WO1994018524A1 - Messkameraanordnung, insbesondere für photogrammetrische messungen an technischen objekten - Google Patents

Messkameraanordnung, insbesondere für photogrammetrische messungen an technischen objekten Download PDF

Info

Publication number
WO1994018524A1
WO1994018524A1 PCT/DE1994/000181 DE9400181W WO9418524A1 WO 1994018524 A1 WO1994018524 A1 WO 1994018524A1 DE 9400181 W DE9400181 W DE 9400181W WO 9418524 A1 WO9418524 A1 WO 9418524A1
Authority
WO
WIPO (PCT)
Prior art keywords
resolution
optics
camera arrangement
arrangement according
measuring camera
Prior art date
Application number
PCT/DE1994/000181
Other languages
English (en)
French (fr)
Inventor
Helmut Kellner
Original Assignee
E.M.S. Technik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.M.S. Technik Gmbh filed Critical E.M.S. Technik Gmbh
Priority to DE59404954T priority Critical patent/DE59404954D1/de
Priority to US08/505,209 priority patent/US5721611A/en
Priority to EP94906885A priority patent/EP0683888B1/de
Publication of WO1994018524A1 publication Critical patent/WO1994018524A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/02Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with scanning movement of lens or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the invention relates to a measuring camera arrangement, in particular for photogrammetric measurements on technical objects according to the preamble of claim 1.
  • Photosensitive films on a photochemical basis are generally used as image receivers.
  • the usual film format is 23 * 23 cm or 13 * 18 cm and the maximum resolution is 50 lines / mm for black and white aerial films.
  • a measuring camera arrangement is known from EP 0 505 037 A2, which comprises a focusable lens and a sensor.
  • a distance measuring device enables the distance between the objective and the sensor to be measured.
  • the sensor is designed as a horizontal CCD line and is arranged on a stage which can be displaced in the vertical direction transversely to the optical axis of the lens, so that a two-dimensional image can be scanned by moving the CCD line.
  • CCD-F area sensors shown.
  • commercially available small-format surface sensors can be used to acquire a large-format image.
  • DE 39 09 855 C2 discloses a position encoder for determining the position of a scanner arrangement relative to a positionable surface. Marks of constant distance arranged in two coordinate directions on a positionable surface are evaluated by means of scanners, from which all three coordinate directions of a Cartesian coordinate system can be determined.
  • the object of the invention is to create a measuring camera arrangement which, while maintaining the imaging resolution, enables the precise detection and rapid evaluation of objects which cannot be imaged on a sensor at the same time.
  • the measuring camera arrangement enables, via the combination of sensor and secondary optics, an enlarged image of the object on the sensor with a small overall depth. Since only a section of the image plane of the primary optics is imaged on the sensor, the sensor and the secondary optics can be displaced transversely to the optical axis of the primary optics, so that any area of the image plane of the primary optics can be detected one after the other.
  • the distances between the individual sections imaged on the sensor which are determined by high-resolution distance measuring devices.
  • the accuracy that can be achieved in this way is higher than if the distances would have to be determined in the usual way by overlapping intermediate images which are put together at control points.
  • Each passpoint adjustment leads to errors which accumulate in a plurality of intermediate images.
  • This measuring camera arrangement considerably reduces the image information to be processed, since only the information that lies in the relevant sections has to be processed.
  • the image information lying outside these sections which in known measuring camera arrangements have to be processed exclusively for the purpose of determining the relative position of the objects under consideration, is not taken into account. It is replaced by the distance information provided by the distance measuring devices, which includes only a very small volume of data.
  • a further development of the invention provides that a plurality of high-resolution sensors with these associated secondary optics are arranged in a matrix which has constant column spacings and constant line spacings.
  • each sensor is only a sub-area of the image - 5 -
  • the maximum necessary displacement paths of the secondary optics and the sensors for the detection of objects depicted arbitrarily on the image plane of the primary optics are thus smaller. This reduces the width and length dimensions of the measuring camera and also reduces the recording time.
  • the secondary optics can consist of several cascaded single optics.
  • This embodiment makes it possible to further reduce the depth dimensions of the measuring camera arrangement while maintaining a desired magnification factor of the image on the sensor, or to obtain a higher magnification factor of the image on the sensor with the same depth dimensions.
  • a higher magnification factor could also be achieved by a secondary optic constructed as a single optic with a small focal length, but this has the disadvantage that edge blurring occurs.
  • the high-resolution sensors and the secondary optics are arranged on a common carriage and can be moved together.
  • this embodiment has the advantage that only one common distance measuring device is required for each combination of sensor and secondary optics.
  • the high-resolution sensors and the secondary optics are arranged on separate slides and can be moved independently of one another.
  • the high-resolution sensors can be designed as a CCD line or as a CCD area.
  • CCD lines are particularly interesting from an economic point of view, since CCD lines for use in cell phone scanners and fax machines are manufactured in large numbers and are available at particularly low prices. Since the CCD line has to be shifted during a recording, however, the recording time increases. The imaging accuracy of the object during the displacement is not impaired, since the displacement path is precisely recorded by the high-resolution distance measuring device that is present anyway.
  • the primary optics are assigned high-resolution space measuring devices.
  • the spatial position measuring devices are formed from at least three, preferably four, high-resolution distance measuring devices arranged uniformly on a lateral surface lying coaxially to the optical axes of the primary optics.
  • These spatial position measuring devices serve to detect changes in the position of the primary optics during focusing movements and to take them into account in the measurement result.
  • the position of the optical axis is of particular importance, since the distance measurements of the secondary optics and the sensors relate to the optical axis of the primary optics. If the primary optics are tilted during focusing movements due to inaccuracies in their guidance, the optical axis is also deflected. The measured distance values relating to a target position of the optical axis can then be corrected by the determined degree of deflection.
  • the high-resolution distance measuring devices are preferably designed as position sensors for determining the position of a scanner arrangement relative to a positionable surface with positionable surfaces on the secondary optics, the high-resolution sensors and the primary optics and scanner arrangements on a common housing or vice versa .
  • Marks are arranged at a constant distance in two coordinate directions on the positionable surface and these marks are opposed to scanners, the scanners being connected to a coordinate computer and the scanners each comprising an angle measuring device, by means of which the projection angle between a reference point and the angle measuring device ⁇ direction of the respective scanner and at least three adjacent marks are determined.
  • the computer is controlled in such a way that it calculates the coordinates of the respective reference point according to trigonometric functions.
  • the absolute position of the entire positionable surface can be detected directly, in both coordinate directions with the same accuracy.
  • One for fine determination An interpolation between marks makes it possible to reduce the density of the marks, which is required for a desired resolution in a coordinate direction.
  • the calculation also provides the distance between the positionable surface and the reference point, which can be specified as the third coordinate, which is perpendicular to the two coordinates lying in the positionable surface.
  • the computer can process the following functions or equations as trigonometric functions:
  • ß denotes the projection angle between the associated reference point and a second and a third adjacent mark
  • ___> is the distance between two adjacent marks and XO, YO, ZO the Coordina represent the associated reference point relative to the positionable surface.
  • the calculations can be carried out quickly and precisely with conventional computers, so that updated measured values are available practically without any measurement delay even after displacements.
  • FIG. 1 shows a longitudinal section through a measuring camera arrangement in a first embodiment
  • FIG. 2 shows a longitudinal section through a measuring camera arrangement in a second embodiment with secondary optics designed as cascaded individual optics
  • FIG. 3 shows a plan view of a matrix in which sensors and secondary optics are arranged
