WO1994017948A1 - Method and apparatus for discharge machining control - Google Patents

Method and apparatus for discharge machining control Download PDF

Info

Publication number
WO1994017948A1
WO1994017948A1 PCT/JP1994/000148 JP9400148W WO9417948A1 WO 1994017948 A1 WO1994017948 A1 WO 1994017948A1 JP 9400148 W JP9400148 W JP 9400148W WO 9417948 A1 WO9417948 A1 WO 9417948A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric discharge
speed
axis
value
command
Prior art date
Application number
PCT/JP1994/000148
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Sawada
Syunichi Odaka
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to EP94905830A priority Critical patent/EP0636444B1/en
Priority to US08/313,278 priority patent/US5589086A/en
Priority to DE69410710T priority patent/DE69410710D1/de
Priority to KR1019940703444A priority patent/KR0164629B1/ko
Publication of WO1994017948A1 publication Critical patent/WO1994017948A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/32Maintaining desired spacing between electrode and workpiece, e.g. by means of particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/20Electric circuits specially adapted therefor, e.g. power supply for programme-control, e.g. adaptive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/18Electric circuits specially adapted therefor, e.g. power supply for maintaining or controlling the desired spacing between electrode and workpiece

Definitions

  • the present invention is applied to an electric discharge machining apparatus that generates a discharge by applying a voltage between a tool electrode and a workpiece which are opposed to each other with a small gap in a liquid, and machining by such an electric discharge machining apparatus
  • the present invention relates to an electric discharge machining control method and apparatus for adjusting a gap between a tool electrode and a workpiece to an optimum state using a driving means such as a servomotor in order to maintain a constant electric discharge state.
  • the EDM device applies a voltage between the tool electrode and the workpiece to generate electrical discharge, removes the workpiece material, and applies the tool electrode according to the programmed machining trajectory.
  • the desired shape is processed by moving the object relatively to the object.
  • an average machining voltage (gap voltage) between the tool electrode and the workpiece or a voltage between the tool electrode and the workpiece is applied.
  • the tool gap is moved relative to the workpiece in accordance with the detected EDM state in order to keep the EDM state given from the time until the occurrence of electric discharge until the electric discharge occurs. Is being adjusted.
  • the evacuation direction and distance for retreating the tool electrode relative to the workpiece are determined based on the detected EDM state.
  • You The discharge gap is adjusted by obtaining the position of the evacuation destination by using this method, and instructing the obtained evacuation position to a position control device (hereinafter referred to as a servo mechanism).
  • the retreat direction may be, for example, a direction and a direction opposite to the direction in which the tool electrode is relatively moved with respect to the workpiece at the machining position, or a finishing process in the discharge machine.
  • a direction perpendicular to the direction in which the wire electrode moves relative to the workpiece that is, the direction of the normal line of the machining surface is selected.
  • a set direction in the orthogonal three-axis coordinate system may be given instead.
  • FIG. 6 is a block diagram showing a conventional relative feed control of a tool electrode to a workpiece.
  • 1 is a tool electrode
  • 2 is a workpiece
  • 3 is a gap for detecting a discharge machining state of a gap between the tool electrode 1 and the workpiece 2 (for example, detecting an average machining voltage).
  • It is a state detector.
  • Reference numeral 4 designates a command value distribution device to a position commanded by an additional program, such as a DDA (Digital Differential Anaiizer) inside the numerical controller.
  • DDA Digital Differential Anaiizer
  • 5 x, ⁇ y, and 5 z are servo mechanisms for the X, Y, and ⁇ axes
  • 6 x, 6, and 6 ⁇ are rotations for servomotors
  • 7 ⁇ and 7 y7 z are rotations for servomotors.
  • the position detector 8 for detecting the position is a power transmission mechanism for moving the tool electrode 1 relatively to the workpiece 2 (in the example of FIG. 6, three tool electrodes are used.
  • Servo motor 6 X, 6, 6 z Shows an example of moving
  • the gap state detector 3 detects the state between the tool electrode 1 and the workpiece 2 such as the average applied voltage, and the state detection values V g and g
  • the command value distribution mechanism 4 distributes ( ⁇ cx, M cy, M cz) the movement command to the servo mechanism 5 X, 5 y, 5 z of each axis.
  • the servo mechanism for each of these axes drives the servo motors 6x, 6y, and 6z of the corresponding axes respectively, and transmits the tool electrodes 1 to the workpiece 2 via the transmission mechanism 8. Are relatively moved.
  • each servo mode is detected by the position detectors 7X, 7y, 7z, respectively, and the position is fed back by the servo mechanisms 5X, 5y, 5z. Control is exercised. Speed feedback control is also performed by these servo mechanisms 5X, 5y, 5z.
  • Fig. 7 is a block diagram showing a conventionally implemented tool electrode feed control that belongs to a slightly different type from that shown in Fig. 6.
  • the difference from the method in Fig. 6 is that, apart from the command value distribution mechanism 4 that distributes the movement command to each axis to move to the position commanded by the program, it is used to adjust the discharge gap.
  • the point is that a distribution mechanism 4 ′ is provided.
  • the gap state detector 3 detects the state of the discharge gap (the size of the gap). Etc.
  • the difference between the detection value v g and setting the target value V s ( vg -. V s) of the depending on the size the distribution mechanism 4 'X, Y, the movement amount PX of Z-axis', P', P seeking z ', volume of distribution P x to each axis output command value distribution mechanism 4 or al, P, which respectively added to [rho zeta, or c that a movement command for each axis Sabomo Isseki In the tool electrode feed control method shown in Fig. 6 and Fig.
  • the tool electrode is controlled so as to advance with respect to the workpiece by a distance proportional to the difference ⁇ so as to reduce the discharge gap.
  • the tool electrode is controlled so as to move backward with respect to the workpiece only by a distance.
  • the servo mechanism 5 ⁇ , ⁇ y, 5 ⁇ compares the current position with the target position output from the command value distribution mechanism 4 or the distribution mechanism 4 ′ based on the discharge state, and determines the moving speed of the tool electrode or the workpiece. Once determined, it acts to move the tool electrode or the workpiece.
  • the state of the electric discharge gap between the tool electrode and the work is set to an appropriate value. Must be carried. As a result, accumulation of machining debris of the workpiece material removed from the workpiece by electric discharge and abnormal discharge If this occurs, retreat the tool electrode or workpiece once (increase the gap), clean the accumulation of machining debris, stop abnormal discharge, and generate a normal discharge. It is necessary to adjust the gap at the same time.
  • the state of the discharge gap which changes every moment due to the progress of electric discharge machining and the accumulation of machining chips, is quickly detected and fed back to return to a normal state in a shorter time. Necessary to improve the ability to remove and process over time. In addition, when accumulation of machining waste or abnormal discharge occurs, it is effective to perform an operation to release these as soon as possible to suppress abnormal expansion. Therefore, a controller that moves the tool electrode or the workpiece in response to the detection of the discharge state must have high responsiveness in order to achieve higher discharge machining efficiency and reduce machining abnormalities. Becomes
  • the command value distribution mechanism 4 moves the tool electrode 1 or the workpiece 2 to the servo mechanisms 5X, 5y, 5z every distribution cycle. Since the quantities M cx M cy and M cz are specified, the responsiveness cannot be improved for the following reasons.
  • the command value distributing mechanism 4 is used to move the drive mechanism for multiple axes ( ⁇ , ⁇ ⁇ , and ⁇ axes) consisting of the servos and the feeder to maintain the discharge gap optimally. Calculations must be performed to distribute the quantities to each axis ( ⁇ X, Py, Pz).
  • the current position of the tool is determined by its end point or individual movement unit. It is necessary to determine whether or not the position boundary point has been reached.Therefore, the calculation time required for distributing the movement command value to each axis should be shorter than the time required for each of the above processes. And there is a lower limit for processing time. Therefore, the cycle in which the command value distribution calculation is executed must be a time interval larger than the lower limit. Therefore, after the observation of the discharge gap state, a delay occurs between the time when the next command value distribution calculation is performed and the time is wasted.
  • the servo mechanism 5X, 5y, 5z can only follow a small movement command at a very small speed in proportion to its magnitude.
  • the gain is adjusted so that it does not occur), but it has a delay time corresponding to the reciprocal of the position feed noise control gain, which is a proportional constant.
  • the servo mechanisms 5x, 5y, and 5z have a closed loop configuration in which information on the rotational position of each servomotor is fed back from the position detectors 7X, 7y, and 7z. Therefore, if the position control gain is increased, the gain margin decreases, and the operation of each servo mechanism becomes unstable. Therefore, the position control gain cannot be increased unnecessarily.
