WO1994018543A1 - Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance - Google Patents

Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance Download PDF

Info

Publication number
WO1994018543A1
WO1994018543A1 PCT/FR1994/000120 FR9400120W WO9418543A1 WO 1994018543 A1 WO1994018543 A1 WO 1994018543A1 FR 9400120 W FR9400120 W FR 9400120W WO 9418543 A1 WO9418543 A1 WO 9418543A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
branch
filters
optical
substance
Prior art date
Application number
PCT/FR1994/000120
Other languages
English (en)
Inventor
Robert Delignieres
Christian Durand
Original Assignee
Institut Français Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Français Du Petrole filed Critical Institut Français Du Petrole
Priority to US08/307,782 priority Critical patent/US5680220A/en
Priority to JP6517712A priority patent/JPH08501394A/ja
Priority to DE69413331T priority patent/DE69413331T2/de
Priority to EP94905765A priority patent/EP0635127B1/fr
Publication of WO1994018543A1 publication Critical patent/WO1994018543A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1748Comparative step being essential in the method
    • G01N2021/1751Constructive features therefore, e.g. using two measurement cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • G01N2021/3137Determining multicomponents by multiwavelength light with selection of wavelengths after the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3166Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using separate detectors and filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3181Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value

Definitions

  • the present invention relates to a device for optically measuring characteristics of a substance, such as its absorbance for example, and a method for its implementation.
  • each of the filters is directed so that it alternately passes through the cell containing the substance to be analyzed and an optical bypass branch including for example a neutral filter, an optical bypass fiber (bypass), or even a reference cell etc.
  • the intensity of the successive emerging rays is measured and the various measurements are processed by a management and calculation unit, which determines the optical characteristics of the substance such as true absorbance, which are independent of the possible fluctuations of the light source.
  • the method used provides precise and reliable results but the device which is used for its implementation is relatively expensive because it comprises several optical switches whose unit cost is relatively high.
  • the object of the device according to the invention is also to measure optical characteristics of a reactive substance contained in a transparent cell, such as its true absorbance but its production is simpler and less expensive.
  • It comprises at least one light source, a first optical branch and a second optical branch selectively allowing the passage of light through and outside the cell, an optical system for forming rays having passed through the first branch or the second optical branch and a selective optical filter from a set of three selective filters centered the first on a first wavelength corresponding to the isobestic point of the reactive substance, the second on a wavelength in a part of the spectrum of the light where the substance is the most sensitive and the third, in another part of the spectrum where the substance is the least sensitive, means for measuring the intensity of the light having passed through the optical system, a control assembly , and selection means controlled by said control assembly and an electrical power supply.
  • the device is characterized in that the selection means consist of two optical shutters arranged respectively in the first branch and the second branch, and electrical switching means.
  • the control assembly includes, for example, a control processor, a unit for acquiring light intensity measurement signals and an interface assembly for controlling said selection means.
  • the optical system comprises bypass means for directing the light rays having passed through the first or the second branch towards the three filters
  • the measurement means comprise three detectors for measuring the light having passed through the three filters
  • the electrical switching means comprise elements for intermittently connecting said detectors with said control assembly and a switch for connecting the lamp to the power supply unit intermittently.
  • the device comprises three light sources
  • the optical system comprises bypass means for directing the light from said sources respectively through said three selective filters and dividing means for applying the filtered light to the first and second branch
  • the measurement means comprise a single detector for measuring the light emanating from one or the other branch
  • the electrical switching means comprise elements for the selective supply of one of the three light sources.
  • the second optical branch comprises for example an optical fiber possibly associated with a neutral filter or a cell identical to the first and containing a neutral substance.
  • the method according to the invention is characterized according to one embodiment, in that it comprises the automatic carrying out of measurement cycles under the control of the control assembly, each of them comprising:
  • a measurement step in which the light having passed through the second branch is successively directed through the three filters and the detected values of the light intensities from the three filters are also acquired; and - characteristics of the reactive substance are determined by a combination of the intensity values measured by each detector, respectively during the two preceding stages.
  • each measurement cycle can also include: a measurement step in which the light having successively passed through the three filters is directed towards the cell containing the reactive substance and the values detected by the detector are acquired; a measurement step in which the light having successively passed through the three filters is directed towards the reference medium and the values detected by the detector are also acquired; and
  • - characteristics of the reactive substance are determined by a combination of the intensity values measured by the detector and emanating from the same lamp.
  • the device comprises only two optical shutters, the sequence of the comparative measurement operations necessary for the acquisition of the measurements being controlled by electrical switches that are easy to perform. The cost and reliability of the device are therefore significantly reduced.
  • the device can also include means for measuring the ambient temperature and the supply voltage of each lamp.
  • Other characteristics and advantages of the device according to the invention and of the method of implementation will appear better on reading the description below of two embodiments described only by way of examples with reference to the accompanying drawings where: - FigJ schematically shows a first embodiment of the device with a single source and selective filtering operated on the emerging light;
  • FIG.2 shows schematically a second embodiment with selective lighting of the cell by three separate beams
  • FIG.3 shows an example of flowchart of implementation of the embodiment of FigJ;
  • - Fig.4 details the step of acquiring measurements in the flow diagram of Fig.3
  • - Fig.5 shows an example of a flowchart for implementing the re-use mode of Fig.2;
  • pH pKi + log x / (l-x) (1), where pKi is a constant and x is the basic fraction of the substance.
  • the absorbance is expressed as a function of the incident intensity Ii applied to the cell and of the intensity which emerges therefrom, by the relation:
  • the absorbance A values are subject to significant fluctuations if the measurement is only made due to the instability of the lamp.