  • Fig. 6 is a geometric representation of the
  • FIG. 1 shows a longitudinal section through a measuring camera arrangement in a first embodiment. It comprises a focusable primary optics 10, which images an object on an image plane 24. In contrast to conventional measuring camera arrangements for photogrammetric measurements, there is no sensor in the image plane itself. Rather, a combination of several high-resolution sensors 12, 14, 16 and secondary optics 18, 20, 22 assigned to them is arranged behind the image plane 24. Each secondary optics 18, 20, 22 form a section of the image plane 24 of the primary optics 10 enlarged on the associated high-resolution sensor 12, 14, 16.
  • the secondary optics 18, 20, 22 and sensors 12, 14, 16 are fixed to the image plane 24. To adapt the distance to the object to be imaged, only the primary optics 10 therefore have to be changed.
  • the sensors 12, 14, 16 can record any section of the image plane 24 of the primary optics 10, they and the secondary optics 18, 20, 22 are slidably arranged on the slides 34 and 36 transversely to the optical axis 26 of the primary optics 10.
  • the carriages 34 and 36 enable two-axis displacement.
  • the shifting movements are from here Drives, not shown, or also carried out manually. Both CCD lines and CCD areas can be used as sensors 12, 14, 16.
  • Distance measuring devices 28, 30, which are assigned to the high-resolution sensors 12, 14, 16 and the secondary optics 18, 20, 22, are used to record the displacement movements. These distance measuring devices 28, 30 two-dimensionally record the distance between the projection centers Oig, O 0, O of the secondary optics 18, 20, 22 and reference points B-J ⁇ of the high-resolution sensors 12, 14, 16 on the one hand and the optical axis 26 of the primary optics 10 on the other.
  • the primary optics 10 are associated with spatial position measuring devices 38, which are used in particular to detect the position and inclination of the optical axis of the primary optics 10.
  • These spatial position measuring devices 38 consist of four high-resolution resolution measuring devices 40, 42, 44, 46 arranged uniformly on a lateral surface coaxial with the optical axis 26 of the primary optics 10.
  • the distance measuring measuring devices 28, 30 for the high-resolution sensors 12, 14, 16 and the secondary optics 18, 20, 22 as well as the distance measuring devices 40, 42, 44, 46 for the spatial position measuring devices 38 of the primary optics 10 are designed as position sensors for determining the position of a scanner arrangement 48 relative to a positionable surface 50.
  • the positionable surfaces 50 of the position sensors are attached to the secondary optics 18, 20, 22, the high-resolution sensors 12, 14, 16 or their slides 34, 36 and the primary optics 10 and the scanner arrangements 48 to a common housing 52.
  • the housing 52 and the positionable surfaces 50 consist of a material with a low coefficient of thermal expansion, preferably Invar or Zerodur.
  • the secondary optics 18, 20, 22 here consist of several cascaded single optics 18 ', 18' ', 18' '', 20 ', 20' ', 20' '', 22 ', 22' ', 22' '' .
  • a section of the image plane lying in front of the respective individual optics in the beam path is magnified on an image plane lying behind the individual optics.
  • the individual optics 18 ', 20', 22 'thus form sections of the image plane 24' enlarged on an image plane 24 ''
  • the individual optics 18 '', 20 '', 22 '' in turn form sections of the picture plane 24 '' enlarged on an image plane 24 '' ', etc.
  • the sensors 12, 14, 16 lie in the image plane 24' '' '.
  • the individual optics 18', 20 ', 22', 18 '', 20 are located '', 22 '' and 18 '' ', 20' '', 22 '' 'on slides 34', 34 '' and 34 '' 'respectively.
  • High-resolution distance measuring devices 28 ', 28' 'and 28' '' are assigned to the individual optics or slides. In its other features, the design corresponds to that shown in FIG. 1.
  • FIG. 3 shows a plan view of a matrix 32 in which sensors and secondary optics are arranged.
  • the matrix 32 comprises three rows 66, 68, 70 and three columns 72, 74, 76 with the same spacing.
  • the projection centers of the secondary optics and the reference points of the sensors lie at the intersections of lines 66, 68, 70 and columns 72, 74, 76.
  • the distances of the rows 66, 68, 70 and columns 72, 74, 76 are dimensioned such that by shifting the matrix 32 by half the column and row spacing in positive and negative X and Y coordinate directions, the entire usable imaging area of the image plane 24 can be detected.
  • FIG. 4 shows a schematic illustration of a distance measuring device.
  • marks 54, 56 of constant spacing are arranged in two coordinate directions X, Y with an absolute coding.
  • the marks 54, 56 have different line widths by means of which their coordinates are encoded.
  • the decoding of the line width of several codes 54, 56 containing marks lying next to one another makes it possible to specify the absolute coordinates of the marks.
  • the marks are not solid in the respective coordinate transverse direction, but only the areas of overlap are shown. This results in a pattern of rectangles of different side lengths.
  • the positionable surface 50 is opposed by scanners 58, 60 which each evaluate one of the coordinate directions X or Y.
  • FIG. 5 shows a scanner arrangement 48 of the distance measuring device for a coordinate direction. This comprises an area 50 with marks 54, of which individual marks are designated here as a, b and c. A scanner 58 is located above surface 50 and decodes the length information encoded in marks 54. With the aid of an angle measuring device .64, projection angles which result between the marks 54 and a scanner location point 0 M of the scanner 58 can be determined. the ,
  • the scanner 58 is designed as an optical scanner and comprises an imaging optics 78 with a projection surface 80 and a distance measuring device 82.
  • a scanner location point 0 M is formed by the projection center of the imaging optics 78 facing the surface 50.
  • the projection surface 80 is a diode array, for. B. formed in the form of a CCD line. The number of pixels is selected so that the marks 54 can be resolved in their width and can be decoded with the aid of a computer 62.
  • the interpolation between the marks 54 is carried out by means of the angle measuring device 64.
  • the marks a, b and c which assume the angles or ß at the scanning location point 0 M , are here as an example at the angles ⁇ 'and ß' to the points a ', b' and C. of the projection surface 80.
  • the projection angle is determined by means of the distance measuring device 82 via the distance measurement of the projection points a ', b' and c 'on the projection surface 80. If the distance measuring device 82 has e.g. a CCD line, charge changes are effected at the points at which the marks are depicted on this line, which changes can be converted by the computer 62 into corresponding angle values ⁇ and ⁇ .
  • the coordinates of the scanning location point 0 M which here corresponds to the projection center in the imaging optics 78, can be determined from the projection angles ⁇ and ⁇ using trigonometric functions.
  • FIG. 6, shows a geometric representation of the projection angles of the scanner arrangement 48. 5
  • the scanner location point 0 M is not located directly above the mark b, in order to illustrate here graphically that any position of the scanner location point 0 M can be determined.
  • the projection angle is included between the scanner location point OM and the marks a and b and the projection angle ⁇ is included between the scanner location point 0 M and the marks b and c.
  • the distances of the marks a, b and c each carry be ⁇ ⁇ . If one looks at the angles ⁇ and ⁇ in isolation, there are various points which assume the same projection angle and ⁇ . These points are on a locus, which are represented by a circle K 1 for the angle ⁇ and by a circle K 2 for the angle ⁇ . If you combine the two angles ⁇ and ⁇ , there is only one real point at which the condition is fulfilled. This point is given by the intersection of the two locus curves, ie the circles K 1 and K 2.
  • the center points M 1 and M 2 of the circles K 1 and K 2 can be determined in such a way that the perpendicular bisectors between the marks a and b on the one hand and b and c on the other hand are determined and the intersections with lines are obtained here, which run through the marks a and b or b and c at the projection angle, ie ⁇ or ⁇ .
  • the distances of the center points M 1 and M 2 from the scale axis that is, the Z coordinate of the center points M 1 and M 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Measurement Of Optical Distance (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Es wird eine Meßkameraanordnung, insbesondere für photogrammetrische Messungen an technischen Objekten beschrieben. Die Meßkameraanordnung umfaßt eine als fokussierbares Objektiv ausgebildete Primäroptik (10) und eine Kombination aus wenigstens einem hochauflösenden Sensor (12, 14, 16) und einer als Sekundäroptik dienenden Linseneinheit (18, 20, 22), die einen Ausschnitt der Bildebene der Primäroptik vergrößert auf dem hochauflösenden Sensor abbildet. Die Sekundäroptik und der hochauflösende Sensor sind quer zur optischen Achse (26) der Primäroptik verschiebbar. Der Sekundäroptik und dem hochauflösenden Sensor sind höchauflösende Abstandsmeßvorrichtungen (28, 30) zugeordnet, welche den Abstand zwischen dem Projektionszentrum der Sekundäroptik und einem Bezugspunkt des hochauflösenden Sensors einerseits und der optischen Achse der Primäroptik andererseits erfassen.

