WO1994016854A1 - Procede de traitement de la surface d'un article et installation pour ce faire - Google Patents

Procede de traitement de la surface d'un article et installation pour ce faire Download PDF

Info

Publication number
WO1994016854A1
WO1994016854A1 PCT/RU1994/000005 RU9400005W WO9416854A1 WO 1994016854 A1 WO1994016854 A1 WO 1994016854A1 RU 9400005 W RU9400005 W RU 9400005W WO 9416854 A1 WO9416854 A1 WO 9416854A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
plasma
products
fact
processing
Prior art date
Application number
PCT/RU1994/000005
Other languages
English (en)
Russian (ru)
Inventor
Pavel Pavlovich Kulik
Vladimir Vladimirovich Ivanov
Georgy Yakovlevich Pavlov
Alim Ivanovich Chabanov
Original Assignee
Ingenerny Tsentr 'plazmodinamika'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU93003593/25A external-priority patent/RU93003593A/ru
Application filed by Ingenerny Tsentr 'plazmodinamika' filed Critical Ingenerny Tsentr 'plazmodinamika'
Publication of WO1994016854A1 publication Critical patent/WO1994016854A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/147Features outside the nozzle for feeding the fluid stream towards the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/10Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
    • B29C59/106Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment the electrodes being placed on the same side of the material to be treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/001Shaping in several steps