  • the color temperature may vary due to various causes relating to the lamp itself: progressive vaporization of the filament, aging of the envelope, etc., and the instability of the power supply. This results in a notable modification of the shape of the frequency spectrum of the source. It is observed, for example, that the color temperature of the source can decrease over time by more than 10%, which results in significant variations in the ratios between the light intensities applied to the different filters with the result of false measurements.
  • the device comprises a light source 1 such as a halogen lamp with tungsten filament.
  • the light coming from the source 1 is subdivided by an optical separator 2 into two light brushes which are directed by means of optical fibers 11, 12 for example, the first, towards a main optical branch comprising a cell 3 containing a reactive substance which one wants to measure the color variations, followed by a first optical shutter 01 (4), the second, towards a derived optical branch to form a beam passing outside the cell 3.
  • This derived branch comprises for example a neutral filter 5, the transmittance of which is chosen to be substantially equal to the average transmittance of the cell 3, followed by a second optical shutter 02 (6).
  • the outputs of the two switches 4, 6 are connected to an optical node 7.
  • the light beam coming from the optical node 7, selectively coming from one or the other branch, is also subdivided by an optical splitter 8 into three beams which are directed by three optical fibers 13, 14, 15 respectively towards three colored filters FI, F2, F3. These three filters let pass respectively the wavelengths 494 nm, 600 nm and 730nm for example.
  • the first L1 corresponds to the so-called isobestic point of the coloring substance where the absorbance of the basic fraction of the substance is equal to that of its acid fraction and therefore independent of the pH value.
  • the second L2 is the one for which the colored substance reacts the most to variations in the parameter to be measured.
  • the third L3 corresponds to a wavelength for which the absorbance of the colored substance does not undergo any variation.
  • Each of the three filters FI, F2, F3 is doubled for example with a neutral filter whose transmittance is chosen so as to balance the light intensities passing through the three branches 13, 14, 15.
  • the light having passed through the three colored filters respectively FI, F2, F3, is applied to three photoelectric detectors Dl, D2, D3.
  • the signals they deliver are applied to three inputs of a multiplexer M.
  • the device is managed by a control assembly 9 comprising a control processor 10, an acquisition unit 11 connected to the output of the multiplexer M and an interface assembly 12 for controlling the optical shutters 4, 6 and of the multiplexer M.
  • the device also comprises an electric power supply unit 13 such as an electric accumulator in the case of an autonomous operation of the device, this block being connected to the lamp 1 by means of a switch II also controlled by the interface assembly 12.
  • the device also includes a thermal probe 14 disposed in the vicinity of the elements of the device for measuring the ambient temperature, this probe being connected to an input of the multiplexer M, as well as a voltmeter to measure the voltage delivered by the power supply unit 13.
  • the measurement method that is applied makes it possible to disregard possible fluctuations in the light intensity of the source by determining each absorbance value from measurements made by the same detector.
  • each measurement cycle firstly switches on the lamp 1 by closing the switch 14 followed by a series of 8, 12 or 16 measurements called "'offset"where, the shutters 01, 02 being closed, the noise signals affecting the detectors Dl, D2, D3 are measured in sequence by a sequential control of the muliplexer M, these signals being acquired and digitized by the acquisition assembly 1 1.
  • the noise signals having been measured, we then proceed by opening the shutter 01, to a sequence of measurements of the light having passed through the cell 3 on the main branch 11 and successively filtered through the filters FI, F2, F3.
  • By opening the shutter 02 and following a similar sequence we then acquire measurements of the incident light from the source which has passed through the filter. neutral 5 of the branch branch 12 then successively the filters FI to F3.
  • account is taken of the temperature and the effective voltage applied to the lamp 1 so as to minimize the errors. It can be seen that measurement errors when the temperature goes from 20 ° C to 60 ° C are of the order of 4%.
  • the processor 12 is adapted to apply to the measurements a correction as a function of the temperature variation, such as a linear correction for example. If we want to minimize measurement errors even better, we can also take into account variations in the electrical voltage (due in the case of an autonomous supply, to the discharge of the accumulator), which have the effect of vary the light intensity of the lamp 1. Taking these variations in temperature and electrical voltage into account, precise measurements can be obtained to within 1% 0 .
  • the above embodiment is suitable if the cell contains a dye which is not appreciably affected by being directly illuminated by the lamp 1 and thus receiving the entire light spectrum. Otherwise, it is preferable to use the embodiment of Fig. 2.
  • the main branch 11 constituted by the cell 3 and the optical shutter 4, and the derived branch comprising for example a neutral filter are connected to an optical separator 16 connected to an optical selection means S with three branches l'3 , l'4, l'5.
  • Each of them comprises a lamp respectively L1, L2, L3, analogous to the lamp 1 (FigJ) which are connected to the power supply unit 13 respectively by three switches 12, 13, 14 controlled by the interface circuit 12.
  • the light from these three lamps is filtered respectively by the three previous color filters FI, F2, F3.
  • the light filtered by these three filters is directed via an optical node 17, towards the entry of the optical separator 16.
  • the light coming from the two branches 11, 12 is applied to a single photoelectric detector D.
  • a temperature probe 14 is also connected to the input of the acquisition unit 1 1 by means of a switch 15 controlled by the interface assembly 12.
  • a voltmeter 15 measuring the electric voltage applied to the lamps L1 to L3 is interposed between them and the power supply unit 13, the signal from the voltmeter being applied to the acquisition unit 11 by means of a switch 16.
  • each measurement cycle comprises (FIG. 5,6) three identical sequences implementing successively the lamps L1, L2 and L3.
  • Each of the successive sequences comprises the lighting of the corresponding lamp, L1 for the first for example, and, the shutters 01 and 02 being closed, the signal delivered by the single photoelectric detector D is acquired in the absence of light ( offset voltage). Then in a first opening time interval of the shutter 01, several successive measurements of the signal from the detector D are carried out. The previous operation is repeated for the lamps L2 and L3 successively.
  • Each sequence ends with an acquisition of the electric voltage measured by the voltmeter 15. After the three preceding sequences, each cycle is completed by an acquisition of the ambient temperature measured by the sensor 14.
  • the light intensity measurements are combined to obtain the absorbance values A1 to A3 and deduce therefrom for example the pH of the solution contained in cell 3.
  • the different branches or paths optics for directing light through the cell 3, the neutral filter 5 and the color filters can be constituted by optical fibers but they can be obtained both by conventional optical convergence or divergence means ("aerial" optics) .