Description

Meßkameraanordnung, insbesondere für photogrammetrische Messungen an technischen Objekten
Die Erfindung betrifft eine Meßkameraanordnung, insbe¬ sondere für photogrammetrische Messungen an technischen Objekten nach dem Oberbegriff des -nspruchs 1.
Meßkameraanordnungen dieser Art sind für photogrammetri¬ sche Messungen terrestrischer Objekte vom Boden oder von der Luft aus bekannt. Als Bildempfänger werden in der Regel lichtempfindliche Filme auf photochemischer Basis eingesetzt. Das übliche Filmformat beträgt 23 * 23 cm oder 13 * 18 cm und die Auflösung maximal 50 Linien/mm bei Schwarz/Weiß-Luftbildfilmen.
Um unter Berücksichtigung des Auflösungsvermögens weit auseinander liegende Objekte genau vermessen zu können, müssen mehrere überlappende Aufnahmen angefertigt werden, die unter Zuhilfenahme von Paßpunkten zu einem Gesamtbild zusammengesetzt werden. Ehe das endgültige Bild für Mes¬ sungen und Analysen z^r Verfügung steht, müssen die be¬ lichteten Filme entwickelt, gegebenenfalls entzerrt und die Teilbilder an den Paßpunkten zusammengesetzt werden.
Für die Vermessung technischer Objekte, z.B. für Bearbei¬ tungsaufgaben durch Werkzeugmaschinen, ist dieser Aufwand und die Zeitspanne zwischen der Aufnahme und der Auswer- temöglichkeit der Bilder unwirtschaftlich und unbefriedi¬ gend.
Wenn als Bildempfänger statt der photochemischen Filme optoelektronische Sensoren eingesetzt werden, deren Bild¬ informationen zwischengespeichert werden, entfällt zwar der Zeitaufwand für die Entwicklung des Filmmaterials, dafür wird aber eine immense Speicherkapazität zur Spei¬ cherung der Bildinformationen benötigt, was wiederum eine erhebliche Verarbeitungszeit des die Bildinformationen verarbeitenden Rechners zur Folge hat. Dadurch bietet auch der optoelektronische Ersatz des bekannten photoche¬ mischen Bildempfängers keine wirtschaftliche Alternative.
Gerade bei technischen Objekten kommt es aber nur auf die in Ausschnitten des Gesamtbildes liegenden Bildinforma¬ tionen an, während die in den übrigen Ausschnitten lie¬ genden Bildinformationen überflüssig sind.
Aus der EP 0 505 037 A2 ist eine Meßkameraanordnung be¬ kannt, welche ein fokussierbares Objektiv und einen Sen¬ sor umfaßt. Eine Abstandsmeßvorrichtung ermöglicht die Messung des Abstandes zwischen dem Objektiv und dem Sen¬ sor. Der Sensor ist als horizontale CCD-Zeile ausgebildet und auf einer in vertikaler Richtung quer zur optischen Achse des Objektivs verschiebbaren Bühne angeordnet, so daß durch Verschieben der CCD-Zeile ein zweidimensionales Bild gescannt werden kann.
Ferner ist aus der DE 35 37 220 AI eine optoelektronische Kamera bekannt, bei der das Bild unter Verwendung von Linsen in Teilbilder zerlegt wird. Das von einem ersten Objektiv in einer Bildebene entworfene Bild wird durch weitere Linsen im Maßstab 1 : 1 auf die Oberflächen von )
- 3 -
CCD-FJächensensoren abgebildet. Hierdurch lassen sich zur Erfassung eines großformatigen Bildes handelsübliche kleinformatige Flächensensoren verwenden.
Schließlich ist aus der DE 39 09 855 C2 ein Lagegeber zur Bestimmung der Lage einer Abtasteranordnung relativ zu einer positionierbaren Fläche bekannt. Dabei werden auf einer positionierbaren Fläche in zwei Koordinatenrichtun¬ gen angeordnete Marken konstanten Abstandes mittels Ab¬ tastern ausgewertet, woraus alle drei Koordinatenrich¬ tungen eines karthesischen Koordinatensystems bestimmt werden können.
Der Erfindung liegt die Aufgabe zugrunde, eine Meßkame¬ raanordnung zu schaffen, welche unter Beibehaltung der Abbildungsauflösung die präzise Erfassung und schnelle Auswertung von Objekten ermöglicht, die nicht gleichzei¬ tig auf einem Sensor abbildbar sind.
Diese Aufgabe wird bei einer Meßkameraanordnung nach dem Oberbegriff des Anspruchs 1 durch die im Kennzeichnen an¬ gegebenen Merkmale gelöst.
Die erfindungsgemäße Meßkameraanordnung ermöglicht über die Kombination Sensor mit Sekundäroptik eine vergrößerte Abbildung des Objektes auf dem Sensor bei geringer Bau¬ tiefe. Da hierbei nur jeweils ein Ausschnitt der Bild¬ ebene der Prirriäroptik auf dem Sensor abgebildet wird, sind der Sensor und die Sekundäroptik quer zur optischen Achse der Primäroptik verschiebbar, so daß jeder belie¬ bige Bereich der Bildebene der Primäroptik nacheinander erfaßt werden kann.
In die Gesamtauswertung werden die Abstände zwischen den einzelnen auf dem Sensor abgebildeten Abschnitte einbe¬ zogen, die durch hochauflösende Abstandsmeßvorrichtungen ermittelt werden. Die damit erzielbare Genauigkeit ist höher, als wenn die Abstände in üblicher Weise durch überlappende Zwischenbilder bestimmt werden müßten, die an Paßpunkten zusammengesetzt werden. Jede Paßpunk Ju¬ stierung führt nämlich zu Fehlern, die sich bei einer Mehrzahl von Zwischenbildern kumulieren.
Durch diese Meßkameraanordnung werden die zu verarbeiten¬ den Bildinformationen erheblich reduziert, da nur dieje¬ nigen Informationen verarbeitet werden müssen, die in den relevanten Ausschnitten liegen. Die außerhalb dieser Aus¬ schnitte liegenden Bildinformationen, die bei bekannten Meßkameraanordnungen ausschließlich zu dem Zweck verar¬ beitet werden müssen, um die relative Lage der betrach¬ teten Objekte zu ermitteln, bleiben außer Betracht. An ihre Stelle treten die von den Abstandsmeßvorrichtungen gelieferten Abstandsinformationen die nur ein sehr gerin¬ ges Datenvolumen umfassen.
Für die Auswertung der Bildinformationen eignen sich so¬ mit übliche Mikrorechner, die das gewünschte Meßergebnis unmittelbar nach Durchführung der Aufnahmen zur Verfügung stellen und damit einen wirtschaftlichen Einsatz der Me߬ kameraanordnung für photogrammetrische Messungen an tech¬ nischen Objekten ermöglichen.