  • feedforward control of the position may be performed.
  • a value proportional to the value obtained by differentiating each of the movement commands PX, Py, and Pz from the command value distribution mechanism 4 is set to a normal position loop. It is added to the speed command obtained in the processing to make the speed command in the speed-lube processing. Even with this feed-forward control, it is not possible to compensate for the time delay until the command value distribution mechanism 4 performs distribution calculation for obtaining the movement command amount to each axis.
  • the derivative of the movement command is actually obtained by dividing the difference of the movement command distributed at each command time interval (distribution cycle) by the command time interval. It gets worse in proportion to the command time interval. For this reason, in the feed-forward control, it is not possible to increase the weight of the portion based on the differential value used as the speed command value. Therefore, there is a limit to improving the responsiveness of the discharge gap control even by the feedforward control.
  • An object of the present invention is to provide a control method for electric discharge machining and an electric discharge machining apparatus which have good responsiveness and can stably control a discharge gap.
  • the method of the present invention detects an electric discharge machining state in a gap between a tool electrode and a workpiece, and performs the machining so that a detected value of the electric discharge applied state matches a target value.
  • the EDM control method that controls the gap length by driving a servo mechanism that relatively moves the tool electrode with respect to the object, the deviation between the detected value of the EDM state and the target value is calculated. Based And the speed command output from the position loop control unit of the servo mechanism in the set direction is corrected and used as the speed command for the speed loop.
  • the correction amount of the speed command based on the ⁇ ⁇ difference is integrated, and the integrated value is added to the movement command to the position loop.
  • the correction value for the above speed command is proportional to a value obtained by multiplying each axis component value of a preset direction vector by the above deviation, and each axis servo mechanism It is configured as a correction value to the speed command to the speed loop of the axis. More preferably, the correction value of the speed command for each axis is integrated, and the integrated value is moved to the position loop of each axis. Add to the directive.
  • the deviation is integrated, and a value proportional to a value obtained by multiplying the integrated value by each axis component value of a direction vector set in advance is set as a value corresponding to each axis.
  • the apparatus of the present invention provides an electric discharge machining tool that reads a program and writes in a memory a movement command for each axis and an evacuation direction set together with the movement command for each distribution period. And the movement command read from the above memory is divided into equal parts to obtain the movement command of the position loop processing cycle ⁇ , and the position loop processing and speed loop processing I The current loop processing is executed, and the servo electrodes of each axis are driven to move the tool electrode relative to the workpiece. Machining system, an electric discharge machining state detector that monitors the electric discharge state in the gap between the electrode being processed and the workpiece, and a position detector that detects the rotational position and speed of the servo motor.
  • control device 'Multiply the difference between the output from the electric discharge application state detection device and the target electric discharge machining state value by each axis component in the retraction direction stored in the above memory and a predetermined constant.
  • Speed command correction to directly feed back the evacuation speed command generation means and the evacuation speed command output from the evacuation speed command generation means for each axis to the speed control unit of the servo mechanism of the corresponding axis.
  • an integrator for adding the evacuation speed command which is an output from the evacuation speed command generation means for each axis, and a servo for the axis corresponding to the output of the integrator for each axis, respectively. Equipped with a position command correction means for providing positive feedback to the position control unit of the mechanism.
  • a servo mechanism of the corresponding axis which outputs the output from the above-mentioned evacuation amount calculating means to obtain the amount of evacuation for each axis by multiplying each axis component in the evacuation direction and a predetermined constant.
  • a position command correction means for providing positive feedback to the position control unit.
  • the deviation between the detected value of the electric discharge machining state and the target value is obtained, and the speed is determined based on the deviation. Since the speed command to the degree loop process is corrected, the larger the deviation, the higher the speed, and the gap between the tool electrode and the workpiece is corrected so that the deviation becomes zero. . In addition, the current position of the tool electrode with respect to the workpiece is shifted from the position commanded by the program by correcting the speed. Therefore, the correction amount of the speed is integrated to obtain a correction movement amount, and this correction movement amount is added to the movement command of the position loop, thereby preventing the displacement of the current position.
  • FIG. 1 is a block diagram of a first embodiment of a relative feed control of a tool electrode to a workpiece according to the present invention
  • FIG. 2 is also a block diagram according to the second embodiment
  • FIG. 3 is a block diagram of a main part of an electric discharge machining control device implementing the first and second embodiments of the present invention.
  • FIG. 4 is a flow chart of a process for each position loop processing cycle and each speed loop processing cycle in the first embodiment executed by the processor of the digital servo circuit in the electric discharge machine of FIG. ,
  • Fig. 5 is a flow chart of the processing for each position loop processing cycle and each speed loop processing cycle in the second embodiment, and Fig. 6 shows the conventional tool electrode for the workpiece.
  • Fig. 7 is a block diagram related to the conventional relative control of the feed of the tool electrode to the workpiece, which is different from Fig. 6. Best form to carry out the invention
  • FIG. 1 is a block diagram according to an embodiment of the electric discharge machining control according to the present invention.
  • the same components as those in the block diagram of the conventional relative feed control of the tool electrode to the workpiece shown in FIG. 6 are denoted by the same reference numerals.
  • the servo mechanisms 5X, 5y, 5z are shown separately for a position control unit and a speed control unit.
  • the command value distribution support system 4 responds by distributing the movement command values (PX, Py, Pz) specified by the machining program for each axis. Are output to the servo mechanism 5x, 5y, 5z of the axis to be changed.
  • the gap state detector 3 detects the state of electric discharge machining in the gap between the tool electrode 1 and the workpiece 2 (for example, the average machining voltage and the time from the voltage application to the occurrence of electric discharge). Then, the target value V s is subtracted from the detected value V g to obtain the deviation ⁇ .
  • the deviation £ is a gap speed command as a correction amount for correcting the speed command obtained by the position loop process.
  • -Multipliers 9 ⁇ , 9y, 9z Is the direction vector a in the evacuation direction that is programmed together with the movement trajectory command in the machining program at the above gap speed command £ (the evacuation direction is constant regardless of the machining trajectory, etc. In this case, this direction vector may be set manually instead of in the program.)
  • Correct the speed command by multiplying each axis component ax, ay, az.
  • the integrators 10X, 10X, 10Z accumulate the corresponding evacuation speed commands V2x, V2y, V2z for each axis component.
  • the integrators 10 X, 10 0, and 10 z integrate the evacuation speed commands of each axis component and set the evacuation movement amount of each axis component as the corrected movement amount Q x, Q y, Q z. Output. Then, this corrected movement amount is added to the movement amount PX, P, Pz of each axis distributed from the command value distribution mechanism 4, and the movement command to the position control unit of the servo mechanism of each axis is added.
  • the evacuation speed commands V2x, V2y, V2z are respectively added to the speed commands Vlx, Vly, Viz obtained by the position loop control of the servo mechanism 5x, 5, 5z of each axis.
  • the speed commands V cx, V cy, and V cz to the speed controller of each axis servo mechanism are used.
  • the position detector 7 x detects the movement command M cx.
  • the position deviation is obtained by reducing the moving amount, and the position command is multiplied by the position loop gain Kp to obtain the speed command V 1 X as in the conventional case.
  • the speed controller 52 Based on the speed command V ex, feed knock control at the same speed as before is performed to drive and control the servo motor 6X, and the tool electrode I is processed via the transmission mechanism 8. Move to object 2.
  • the operation of the X-axis servo mechanism 5X described above is the same as the operation of the Y-axis and Z-axis servo mechanisms 5y and 5z.