Abstract

Suivant un premier mode de réalisation, le dispositif comporte une source lumineuse (1) éclairant deux branches optiques parallèles (11, 12) controlées respectivement par deux obturateurs optiques (4, 6) et comportant l'une, une cellule transparente (3) contenant une substance à étudier, l'autre, servant à dériver la lumière de la source. La lumière émanant successivement de l'une et l'autre branche est appliquée sélectivement à trois filtres colorés (F1-F3) filtrant trois longueurs d'onde choisies en fonction de la substance à étudier. On mesure par trois détecteurs (D1 à D3) les intensités lumineuses successives ayant traversé chacun des filtres et l'on combine les mesures au moyen d'un ensemble de pilotage (9). On peut réaliser des séquences de mesure analogues avec un mode de réalisation comportant trois sources lumineuses et un seul détecteur. Application à la détermination du pH d'une substance par exemple.

Description

DISPOSITIF PERFECTIONNE ET METHODE POUR MESURER OPTIQUEMENT DES CARACTERISTIQUES D'UNE SUBSTANCE
La présente invention concerne un dispositif pour mesurer optiquement des caractéristiques d'une substance, telles que son absorbance par exemple, et une méthode pour sa mise en oeuvre.
Dans la demande de brevet français EN 92/04239, est décrit un dispositif pour mesurer l'absorbance optique vraie d'une substance contenue dans une cellule. Par des moyens de commutation optique, on envoie de la lumière issue d'une source de lumière telle qu'une lampe halogène dont le spectre de fréquence est connu, successivement sur trois filtres optiques de longueurs d'onde respectives bien définies. La première correspond au point isobestique de la substance colorant où l'absorbance de la fraction basique de la substance est égale à celle de sa fraction acide et donc indépendante de la valeur du pH. La deuxième est dans une partie du spectre où la substance réagit le plus aux variations du paramètre à mesurer. La troisième est dans une partie du spectre où l'absorbance de la substance ne subit sensiblement aucune variation. On dirige la lumière issue de chacun des filtres de façon qu'elle traverse alternativement la cellule contenant la substance à analyser et une branche optique de dérivation incluant par exemple un filtre neutre, une fibre optique de dérivation (by-pass), ou encore une cellule de référence etc. L'intensité des rayons émergents successifs est mesurée et les différentes mesures sont traitées par un ensemble de gestion et de calcul, qui détermine des caractéristiques optiques de la substance telle que l'absorbance vraie, qui sont indépendantes des fluctuations possibles de la source lumineuse.
La méthode employée fournit des résultats précis et fiables mais le dispositif qui est utilisé pour sa mise en , oeuvre est relativement onéreux du fait q u'il comporte pl usieurs commutateurs optiques dont le coût unitaire est relativement élevé. Le dispositif selon l'invention a pour objet aussi de mesurer des caractéristiques optiques d'une substance réagissante contenue dans une cellule transparente, telles que son absorbance vraie mais sa réalisation est plus simple et moins onéreuse. Il comporte au moins une source lumineuse, une première branche optique et une deuxième branche optique permettant sélectivement le passage de la lumière au travers de la cellule et à l'extérieur de celle-ci, un système optique pour former des rayons ayant traversé la première branche ou la deuxième branche optique et un filtre optique sélectif parmi un ensemble de trois filtres sélectifs centrés le premier sur une première longueur d'onde correspondant au point isobestique de la substance réagissante, le deuxième, sur une longueur d'onde dans une partie du spectre de la lumière où la substance est la plus sensible et le troisième, dans une autre partie du spectre où la substance est la moins sensible, des moyens de mesure de l'intensité de la lumière ayant traversé le système optique, un ensemble de pilotage, et des moyens de sélection contrôlés par ledit ensemble de pilotage et un bloc d'alimentation électrique. Le dispositif est caractérisé en ce que les moyens de sélection sont constitués de deux obturateurs optiques disposés respectivement dans la première branche et la deuxième branche, et des moyens de commutation électrique.
L'ensemble de pilotage comporte par exemple un processeur de commande, une unité d'acquisition des signaux de mesure d'intensité lumineuse et un ensemble d'interface pour contrôler lesdits moyens de sélection.
Suivant un premier mode de réalisation, il comporte une source de lumière unique éclairant les deux branches et le système optique comporte des moyens de dérivation pour diriger vers les trois filtres les rayons lumineux ayant traversé la première ou la deuxième branche, les moyens de mesure" comportent trois détecteurs pour mesurer la lumière ayant traversé les trois filtres, et les moyens de commutation électrique comportent des éléments pour connecter par intermittence lesdits détecteurs avec ledit ensemble de pilotage et un commutateur pour connecter la lampe au bloc d'aliment tion électrique par intermittence.
Suivant un autre mode de réalisation, le dispositif comporte trois sources lumineuses, le système optique comporte des moyens de dérivation pour diriger la lumière desdites sources respectivement au travers desdits trois filtres sélectifs et des moyens diviseurs pour appliquer la lumière filtrée à la première et la deuxième branche, les moyens de mesure comportent un détecteur unique pour mesurer la lumière émanant de l'une ou l'autre branche, et les moyens de commutation électrique comportent des éléments pour l'alimentation sélective de l'une des trois sources lumineuses.
La deuxième branche optique comporte par exemple une fibre optique associée éventuellement à un filtre neutre ou une cellule identique à la première et contenant une substance neutre.
La méthode selon l'invention est caractérisée suivant un mode de réalisation, en ce qu'elle comporte la réalisation automatique de cycles de mesure sous le contrôle de l'ensemble de pilotage, chacun d'eux comportant :
- une étape de mesure où l'on dirige la lumière ayant traversé la cellule successivement au travers des trois filtres et on acquiert les valeurs détectées des intensités lumineuses issues des trois filtres.
- une étape de mesure où l'on dirige la lumière ayant traversé la deuxième branche successivement au travers des trois filtres et on acquiert également les valeurs détectées des instensités lumineuses issues des trois filtres; et - on détermine des caractéristiques de la substance réagissante par une combinaison des valeurs d'intensité mesurées par chaque détecteur, respectivement aux cours des deux étapes précédentes.