Eine Weiterbildung der Erfindung sieht vor, daß mehrere hochauflösende Sensoren mit diesen zugeordneten Sekun¬ däroptiken in einer Matrix angeordnet sind, die konstante Spaltenabstände und konstante Zeilenabstände aufweist.
Dadurch ist jedem Sensor nur ein Teilbereich der Bildebe- - 5 -
ne der Primäroptik zugewiesen. Die maximal erforderlichen Verschiebewege der Sekundäroptiken und der Sensoren für die Erfassung beliebig auf der Bildebene der Primäroptik abgebildeter Objekte sind somit geringer. Dies verringert einmal die Breiten und Längenabmessungen der Meßkamera und reduziert zudem die Aufnahmezeit.
Die Sekundäroptiken können aus mehreren kaskadierten Ein¬ zeloptiken bestehen.
Diese Ausführung gestattet es, die Tiefenabmessungen der Meßkameraanordnung unter Beibehaltung eines gewünschten Vergrößerungsfaktors der Abbildung auf dem Sensor weiter zu verringern oder bei gleichen Tiefenabmessungen einen höheren Vergrößerungsfaktor der Abbildung auf dem Sensor zu erhalten. Ein höherer Vergrößerungsfaktor könnte zwar auch durch eine als Einzeloptik mit kleiner Brennweite aufgebaute Sekundäroptik erzielt werden, dies hat aber den Nachteil, daß Randunschärfen entstehen.
Bei einer ersten Ausführung sind die hochauflösenden Sensoren und die Sekundäroptiken auf einem gemeinsamen Schlitten angeordnet und gemeinsam verschiebbar.
Diese Ausführung hat neben einem mechanisch einfacheren Aufbau den Vorzug, daß nur eine gemeinsame Abstandsmeß- vorrichtung für jede Kombination aus Sensor und Sekundäroptik benötigt wird.
Bei einer zweiten Ausführung sind die hochauflösenden Sensoren und die Sekundäroptiken auf separaten Schlitten angeordnet und unabhängig voneinander verschiebbar.
Hier ist zwar der Aufwand in mechanischer Hinsicht und wegen de.: weiteren Abstandsmeßvσrrichtung höher, als Sensor sind aber keine Weitwinkelausführungen sondern kostengünstige Ausführungen mit kleiner Pixel- oder Bild¬ punktanzahl einsetzbar.
Die hochauflösenden Sensor können als CCD-Zeile oder als CCD-Fläche ausgebildet sein.
Der Einsatz von CCD-Zeilen ist unter wirtschaftlichen Aspekten besonders interessant, da CCD-Zeilen für die Anwendung in Handy-Scannern und Telefaxgeräten in hoher Stückzahl gefertigt werden und besonders preisgünstig erhältlich sind. Da bei einer Aufnahme die CCD-Zeile ver¬ schoben werden muß, erhöht sich allerdings die Aufnahme- zeit. Die Abbildungsgenauigkeit des Objektes bei der Ver¬ schiebung wird nicht beeinträchtigt, da der Verschiebeweg von der ohnehin vorhandenen hochauflösenden Abstandsmeß- vorrichtung genau erfaßt wird.
Demgegenüber ermöglicht der Einsatz von als CCD-Fläche ausgebildeten Sensoren eine kürzere Aufnahmezeit. CCD- Flächen sind jedoch wesentlich teurer als CCD-Zeilen.
Eine Weiterbildung sieht vor, daß der Primäroptik höch- auflösende Raumlagenmeßvorrichtungen zugeordnet sind. Dabei sind die Raumlagenmeßvorrichtungen aus wenigstens drei, vorzugsweise vier gleichmäßig auf einer koaxial zur optischen Achsen der Primäroptik liegenden Mantelfläche angeordneten höchauflösende Abstandsmeßvorrichtungen aus¬ gebildet.
Diese Raumlagenmeßvorrichtungen dienen dazu, Lageverände¬ rungen der Primäroptik bei Fokussierbewegungen zu erfas¬ sen und im Meßergebnis zu berücksichtigen. Dabei kommt insbesondere der Lage der optischen Achse eine besondere Bedeutung zu, da sich die Abstandsmessungen der Sekundär¬ optiken und der Sensoren auf die optische Achse der Primäroptik beziehen. Wird die Primäroptik bei Fokus- sierbewegungen aufgrund von Ungenauigkeiten ihrer Führung gekippt, so wird auch die optische Achse ausgelenkt. Um das ermittelte Maß der Auslenkung können die auf eine Sollage der optischen Achse bezogenen Abstandsmeßwerte dann korrigiert werden.
Vorzugsweise sind die höchauflösenden Abstandsmeßvorrich¬ tungen als Lagegeber zur Bestimmung der Lage einer Abta¬ steranordnung relativ zu einer positionierbaren Fläche ausgebildet mit positionierbaren Flächen an den Sekun¬ däroptiken, den hochauflösenden Sensoren und der Primär¬ optik und Abtasteranordnungen an einem gemeinsamen Gehäu¬ se oder umgekehrt. Dabei sind auf der positionierbaren Fläche in zwei Koordinatenrichtungen Marken konstanten Abstandes angeordnet und diesen Marken stehen Abtaster gegenüber, wobei die Abtaster mit einem Koordinatenrech¬ ner verbunden sind und wobei die Abtaster jeweils eine Winkelmeßvorichtung umfassen, mittels der die Projek¬ tionswinkel zwischen einem Bezugspunkt der Winkelmeßvor¬ richtung des jeweiligen Abtasters und mindestens drei benachbart angeordneten Marken bestimmt werden. Der Rechner ist so gesteuert, daß er die Koordinaten des je¬ weiligen Bezugspunktes nach trigonometrischen Funktionen berechne .
Mit dem verwendeten Lagegeber, der ausführlich in der DE- PS 39 09 855 beschrieben ist, kann die absolute Lage der gesamten positionierbaren Fläche unmittelbar erfaßt wer¬ den, und zwar in beiden Koordinatenrichtungen mit der gleichen Genauigkeit. Eine zur Feinbestimmung vorgenom- ene Interpolation zwischen en Marken ermöglicht es, daß die für eine gewünschte Auflösung in einer Koordinaten¬ richtung an sich erforderliche Dichte der Marken verrin¬ gert werden kann. Die Berechnung liefert dabei auch den Abstand zwischen der positionierbaren Fläche und dem Be¬ zugspunkt, der als dritte Koordinate, die senkrecht auf den beiden in der positionierbaren Fläche liegenden Koor¬ dinaten steht, angeben werden kann.
Der Rechner kann dabei als trigonometrische Funktionen folgende Funktionen oder Gleichungen verarbeiten:
Λ * ( Z22)
Xr
(Z-, - Z2) -_V
(ZI + Z2)
Zn =
(Zi - Z2) +^y
wobei Z-, =
2 * tan
A wobei Z2 =
2 * tan ß