  • the relative movement of the tool electrode I with respect to the workpiece 2 is performed in the direction instructed with respect to the movement command by the program and the speed command given based on the output of the position detector.
  • the gap between the tool electrode 1 and the workpiece 2 is larger than the target value (for example, as a result, the phenomenon that the average machining voltage becomes higher than the target value appears), the gap is increased.
  • the output Vg of the gap state detector 3 becomes larger than the target value Vs, and the gap speed command £, which is the deviation, becomes a positive value.
  • the output V g of the gap state detector 3 becomes smaller than the target value V s, which is the deviation.
  • Gap speed command ⁇ Is a negative value.
  • each axis's evacuation speed command V 2x, V 2y, V 2 and other negative values are added to the speed command V lx, V ly, V iz output from the servo mechanism position loop of each axis.
  • the tool electrode 1 is moved relative to the workpiece 2 in a direction opposite to the set direction, that is, the tool electrode 1 acts so as to increase the gap between the workpiece 2 and the tool electrode 1.
  • the speed command V lx, V ly, V iz input to the speed control unit of each axis servo mechanism 5 x, 5 y, 5 z has a positive or negative evacuation speed command.
  • the speed command of the tool electrode 1 to the workpiece 2 is corrected.
  • the retreat speed commands V 2x, V 2y, and V 2z are respectively integrated.
  • the movements Qx, QY, and Qz based on the evacuation speed command are obtained by integrating the devices 10 X, 10 y, and ⁇ ⁇ ⁇ , and the obtained movements are used as command value distribution mechanisms.
  • the movement commands PX, P, and Pz for each axis output from the controller are referred to as movement commands Mcx, Mcy, and Mcz for the position control units of the servo mechanisms 5x, 5y, and 5z. ing.
  • FIG. 2 is a block diagram of a second embodiment of the present invention, which is different in configuration from the first embodiment shown in FIG. 1.o ⁇ ? Is a single integrator and a multiplier. This is an increase of three to a total of six.
  • the gap speed command ⁇ obtained by subtracting the target value V s from the detection value V g detected by the gear state detector 3 is used to set the direction in all directions.
  • the evacuation speed commands V2x, V2y, V2z for the X, ⁇ , and ⁇ axes are obtained, and these evacuation speed commands V2x, V2y, V2z are calculated for each servo mechanism 5 x
  • the speed command output to the speed control unit is added to the speed command output from the position control of 5, y, 5 z. This point is the same as the first embodiment shown in FIG.
  • the above-mentioned gap speed TPt is integrated by one integrator 1 °, and the integrated value is multiplied by each axis component value of the directional vector to the multipliers 11X, 1X. 1, 1 1 z, and multiply the outputs Q x, Q y, and Q z of the respective multipliers by the corresponding movement commands P ⁇ , P y, P z output from the command value distribution mechanism 4.
  • the second embodiment differs from the first embodiment.
  • the first embodiment shown in FIG. 1 requires three integrators, the same in number as the number of axes, whereas the second embodiment shown in FIG. Only one. This results in the fact that in the processing of the computer when the second embodiment is performed, the calculation time can be shortened by the small number of integrators. .
  • the second embodiment since six multipliers (9X to 92, 11 ⁇ to 11 ⁇ ) are used, since the word length of the calculation is finite, three multipliers are used. It is considered that errors are more likely to occur than in the first embodiment.
  • the errors are individually accumulated in the integrators ⁇ ⁇ ⁇ : LO z for each axis, and as a result, the directional vector and each integrator ⁇ ⁇ ⁇ ⁇ :
  • the evacuation amounts QX, Qy, and Q ⁇ which are the composite of the outputs of LO z, will have an error in the direction of their movement vector, but this is shown in Fig. 2.
  • the discharge state of the discharge gap is detected, and the detection result controls the gap between the electrodes. It is directly fed back to the speed control unit in the robot mechanism.
  • the detected discharge state is fed back only to the position loop.
  • the speed loop processing cycle is generally shorter than the distribution cycle and the position loop processing cycle (usually, the speed loop processing cycle is 14 or 18 of the distribution cycle). According to the electric discharge machining control according to the embodiment of the present invention, advantages such as a short delay time and a high band width can be obtained.
  • the innermost minor loop should have a higher response band width in order to stabilize the entire system. Therefore, in any of the first and second embodiments, the velocity loops in the servo mechanisms 5X, 5y, and 5z include the position detectors (7x, 7x). y, 7 z), the position loop gain Kp, and a higher frequency response than the position loop including the speed controller 52 itself, so that stable electric discharge machining control is obtained. be able to.
  • FIG. 3 is a block diagram of a control device for implementing the above embodiments.
  • reference numeral 20 denotes a numerical control device for controlling an electric discharge machine
  • 21 denotes a shared memory
  • 22 denotes a digital servo circuit constituting a servo mechanism, a processor and a ROM.
  • And memory such as RAM.
  • 23 is a servomotor
  • 6X is a servomotor for driving the X axis
  • 7x is a servomotor.
  • a position detector for detecting the rotational position and speed of the servomotor is provided.
  • Reference numeral 3 denotes the gear state detector.
  • the numerical controller 20 reads the machining program, writes the movement command for each axis in the distribution memory 21 for each distribution cycle, and sets the direction vector a set with the movement command. Write (a, ay, az).
  • the processor of the digital servo circuit 22 reads each movement command from the shared memory 22 and divides the movement command into equal parts to divide the movement command for each position loop processing cycle. Then, the position loop processing, the speed loop processing, the above-described evacuation processing, and the current loop processing are executed, and the sub motor 6X is operated.
  • FIGS. 4 (a) and 4 (b) show the position loop processing cycle and speed when the processor of the digital servo circuit 22 implements the first embodiment of the present invention shown in FIG. Live processing 3 ⁇ 4 This is a flow chart of the processing performed every period.
  • the processor of the digital servo circuit 22 reads the movement command for each distribution cycle read from the shared memory 2.1, and executes the axis movement command PX, P y and P z are obtained (step 101).
  • the location Read the position feed knock values Pfx, Pfy, and Pfz from the detector (Step 102).
  • the movement commands Px, Py, and Pz obtained in step 1 ⁇ 1 are added for each axis, and the movement commands M cx, M given to the position control unit in the servo mechanism 5X, ⁇ , 5z.
  • step 103 Calculate cy and M cz (step 103). Then, by subtracting the position detection outputs fed back from the position detectors 7x, 7y, 7z from the movement commands Mcx, Mcy, Mcz thus obtained, the position deviation is obtained for each axis.
  • a position loop process is performed by multiplying the obtained position deviation by the position loop gain Kp to obtain velocity commands Vlx, Vly, Viz, which are stored in registers and processed in the position loop processing cycle.
  • the processing ends (step 104).
  • the processing shown in FIG. 4 (a) is repeatedly executed every position-rubbing processing cycle.
  • the processor of the digital servo circuit 22 has the speed shown in FIG. 4 (b).
  • each axis component of the direction vector ax, ay is calculated by subtracting the set target value Vs from the read gap state detector output V ⁇ ⁇ . az Further, by multiplying by the proportionality constant K, the evacuation speed command V 2x,
  • Step 1 1 2 finds V 2y and V 2z (Step 1 1 2). Further, the obtained evacuation speed commands V 2x, V 2y, V 2z are added to the speed commands V lx, V ly, V lz obtained in step 104 of the position loop processing described above.
  • the angle commands V cx, V c, and V cz to be given to the position control unit in the servo mechanism 5, 5, y, 5 z are obtained (step 113). Then, the obtained speed command V cx:
  • V 2y and .V 2z are added, and the processing of the speed lube processing cycle ends.
  • FIGS. 5 (a) and 5 (b) show the case where the processor of the digital servo circuit 22 when the second embodiment of the present invention shown in FIG. This is a flow chart of the processing performed for each loop processing cycle.
  • step 203 And further multiplied by the proportionality constant K to obtain the retreat amounts Qx, Qy, and Qz for each axis (step 203), and the retreat amounts and step 201 are obtained.
  • the movement commands Px, Py, and Pz are added to obtain the movement commands Mcx, Mcy, and Mcz to be given to the position control unit in the servo mechanisms 5x, 5y, and 5z for each axis.
  • Step 204 position loop processing is executed based on the obtained movement command and the position feedback values output from the position detectors 7x, 7y, 7z, and the speed commands Vlx, Vly , V lz are obtained and stored (step S205), thereby terminating the position loop processing in the processing cycle.
  • step S202 the velocity loop processing shown in Fig. 5 (b) (this velocity loop processing executes N times in the position loop processing circle as in the first embodiment) is shown in Fig. 3 (b). ) Is substantially the same as the speed loop processing of the first embodiment shown in FIG. 1, and the difference is that the direction vector a is the step 2 11 1 corresponding to the step 1 11 1 of the first embodiment.
  • Step 2 corresponding to Steps 1 15 of the first embodiment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Numerical Control (AREA)

