1644574B1 (de) Verfahren zur behandlung von pulpe in zusammenhang mit dem bleichen von zellstoff
EP0720676A1 (de) Verbessertes verfahren zum bleichen von lignocellulosischem zellstoff
US20020056533A1 (en) Method of treating chemical cellulose pulp
US6375797B1 (en) Bleaching chemical pulp in a PkDQ-Po Sequence
WO1995008021A1 (en) Eop stage for chlorine free bleaching
JPH05247864A (ja) セルロースパルプの漂白法
WO1998014657A1 (en) Oxidation of disturbing metal ions in bleaching processes
CA2179700A1 (en) Method and apparatus for treating pulp
WO2007108760A1 (en) Final bleaching of cellulose pulp with ozone

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA FI JP NO NZ RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2157109

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993910051

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 274762

Country of ref document: NZ

Ref document number: 954093

Country of ref document: FI

ENP Entry into the national phase

Ref document number: 1995 530276

Country of ref document: US

Date of ref document: 19951018

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1993910051

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 929082

Country of ref document: US

Date of ref document: 19970915

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1993910051

Country of ref document: EP