sind, a. den Projektionswinkel zwischen einem zugehörigen Bezugspunkt sowie einer ersten und einer zweiten benach¬ barten Marke, ß den Projektionswinkel zwischen dem zuge¬ hörigen Bezugspunkt und einer zweiten sowie einer dritten benachbarten Marke bezeichnet, ___> der Abstand zwischen zwei benachbarten Marken ist und XO, YO, ZO die Koordina- ten des zugehörigen Bezugspunktes relativ zur positio¬ nierbaren Fläche darstellen.
Die Berechnungen lassen sich mit üblichen Rechnern schnell und exakt durchführen, so daß auch nach Verschie¬ bungen aktualisierte Meßwerte praktisch ohne Meßverzöge¬ rung vorliegen.
Weiterbildungen und vorteilhafte Ausgestaltungen der Er¬ findung ergeben sich aus den Ansprüchen, der weiteren Be¬ schreibung und der Zeichnung.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung erläutert.
In der Zeichnung zeigen:
Fig. 1 einen Längsschnitt durch eine Me߬ kameraanordnung in einer ersten Ausführung,
Fig. 2 einen Längsschnitt durch eine Me߬ kameraanordnung in einer zweiten Aus¬ führung mit als kaskadierte Einzelop¬ tiken ausgebildeten Sekundäroptiken,
Fig. 3 eine Draufsicht auf eine Matrix, in der Sensoren und Sekundäroptiken an¬ geordnet sind,
Fig. 4 eine schematische Darstellung einer Abstandsmeßvorrichtung,
Fig. 5 eine Abtasteranordnung der Abstands- meßvorrichtung und
Fig. 6 eine geometrische Darstellung der
Projektionswinkel der Abtasteranord¬ nung.
Fig. 1 zeigt einen Längsschnitt durch eine Meßkameraan¬ ordnung in einer ersten Ausführung. Sie umfaßt eine fo- kussierbare Primäroptik 10, die ein Objekt auf einer Bildebene 24 abbildet. Im Gegensatz zu üblichen Meßkame¬ raanordnungen für photogrammetrische Messungen befindet sich in der Bildebene selbst kein Sensor. Vielmehr ist hinter der Bildebene 24 eine Kombination aus mehreren hochauflösenden Sensoren 12, 14, 16 und mit diesen zuge¬ ordneten Sekundäroptiken 18, 20, 22 angeordnet. Jede Se¬ kundäroptik 18, 20, 22 bildet einen Ausschnitt der Bild¬ ebene 24 der Primäroptik 10 vergrößert auf dem zugehö¬ rigen hochauflösenden Sensor 12, 14, 16 ab.
Die Sekundäroptiken 18, 20, 22 und Sensoren 12, 14, 16 sind fest auf die Bildebene 24 eingestellt. Zur Ent¬ fernungsanpassung an das abzubildende Objekt muß daher nur die Primäroptik 10 verändert werden.
Damit die Sensoren 12, 14, 16 jeden beliebigen Ausschnitt der Bildebene 24 der Primäroptik 10 aufnehmen können, sind sie und die Sekundäroptiken 18, 20, 22 quer zur op¬ tischen Achse 26 der Primäroptik 10 auf Schlitten 34 und 36 verschiebbar angeordnet. Die Schlitten 34 und 36 er¬ möglichen eine zweiachsige Verschiebung. Neben der dar¬ gestellten Variante mit zwei unabhängig voneinander ver¬ schiebbaren Schlitten 34 und 36 ist- es auch möglich, die Schlitten zu koppeln oder nur einen gemeinsamen Schlitten 34 vorzusehen. Die Verschiebebewegungen werden von hier nicht dargestellten Antrieben oder auch manuell vorgenom¬ men. Als Sensoren 12, 14, 16 können sowohl CCD-Zeilen als auch CCD-Flächen eingesetzt werden.
Zur Erfassung der Verschiebebewegungen dienen Abstands¬ meßvorrichtungen 28, 30, die den hochauflösenden Sensoren 12, 14, 16 und den Sekundäroptiken 18, 20, 22 zugeordnet sind. Diese Abstandsmeßvorrichtungen 28, 30 erfassen zweidimensional den Abstand zwischen den Projektions¬ zentren Oig, O 0, O der Sekundäroptiken 18, 20, 22 und Bezugspunkten
Figure imgf000013_0001
B-JΓ der hochauflösenden Sensoren 12, 14, 16 einerseits und der optischen Achse 26 der Primäroptik 10 andererseits.
Der Primäroptik 10 sind Raumlagenmeßvorrichtungen 38 zu¬ geordnet, die insbesondere zur Erfassung der Lage und Neigung der optischen Achse der Primäroptik 10 dienen. Diese Raumlagenmeßvorrichtungen 38 bestehen aus vier gleichmäßig auf einer koaxial zur optischen Achse 26 der Primäroptik 10 liegenden Mantelfläche angeordneten hoch¬ auflöseauflösenden Abstandsmeßvorrichtungen 40, 42, 44, 46. Die Abstandsmeßvorsmeßvorrichtungen 28, 30 für die hochauflösenden Sensoren 12, 14, 16 und die Sekundäropti¬ ken 18, 20, 22 wie auch die Abstandsmeßvorrichtungen 40, 42, 44, 46 für die Raumlagenmeßvorrichtungen 38 der Pri¬ märoptik 10 sind als Lagegeber zur Bestimmung der Lage einer Abtasteranordnung 48 relativ zu einer positionier¬ baren Fläche 50 ausgebildet.
Dabei sind die positionierbaren Flächen 50 der Lagegeber an den Sekundäroptiken 18, 20, 22, den hochauflösenden Sensoren 12, 14, 16 oder deren Schlitten 34, 36 und der Primäroptik 10 und die Abtasteranordnungen 48 an einem gemeinsamen Gehäuse 52 angebracht. Auch eine umgekehrte Anordnung ist möglich. Das Gehäuse 52 und die positio¬ nierbaren Flächen 50 bestehen aus einem Material mit niedrigem Temperaturausdehnungskoeffizienten, vorzugs¬ weise aus Invar oder Zerodur.
Fig. 2 zeigt einen Längsschnitt durch eine Meßkameraan¬ ordnung in einer zweiten Ausführung. Die Sekundäroptiken 18, 20, 22 bestehen hier aus mehreren kaskadierten Ein¬ zeloptiken 18', 18'', 18''', 20', 20'', 20''', 22', 22'', 22''' . In jeder Stufe dieser Kaskade wird ein Ausschnitt der im Strahlengang vor der jeweiligen Einzeloptik lie¬ genden Bildebene vergrößert auf einer hinter der Einzel¬ optik liegenden Bildebene abgebildet. Die Einzeloptiken 18', 20', 22' bilden also Ausschnitte der Bildebene 24' vergrößert auf einer Bildebene 24'' ab, die Einzeloptiken 18'', 20'', 22'' wiederum bilden Ausschnitte der Bild¬ ebene 24'' vergrößert auf einer Bildebene 24''' ab usw. In der Bildebene 24'''' liegen schließlich die Sensoren 12, 14, 16. Bei dieser Ausführung liegen die Einzelopti¬ ken 18', 20', 22', 18'', 20'', 22'' und 18''', 20''', 22''' jeweils auf Schlitten 34', 34'' und 34'' ' . Den Ein¬ zeloptiken bzw. Schlitten sind jeweils hochauflösende Ab¬ standsmeßvorrichtungen 28', 28'' und 28''' zugeordnet. In seinen übrigen Merkmalen entspricht die Ausführung der in Fig. 1 dargestellten.