Definitions

  • non-volatile compounds which are used for oxidation, nitridization and other processes of the formation of films on the surface of the market, as well as the use of the process of the economy.
  • STIMULATED PROCESSES ARE DIFFERENT IN HIGH QUALITY AND QUALITY OF OPERATIONS OF THE PROCESSES. Pressurization
  • Permanent or pulsed optical radiation with a long wavelength in the range of 10 - 0.2 ⁇ m stimulates the reaction in the active medium and in the transducer.
  • the optical system is housed in a product and product.
  • active media usually use molecular gases with oxygen, nitrogen, halogen and metal compounds, other products
  • the thickness of the layer of the stimulated emission process per unit of radiation energy does not exceed 0.1 nm cm / J.
  • the radiation energy density available for processing is limited by the processes of recrystallization, smelting, sublimation, and others. ⁇
  • the rate of growth and deposition is very fast and the typical pulse frequency of 100 - 1000 Hz is around 1 nm / s.
  • the area of the power is limited by the conditions of the energy supply with the irradiation C ⁇ 10 ⁇ / -
  • the rate of pressure per unit of energy does not exceed 0.1 nm cm / J, but a maximum speed of -3 nm / s.
  • the possibility of increasing the comfort of the service is due to the reduction of the area of the irradiation, when the condition of the device is convenient
  • the growth rate of the extract can reach 20-100 nm / s, but the average productivity of such a method per unit of energy remains low.
  • a stimulated gas treatment in an active gas medium has a low efficiency of use of radiation and low efficiency.
  • Plasma is sprayed in a vacuum of C10 - 10 Pa) by ignition by low temperature - 3 - a charge in a gas mixture containing chemically active gas. Plasma increases the concentration of chemically active particles in an active medium, thereby increasing the efficiency of stimulated processes. Like, for example, effective-
  • the vacuum chamber is supplied with gas of a predetermined system at low pressure and the electric voluminous plasma discharge is excited, which can be separated if it is separated by gas.
  • the latest exposure is radiation, which is
  • the device is easy to handle, and the above described method is also low pressure, which is impermissible for the inadequate gas absorption.
  • the main task of the invention is the creation of a vehicle
  • ba ⁇ b ⁇ ab ⁇ i ⁇ ve ⁇ n ⁇ s ⁇ i products ⁇ y would ⁇ zv ⁇ lil ⁇ vysi ⁇ e ⁇ e ⁇ ivn ⁇ s ⁇ v ⁇ zdeys ⁇ viya ⁇ iches ⁇ g ⁇ radiation ⁇ ve ⁇ n ⁇ s ⁇ products ⁇ i improving ⁇ aches ⁇ va Schis ⁇ y ⁇ ve ⁇ n ⁇ s ⁇ i and ⁇ len ⁇ , ⁇ su ⁇ s ⁇ vie ⁇ adiatsi ⁇ nny ⁇ na ⁇ usheny ⁇ ve ⁇ n ⁇ s ⁇ i and s ⁇ u ⁇ u ⁇ ) and ⁇ s ⁇ e ⁇ izv ⁇ di ⁇ eln ⁇ s ⁇ i ⁇ b ⁇ ab ⁇ -
  • the task posed is solved by the fact that in the process of processing the products, the process creates chemical products.
  • the invention offers a method of processing a machine.
  • V / - the minimum width of the line of the drawing on the processing is the 20th volume of the output, m;
  • V is the velocity of the motion of the radiation exposure zone at the processed surface, m / s;
  • G is the frequency of the radiation pulses, Hz; a - Operation of the external front-end zone is irradiated with the 25-second operating environment to the rear of the next operating area, m.
  • the radiation parameters chosen by this method ensure high image quality at the turn of the product and the possibility of non-processing of the whole 30.
  • the setup is for the processing of products with a low-temperature plasma generator and a source of radiation with an optical system. - 7 -
  • the product holder installed by them, according to the invention as a plasma generator, is used with a plasma generator that is less than the pressure
  • the last owner’s accommodation is equipped with a housing sensor
  • the source of radiation of the optical device is less expensive, the process is less expensive.
  • Fig. 1 depicts a version of the installation for the investigation of the processing of radiation and plasma spray
  • Fig. 2 displays a version with an option of 25 simultaneous influences on the processed radiation and plasma flow.
  • Fig. 1 At the beginning, we will take a look at Fig. 1 and arrange for the installation of the process to be processed, from the process it becomes clear and the essence of the proposed method.
  • generator 1 plasma 2 at atmospheric pressure is connected to the source of 3 power supply and to the system 4 of the supply of plasma-forming and reactive.
  • the installation is equipped with an operating device 7, in case of - 8 - to the power supply 6, and unit 8 of the control unit with a speed switch for the power supply 5.
  • the power supply 9 of the power supply is connected to the power supply 10
  • source 9 of radiation in this variant was an excimer laser.
  • Generator 1 has been installed so that an additional simple line 2 interrupts the movement of the propeller 6 from the final 5.
  • the default setting is 11 and the system is shut down
  • the generators 1 are equipped with facilities. Again, the transfer systems in this direction are not shown.
  • the generators 1 may also be equipped with protective devices.
  • the inert gas can be used with inert gases. These are:
  • Laser radiation 9 is extinguished through the optical system 11 at the speed of the product 5 at a selected speed of the vehicle, 6
  • Controlled source 10 for laser power supply 9 connected to unit 8 of control unit 7 and secured
  • the efficiency of radiation is very varied and inconsistent with adsorbent processes used in the process of processing products. If, under specified conditions, reagents and materials are used for process desorption of products and the reaction itself
  • FIG. 2 shows a more universal installation.
  • Sydentic elements in FIG. 2 have the same meanings as in FIG. 1), the optical system is additionally equipped with a system mirror, one of which is mounted on a rotational axis 6 at a 45 ° angle of rotation
  • the rear mirror 13 is mounted on the holder 6 with the possibility of changing the angle of inclination to falling on a negative optical beam. and directs it to turn the product on. 5. Larger use allows you to save a lot of radiation on the turn of the product without
  • the optical system 11 is equipped with a photo system 14, the main system, for example, is connected to a public system. With this optical system, it is necessary to ensure that the picture is not damaged at all.
  • the radiation generator must have a radiation frequency of more than 200 Hz. This condition is satisfactory.
  • the frequency of radiation can reach 500 Hz.
  • the minimum residence time of the processed product is that it is protected by a plasma transmitter.
  • Size may vary widely. 0.01 - thirteen -
  • the user may have a light source 15 installed on the holder 6;
  • the agent can be made in the form of a sweetener, which will allow you to keep continuous
  • ⁇ ami were ⁇ isany ⁇ ime ⁇ y ⁇ tsessa ⁇ avleniya and ⁇ sazhdeniya, ⁇ dna ⁇ ⁇ isannym s ⁇ s ⁇ b ⁇ m m ⁇ zhn ⁇ ⁇ a ⁇ zhe ⁇ susches ⁇ vlya ⁇ ⁇ m ⁇ le ⁇ snuyu ⁇ chis ⁇ u ⁇ ve ⁇ n ⁇ s ⁇ i ⁇ vse ⁇ vid ⁇ v zag ⁇ yazneny Sads ⁇ ba ⁇ a, and ⁇ ganiches ⁇ i ⁇ ⁇ li- me ⁇ ny ⁇ zag ⁇ yazneny, me ⁇ aniches ⁇ i ⁇ chas ⁇ its, and na ⁇ ushenny ⁇ ⁇ i- slenny ⁇ sl ⁇ ev ⁇ ve ⁇ n ⁇ s ⁇ i and d ⁇ ,), and replaced ch ⁇ ⁇ zv ⁇ lyae ⁇ - ni ⁇ it zhid ⁇ s ⁇ uyu
  • ⁇ a ⁇ im ⁇ b ⁇ az ⁇ m ⁇ luchaemaya s ⁇ glasn ⁇ iz ⁇ b ⁇ e ⁇ eniyu ⁇ b ⁇ a- b ⁇ a ⁇ ve ⁇ n ⁇ s ⁇ i products ⁇ lichae ⁇ sya vys ⁇ y ⁇ izv ⁇ di- ⁇ eln ⁇ s ⁇ , unive ⁇ saln ⁇ s ⁇ yu, e ⁇ e ⁇ ivn ⁇ s ⁇ yu v ⁇ zdeys ⁇ viya radiation ⁇ iches ⁇ g ⁇ , ⁇ su ⁇ s ⁇ viem ⁇ adiatsi ⁇ nny ⁇ de ⁇ e ⁇ v, vys ⁇ y chis ⁇ y ⁇ tsess ⁇ v and ⁇ zv ⁇ lyae ⁇ susches ⁇ venn ⁇ ⁇ vy- si ⁇ ⁇ aches ⁇ v ⁇ ⁇ b ⁇ aba ⁇ yvaemy ⁇ products.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