Dans un autre mode de réalisation du dispositif, chaque cycle de mesure peut aussi comporter : - une étape de mesure où l'on dirige la lumière ayant traversé successivement les trois filtres vers la cellule contenant la substance réagissante et on acquiert les valeurs détectées par le détecteur; - une étape de mesure où l'on dirige la lumière ayant traversé successivement les trois filtres vers le milieu de référence et on acquiert aussi les valeurs détectées par le détecteur; et
- on détermine des caractéristiques de la substance réagissante par une combinaison des valeurs d'intensité mesurées par le détecteur et émanant de la même lampe.
Quel que soit le mode de réalisation employé, le dispositif ne comporte que deux obturateurs optiques, la séquence des opérations de mesure comparée nécessaire à l'acquisition des mesures étant contrôlée par des commutations électriques faciles à réaliser. Le coût et la fiabilité du dispositif sont donc diminués de façon importante.
Pour améliorer encore la précision des mesures, le dispositif peut aussi comporter des moyens de mesure de la température ambiante et de la tension d'alimentation de chaque lampe. D'autres caractéristiques et avantages du dispositif selon l'invention et de la méthode de mise en oeuvre, apparaîtront mieux à la lecture de la description ci-après de deux modes de réalisation décrits seulement à titre d'exemples en se référant aux dessins annexés où : - la FigJ montre schématiquement un premier mode de réalisation du dispositif avec une source unique et filtrage sélectif opéré sur la lumière émergente;
- la Fig.2 montre schématiquement un deuxième mode de réalisation avec éclairage sélectif de la cellule par trois faisceaux distincts;
- la Fig.3 montre un exemple d'organigramme de mise en oeuvre du mode de réalisation de la FigJ ;
- la Fig.4 détaille l'étape d'acquisition des mesures dans l'organigramme de la Fig.3; - la Fig.5 montre un exemple d'organigramme de mise en oeuvre du mode de réilisation de la Fig.2; et
- la Fig.6 détaille pour chaque lampe les opérations effectuées.
On rappelle tout d'abord que le pH d'une solution se calcule par la relation: pH = pKi + log x/(l-x) (1), où pKi est une constante et x est la fraction basique de la substance. Ce paramètre x est reliée à l'absorbance A de la substance par la relation x = A/(c.l. ) (2) où c représente la concentration, 1, la longueur du trajet optique traversé par les rayons et , le coefficient d'extinction de la cellule. L'absorbance s'exprime en fonction de l'intensité incidente Ii appliquée à la cellule et de l'intensité le qui en émerge, par la relation :
A = log (3)
Les valeurs de l'absorbance A sont soumises à des fluctuations importantes si l'on procède uniquement à la mesure de le du fait de l'instabilité de la lampe. On sait en effet que les caractéristiques d'une telle source varient au cours du temps. La température de couleur par exemple est susceptible de varier en raison de causes diverses tenant à la lampe elle-même : vaporisation progressive du filament, vieillissement de l'enveloppe etc, et à l'instabilité de l'alimentation électrique. Il en résulte une modification notable de la forme du spectre de fréquence de la source. On observe par exemple que la température de couleur de la source peut diminuer au cours du temps de plus de 10%, ce qui se traduit par des variations importantes des rapports entre les intensités lumineuses appliquées aux différents filtres avec pour conséquence des fausses mesures.
De par sa structure et son mode de mise en oeuvre, le dispositif selon l'invention permet justement de faire abstraction des variations de caractéristiques de la source au cours du temps. Suivant le premier mode de réalisation, le dispositif comporte une source lumineuse 1 telle qu'une lampe halogène à filament de tungstène. La lumière issue de la source 1 est subdivisée par un séparateur optique 2 en deux pinceaux lumineux qui sont dirigés au moyen de fibres optiques 11, 12 par exemple, le premier, vers une branche optique principale comportant une cellule 3 contenant une substance réactive dont on veut mesurer les variations de couleur, suivie d'un premier obturateur optique 01(4), le deuxième, vers une branche optique dérivée pour former un faisceau passant à l'extérieur de la cellule 3. Cette branche dérivée comporte par exemple un filtre neutre 5 dont la transmittance est choisie sensiblement égale à la transmittance moyenne de la cellule 3, suivi d'un deuxième obturateur optique 02(6). Les sorties des deux commutateurs 4, 6 sont connectées à un noeud optique 7.
Le faisceau de lumière issu du noeud optique 7, provenant sélectivement de l'une ou l'autre branche, est subdivisée également par un séparateur optique 8 en trois faisceaux qui sont dirigés par trois fibres optiques 13, 14, 15 respectivement vers trois filtres colorés FI , F2, F3. Ces trois filtres laissent passer respectivement les longueurs d'onde 494 nm, 600 nm et 730nm par exemple. La premier Ll correspond au point dit isobestique de la substance colorante où l'absorbance de la fraction basique de la substance est égale à celle de sa fraction acide et donc indépendante de la valeur du pH. La deuxième L2 est celle pour laquelle la substance colorée réagit le plus aux variations du paramètre à mesurer. La troisième L3 correspond à une longueur d'onde pour laquelle l'absorbance de la substance colorée ne subit aucune variation. Chacun des trois filtres FI, F2, F3 est doublé par exemple d'un filtre neutre dont la transmittance est choisie de façon à équilibrer les intensités lumineuses passant dans les trois branches 13, 14, 15. La lumière ayant traversé respectivement les trois filtres colorés FI , F2, F3 , est appliquée à trois détecteurs photo-électriques Dl, D2, D3. Les signaux qu'ils délivrent sont appliqués à trois entrées d'un multiplexeur M. La gestion du dispositif est assurée par un ensemble de pilotage 9 comportant un processeur de commande 10, une unité d'acquisition 1 1 connecté à la sortie du multiplexeur M et un ensemble d'interface 12 pour la commande des obturateurs optiques 4, 6 et du multiplexeur M. Le dispositif comporte encore un bloc d'alimentation électrique 13 tel qu'un accumulateur électrique dans le cas d'un fonctionnement autonome du dispositif, ce bloc étant connecté à la lampe 1 par l'intermédiaire d'un interrupteur I I également commandé par l'ensemble d'interface 12. De préférence, le dispositif comporte aussi une sonde thermique 14 disposée au voisinage des éléments du dispositif pour mesurer la température ambiante, cette sonde étant reliée à une entrée du multiplexeur M, ainsi qu'un voltmètre pour mesurer la tension délivrée par le bloc d'alimentation 13.
On peut sans inconvénient intervertir dans chacune des branches 11, 12, l'obturateur 01 ou 02 et l'élément associé 3 ou 5.
La méthode de mesure que l'on applique permet de faire abstraction des fluctuations possibles d'intensité lumineuse de la source en déterminant chaque valeur d'absorbance à partir de mesures faites par un même détecteur.
Comme l'indique les organigrammes des Fig.3, 4, chaque cycle de mesure comporte tout d'abord un allumage de la lampe 1 par fermeture de l'interrupteur 14 suivi d'une série de 8, 12 ou 16 mesures dites d"' offset" où, les obturateurs 01 , 02 étant fermés, on mesure en séquence les signaux de bruit affectant les détecteurs Dl , D2, D3 par une commande séquentielle du muliplexeur M, ces signaux étant acquis et numérisés par l'ensemble d'acquisition 1 1. Les signaux de bruit ayant été mesurés, on procède ensuite en ouvrant l'obturateur 01 , à une séquence de mesures de la lumière ayant traversé la cellule 3 sur la branche principale 11 et successivement filtrée à travers les filtres FI , F2, F3. Par ouverture de l'obturateur 02 et suivant une séquence analogue, on procède ensuite à l'acquisition de mesures de la lumière incidente issue de la source qui a traversé le filtre neutre 5 de la branche dérivée 12 puis successivement les filtres FI à F3. Pour compléter les mesures précédentes, on procède de préférence à une acquisition de la température mesurée par le voltmètre 14 ainsi que de la tension électrique appliquée à la lampe 1 mesurée par l'élément 15.
A partir des intensités de la lumière passant par la branche principale contenant la cellule 3 et par la branche dérivée contenant le filtre neutre 5, on calcule les absorbances Al , A2 et A3 correspondant aux trois longueurs d'onde des filtres colorés FI à F3. Par application de la relation (2), on peut montrer que l'on obtient la valeur de la fraction basique x de la substance étudiée, par la relation suivante : x = k. (A2 - A3)/ (Al - A3) où k est une constante, et que, du fait de la méthode comparative employée, on fait totalement abstraction de toute dégradation des caractéristiques de la lampe 1 au cours du temps. Le processeur 12 peut en déduire par exemple le pH de la substance analysée.
De préférence, on tient compte de la température et de la tension effective appliquée à la lampe 1 de façon à minimiser les erreurs. On constate en effet que les erreurs de mesure quand la température passe de 20°C à 60°C sont de l'ordre de 4%. Pour compenser ces variations, le processeur 12 est adapté à appliquer aux mesures une correction en fonction de la variation de température, telle qu'uune correction linéaire par exemple. Si l'on veut encore mieux minimiser les erreurs de mesure, on peut aussi tenir compte des variations de la tension électrique (dues dans le cas d'une alimentation autonome, à la décharge de l'accumulateur), qui ont pour effet de faire varier l'intensité lumineuse de la lampe 1. En tenant compte de ces variations de la température et de la tension électrique, on peut obtenir des mesures précises à 1%0 près.
Le mode de réalisation précédent convient si la cellule contient un colorant qui n'est pas affecté, de façon sensible, d'être éclairé directement par la lampe 1 et de recevoir ainsi la totalité du spectre lumineux. Dans le cas contraire, il est préférable d'utiliser le mode de réalisation de la Fig.2. Ici, la branche principale 11 constituée par la cellule 3 et l'obturateur optique 4, et la branche dérivée comportant par exemple un filtre neutre, sont connectées à un séparateur optique 16 relié à un moyen de sélection optique S à trois branches l'3, l'4, l'5. Chacune d'elles comporte une lampe respectivement Ll , L2, L3, analogues à la lampe 1 (FigJ) qui sont reliées au bloc d'alimentation électrique 13 respectivement par trois interrupteurs 12, 13, 14 commandés par le circuit d'interface 12. La lumière de ces trois lampes est filtrée respectivement par les trois filtres colorés FI , F2, F3 précédents. La lumière filtrée par ces trois filtres, est dirigée via un noeud optique 17, vers l'entrée du séparateur optique 16. La lumière issue des deux branches 11 , 12 est appliquée à un détecteur photo-électrique unique D. Une sonde de température 14 est également reliée à l'entrée de l'unité d'acquisition 1 1 par l'intermédiaire d'un interrupteur 15 commandé par l'ensemble d'interface 12. De même, un voltmètre 15 mesurant la tension électrique appliquée aux lampes Ll à L3 est interposé entre elles et le bloc d'alimentation 13, le signal du voltmètre étant appliqué à l'unité d'acquisition 1 1 par l'intermédiaire d'un interrupteur 16.
Avec ce mode de réalisation, chaque cycle de mesure comporte (Fig.5,6) trois séquences identiques mettant en oeuvre successivement les lampes Ll , L2 et L3. Chacune des séquences successives comporte l'allumage de la lampe correspondante, Ll pour la première par exemple, et, les obturateurs 01 et 02 étant fermés, on acquiert le signal délivré par le détecteur photo-électrique unique D en l'absence de lumière (tension d'offset). Ensuite dans un premier intervalle de temps d'ouverture de l'obturateur 01 , on réalise plusieurs mesures successives du signal du détecteur D. L'opération précédente est reproduite pour les lampes L2 e t L3 successivement. Chaque séquence se termine par une acquisition de la tension électrique mesurée par le voltmètre 15. Après les troi s séquences précédentes, on achève chaque cycle par une acquisition de la température ambiante mesurée par le capteur 14. Comme précédemment, on combine les mesures d'intensité lumineuses pour obtenir les valeurs d'absorbance Al à A3 et en déduire par exemple le pH de la solution contenue dans la cellule 3. Les différentes branches ou chemins optiques permettant de diriger la lumière au travers la cellule 3, le filtre neutre 5 et les filtres colorés peuvent être constitués par des fibres optiques mais ils peuvent être obtenus aussi bien par des moyens de convergence ou de divergence optiques conventionnelles (optique "aérienne").
On ne sortirait pas du cadre de l'invention en remplaçant le filtre neutre utilisé pour constituer le milieu de référence, par une cellule analogue à la cellule 3 mais contenant une substance neutre choisie de façon que l'absorbance de cette cellule parallèle soit égale à l'absorbance moyenne de la cellule principale.

Claims

REVENDICAΗONS
1 ) Dispositif pour mesurer optiquement les modifications d'une substance réagissante contenue dans une cellule transparente (3), comportant au moins une source lumineuse, une première branche optique et une deuxième branche optique permettant sélectivement le passage de la lumière incidente au travers de la cellule et à l'extérieur de celle-ci dérivés, un système optique pour former des rayons ayant traversé la première branche ou la deuxième branche optique et un filtre optique sélectif (FI, F2, F3) parmi un ensemble de trois filtres sélectifs centrés, le premier sur une première longueur d'onde correspondant au point isobestique de la substance réagissante, le deuxième sur une longueur d'onde dans une partie du spectre de la lumière où la substance est la plus sensible et le troisième, dans une autre partie du spectre où la substance est la moins sensible, des moyens de mesure (D, D1-D3) de l'intensité de la lumière ayant traversé le système optique, un ensemble de pilotage (9), des moyens de sélection contrôlés par ledit ensemble de pilotage et un bloc d'alimentation électrique (13), caractérisé en ce que les moyens de sélection sont constitués de deux obturateurs optiques (01 , 02) disposés respectivement dans la première branche et la deuxième branche, et des moyens de commutation électrique (M, I). 2) Dispositif selon la revendication 1, caractérisé en ce que l'ensemble de pilotage (9) comporte un processeur de commande (10), une unité d'acquisition (1 1 ) des signaux de mesure d'intensité lumineuse et un ensemble d'interface (12) pour contrôler lesdits moyens de sélection. 3) Dispositif selon la revendication 1 ou 2, caractérisé en ce qu'il comporte une source de lumière unique (1 ) éclairant les deux branches et le système optique comporte des moyens de dérivation (7, 8) pour diriger vers les trois filtres les rayons lumineux ayant traversé la première ou la deuxième branche, les moyens de mesure comportent trois détecteurs (Dl , D2, D3) pour mesurer la lumière ayant traversé les trois filtres, et les moyens de commutation électrique comportent des éléments (M) pour connecter par intermittence lesdits détecteurs avec ledit ensemble de pilotage et un commutateur (II ) pour connecter la lampe au bloc d'alimentation électrique par intermittence.
4) Dispositif selon la revendication 1 ou 2, caractérisé en ce qu'il comporte trois sources lumineuses 'Ll , L2, L3), le système optique comporte des moyens de dérivation (l'3, l'4, l'5) pour diriger la lumière desdites sources respectivement au travers desdits trois filtres sélectifs et des moyens diviseurs (16, 17) pour appliquer la lumière filtrée à la première et la deuxième branche, les moyens de mesure comportent un détecteur unique (D) pour mesurer la lumière émanant de l'une ou l'autre branche, et les moyens de commutation électrique comportent des éléments (11 -13) pour l'alimentation sélective de l'une des trois sources lumineuses.
5) Dispositif selon la revendication 3 ou 4, caractérisé en ce qu'il comporte des moyens (14) de mesure de la température ambiante pouvant être connectés à l'ensemble de pilotage par les moyens de commutation électrique (M, 15).
6) Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens (15) de mesure de la tension électrique d'alimentation de chaque lampe pouvant être connectés à l'ensemble de pilotage par les moyens (11 -14) de commutation électrique.
7) Dispositif selon l'une des revendications précédentes, caractérisé en ce que ladite deuxième branche optique comporte un filtre neutre (5).
8) Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que ladite deuxième branche optique comporte une autre cellule sensiblement identique à ladite cellule et contenant une substance neutre.
9) Dispositif selon l'une des revendications précédentes, caractérisé en ce que ladite première branche et ladite deuxième branche comporte chacune au moins un filtre optique. 10) Méthode pour la mise en oeuvre du dispositif selon la revendication 3, caractérisée en ce qu'elle comporte la réalisation automatique de cycles de mesure sous le contrôle de l'ensemble de pilotage, comportant chacun : - une étape de mesure où l'on dirige la lumière ayant traversé la cellule successivement au travers des trois filtres et on acquiert les valeurs détectées des intensités lumineuses issues des trois filtres;
- une étape de mesure où l'on dirige la lumière ayant traversé ladite deuxième branche optique successivement au travers des trois filtres et on acquiert également les valeurs détectées des intensités lumineuses issues des trois filtres; et
- on détermine des caractéristiques de la substance réagissante par une combinaison des valeurs d'intensité mesurées par chaque détecteur, respectivement aux cours des deux étapes précédentes.
11) Méthode pour la mise en oeuvre du dispositif selon la revendication 4, caractérisée en ce qu'elle comporte la réalisation automatique de cycles de mesure sous le contrôle de l'ensemble de pilotage, comportant chacun :
- une étape de mesure où l'on dirige la lumière ayant traversé successivement les trois filtres vers la cellule contenant la substance réagissante et on acquiert les valeurs détectées par le détecteur (D); - une étape de mesure où l'on dirige la lumière ayant traversé successivement les trois filtres vers ladite deuxième branche optique et on acquiert aussi les valeurs détectées par le détecteur (D); et
- on détermine des caractéristiques de la substance réagissante par une combinaison des valeurs d'intensité mesurées par le détecteur et émanant de la même lampe.
PCT/FR1994/000120 1993-02-09 1994-01-31 Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance WO1994018543A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/307,782 US5680220A (en) 1993-02-09 1994-01-31 Device and method for optically measuring the characteristics of a substance utilizing three wavelengths of light
JP6517712A JPH08501394A (ja) 1993-02-09 1994-01-31 物質の特性を光学的に測定する改良装置及び方法
DE69413331T DE69413331T2 (de) 1993-02-09 1994-01-31 Verbessertes gerät und verfahren zur optischen messung der eigenschaften einer substanz
EP94905765A EP0635127B1 (fr) 1993-02-09 1994-01-31 Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR93/01513 1993-02-09
FR9301513A FR2701318B1 (fr) 1993-02-09 1993-02-09 Dispositif perfectionné et méthode pour mesurer optiquement des caractéristiques d'une substance.

Publications (1)

Publication Number Publication Date
WO1994018543A1 true WO1994018543A1 (fr) 1994-08-18

Family

ID=9443941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000120 WO1994018543A1 (fr) 1993-02-09 1994-01-31 Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance

Country Status (7)

Country Link
US (1) US5680220A (fr)
EP (1) EP0635127B1 (fr)
JP (1) JPH08501394A (fr)
CA (1) CA2117789A1 (fr)
DE (1) DE69413331T2 (fr)
FR (1) FR2701318B1 (fr)
WO (1) WO1994018543A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0885986A2 (fr) * 1997-06-17 1998-12-23 Shimadzu Corporation Appareil d'électrolyse avec dispositif de contrÔle
US6093292A (en) * 1997-06-17 2000-07-25 Shimadzu Corporation Electrolyte producing apparatus with monitoring device
US7639361B2 (en) 2007-05-14 2009-12-29 Watkins Manufacturing Corporation Apparatus for measuring chemical levels using pH shift
US7671994B2 (en) 2007-05-14 2010-03-02 Watkins Manufacturing Corporation Method for measuring chemical levels using pH shift
US10746653B2 (en) 2011-04-26 2020-08-18 Ecolab Usa Inc. Fluid property determination based on partial least squares analysis

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738064B1 (fr) * 1995-08-21 1997-11-07 Inst Francais Du Petrole Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance
FR2738065B1 (fr) * 1995-08-21 1997-11-07 Inst Francais Du Petrole Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance
US5818575A (en) * 1997-04-30 1998-10-06 Svg Lithography Systems, Inc. Lamp stablity diagnostic system
US6271920B1 (en) 1997-12-19 2001-08-07 Chromatics Color Sciences International, Inc. Methods and apparatus for color calibration and verification
JP2000121440A (ja) * 1998-10-15 2000-04-28 Keyence Corp 色識別装置
US6155489A (en) * 1998-11-10 2000-12-05 Ncr Corporation Item checkout device including a bar code data collector and a produce data collector
US6332573B1 (en) 1998-11-10 2001-12-25 Ncr Corporation Produce data collector and produce recognition system
US6431446B1 (en) 1999-07-28 2002-08-13 Ncr Corporation Produce recognition system and method
US6601767B1 (en) * 2000-08-16 2003-08-05 Ncr Corporation Ambient light sensing apparatus and method for a produce data collector
WO2002059592A2 (fr) 2001-01-26 2002-08-01 Biocal Technology, Inc. Detection optique dans un systeme bioseparateur a canaux multiples
US6836362B2 (en) 2001-05-14 2004-12-28 General Electric Company Method for the rapid determination of the optical quality of combinatorial libraries
US6870165B2 (en) * 2001-10-19 2005-03-22 Biocal Technology, Inc. Multi-color multiplexed analysis in a bio-separation system
FR2834402B1 (fr) * 2002-01-03 2005-03-11 Cit Alcatel Dispositif de commutation optique et procede de commande de ce dispositif
US7132644B2 (en) * 2003-10-02 2006-11-07 Mazet Gmbh Photo sensor for standardized color measurement
WO2006014688A2 (fr) * 2004-07-20 2006-02-09 Neptec Optical Solutions. Inc. Systeme de surveillance optique a filtres moleculaires
WO2006020292A2 (fr) * 2004-07-20 2006-02-23 Prescient Medical, Inc. Systemes et procede pour une surveillance optique d'une intervention medicale a filtres moleculaires
CA2573873A1 (fr) * 2004-07-20 2006-02-09 Neptec Optical Solutions, Inc. Commutateur optique rotatif
US7351245B2 (en) * 2004-09-21 2008-04-01 Bernice Joy Rozinsky Apparatus and method for dislodging object from throat
FR2876791B1 (fr) * 2004-10-19 2007-02-16 Micro Module Sarl Multimetre electro-optique
CA3201176A1 (fr) * 2020-12-12 2022-06-16 Tanner LIEVOIS Appareil et procedes de surveillance et de detection de methane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802776A (en) * 1971-03-23 1974-04-09 Siemens Ag Photometer for determining the oxygen content of blood
US3825342A (en) * 1971-05-07 1974-07-23 Max Planck Gesellschaft Computing type optical absorption mixture analyzer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292484A (en) * 1961-12-21 1966-12-20 Rca Corp Apparatus for monitoring spectral characteristics of substances
US3999864A (en) * 1975-11-17 1976-12-28 International Business Machines Corporation Gloss measuring instrument
US4125329A (en) * 1976-09-07 1978-11-14 Sterndent Corporation Tristimulus colorimeter
US4367041A (en) * 1980-08-25 1983-01-04 Micromeritics Instrument Corporation Chromatograph detection system
US4381894A (en) * 1980-11-06 1983-05-03 Inficon Leybold-Heraeus, Inc. Deposition monitor and control system
IT1172646B (it) * 1983-09-21 1987-06-18 M S Sistemi Automatici Srl Apparato per rilevare la colorazione di corpi piani in movimento ed atto ad elaborare dei segnali elettrici che variano in funzione della qualita del colore dei detti corpi apparato particolarmente adatto per automatizzare la scelta delle mattonelle di ceramica all'atto della produzione
DE69103714T2 (de) * 1990-10-01 1995-04-20 Eastman Kodak Co Spektralphotometer mit Mitteln zur gleichzeitigen Modulierung, Umschaltung und Wellenlängenauswahl einer Lichtquelle.
US5386295A (en) * 1990-10-01 1995-01-31 Eastman Kodak Company Postacquired spectrophotometers
US5387977A (en) * 1991-09-04 1995-02-07 X-Rite, Incorporated Multiangular color measuring apparatus
EP0533333A3 (en) * 1991-09-19 1993-07-28 Texaco Development Corporation Optical photometry system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802776A (en) * 1971-03-23 1974-04-09 Siemens Ag Photometer for determining the oxygen content of blood
US3825342A (en) * 1971-05-07 1974-07-23 Max Planck Gesellschaft Computing type optical absorption mixture analyzer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0885986A2 (fr) * 1997-06-17 1998-12-23 Shimadzu Corporation Appareil d'électrolyse avec dispositif de contrÔle
EP0885986A3 (fr) * 1997-06-17 1999-06-09 Shimadzu Corporation Appareil d'électrolyse avec dispositif de contrÔle
US6093292A (en) * 1997-06-17 2000-07-25 Shimadzu Corporation Electrolyte producing apparatus with monitoring device
US7639361B2 (en) 2007-05-14 2009-12-29 Watkins Manufacturing Corporation Apparatus for measuring chemical levels using pH shift
US7671994B2 (en) 2007-05-14 2010-03-02 Watkins Manufacturing Corporation Method for measuring chemical levels using pH shift
US10746653B2 (en) 2011-04-26 2020-08-18 Ecolab Usa Inc. Fluid property determination based on partial least squares analysis

Also Published As

Publication number Publication date
DE69413331T2 (de) 1999-02-11
EP0635127B1 (fr) 1998-09-16
FR2701318A1 (fr) 1994-08-12
JPH08501394A (ja) 1996-02-13
CA2117789A1 (fr) 1994-08-18
DE69413331D1 (de) 1998-10-22
US5680220A (en) 1997-10-21
EP0635127A1 (fr) 1995-01-25
FR2701318B1 (fr) 1995-03-17

Similar Documents

Publication Publication Date Title
EP0635127B1 (fr) Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance
CA1281914C (fr) Procede et dispositif de determination de la couleur, en particulier d'une prothese dentaire
US5915279A (en) Multispectral optical detection device and method
JP3526652B2 (ja) 光学的測定方法および光学的測定装置
EP0604276A1 (fr) Procédé et dispositf de détermination de la couleur d'un objet transparent, diffusant et absorbant, tel en particulier qu'une dent
CA2686501A1 (fr) Procede et systeme pour caracteriser un tissu biologique
CH634921A5 (fr) Appareil destine a reperer la quantite de sebum secretee par une peau.
CN109342368B (zh) 一种基于参考光信号的双路对比测量光谱仪及测量方法
CN108333689A (zh) 一种集成可调窄带滤波器的多信道光接收组件
CA2201786A1 (fr) Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance
WO2006053808A9 (fr) Dispositif de reconnaissance des couleurs
FR2827383A1 (fr) Dispositif et procede de radiometrie pour determiner in situ le contenu biochimique de feuilles, et appareil portatif integrant ce dispositif
FR2738064A1 (fr) Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance
FR2689636A1 (fr) Méthode et dispositif pour mesurer des caractéristiques optiques d'une substance.
FR2768513A1 (fr) Procede d'analyse colorimetrique comparative et dispositif correspondant
EP0319361B1 (fr) Procédé et dispositif de régulation d'un bain coloré d'imprégnation pour le traitement d'un matériau en défilement continu
Lamothe Using 600–650 nm light for IRSL sample preparation
EP0857964B1 (fr) Procédé et dispositif de détermination d'une concentration d'un volume de gaz
FR2474165A1 (fr) Systeme de traitement et de mesure des signaux delivres par chaque detecteur dans un spectrometre a modulation
JPS5992318A (ja) 分光測定方法
WO1990003567A1 (fr) PROCEDE ET DISPOSITIF DE DETERMINATION DU pH ET DE LA CONCENTRATION CELLULAIRE DANS UN MILIEU DE CULTURE DE CELLULES
JPH0552739A (ja) 反射スペクトル測定装置
FR2695217A1 (fr) Appareil d'émission de lumière d'appoint.
FR2677120A1 (fr) Dispositif de mesures photometriques a base de fibres optiques, et appareils equipes d'un tel dispositif.
JPH0210372B2 (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994905765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2117789

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994905765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08307782

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1994905765

Country of ref document: EP