Fig. 3 zeigt eine Draufsicht auf eine Matrix 32, in der Sensoren und Sekundäroptiken angeordnet sind. Die Matrix 32 umfaßt in diesem Ausführungsbeispiel drei Zeilen 66, 68, 70 und drei Spalten 72, 74, 76 mit gleichen Abstän¬ den. In den Schnittpunkten der Zeilen 66, 68, 70 und Spalten 72, 74, 76 liegen die Projektionszentren der Se¬ kundäroptiken und die Bezugspunkte der Sensoren. Bezogen auf die nutzbare Abbildungsfläche der Bildebene 24 sind die Abstände der Zeilen 66, 68, 70 und Spalten 72, 74, 76 so bemessen, daß durch Verschiebung der Matrix 32 um den halben Spalten- und Zeilenabstand jeweils in positiver und negativer X- und Y-Koordinatenrichtung die gesamte nutzbare Abbildungsfläche der Bildebene 24 erfaßt werden kann.
Fig. 4 zeigt eine schematische Darstellung einer Ab- standsmeßvorrichtung. Auf einer positionierbaren Fläche 50 sind in zwei Koordinatenrichtungen X, Y Marken 54, 56 konstanten Abstandes mit einer Absolutkodierung angeord¬ net. Die Marken 54, 56 besitzen unterschiedliche Strich¬ breiten mittels der ihre Koordinaten kodiert sind. Die Dekodierung der Strichbreite mehrerer nebeneinander lie¬ gender Marken 54, 56 enthaltenden Kodes ermöglicht es, die absoluten Koordinaten der Marken anzugeben. Die Mar¬ ken sind in der jeweiligen Koordinatenquerrichtung nicht durchgezogen, sondern es sind nur die Überschneidungsbe¬ reiche dargestellt. Es ergibt sich so ein Muster aus Rechtecken unterschiedlicher Seitenlängen.
Der positionierbaren Fläche 50 stehen Abtaster 58, 60 ge¬ genüber, welche jeweils eine der Koordinatenrichtungen X oder Y auswerten.
Fig. 5 zeigt eine Abtasteranordnung 48 der Abstandsmeß- vorrichtung für eine Koordinatenrichtung. Diese umfaßt einen Fläche 50 mit Marken 54, von denen einzelne Marken hier mit a, b und c bezeichnet sind. Ein Abtaster 58 be¬ findet sich oberhalb der Fläche 50 und dekodiert die in den Marken 54 verschlüsselten Längeninformationen. Mit Hilfe einer Winkelmeßvorrichtung .64 können Projektions¬ winkel, die sich zwischen den Marken 54 und einem Abta¬ sterortspunkt 0M des Abtasters 58 ergeben, ermittelt wer- den ,
Der Abtaster 58 ist als optischer Abtaster ausgebildet und umfaßt eine Abbildungsoptik 78 mit einer Projektions¬ fläche 80 sowie einer Abstandsmeßeinrichtung 82. Bei die¬ sem Abtaster ist ein Abtasterortspunkt 0M durch das der Fläche 50 zugewandte Projektionszentrum der Abbildungs¬ optik 78 gebildet. Die Projektionsfläche 80 ist durch ein Diodenarray, z. B. in Gestalt einer CCD-Zeile gebildet. Die Anzahl der Pixel ist so gewählt, daß die Marken 54 in ihrer Breite aufgelöst werden können und mit Hilfe eines Rechners 62 dekodierbar sind.
Die Interpolation zwischen den Marken 54 wird mittels der Winkelmeßvorrichtung 64 vorgenommen. Wie aus der Zeich¬ nung ersichtlich, werden hier als Beispiel die Marken a, b und c, welche zum Abtasterortspunkt 0M die Winkel bzw. ß einnehmen, unter dem Winkel α' und ß' auf die Punkte a', b' und C der Projektionsfläche 80 abgebildet.
Dort wird mittels der Abstandsmeßeinrichtung 82 jeweils der Projektionswinkel über die Abstandsmessung der Pro¬ jektionspunkte a', b' und c' auf der Projektionsfläche 80 ermittelt. Besitzt die Abstandsmeßeinrichtung 82 z.B. eine CCD-Zeile, so werden an den Stellen, an denen die Marken auf dieser Zeile abgebildet werden, Ladungsände¬ rungen bewirkt, die von dem Rechner 62 in entsprechende Winkelwerte α und ß umgerechnet werden können.
Aus den Projektionswinkeln α und ß lassen sich unter An¬ wendung trigonometrischer Funktionen die Koordinaten des Abtasterortspunktes 0M, der hier mit dem Projekti¬ onszentrum in der Abbildungsoptik 78 übereinstimmt, er¬ mitteln. Zur Erläuterung der Rechenschritte wird auf Fig. 6 Bezug genommen, die eine geometrische Darstellung der Projek¬ tionswinkel der Abtasteranordnung 48 zeigt. Aus der Dar¬ stellung gemäß Fig. 5 sind nur die Marken a, b, c und der Abtasterortspunkt 0M übernommen sind. In diesem Fall be¬ findet sich aber der Abtasterortspunkt 0M nicht direkt über der Marke b, um hier auch .zeichnerisch zu veran¬ schaulichen, daß jede beliebige Position des Abtaster¬ ortspunktes 0M bestimmt werden kann.
Zwischen dem Abtasterortspunkt OM und den Marken a und b ist der Projektionswinkel und zwischen dem Abtaster¬ ortspunkt 0M und den Marken b und c der Projektionswinkel ß eingeschlossen. Die Abstände der Marken a, b und c be¬ tragen jeweils Λ . Betrachtet man einmal die Winkel α und ß für sich, so gibt es verschiedene Punkte, die den glei¬ chen Projektionswinkel und ß einnehmen. Diese Punkte befinden sich auf einer Ortskurve, die für den Winkel α durch einen Kreis K 1 und für den Winkel ß durch einen Kreis K 2 dargestellt sind. Kombiniert man die beiden Winkel α und ß, so gibt es nur einen realen Punkt, bei dem die Bedingung erfüllt ist. Dieser Punkt ist durch die Schnittpunkte der beiden Ortskurven, also der Kreise K 1 und K 2 gegeben.
Die Mittelpunkte M 1 und M 2 der Kreise K 1 und K 2 las¬ sen sich so bestimmen, daß die Mittelsenkrechten zwischen den Marken a und b einerseits und b und c andererseits bestimmt werden und hier die Schnittpunkte mit Linien er¬ halten werden, welche jeweils unter dem Projektions¬ winkel, also α oder ß, durch die Marken a und b bzw. b und c laufen. Für die Abstände der Mittelpunkte M 1 und M 2 von der Maßstabsachse, also die Z-Koordinate der Mittelpunkte M 1 und M 2 ergeben sich:
A Δ
ZI = und Z2 =
2 * tan α 2 * tan ß
Durch mathematische Ableitungen ergeben sich für:
Λ * (ZI2 - Z22)
Xn =
(ZI - Z2) + Δ und für
, 2 * (ZI + Z2)
Z0 =
(ZI - Z2)2 +_ _ 2
Diese Gleichungen führen also zu einer eindeutigen Lösung und lassen sich mit üblichen Rechnern innerhalb kürzester Zeit bestimmen. Analog werden so auch die Koordinaten für die andere Koordinatenrichtung bestimmt.