Description

明 細 書
放電加工制御方法及び放電加工制御装置
技 術 分 野
本発明は、 液体中で微小間隙を隔てて対向させた工具 電極と被加工物 との間 に電圧を印加 して放電を発生させ る放電加工装置に適用 され、 かかる放電加工装置によ る 加工中に放電状態を一定に保持するため、 工具電極と被 加工物 との間隙をサーボモー夕な どの駆動手段を用 いて 最適状態に調整する よ う に した放電加工制御方法及び及 びその装置に関する。
背 景 技 術
放電加工装置は、 工具電極 と被加工物との間に電圧を 印加 して放電を生 じせ しめて被加工物材料を除去 しつつ, プロ グラ ムさ れた加工軌跡に したがって工具電極を被加 ェ物に対 して相対的に移動させる こ と によ り、 所望の形 状を加工する ものである。 この放電加工装置によ る力 11ェ にお いて は、 工具電極 と被加工物 との間の平均加工電圧 ( ギツ ヤプ電圧 ) 、 或いは工具電極と被加工物 との間 に 電圧を印加 してから放電が生 じるまでの時間等 与え ら れる放電加工状態を一定に保っため、 検出 した放電加工 状態に応 じて工具電極を被加工物に対 して相対的に移動 させて放電間隙を調整 して い る。
と こ ろで、 従来の放電加工用制御装置では、 検出 した 放電加工状態に基づ いて工具電極を被加工物に対 して相 対的に退避させる と きのその退避方向と距離と を決定す る こ と に よ り 退避する先の位置を求め、 その求めた退避 位置を位置制御装置 (以下サーボ機構と い う ) に指令す る こ と に よ っ て上記放電間隙を調整 して い る。 なお、 こ のよ う な退避方向と しては、 例えば、 当該加工位置での 被加工物に対する工具電極の相対的移動方向と は逆向き の方向と 力 或いはヮ ィ ャ放電加工機における仕上げ加 ェゃ形彫放電加工機での場合のよ う に、 被加工物に対す る ワ イ ヤ電極の相対移動方向に垂直な方向、 すなわち、 加工面の法線の方向とかが選ばれる。 ま たは、 これ ら に 代えて、 直交三軸座標系における設定された方向が与え られる こ とがある。
図 6 は、 従来から行われて いる被加工物に対する工具 電極の相対送 り 制御を示すためのブロ ッ ク図である。 図 6 にお いて、 1 は工具電極、 2 は被加工物、 3 は該工具 電極 1 と被加工物 2間の間隙の放電加工状態を検出する (例えば、 平均加工電圧を検出する ) ギャ ップ状態検出 器である。 ま た、 4 は数値制御装置内部における D D A ( Digital Differenti al Anaiizer ) な どで構成さ れる 加エブロ グラ ムで指令された位置への指令値分配機镡で ある。 さ ら に、 5 x, δ y, 5 z は X, Y, Ζ軸のサー ボ機構、 6 x, 6 , 6 ζ はサ一ボモー夕、 7 χ, 7 y 7 z は各サーボモー夕の回転位置を検出する位置検出器 8 は伝動機構で、 工具電極 1 を被加工物 2 に対 して相対 的に移動 させる ものである ( なお、 図 6 の例では、 工具 電極の方を三台のサーボモ ー タ 6 X , 6 , 6 z で も つ て移動させて い る例を示 して いる
ギャ ヅプ状態検出器 3 が平均加ェ電圧等の工具電極 1 と被加ェ物 2 間の状態を検出 し、 該状態検出値 V g と g
1示 πΧ £. ) 状態値 V s ヒの差 ε ( = V g - V s ) を求め. 該差 £ の大き さ に比例 した距離だけ加工プロ グラムで指 令された移動位置方向に移動する よ う上記指令値分配機 構 4が各軸のサ一ボ機構 5 X , 5 y , 5 z に移動指令を 分配 ( Μ c x , M c y , M c z ) する。 これら各軸のサ一ボ機 構は対応する軸のサーボモ一夕 6 x, 6 y , 6 z をそれ それ駆動 して、 伝動機構 8 を介 して被加工物 2 に対 しェ 具電極 1 を相対的に移動させる。 なお、 各サーボモー夕 の回転位置は位置検出器 7 X , 7 y , 7 z でそれぞれ検 出され、 各サーボ機構 5 X , 5 y , 5 z によつて位置の フ ィ ー ドパ'ッ ク制御がなされる。 ま た、 こ れらサーボ機 構 5 X, 5 y , 5 z によって速度のフ ィ ー ドバッ ク制御 も行われ
図 7 は . 図 6 に示 したもの とは若干異なるタ イ プに属 する と こ ろの従来か ら実施さ れて いる工具電極送 り 制御 を示 したブ口 ッ ク図である。 図 6 の方法と相違する点は. プ口 グラ ムで指令さ れた位置へ移動させるために各軸に 移動指令を分配する指令値分配機構 4 と は別に、 放電間 隙を調整するための分配機構 4 ' が設け ら れて いる点で め る
この図 7 の工具電極送 り 制御では、 ギャ ップ状態検岀 器 3 で放電間隙の状態 ( 間隙の大き さ ) を検出 し、 該検 出値 v g と設定目標値 V s と の差ど ( = . v g - V s ) の 大き さ に よっ て上記分配機構 4 ' が X, Y, Z軸の移動 量 P X ' , P ' , P z ' を求め、 指令値分配機構 4 か ら出力される各軸への分配量 P x, P , Ρ ζ にそれぞ れ加算 し、 各軸サーボモ一夕への移動指令と して いる c 以上図 6, 図 7 に示された工具電極送 り 制御方法では. 放電間隙が大き く したがつて状態検出値 V gが大き く、 そのため、 V g — V s = £ > 0 ( V s ; 目標値) である 場合には、 放電間隙を小さ く する よ う に上記差 ε に比例 する距離だけ工具電極が被加工物に対 して前進するよ う 制御される。 一方、 放電間隙が小さ く したがつて状態検 出値 V gが小さ く、 V g - V s = ε く 0 となる場合には. 放電間隙を大き く する よ う に上記差 ε に比例する距離だ 'け工具電極が被加工物に対 して後退する よ う制御され る, なお、 図 6, 図 7 に示す方法のいずれの場合にも、 サ一 ボ機構 5 χ, δ y , 5 ζ は、 指令値分配機構 4 ま たは分 配機構 4 ' が放電状態に基づいて出力 した 目標位置と現 在の位置を比較 してェ具電極も し く は被加工物の移動速 度を決定 し、 工具電極も し く は被加工物を移動させる働 き を して いる。
と こ ろで、 放電加工装置において は、 被加工物の材料 を除去す る作用 を発揮する正常な放電を維持させる に は. 工具電極 と被加工物間の放電間隙の状態を適切な値に 持する必要があ る。 そのため、 放電によ って被加工物か ら除去さ れた被加工物材料の加工屑の堆積や異常放電の 発生があつた と き、 工具電極ま たは被加工物を一旦退避 させ ( 間隙を大き く し ) 、 加工屑の堆積を清浄に しかつ 異常放電を停止させ、 正常の放電が発生するよ う に間隙 を調整する必要があ る。
すなわち、 放電加工の進展や加工屑の堆積によって刻 —刻変化する放電間隙の状態を迅速に検出 しフ ィ 一 ドバ ッ ク して、 よ り 短時間に正常な状態に復帰させる こ とが 単位時間当た り の加工除去能力を改善させるために必要 である。 ま た、 加工屑の堆積や異常放電が発生 した時、 なるべ く 速やかにこれ ら を解除する動作を行う こ とが異 常の拡大を抑制するために有効である。 したがって、 放 電状態の検出に応じて工具電極ま たは被加工物を移動さ せる制御装置が高い応答性を もつ こ とが、 よ り高い放電 加工能率と、 加工異常の低減のために必要となる。
しか し、 従来の放電加工制御装置では、 上述 したよ う に、 指令値分配機構 4が分配周期毎にサーボ機構 5 X , 5 y , 5 z に工具電極 1 ま たは被加工物 2 の移動量 M c x M c y , M c zを指令 して いるため、 次のよ う な理由で応答 性を高める こ とができない。
まず、 指令値分配機構 4 は、 サーボ乇一夕 と送 り ね じ な どか らなる複数の軸 ( Χ, Υ, Ζ軸) の駆動機構に対 し、 放電間隙を最適に維持するための移動量を各軸に分 配 ( Ρ X, P y , P z ) する計算を行わねばな らない。 さ ら に、 予めプロ グラム されて い る工具電極の移動経路 に関 し、 工具の現在位置がその終点ま たは個々の移動単 位の境界点に達 したか否かを判断する作業が必要である, そのため、 各軸への移動指令値の分配に要する計算時間 には、 上記各処理に要する時間を越えて短 く する こ とが できず、 処理時間の下限値がある。 したがって、 指令値 分配計算が実行される周期は上記下限値よ り も大なる時 間間隔に しなければな らな い。 そのため、 放電間隙状態 の観測が行われた後、 次の指令値分配計算が行われる ま での間が無駄時間 と な り 遅れが生 じて しま う。