L'invention concerne le domaine du traitement de surfaces à l'aide de plasmas et de rayonnement optique. Le procédé consiste à créer un milieu plasmatique actif chimiquement se présentant sous la forme d'au moins un courant de plasma (2) à la pression atmosphérique, et un rayonnement optique continu ou pulsé agissant simultanément ou successivement sur la surface de l'article (5) soumise à un traitement, avec n intersections de la surface traitée avec le courant de plasma et le faisceau de rayonnement, n étant » 1. Une installation de mise en ÷uvre de ce procédé comprend un générateur (1) produisant un courant de plasma (2) à basse température, à la pression atmosphérique, une source de rayonnement (9) présentant un système optique (11) au dessous duquel se trouve un support (6). Le système comporte au moins une unité d'entraînement (7) ainsi qu'une armoire de commande (8) dotée d'une unité de régulation destinée à régler les positions relatives du support, du générateur de plasma et du système optique, l'armoire de commande étant utilisée périodiquement pour introduire le support dans la zone de traitement au plasma et au rayonnement, et pour l'en retirer.
PCT/RU1994/000005 1993-01-19 1994-01-18 Procede de traitement de la surface d'un article et installation pour ce faire WO1994016854A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU93003593/25 1993-01-19
RU93003593/25A RU93003593A (ru) 1993-01-19 Способ обработки поверхности твердого тела и устройство для его осуществления

Publications (1)

Publication Number Publication Date
WO1994016854A1 true WO1994016854A1 (fr) 1994-08-04

Family

ID=20136113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU1994/000005 WO1994016854A1 (fr) 1993-01-19 1994-01-18 Procede de traitement de la surface d'un article et installation pour ce faire

Country Status (1)