Claims

P a t e n t a n s p r ü c h e
1. Meßkameraanordnung, insbesondere für photogrammetri¬ sche Messungen an technischen Objekten, bestehend aus ei¬ nem fokussierbaren Objektiv und mindestens einem quer zu dessen optischer Achse verschiebbaren, hochauflösenden Sensor und einer Abstandsmeßvorrichtung, dadurch gekenn¬ zeichnet, daß das fokussierbare Objektiv eine Primäroptik (10) darstellt, daß der hochauflösende Sensor (12, 14, 16) eine als Sekundäroptik (18, 20, 22) dienende Linsen¬ einheit umfaßt, die einen Ausschnitt der Bildebene (24) der Primäroptik (10) vergrößert auf dem dieser Linsenein¬ heit zugeordneten, hochauflösenden Sensor (12, 14, 16) abbildet, daß die Sekundäroptik (18, 20, 22) und der hochauflösende Sensor (12, 14, 16) quer zur optischen Achse (26) der Primäroptik (10) verschiebbar angeordnet sind und daß der Sekundäroptik (18, 20, 22) und dem hoch¬ auflösenden Sensor (12, 14, 16) höchauflösende Abstands¬ meßvorrichtungen (28, 30) zugeordnet sind, welche den Abstand zwischen dem Projektionszentrum (0*,g, O^Q, ^O) der Sekundäroptik (18, 20, 22) und einem Bezugspunkt
(B12' B14' B16-- des -*ochauflösenden Sensors (12, 14, 16) einerseits sowie zwischen dem Projektionszentrum (0-,g, °20' 022) unc cer optischen Achse (26) der Primäroptik (10) andererseits erfassen.
2. Meßkameraanordnung nach Anspruch 1, dadurch gekenn- zeichnet, daß mehrere hochauflösende Sensoren (12, 14, 16) mit diesen zugeordneten Sekundäroptiken (18, 20, 22) in einer Matrix (32) angeordnet sind, die konstante Spaltenabstände und konstante Zeilenabstände aufweist.
3. Meßkameraanordnung nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß die Sekundäroptiken (18, 20, 22) aus mehreren kaskadierten Einzeloptiken (18', 18' ', 18''', 20', 20'', 20''', 22', 22'', 22''') bestehen.
4. Meßkameraanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die hochauflösenden Sensoren (12, 14, 16) und die Sekundäroptiken (18, 20, 22) auf einem gemeinsamen Schlitten (34) angeordnet und gemeinsam verschiebbar sind.
5. Meßkameraanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die hochauflösenden Sensoren (12, 14, 16) und die Sekundäroptiken (18, 20, 22) auf separaten Schlitten (34, 36) angeordnet und unabhängig voneinander verschiebbar sind.
6. Meßkameraanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die hochauflösenden Sensoren (12, 14, 16) als CCD-Zeile ausgebildet sind.
7. Meßkameraanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die hochauflösenden Sensoren (12, 14, 16) als CCD-Fläche ausgebildet sind.
8. Meßkameraanordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Primäroptik höchauflösen¬ de Raumlagenmeßvorrichtungen (38) zugeordnet sind.
9. Meßkameraanordnung nach Anspruch 8, dadurch gekenn¬ zeichnet, daß die Raumlagenmeßvorrichtungen (38) aus wenigstens drei, vorzugsweise vier gleichmäßig auf einer koaxial zur optischen Achse (26) der Primäroptik (10) liegenden Mantelfläche angeordneten höchauflösende Abstandsmeßvorrichtungen (40, 42, 44, 46) ausgebildet sind.
10. Meßkameraanordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die höchauflösenden Abstands¬ meßvorrichtungen (28, 30, 40, 42, 44, 46) als Lagegeber zur Bestimmung der Lage einer Abtasteranordnung (48) re¬ lativ zu einer positionierbaren Fläche (50) ausgebildet sind mit positionierbaren Flächen (50) an den Sekundär¬ optik(en) (18, 20, 22), den hochauflösenden Sensoren (12, 14, 16) und der Primäroptik (10) und Abtasteranordnungen (48) an einem gemeinsamen Gehäuse (52) oder umgekehrt, wobei auf der positionierbaren Fläche (50) in zwei Koor¬ dinatenrichtungen (X, Y) Marken (54, 56) konstanten Ab- standes mit einer Absolutkodierung angeordnet sind und diesen Marken (54, 56) Abtaster (58, 60) gegenüberstehen, wobei die Abtaster (58, 60) mit einem Koordinatenrechner (62) verbunden sind und wobei die Abtaster (58, 60) je¬ weils eine Winkelmeßvorrichtung (64) umfassen, mittels der die Projektionswinkel ( , ß) zwischen einem Bezugs¬ punkt (0M) der Winkelmeßvorichtung (64) des jeweiligen Abtasters (58; 60) und mindestens drei benachbart ange¬ ordneten Marken (A, B, C) bestimmt w- en und der Rechner (62) so gesteuert ist, daß er die Koc inaten (X0 bzw. Y0 und dazu gehörend Z0) des jeweiligen Bezugspunktes (0M) nach trigonometrischen Funktionen berechnet.
11. Meßkameraanordnung nach Anspruch 10, dadurch gekenn¬ zeichnet, daß der Rechner (64) als trigonometrische Funktionen folgende Funktionen oder Gleichungen verar¬ beitet:
Δ* (zι' - Z22)
Xr
Figure imgf000022_0001
Δ (ZI + Z2)
Zπ =
(ZI - Z2) Δ
Δ wobei Z^ =
2 * tan
Δ wobei Z2 =
2 * tan ß
sind, α den Projektionswinkel zwischen einem zugehörigen Bezugspunkt sowie einer ersten und einer zweiten benach¬ barten Marke, ß den Projektionswinkel zwischen dem zuge¬ hörigen Bezugspunkt und einer zweiten sowie einer dritten benachbarten Marke bezeichnet, Δ der Abstand zwischen zwei benachbarten Marken ist und XO, YO, ZO die Koordina¬ ten des zugehörigen Bezugspunktes relativ zur positio¬ nierbaren Fläche darstellen.
PCT/DE1994/000181 1993-02-15 1994-02-15 Messkameraanordnung, insbesondere für photogrammetrische messungen an technischen objekten WO1994018524A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59404954T DE59404954D1 (de) 1993-02-15 1994-02-15 Messkameraanordnung, insbesondere für photogrammetrische messungen an technischen objekten
US08/505,209 US5721611A (en) 1993-02-15 1994-02-15 Photogrammetric camera, in particular for photogrammetric measurements of technical objects
EP94906885A EP0683888B1 (de) 1993-02-15 1994-02-15 Messkameraanordnung, insbesondere für photogrammetrische messungen an technischen objekten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4304529.4 1993-02-15
DE4304529A DE4304529C1 (de) 1993-02-15 1993-02-15 Meßkameraanordnung, insbesondere für photogrammetrische Messungen an technischen Objekten

Publications (1)

Publication Number Publication Date
WO1994018524A1 true WO1994018524A1 (de) 1994-08-18

Family

ID=6480497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000181 WO1994018524A1 (de) 1993-02-15 1994-02-15 Messkameraanordnung, insbesondere für photogrammetrische messungen an technischen objekten

Country Status (5)

Country Link
US (1) US5721611A (de)
EP (1) EP0683888B1 (de)
AT (1) ATE161945T1 (de)
DE (2) DE4304529C1 (de)
WO (1) WO1994018524A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605884A1 (de) * 1996-02-19 1997-08-21 Velzel Christiaan H F Verfahren und Interferenzmikroskop zum Mikroskopieren eines Objektes mit extrem hoher Auflösung jenseits der Beugungsgrenze
US6693666B1 (en) 1996-12-11 2004-02-17 Interval Research Corporation Moving imager camera for track and range capture
WO1998026252A2 (en) * 1996-12-11 1998-06-18 Interval Research Corporation Moving imager camera for track and range capture
DE19714396A1 (de) * 1997-04-08 1998-10-15 Zeiss Carl Fa Photogrammetrische Kamera
US6215898B1 (en) 1997-04-15 2001-04-10 Interval Research Corporation Data processing system and method
US7893957B2 (en) * 2002-08-28 2011-02-22 Visual Intelligence, LP Retinal array compound camera system
US8483960B2 (en) 2002-09-20 2013-07-09 Visual Intelligence, LP Self-calibrated, remote imaging and data processing system
US8994822B2 (en) 2002-08-28 2015-03-31 Visual Intelligence Lp Infrastructure mapping system and method
US7725258B2 (en) * 2002-09-20 2010-05-25 M7 Visual Intelligence, L.P. Vehicle based data collection and processing system and imaging sensor system and methods thereof
USRE49105E1 (en) 2002-09-20 2022-06-14 Vi Technologies, Llc Self-calibrated, remote imaging and data processing system
EP2848000B1 (de) 2012-05-11 2018-09-19 Intel Corporation Systeme und verfahren für eine stereoanpassung mit kausaler zeilenerfassungsreihenfolge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537220A1 (de) * 1985-10-16 1987-04-16 Joerg Prof Dr Ing Albertz Optoelektronische kamera
DE3909855A1 (de) * 1989-03-25 1990-09-27 Ems Technik Gmbh Verfahren zur lagerbestimmung einer positionierbaren flaeche sowie lagegeber
EP0504037A2 (de) * 1991-03-11 1992-09-16 Kabushiki Kaisha TOPCON Kamera
EP0512403A2 (de) * 1991-05-10 1992-11-11 RHEINMETALL JENOPTIC OPTICAL METROLOGY GmbH Anordnung zur hochgenauen videogrammetrischen Messwerterfassung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196400A (en) * 1990-08-17 1993-03-23 At&T Bell Laboratories High temperature superconductor deposition by sputtering
DE4104602C1 (de) * 1991-02-12 1992-06-04 E.M.S. Technik Gmbh, 2950 Leer, De
SE468368B (sv) * 1991-04-30 1992-12-21 Jonas Samuelsson Optoelektronisk maetskala foer att positionsbestaemma och indikera laeget foer ett mot maetskalan infallande riktat ljus fraan en straalningskaella
FR2688278B1 (fr) * 1992-03-06 1994-11-18 Nacam Accouplement elastique.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537220A1 (de) * 1985-10-16 1987-04-16 Joerg Prof Dr Ing Albertz Optoelektronische kamera
DE3909855A1 (de) * 1989-03-25 1990-09-27 Ems Technik Gmbh Verfahren zur lagerbestimmung einer positionierbaren flaeche sowie lagegeber
EP0504037A2 (de) * 1991-03-11 1992-09-16 Kabushiki Kaisha TOPCON Kamera
EP0512403A2 (de) * 1991-05-10 1992-11-11 RHEINMETALL JENOPTIC OPTICAL METROLOGY GmbH Anordnung zur hochgenauen videogrammetrischen Messwerterfassung

Also Published As

Publication number Publication date
DE59404954D1 (de) 1998-02-12
EP0683888A1 (de) 1995-11-29
ATE161945T1 (de) 1998-01-15
EP0683888B1 (de) 1998-01-07
DE4304529C1 (de) 1994-06-30
US5721611A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
DE19727281C1 (de) Verfahren und Vorrichtung zur geometrischen Kalibrierung von CCD-Kameras
DE602005003610T2 (de) Vorrichtung zum Bestimmen der dreidimensionalen Form eines Objekts
DE3708683C2 (de) Verfahren zur Bestimmung von Lageänderungen einer bewegten Bildsensorplattform
DE69306399T2 (de) Validierung der optischen Entfernungsmessung einer Zieloberfläche in einer gestörten Umgebung
DE19804205B4 (de) Fotogrammetrisches Meßverfahren und fotogrammetrische Meßeinrichtung
DE102006055758B4 (de) Verfahren zur Kalibrierung von Kameras und Projektoren
CH692679A5 (de) Photogrammetrische Kamera und photogrammetrisches Verfahren.
DE10163351C1 (de) Verfahren und Anordnung zur verzerrungsarmen Aufnahme von an einer Kontaktfläche durch gestörte Totalreflexion entstehenden Intensitätsmustern
DE19623172C1 (de) Verfahren zur dreidimensionalen optischen Vermessung von Objektoberflächen
DE3813692A1 (de) Verfahren und vorrichtung zur digitalen moireprofilometrie, geeicht fuer die genaue umwandlung von phaseninformation in abstandsmessungen in einer vielzahl von richtungen
DE19841235A1 (de) Positionskalibrierverfahren für eine optische Meßeinrichtung
EP2506027B1 (de) Abbildungssystem für Sternsensoren mit zwei Brennweiten
DE202019105838U1 (de) Anordnung mit einem Koordinatenmessgerät oder Mikroskop
DE4212404B4 (de) Vorrichtung und Verfahren zur Bestimmung der räumlichen Form eines langgestreckten Bauteils
DE4304529C1 (de) Meßkameraanordnung, insbesondere für photogrammetrische Messungen an technischen Objekten
EP0226893B1 (de) Verfahren zur hochgenauen Positionsvermessung von zweidimensionalen Strukturen und Referenzmaske zur Durchführung des Verfahrens
EP0308932B1 (de) Verfahren und Vorrichtung zur Abtastung eines Objektes
DE3428325C2 (de) Anordnung von opto-elektrischen Festkörper-Sensorflächen im photogrammetrischen Abbildungssystem
DE112018002357T5 (de) Dreidimensionales Messverfahren unter Verwendung von Merkmalsgrössen, und Vorrichtung, die das Verfahren verwendet
DE19902401C2 (de) Verfahren und Vorrichtung zur Bestimmung der Geometrie von blattförmigem Gut oder Stapeln davon
DE3411720C2 (de)
DE102011082280A1 (de) Bildmessvorrichtung und Bildmessverfahren
EP0572804B1 (de) Anordnung zur geometriegetreu hochauflösenden Abtastung grosser Bildformate
DE3909855C2 (de)
DE19610941C2 (de) Zweiachsiger Neigungsmesser und Verfahren zur Neigungsmessung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994906885

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08505209

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994906885

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994906885

Country of ref document: EP