さ ら に、 サ一ボ機構 5 X, 5 y, 5 z は微小な移動量 の指令に対 しては、 その大き さ に比例 した微小な速度で しか追従運動 しないため (通常オーバシュー トが生 じな いよ う にゲイ ンが調整されて いる ) 、 その比例定数であ る位置フ ィ ー ド ノ ヅ ク制御ゲイ ンの逆数に相当する遅れ 時間を持つ。 ま た、 サーボ機構 5 x, 5 y , 5 z は位置 検出器 7 X , 7 y , 7 z から各サーボモ一夕の回転位置 の情報がフ ィ 一 ドバ ヅ ク さ れた閉ループ構成になって い るため、 位置制御ゲィ ンを高める と ゲイ ン余有が低下 し、 各サーボ機構の動作が不安定となる。 そのため、 むやみ に位置制御ゲイ ンを高める こ とができない。 したがっ て 遅れ時間を短 く する こ とが難 し く、 このサーボ機構の追 従遅れ時間に よ り、 放電間隙の制御の応答性が低下する ま た、 サーボ機構の応答性を改善するために、 位置の フ ィ ー ド フ ォ ワ ー ド制御が行われる こ とがある。 この方 法は指令値分配機構 4 か らの移動指令 P X , P y , P z をそれぞれ微分 した値に比例する値を通常の位置ル一ブ 処理で得 られた速度指令に加算 して速度ル一ブ処理にお ける速度指令 に する ものである。 このフ ィ 一 ド ォ ヮ一 ド 制御に よ って も、 指令値分配機構 4 が各軸への移動指令 量を求める分配計算を行う までの時間遅れを補償する こ と はできない。 さ ら に、 移動指令の微分は、 実際には指 令時間間隔 (分配周期 ) 毎分配さ れる移動指令の差を指 令時間間隔で除 して求める ものであるから、 微分値の精 度が指令時間間隔に比例 して悪化する。 このため、 フ ィ — ドフ ォ ワー ド制御において、 速度指令値に しめる微分 値に基づ く 部分の重みを大き く する こ とができな い。 し たがって、 フ ィ ー ド フ ォ ヮ一 ド制御によって も放電間隙 制御の応答性を高める こ と には限界がある。
以上のよ う に、 従来の各種方法によって も放電加工に おける放電間隙制御の応答性を十分高める こ とができず. 放電加工の能率が低 く 異常加工の防止が不完全であった, 発 明 の 開 示
本発明の目的は、 応答性がよ く、 かつ安定した放電間 隙制御ができ る放電加工用制御方法及び放電加工装置を 提供する こ と にある。
上記目的を達成するため、 本発明の方法は、 工具電極 と被加工物間の間隙の放電加工状態を検出 し、 該放電加 ェ状態の検出値が目標値と一致するよ う に上記被加工物 に対 して工具電極を相対的に移動させるサーボ機構を駆 動 し、 上記間隙長さ を制御する放電加工制御方法にお い て、 上記放電加工状態の検出値と 目標値 との偏差に基づ いて、 設定方向に上記サーボ機構の位置ループ制御部か ら出力 さ れる速度指令を補正 し、 速度ループの速度指令 と して い る
なお、 好ま し く «よ s —し し Ιτδ差に基づ く 速度指令の補正 量を積分 し、 該積分値を位置ループへの移動指令に加算 するよ う に して いる。
また、 好ま し く は、 上記速度指令に対する補正値は、 予め設定されて いる方向べク トルの各軸成分値を上記偏 差に乗 じて得 られた値に比例する ものを各軸サーボ機構 の速度ループへの速度指令への補正値と して構成される, さ ら に好ま し く は、 各軸毎の速度指令の補正値を積分 し、 該積分値を各軸の位置ループに対する移動指令に加 算する。
さ ら に 、 好ま し く ヽ 曰し偏差を積分 し、 該積分値に 予め設定されて いる方向べク トルの各軸成分値を乗 じて 得られた値に比例する ものを対応する各軸の位置ループ に対する移動指令に加算する
ま た、 本発明の装置は、 加ェプロ グラ ム を読み分配周 期毎に各軸に対する移動指令と該移動指令と と も に設定 されて い る退避方向 と をメ モ リ に書き込む放電加工撻を 制御する数値制御装置と、 上記メ モ リ か ら読みだ した移 動指令を等分になる よ う分割 して位置ループ処理周期每 の移動指令を求め、 位置ループ処理、 速度ループ処ョ I、 電流ル一プ処理をそれぞれ実行 し、 各軸のサ一ボモー 夕 を駆動 して工具電極を被加工物に対 して相対移動させる ためのサーボ機構と、 加工中の電極 と被加工物 と の間隙 における放電状態を監視する放電加工状態検出装置と、 上記サーボモー夕の回転位置及び速度を検出する位置検 出器とか らなる放電加工制御装置において ;'上記放電加 ェ状態検出装置からの出力 と 目標放電加工状態値との差 に、 上記メ モ リ に格納されて いる退避方向の各軸成分及 び所定の定数を乗 じる退避速度指令発生手段と、 上記各 軸の退避速度指令発生手段か らの出力である退避速度指 令と を、 それぞれ対応する軸のサーボ機構の速度制御部 に直接正帰還させるための速度指令補正手段を備えて い る。
好ま し く は、 さ ら に、 上記各軸の退避速度指令発生手 段からの出力である退避速度指令をそれぞれ加算する積 分器と、 上記各軸の積分器の出力を対応する軸のサーボ 機構の位置制御部に正帰還させる位置指令補正手段と備 えて いる。 或いはこれに代えて、 さ ら に、 上記放電加工 状態検出装置か らの出力 と 目標放電加工状態値との差を 積算する一つの積分器 ; 上記積分器の出力 と上記メ モ リ に格納さ れて いる退避方向の各軸成分及び所定の定数と を乗 じて各軸の退避量をそれぞれ得るための退避量算出 手段と、 上記退避量算出手段からの出力を対応する軸の サーボ機構の位置制御部に正帰還させる位置指令補正手 段と を備えて いる。
上述のよ う に、 本発明に よれば、 放電加工状態の検出 値 と 目標値と の偏差が求め ら れ、 この偏差に基づ いて速 度ループ処理への速度指令が修正さ れるか ら、 偏差が大 き ければば大き い程速度は増大 し、 偏差が零にな る よ う に工具電極と被加工物間の間隙は補正される。 ま た、 速 度が補正される こ と に よって被加工物に対する工具電極 の現在位置がプロ グラ ムで指令さ れた位置とずれる。 そ のため、 上記速度の補正量を積分 し、 補正移動量を求め この補正移動量を位置ループの移動指令に加算 して上記 現在位置のずれを防止でき る。
図 面 の 簡 単 な 説 明
図 1 は、 本発明に よ る被加工物に対する工具電極の相 対送 り 制御の第 1 の実施例にかかるブロ ッ ク図、
図 2 は、 同 じ く 第 2 の実施例にかかるブロ ッ ク図、 図 3 は、 本発明の第 1、 第 2の実施例を実施する放電 加工制御装置の要部ブロ ッ ク図、
図 4 は、 図 3 の放電加工装置におけるディ ジタルサー ボ回路のプロセ ッサが実行する第 1 の実施例における位 置ループ処理周期毎及び速度ループ処理周期毎の処理の フ ロ ーチ ヤ一 ト、
図 5 は同 じ く 第 2 の実施例における位置ループ処理局 期毎及び速度ループ処理周期毎の処理のフ ローチヤ一 ト、 図 6 は従来か ら行われて いる被加工物に対する工具電 極の相対送り 制御にかかるブロ ッ ク 図、 及び、
図 7 は図 6 と は別の従来か ら行われて いる被加工物 に 対する工具電極の相対送 り 制御にかかるブロ ッ ク図であ る。 発 明 を 実 施 す る た め の 最 良 の 形態
図 1 は本発明 によ る放電加工制御の一実施例にかかる ブロ ッ ク 図であ る。 図 1 にお いて、 図 6 で示す従来の被 加工物に対する工具電極の相対送 り 制御のプロ ッ ク図 と 同一の構成要素 には同一の参照番号が付されて いる。 な お この図 1 では、 サーボ機構 5 X , 5 y , 5 z を位置制 御部と速度制御部と に別けて示 して いる。
本実施例では、 図 6 の従来例と異な り、 指令値分配撻 構 4は加工プロ グラ ムで指令された移動指令値 ( P X , P y , P z ) を各軸毎に分配 して対応する軸のサ一ボ機 構 5 x, 5 y, 5 z に出力 して いる。 ま た、 ギャ ップ状 態検出器 3 は、 工具電極 1 と被加工物 2間の間隙の放電 加工状態 (例えば、 平均加工電圧や電圧印加か ら放電発 生までの時間等) を検出 し、 検出値 V gか ら 目標値 V s を減 じてその偏差 ε を求める。 この偏差 £ は、 本実施例 においては、 位置ループ処理によ って求め られる速度指 令を補正する補正量 と してのギャ ップ速度指令 となる- 乗算器 9 χ, 9 y, 9 z は、 上記ギャ ップ速度指令 £ に加工プログラ ム中に移動軌跡指令と共にプロ グラム さ れて いる退避方向の方向ベク トル a (なお、 退避方向が 加工軌跡に関係な く 一定方向である等の場合には加ェブ ロ グラ ム 中ではな く 手動に よ って この方向ベク ト ルを設 定 して も よ い ) の各軸成分 a x, a y, a z を乗 じて速 度指令を補正する X, Υ, Z軸成分の退避速度指令 V 2x V 2y, V 2zを求める。 ま た、 積分器 1 0 X , 1 0 , 1 0 z はそれぞれ対応 する各軸成分の退避速度指令 V 2x, V 2y, V 2zを積算す る。 すなわち、 上記積算器 1 0 X, 1 0 , 1 0 z は、 各軸成分の退避速度指令を積分 して各軸成分の退避移動 量を補正移動量 Q x, Q y , Q z と して出力する。 そ し て、 この補正移動量は、 指令値分配機構 4から分配さ れ る各軸の移動量 P X , P , P z にそれぞれ加算されて、 各軸のサーボ機構の位置制御部への移動指令 M cx, M cy M czと さ れる。 - - 1
2
ま た、 上記退避速度指令 V 2x, V 2y, V 2zは、 各軸の サーボ機構 5 x, 5 , 5 z の位置ループ制御によって 得られる速度指令 V lx, V ly, V izにそれぞれ加算さ れ、 各軸サーボ機構の速度制御部への速度指令 V cx, V cy, V czと さ れる。
そ こで、 X軸のサ —ボ機構 5 x について説明する と、 指令値分配機構 4か ら分配さ れた X軸に対する移動指令 P X に積分器 1 O xの出力 Q xを加算 した値 ( M cx= P X + Q ) が該サ一ボ機構 5 Xの位置制御部への移動指 令と して入力さ れる それか ら該移動指令 M cxか ら位置 検出器 7 xで検出さ れた移動量を減 じて位置偏差が求め られ、 該位置偏差に位置ループゲイ ン K p を乗 じて速度 指令 V 1 Xが従来と 同様に求め ら れる。 そ して、 この速 度指令 V lxに上記 X軸に対する退避速度指令 V 2 Xが加 算されて、 速度制御部 5 2への速度指令 V cx ( = V 1 X - V 2x ) と なる。 一方、 速度制御部 5 2ではこの入力さ れ た速度指令 V exに基づ いて従来と 同様の速度のフ ィ 一 ド ノ ッ ク制御を行ってサーボモ一夕 6 X を駆動制御 し、 伝 動機構 8 を介 して工具電極 I を被加工物 2 に対 して移動 させる。 以上の X軸のサーボ機構 5 Xの動作は、 Y軸, Z軸のサーボ機構 5 y, 5 z の動作と同様である。
以上のよ う に、 被加工物 2 に対する工具電極 I の相対 移動は、 プロ グラム に よ る移動指令及び位置検出器の出 力 に基づき与え られる速度指令に対 して、 指令された方 向で且つギャ ップ状態検出器 1J 3で検出された放電加工状
3
態に対応 した値の速度指令が加算補正される こ と によ り 制御さ れる。
そこで、 工具電極 1 と被加工物 2間の間隙が目標値よ り 大き い と (例えば、 その結果、 平均加工電圧が目標値 よ り高 く なつた と い う現象が現れる と ) 、 ギャ ップ状態 検出器 3の出力 V gが目標値 V s よ り大き く な り、 その 偏差であ るギャ ップ速度指令 £ は正の値となる。 その結 果、 各軸のサーボ機構の位置ループから出力される速度 指令 V lx, V ly, V lzに加算される各軸の退避速度指令 V 2x, V 2y, V 2z ( = x a x, <ε x a y , £ x a z ) は正の値となって、 工具電極 1 を被加工物 2 に対 して設 定方向に移動させる よ う、 すなわち、 被加工物 2 と工具 電極 1 間の間隙を減少する よ う に働 く こ と になる。
•一方、 工具電極 1 と被加工物 2間の間隙が目標値よ り 小さ い と、 ギャ ップ状態検出器 3の出力 V gが目標値 V s よ り 小さ く な り、 その偏差であるギャ ップ速度指令 ε は負の値となる。 その結果、 各軸のサーボ機構の位置ル —ブか ら出力さ れる速度指令 V lx, V ly, V izに加算さ れる各軸の退避速度指令 V 2x, V 2y, V 2 ま負の値と な つて、 工具電極 1 を被加工物 2 に対 して設定方向と反対 の向き に移動させる よ う、 すなわち、 被加工物 2 と工具 電極 1 間の間隙を増大する よ う に働 く こ とになる。
以上のよ う に、 各軸サーボ機構 5 x, 5 y, 5 z の速 度制御部に入力される速度指令 V lx, V ly, V izに、 正 ま たは負の値の退避速度指令 V 2x, V 2y, V 2zが加算さ れて対応する軸のサーボ機構の速度制御部に入力する こ とで、 工具電極 1 の被加工物 2 に対する速度指令を補正 して いる。 そ こで、 このよ う な速度指令の補正にあたつ て、 なお現在位置を失わな いよ う にするために、 本実施 例では、 上記退避速度指令 V 2x, V 2y, V 2zをそれぞれ 積分器 1 0 X , 1 0 y, Ι Ο ζ で積分する こ とで退避速 度指令に基づ く 移動量 Q x , Q Y , Q z を求め、 この求 めた移動量を指令値分配機構 4 か ら出力さ れる各軸への 移動指令 P X , P , P z に加算 し、 各サーボ機構 5 x, 5 y, 5 z の位置制御部への移動指令 M cx, M cy, M cz と して いる。
もっ と も、 このよ う な積分器 Ι Ο χ, 1 0 y , 1 0 z を設け各退避速度指令 V 2x, V 2y, V 2zを積分 し、 各軸 移動指令に加算する こ と は、 必ず必要と い うわ けではな いが、 よ り精度の高い もの にする と いう点では望ま し い こ とである。 このよ う に して、 工具電極 1 と被加工物 2 間の間隙は 正常な放電が生 じる よ う に適正な間隙長を維持する こ と と なる。
図 2 は本発明の第 2 の実施例のブロ ッ ク図で、 図 1 に 示す第 1 の実施例と構成上相違す•o ^?、は、 積分器を 1 つ に し、 乗算器を 3 つ増加 し合計 6 個 と した点である。
この図 2 の実施例では、 ギヤ ッブ状態検出器 3 で検出 される検出値 V gよ り 目標値 V s を減 じて求めたギャ ッ プ速度指令 ε に、 設定さ れて いる方向べク トルの各軸成 分を乗 じて X, Υ, Ζ軸に対する退避速度指令 V 2x, V 2y, V 2zを求め、 この退避速度指令 V 2x, V 2y, V 2zを 各サーボ機構 5 x, 5 y, 5 zの位置制御から出力さ れ る速度指令に加算 して速度制御部への速度指令とする。 この点は図 1 に示す第 1 の実施例と同一である。
ただ し、 この第 2実施例では上記ギャ ッブ速度 曰 TP t を一つの積分器 1 ◦ で積分 し、 この積分 した値に方向べ ク トルの各軸成分値を乗算器 1 1 X , 1 1 , 1 1 z で 乗 じて、 この各乗算器の出力 Q x , Q y , Q z をそれそ れ指令値分配機構 4 か ら出力される対応する移動指令 P χ, P y , P z に加算する よ う に して いる。 この点でこ の第 2 の実施例は第 1 の実施例と は相違する。
すなわち、 サーボ機構 5 x, 5 , 5 z の各位置制御 部に補正移動量 Q X , Q y , Q z と して与える ものを、 ギャ ップ速度指令 ( V g _ V s ) に方向べク ト ルの各軸 成分をかけた ものをそれぞれ積分 した値と するか ( 1 の第 1 実施例) 、 或いは、 こ れに代えて、 ギャ ップ速度 指令を ま ず積分 してその積分 した値に方向べク ト ルの各 軸成分をかけた もの とするか (図 2 の第 2実施例) の相 違である。
以上の説明で明かなよ う に、 図 1 に示す第 1 の実施例 では積分器は軸の数と同数の 3 っ必要と したのに比べ、 図 2 に示す第 2 の実施例では積分器が 1 つで済む。 こ の こ とは、 第 2 の実施例を実施する と きの計算機の処理に お いては、 積算器が少ない分それだけ計算時間を短縮す る こ とができ る と い う こ と に帰着する。 なお、 第 2実施 例では乗算器を 6 個 ( 9 X 〜 9 2 , 1 1 χ〜 1 1 ζ ) 用 いて いるため、 計算の語長が有限である こ とから、 乗算 器を 3 個用 いて いる第 1 実施例と比ベてそれだけ誤差が 発生 しやすい と も考え られる。 しか しながら、 図 1 に示 す第 1 の実施例では、 各軸毎の積分器 Ι Ο χ〜 : L O z に その誤差が個別 に累積 し、 その結果、 方向ベク トル と各 積分器 Ι Ο χ 〜 : L O z の出力の合成である退避量 Q X , Q y , Q ζ は、 その移動べク トル方向に誤差が生 じる こ と になるが、 これに対 して、 図 2 に示す第 2実施例では, 積分器 1 0 が 1 つであつて、 この積分器 1 0 の出力 に方 向べク ト ルの各軸成分が乗 じ られて退避量 Q X , Q y , Q ζ がそれぞれ求め られるのであ るか ら、 方向ベク ト ル と退避量の方向は一致 し誤差は生 じない。
上述 した いずれの実施例において も、 放電間隙の放電 状態が検出さ れ、 その検出結果が極間間隙を制御するサ ーボ機構にお ける速度制御部に直接フ ィ ー ドバヅ ク さ れ る。 一方、 従来では、 図 6, 図 7 に関 して説明 した よ う に、 検出 した放電状態を位置ループへのみフ ィ ー ドバッ ク して いる。 と こ ろで、 速度ループ処理周期は一般的に 分配周期及び位置ループ処理周期に比べて短い (通常、 速度ループ処理周期は分配周期の 1 4若 し く は 1 8 である ) こ とか ら、 本発明の実施例によ る放電加工制御 に よれば、 遅れ時間が短 く、 高いバン ド幅を持つ と い う 利点が得 られる
一般に多重フ ィ ー ドバッ クル一ブにお いては、 全体の 系の安定化を図るためにはよ り 内側に位置するマイ ナー ループがよ り高い応答バン ド幅を持つべきである と いう こ とが当然に要求される こ とであるから、 上記第 1、 第 2 のいずれの実施例において も、 サーボ機構 5 X, 5 y , 5 z における速度ループは、 位置検出器 ( 7 x, 7 y , 7 z ) と位置ル一ブゲイ ン K p、 それに速度制御部 5 2 自体を含む位置ループに比べよ り高い周波数応答を有す る こ と になるので、 安定 した放電加工の制御を得る こ と ができ る。
図 3 は上記各実施例を実施する制御装置のブロ ッ ク 図 である。 図 3 に お い て 2 0 は放電加工機を制御する数値 制御装置、 2 1 は共有メ モ リ、 2 2 はサーボ機構を構成 するディ ジタルサ一ボ回路であ り、 プロ セ ッサ、 R O M , R A M等のメ モ リ 等で構成さ れて いる。 ま た、 2 3 はサ 一ボア ンブ、 6 X は X軸駆動用のサ一ボモータ、 7 x は 該サーボモータ の回転位置速度を検出する位置検出器で あ り、 3 は上記ギヤ ッブ状態検出器である。 なお、 図 3 では、 X軸のみを示 し他の軸 ( Y軸, Z軸) は図示する こ と を省略 して いる。 そ して、 従来の制御装置と相違す る点は、 ギャ ップ状態検出器 3 の出力が従来は数値制御 装置に入力さ れて いた点がディ ジタルサ一ボ回路に入力 されて いる点であ り、 他は同一である。
以上の構成で、 数値制御装置 2 0 は加工プロ グラ ム を 読み、 分配周期毎各軸に対する移動指令を共有メ モ リ 2 1 に書き込む と共に、 移動指令と共に設定されて いる方 向ベク ト ル a ( a , a y , a z ) を書き込む。 一方、 ディ ジタルサ一ボ回路 2 2 のプロセ ッサは共有メ モ リ 2 2 から各移動指令を読み、 該移動指令を等分になる よ う に分割 して位置ループ処理周期毎の移動指令を求め、 位 置ループ処理、 速度ループ処理、 上述 した退避処理、 さ ら には電流ループ処理を実行 しサ一ボモ タ 6 X を ¾動 する。
図 4 ( a ) , ( b ) は、 ディ ジタルサ一ボ回路 2 2 の プロセ ッサが、 図 1 で示 した本発明の第 1 の実施例を実 施する と きの位置ループ処理周期及び速度ル一ブ処 ¾周 期毎に実施す る処理のフ ロ ーチヤ一 トである。
ディ ジタルサ一ボ回路 2 2 のプロセ ッサは共有メ モ リ 2· 1 か ら読み取った分配周期毎の移動指令を読み、 D D A処理等によ って位置指令周期毎の各軸移動指令 P X , P y , P z を求める ( ステ ップ 1 0 1 ) 。 さ ら に、 位置 検出器か らの位置フ ィ ー ドノ ッ ク値 P fx, P fy, P f z, を読む ( ステ ヅ プ 1 0 2 ) 。 次に積分器 1 0 x , 1 0 , 1 0 z と しての各軸毎のアキュム レータ A x, A y , A z に格納されて いる退避量 Q x, Q y , Q z と ステ ップ 1 ◦ 1 で求めた移動指令 P x, P y , P z を各軸毎に加 算 して、 サ一ボ機構 5 X, δ , 5 z における位置制御 部へ与える移動指令 M cx, M cy, M czを求める ( ステ ツ ブ 1 0 3 ) 。 次いでか く 求めた移動指令 M cx, M cy, M czか ら位置検出器 7 x, 7 y, 7 z から帰還される位置 検出出力を減 じるこ とで位置偏差を各軸毎求め、 この求 めた位置偏差にそれぞれ位置ループゲイ ン K p を乗 じる 位置ループ処理を行って、 速度指令 V lx, V ly, V izを 求め、 レ ジスタ に格納 して当該位置ループ処理周期の処 理を終了する ( ステ ップ 1 0 4 ) 。 以下、 この図 4 ( a ) で示す処理を位置ル一ブ処理周期毎繰 り返 し実行する- 次に、 ディ ジタルサ一ボ回路 2 2のプロセ ッサは、 図 4 ( b ) に示す速度ループ処理を上記位置ループ処理周 期内に N回 (速度ループ処理周期は位置ループ処理局期 の 1 Nで通常 N = l, 2 ま たは 4である ) 実行する: まず、 ギヤ ップ状態検出器 3の出力 V g、 共有メ モ リ 2 1 に格納さ れて いる方向ベク ト ル a ( a x, a y , a z ) 、 及び速度フ ィ ー ドノ' ヅ ク値を読む ( ステ ップ 1 1 1 ) 。 次に、 読み込んだギャ ップ状態検出器の出力 V §· か ら設定されて いる 目標値 V s を減 じた値 ( ど ) に、 方 向ベ ク ト ルの各軸成分 a x, a y, a z をそれぞれ桑 じ、 さ ら に比例定数 Kを乗 じて各軸毎の退避速度指令 V 2x,
V 2y, V 2zを求める ( ス テ ヅ ブ 1 1 2 ) 。 さ ら に、 この 求めた退避速度指令 V 2x, V 2y, V 2zを、 前述 した位置 ループ処理のス テ ヅ ブ 1 0 4で求めた速度指令 V lx, V ly, V lzに加算 してサ一ボ機構 5 , 5 y , 5 z にお け る位置制御部へ与える ¾度指令 V cx , V c , V czを求め る ( ステ ップ 1 1 3 ) 。 そ して この求めた速度指令 V cx:
V cy, V czと ステ ツブ 1 1 1 で読み出 した速度フ ィ ー ド ノ ッ ク値によ り 従来と 同様な速度ループ処理を行って各 軸への ト ルク指令を求めて電流ルーブに引 き渡す ( ス テ ッブ 1 1 4 ) 。 そ して、 ァキュム レー夕 A x, A y, A z にそれぞれステ ツプ 1 1 2で求めた退避速度指令 V 2x:
V 2y,. V 2zを加算 し、 当該速度ルーブ処理周期の処理を 終了する。 '
なお、 電流ル一ブでは、 電流ループ処理を行い各軸サ ボモータ を駆動 し、 工具電極 1 と被加工物 2の間隙を調 整 しなが ら加エブ口 グラムでプロ グラム さ れた形状に被 加工物 2 を加工する こ と になる。 以下、 速度ループ処理 周期毎上記ス テ ップ S 1 1 1〜 1 1 5の処理を繰 り返 し 実行する。
図 5 ( a ) , ( b ) は、 図 2 に示す本発明の第 2 の実 施例を実施する と きのディ ジタルサーボ回路 2 2のプロ セ ッサが位置ル一ブ処理周期毎及び速度ループ処理周期 毎に実施する処理のフ ローチヤ一 ト であ る。
位置ループ処理にお けるステ ップ 2 0 1 , 2 0 2 は第 1 の実施例のス テ ツブ 1 0 1 , 1 0 2 と 同一処理である せ、 ス テ ッ プ 2 0 2 で共有メ モ リ 2 1 に格納さ れて い る 方向ベク ト ル a ( a x, a y, a z ) を読み出す点が異 なる。 そ して、 第 1 の実施例のステ ップ 1 0 3 に対応す る移動指令を求める処理のステ ップ 2 0 3, 2 0 4が第 1 の実施例と異なる。 すなわち、 ギャ ップ状態検出器の 出力 V g と 目標値 V s との差 £ ( = V g - V s ) を積算 記憶するアキュ ム レータ Aの積算値に方向べク トル aの 各軸成分をそれぞれ乗 じ、 さ ら に比例定数 Kを乗 じて各 軸毎の退避量 Q x , Q y , Q z を求め (ステップ 2 0 3 ) , この退避量と ステ ップ 2 0 1 で求めた移動指令 P x, P y, P z をそれぞれ加算 して各軸毎のサーボ機構 5 x, 5 y , 5 z における位置制御部へ与える移動指令 M cx, M cy, M czを求める ( ステ ップ 2 0 4 ) 。 そ して、 求め た移動指令と位置検出器 7 x, 7 y, 7 z からの出力で ある位置フ ィ ー ドバ ッ ク値によ り 位置ループ処理を実行 して速度指令 V lx, V ly, V lzを得て こ れを格納す る ( ステ ップ S 2 0 5 ) こ とで当該処理周期での位置ルー ブ処理を終了する。
—方、 図 5 ( b ) に示す速度ループ処理 ( この速度ル ーブ処理は第 1 の実施例と 同様に位置ループ処理周 ^内 に N回の処理を実行する ) は、 図 3 ( b ) に示す第 1 の 実施例の速度ループ処理と ほぼ同様で、 相違する点は第 1 の実施例のステ ップ 1 1 1 に対応するステ ップ 2 1 1 で、 方向ベク ト ル a はすで にステ ップ S 2 0 2で読ま れ
- 1
5
て いる こ とか ら、 こ こでは読み取る必要がない こ と、 及 び第 1 の実施例のス テ ップ 1 1 5 に対応するステ ップ 2
1 5での処理が、 こ の第 2実施例では、 アキュム レータ Aに、 読み取っ たギャ ップ状態検出器の出力 V g と 目標 値 V s との差 ( e = V g— V s ) を加算する点であ り、 他のステ ップ 2 1 2 〜 2 1 4 は第 1 の実施例のステ ップ
1 1 2 〜 1 1 4 と同一である。
以上 2つの実施例を説明 したが、 これ らの実施例で示 される よ う に、 ギャ ップ状態検出器 3で検出される工具
10 電極 1 と被加工物 2間の間隙の放電加工状態に応 じて該 間隙を調整するフ ィ ー ドバッ ク処理が分配周期及び位置 ループ処理周期よ り 短い速度ループ処理周期毎に実施さ れるか ら、 遅れが少な く、 その結果安定 した放電加工制 御ができ る。
20
25

Claims

求 の 範 囲
. 工具電極 と被加工物間の間隙の放電加工状態を検出 し、 該放電加工状態の検出値が目標値と一致する よ う に上記被加工物に対 して工具電極を相対的に移動させ るサーボ機構を駆動 し、 上記間隙長さ を制御する放電 加工制御方法にお い 、 _t 5己 ft 加ェ状態の検出値と 目標値との偏差に基づいて、 設定方向に上記サ一ボ機 構の位置ループ制御部か ら出力さ れる速度指令を補正 し、 速度ループの速度指令 2 3とする こ と を特徴とする放 電加工制御方法。
. 上記偏差に基づ く 速度指令の補正量を積分 し、 該積 分値を位置ループへの移動指令に加算するよ う に した 請求の範囲第 1 記載の放電加工制御方法。
. 上記速度指令に対する補正値は、 予め設定さ れて い る方向ベク ト ルの各軸成分値を上記偏差に乗 じて得 ら れた値に比例する ものを各軸サーボ機構の速度ル一ブ への速度指令への補正値と して構成される請求の範囲 第 1 項ま たは第 2項記載の放電加工制御方法。
. 各軸毎の速度指令の補正値を積分 し、 該積分値を各 軸の位置ループに対する移動指令に加算する請求の範 囲第 3項記載の放電加工用制御方法。
. 上記偏差を積分 し 、 該積分値に予め設定さ れて い る '方向べク ト ル の各軸成分値を乗 じて得 られた値に比例 する ものを対応する各軸の位置ループに対する移動指 令に加算す る請求の範囲第 3項記載の放電加工制御方 法。
6 . 上記速度指令の補正は、 速度ループ処理周期毎実行 される請求の範囲第 1 項乃至 5 項のいずれか 1 項記載 の放電加工制御方
7 . 上記速度指令の補正及び位置指令の補正は、, それぞ れ位置、 速度ル一ブ処理周期毎実行さ れる請求の範囲 第 2項記載の放電加工制御方法。
8 . 加工プロ グラム を読み分配周期毎に各軸に対する移 動指令 と該移動指令 と と も に設定されて いる退避方向 と をメ モ リ に書き込む放電加工機を制御する数値制御 装置、
上記メ モ リ から読みだ した移動指令を等分になるよ う分割 して位置ループ処理周期毎の移動指令を求め、 位置ルーブ処理、 速度ループ処理、 電流ループ処理を それぞれ実行 し、 各軸のサ一ボモータ を駆動 して工具 電極を被加工物に対 して相対移動させるためのサーボ 構、
加工中の電極と被加工物 との間隙における放電状態 を監視する放電加ェ状態検出装置、 及び
上記サ一ボモー夕 の回転位置及び速度を検出する位 置検出器か らなる放電加工制御装置にお いて、
上記放電加工状態検出装置か らの出力 と 目標放電加 ェ状態値との差に 、 上記メ モ リ に格納されて いる. ϋ避 方向の各軸成分及び所定の定数を乗 じる退避速虔指令 発生手段、 及び 上記各軸の退避速度指令発生手段か らの出力であ る 退避速度指令を、 それぞれ対応する軸のサーボ機構の 速度制御部に直接正帰還させるための速度指令補正手 段
を備えてなる放電加工制御装置。
. さ ら に、 上記各軸の退避速度指令発生手段か らの出 力である退避速度指令をそれぞれ積算する積分器、 及 び、
上記各軸の積分器の出力を対応する軸のサーボ機構 の位置制御部に正帰還させる位置指令補正手段を備え てなる、 請求の範囲第 8項記載の放電加工制御装置。0 . さ ら に、 上記放電加工状態検出装置からの出力 と 目標放電加工状態値との差を積算する一つの積分器、 上記積分器の出力 と上記メ モ リ に格納されている退 避方向の各軸成分及び所定の定数とを乗 じて各軸の退 避量をそれぞれ得るための退避量算出手段、 及び、 上記退避量算出手段か らの出力を対応する軸のサー ボ機構の位置制御部に正帰還させる位置指令補正手段 を備えてなる、 請求の範囲第 8項記載の放電加工制御 装置。
1 . 上記サーボ機構はディ ジタルサーボ回路か ら構成 される請求の範囲第 8項、 9項ま たは 1 0項記載の放 電加工制御装置。
PCT/JP1994/000148 1993-02-05 1994-02-02 Method and apparatus for discharge machining control WO1994017948A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP94905830A EP0636444B1 (en) 1993-02-05 1994-02-02 Method and apparatus for discharge machining control
US08/313,278 US5589086A (en) 1993-02-05 1994-02-02 Method and apparatus for electrical discharge machining with control of a servomechanism by a position loop and a speed loop
DE69410710T DE69410710D1 (de) 1993-02-05 1994-02-02 Verfahren und vorrichtung zur steuerung einer funkenerosionsbearbeitung
KR1019940703444A KR0164629B1 (ko) 1993-02-05 1994-02-02 방전가공 제어방법 및 방전가공 제어장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP05040717A JP3073621B2 (ja) 1993-02-05 1993-02-05 放電加工制御方法
JP5/40717 1993-02-05

Publications (1)

Publication Number Publication Date
WO1994017948A1 true WO1994017948A1 (en) 1994-08-18

Family

ID=12588350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000148 WO1994017948A1 (en) 1993-02-05 1994-02-02 Method and apparatus for discharge machining control

Country Status (6)

Country Link
US (1) US5589086A (ja)
EP (1) EP0636444B1 (ja)
JP (1) JP3073621B2 (ja)
KR (1) KR0164629B1 (ja)
DE (1) DE69410710D1 (ja)
WO (1) WO1994017948A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4441055C1 (de) * 1994-11-17 1996-03-28 Agie Ag Fuer Ind Elektronik Verfahren und Vorrichtung zur Steuerung von Funkenerosionsprozessen
JP3655378B2 (ja) * 1995-11-28 2005-06-02 ファナック株式会社 サーボモータの外乱負荷推定方法
DE19602470A1 (de) * 1996-01-24 1997-07-31 Siemens Ag Bestimmung und Optimierung der Arbeitsgenauigkeit einer Werkzeugmaschine oder eines Roboters oder dergleichen
JP3736118B2 (ja) * 1998-05-12 2006-01-18 三菱電機株式会社 放電加工制御方法および制御装置
US6339203B1 (en) 1998-10-27 2002-01-15 Sodick Co., Ltd. Spindle system for diesink type electric discharge machine
US6448529B1 (en) * 1999-06-16 2002-09-10 Matsushita Electric Industrial Co., Ltd. Electro discharge machining apparatus
US6941187B2 (en) * 2001-11-14 2005-09-06 Industrial Technology Research Institute Multiple discharge-servo curve control method and device for an electrical discharge machine
JP2003330510A (ja) * 2002-05-14 2003-11-21 Yaskawa Electric Corp 数値制御装置の同期制御方法
US7262382B2 (en) * 2005-04-13 2007-08-28 Beaumont Machine Repair, Inc. Process of forming conical holes with an electrical discharge machining system
US20100168919A1 (en) * 2006-03-24 2010-07-01 Matsushita Electric Industrial Co, Ltd. Control method and control system for manipulator
US8183491B2 (en) * 2009-05-26 2012-05-22 General Electric Company Electric discharge machining device using rotating circular blade
CH700591B8 (fr) * 2009-09-09 2010-11-30 Charmilles Technologies Procédé pour l'usinage de pièces au moyen du fraisage par électroérosion.
KR101568777B1 (ko) * 2014-01-08 2015-11-16 서울과학기술대학교 산학협력단 애완동물용 방석
US9346113B1 (en) * 2015-03-19 2016-05-24 Johnson Technology, Inc. Electrical discharge machining integrated control system
JP7173921B2 (ja) * 2019-05-10 2022-11-16 ファナック株式会社 ワイヤ放電加工機およびワイヤ放電加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048222A (ja) * 1983-08-23 1985-03-15 Fanuc Ltd 放電加工機における加工電極後退制御回路
JPS6348650B2 (ja) * 1983-03-14 1988-09-30 Fanuc Ltd
JPH0253520A (ja) * 1988-05-27 1990-02-22 Mitsubishi Electric Corp 放電加工制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3208389A1 (de) * 1982-03-09 1983-11-03 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Numerische steuerung fuer bearbeitungsmaschinen
JPS6284925A (ja) * 1985-10-09 1987-04-18 Fanuc Ltd 放電加工機用加工電極送り制御装置
JPH01164524A (ja) * 1987-12-17 1989-06-28 Mitsubishi Electric Corp 放電加工装置の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348650B2 (ja) * 1983-03-14 1988-09-30 Fanuc Ltd
JPS6048222A (ja) * 1983-08-23 1985-03-15 Fanuc Ltd 放電加工機における加工電極後退制御回路
JPH0253520A (ja) * 1988-05-27 1990-02-22 Mitsubishi Electric Corp 放電加工制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0636444A4 *

Also Published As

Publication number Publication date
EP0636444A1 (en) 1995-02-01
DE69410710D1 (de) 1998-07-09
KR950700803A (ko) 1995-02-20
KR0164629B1 (ko) 1999-02-01
JP3073621B2 (ja) 2000-08-07
JPH06226545A (ja) 1994-08-16
EP0636444A4 (en) 1996-01-03
EP0636444B1 (en) 1998-06-03
US5589086A (en) 1996-12-31

Similar Documents

Publication Publication Date Title
WO1994017948A1 (en) Method and apparatus for discharge machining control
Jung et al. Force tracking impedance control of robot manipulators under unknown environment
Wang et al. Robotic excavator motion control using a nonlinear proportional-integral controller and cross-coupled pre-compensation
KR100354878B1 (ko) 절삭 공구에 의한 오비트 가공용 서보 제어 방법 및 오비트 가공용 서보 제어 장치
US20160041545A1 (en) Numerical controller having corner path generation function in consideration of post-interpolation acceleration/deceleration
JP2002175105A (ja) 数値制御方法
Vafaei et al. Integrated controller for an over-constrained cable driven parallel manipulator: KNTU CDRPM
Nikranjbar et al. Adaptive sliding mode tracking control of mobile robot in dynamic environment using artificial potential fields
Shah et al. Control of ball and beam with LQR control scheme using flatness based approach
Rigatos A nonlinear optimal control approach for tracked mobile robots
CN113110500B (zh) 一种自动驾驶汽车低速自动泊车横向控制方法
CN107807519B (zh) 伺服电动机控制装置、伺服电动机控制方法以及记录介质
Nishad et al. Sliding Mode Control of Robotic Gait Simulator
US7190140B2 (en) Sliding mode controller position control device
Nganga-Kouya et al. Adaptive backstepping control of a wheeled mobile robot
Kircanski et al. Resolved-rate and resolved-acceleration-based robot control in the presence of actuators' constraints
Jung et al. The operational space formulation on humanoids considering joint stiffness and bandwidth limit
EP1742131B1 (de) Verfahren zur Beeinflussung einer Steuerung oder zur Steuerung einer Bewegungseinrichtung und Steuerung oder Steuerungskomponente einer Bewegungseinrichtung
McNinch et al. Application of a coordinated trajectory planning and real-time obstacle avoidance algorithm
CN113738389A (zh) 多刀盘顶管机的防干涉控制方法及装置
Barzamini et al. A new adaptive tracking control for wheeled mobile robot
He et al. Adaptive force control for robotic machining process
Schumacher Adaptive flight control using dynamic inversion and neural networks
Liu et al. Controller design for multiple simultaneous specifications with applications to robotic systems
Lim et al. A Study on Real Time Working Path Control of Vertical Type Robot System for the Forging and Casting Process Automation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08313278

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994905830

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994905830

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994905830

Country of ref document: EP