Country Link
WO (1) WO1994016854A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642421A1 (fr) * 1992-05-19 1995-03-15 Maxwell Technologies, Inc. Procede d'utilisation de l'energie optique pulsee
CN103212755A (zh) * 2013-05-14 2013-07-24 哈尔滨工业大学 水电极大气等离子体加工回转零件方法
CN103265183A (zh) * 2013-05-14 2013-08-28 哈尔滨工业大学 采用单个水射流作为电极的大气等离子体的加工方法
CN105014383A (zh) * 2014-04-23 2015-11-04 大族激光科技产业集团股份有限公司 一种激光喷砂加工系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198824A (ja) * 1984-03-23 1985-10-08 Nec Corp イオンビ−ムエツチング法
JPS60198825A (ja) * 1984-03-23 1985-10-08 Nippon Telegr & Teleph Corp <Ntt> 極微細パタン形成法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198824A (ja) * 1984-03-23 1985-10-08 Nec Corp イオンビ−ムエツチング法
JPS60198825A (ja) * 1984-03-23 1985-10-08 Nippon Telegr & Teleph Corp <Ntt> 極微細パタン形成法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JU.M. AGRIKOV et al., "Dinamicheskaya Plazmennaya Obrabotka Podlozhek GIS", Elektronnaya Tekhnika, Ser. 10, Mikroelektronnye Ustroistva, Vyp. 5(71), 1988, TSNII, "Elektronika", Moscow, pages 30-32. *
Plazmokhimia-87, 1987, Moscow, AN SSSR, Part 2, pages 4-13, 65-37. *
Zarubezhnaya Elektronnaya Tekhnika, Sbornik Obzorov No. 16(301), 1986, Moscow, Ministerstvo Elektronnoi Promyshlennosti SSSR, pages 13, 15, 17, 22. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642421A1 (fr) * 1992-05-19 1995-03-15 Maxwell Technologies, Inc. Procede d'utilisation de l'energie optique pulsee
EP0642421A4 (fr) * 1992-05-19 1996-03-13 Maxwell Lab Inc Procede d'utilisation de l'energie optique pulsee.
CN103212755A (zh) * 2013-05-14 2013-07-24 哈尔滨工业大学 水电极大气等离子体加工回转零件方法
CN103265183A (zh) * 2013-05-14 2013-08-28 哈尔滨工业大学 采用单个水射流作为电极的大气等离子体的加工方法
CN103212755B (zh) * 2013-05-14 2015-06-17 哈尔滨工业大学 水电极大气等离子体加工回转零件方法
CN105014383A (zh) * 2014-04-23 2015-11-04 大族激光科技产业集团股份有限公司 一种激光喷砂加工系统及方法

Similar Documents

Publication Publication Date Title
AU684772B2 (en) Removal of surface contaminants by irradiation
EP0661110B1 (fr) Procédé d&#39;oxydation de surface d&#39;un article
EP0350021B1 (fr) Enlevage de contaminants de surface par irradiation à l&#39;aide d&#39;une source à haute énergie
CA1281819C (fr) Source d&#39;atomes mono-energetiques a flux eleve
US6562417B2 (en) Depositing method and a surface modifying method for nano-particles in a gas stream
JP2705023B2 (ja) 被処理物の酸化方法
WO1999037363A1 (fr) Procede de traitement de materiaux, notamment de tissus biologiques, par induction lumineuse et dispositif de mise en oeuvre de ce procede
US20030102008A1 (en) Method and system providing high flux of point of use activated reactive species for semiconductor processing
US5512123A (en) Method for using pulsed optical energy to increase the bondability of a surface
WO2010038894A1 (fr) Procédé de traitement utilisant du plasma
JPH1075991A (ja) 紫外線レーザビームによって物体を清掃または汚染除去するための方法および装置
JPH02310363A (ja) レーザ蒸着装置
EP0633823A4 (en) Removal of surface contaminants by irradiation.
WO1994016854A1 (fr) Procede de traitement de la surface d&#39;un article et installation pour ce faire
JP2005158796A (ja) 処理装置
RU2196394C1 (ru) Способ плазменной обработки материалов, способ генерации плазмы и устройство для плазменной обработки материалов
JP2007007644A (ja) ディスプレイ製造におけるシャドウマスクの洗浄方法(変形)および装置
JP3432545B2 (ja) 高速原子線を用いる加工装置
JPH0425698B2 (fr)
IL40703A (en) Method and apparatus for welding with a high power laser beam
WO2020160929A1 (fr) Système de rayonnement
EP0441905A4 (en) Method and apparatus for processing materials
JP2840419B2 (ja) 光処理法及び光処理装置
JP4506089B2 (ja) 粒子状物質へのコーティング方法及び装置、並びにコーティングされた粒子状物質
RU2099811C1 (ru) Способ удаления поверхностных примесей с поверхности подложки и устройство для его осуществления

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase