WO1994016235A1 - Magnetlagerzelle mit rotor und stator - Google Patents
Magnetlagerzelle mit rotor und stator Download PDFInfo
- Publication number
- WO1994016235A1 WO1994016235A1 PCT/EP1993/003540 EP9303540W WO9416235A1 WO 1994016235 A1 WO1994016235 A1 WO 1994016235A1 EP 9303540 W EP9303540 W EP 9303540W WO 9416235 A1 WO9416235 A1 WO 9416235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- rotor
- permanent magnet
- magnetic flux
- magnet rings
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0459—Details of the magnetic circuit
- F16C32/0461—Details of the magnetic circuit of stationary parts of the magnetic circuit
- F16C32/0465—Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
- F16C32/041—Passive magnetic bearings with permanent magnets on one part attracting the other part
- F16C32/0412—Passive magnetic bearings with permanent magnets on one part attracting the other part for radial load mainly
- F16C32/0414—Passive magnetic bearings with permanent magnets on one part attracting the other part for radial load mainly with facing axial projections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0474—Active magnetic bearings for rotary movement
- F16C32/0476—Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/02—General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned
Definitions
- the invention relates to a rotationally symmetrical magnetic bearing cell with a rotor which is rotatably arranged about the central axis of the cell and which has a shaft and at least two axially spaced axially magnetized permanent magnet rings, and with a stator, the pole components and has two toroidal coils, each of which is assigned to the end face of the rotor, the rotor and stator components being arranged with respect to one another in such a way that the permanent magnets generate a magnetic flux that surrounds the central axis and encloses the toroidal coils.
- a magnetic bearing cell with these features is known from DE-C 34 09 047.
- Its rotor has two axially magnetized permanent magnet rings which generate the magnetic flux which surrounds the central axis and which encloses the toroidal coils.
- the magnetic flux passes through the permanent magnet rings of the rotor arranged axially one behind the other and the outer pole components, so that a high radial rigidity is achieved.
- the bearing is unstable in the axial direction and therefore requires active control with respect to this direction.
- the ring coils assigned to the end of the rotor are available.
- Each of these toroidal coils likewise generates a torrodial magnetic flux surrounding the central axis, which is superimposed on the magnetic flux generated by the permanent magnet rings.
- the control is preferably selected such that the ring coils are de-energized when the rotor is in its desired position. If the rotor deviates from its nominal position in the axial direction, then the ring coils are supplied with current. The amperage and the The direction of the current depends on the size and the direction of the deviation. Of the ring coils of 'generated torrodiale magnetic flux is the magnetic flux generated from the magnet rings Permanent ⁇ or opposite directions depending on the current direction at the same either.
- the present invention is based on the object of designing a magnetic bearing cell of the type mentioned at the outset in such a way that, despite an improvement in the radial rigidity by increasing the number of permanent magnet rings, an increased outlay for active control is not necessary.
- this object is achieved in that the two axially outer permanent magnet rings in their peripheral regions are assigned pole components made of magnetically highly conductive material, which bring about a bundling of the magnetic flux generated by the ring coils into two essentially independent magnetic flux circuits.
- the proposed measures favor the formation of control flows which are directly assigned to the ring coils. she cause the magnetic fluxes generated by the two ring coils, which are essentially independent of one another, to penetrate only the pole components surrounding the ring coils, a part of the adjacent permanent magnet ring and an axial and a peripheral gap between the rotor and the stator. There are therefore no large resistances in these magnetic flux circuits.
- the magnetic fluxes that contribute significantly to the axial regulation of the magnetic field no longer have to penetrate the other components still present (permanent magnets, damping disks) and gaps. The effort required for the ring coils - size, power supply - therefore no longer depends on the number of permanent magnet rings available.
- FIGS. 1 and 2. Show it
- FIG. 1 shows a magnetic bearing cell with two permanent magnet rings
- FIG. 2 shows a magnetic bearing cell with four permanent magnet rings.
- the magnetic bearing cell 1 shown in the figure comprises the rotor 2 and the stator 3.
- Components of the rotor 2 are the shaft 4 and the permanent magnet rings 5 and 6 fastened on the shaft 4.
- Inner hub rings 8, 9 are provided for fastening the permanent magnet rings 5, 6 on the shaft 4.
- the magnetic flux generated by the permanent magnet rings 5, 6 and surrounding the central axis 10 torrodially is indicated by the arrow 11.
- the stator 3 comprises rotationally symmetrical to the central axis 10 pole components 12, 13, the common Cross section is substantially C-shaped.
- the ring coils 14, 15 are located in the region of the C on the inside.
- the inner sections 16, 17 form pole faces 18, 19 facing the permanent magnet rings 5, 6 of the rotor 2.
- a sensor system 21 is used to control the passage of current through the ring coils 14, 15 and an electronic controller 22 shown as a block is provided.
- the washer 24 engages, which consists of non-magnetizable material with high electrical conductivity, for example copper.
- the annular disc 24 has a peripheral cylindrical portion 25 which abuts the components 12, 13 from the inside. With essentially axially directed relative movements, eddy currents are generated in the annular disk 24 and also in the cylindrical section 25, which eddy currents have the desired damping effect.
- the cylindrical section 25 has a centering function and furthermore facilitates the removal of the heat generated by the eddy currents.
- the permanent magnet rings 5, 6 are peripherally associated with further stator components 26, 27, which are designed as stator rings surrounding the permanent magnet rings 5, 6. They consist of magnetically good conductive material and cause the ring coils 14, 15 - in contrast to the magnetic flux circuit 11, generated by the permanent magnet rings 5, 6 - to produce two magnetic flux circuits 28, 29.
- three rotating, axially magnetized permanent magnet rings 5, 6 and 30 are provided.
- an annular disk 32 protrudes, which carries a further, stationary permanent magnet ring 33.
- the radial dimensions of this stator permanent magnet ring 33 correspond to the dimensions of the rotor permanent magnet rings 6 and 30.
- the disk 32 consists of non-magnetizable Material (eg stainless steel) and also has the peripheral cylindrical portion 34, which abuts the component 13 for the purpose of centering from the inside. If the material also has a high electrical conductivity, it contributes to improving the damping properties.
- the magnet rings 5, 6, 30, 33 are magnetized in the axial direction in such a way that they exert mutually attractive forces. Together with the pole components 12, 13, 16, 17 they form a magnetic circuit (arrow 11) which is decisive for the radial rigidity.
- Outer reinforcement rings 35, 36, 37 enclose the rotating permanent magnet rings and protect them from being destroyed by the action of the relatively high centrifugal forces during the rotation.
- the outer permanent magnet rings 5 and 30 are peripherally assigned to the stator rings 26, 27, which effect the desired division of the magnetic fields generated by the ring coils 15, 16 into two separate magnetic fluxes (arrows 28, 29). If disk springs 38 or disk spring assemblies are required in the areas of the stator rings 28, 29 in order to brace the various ring components 25, 26, 27, 34 against one another, then it is expedient to provide disk springs made of a magnetically highly conductive material. These can replace a stator ring 28 or 29 or can also be present.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/491,987 US5729065A (en) | 1993-01-16 | 1993-12-15 | Magnetic bearing cell with rotor and stator |
DE59303784T DE59303784D1 (de) | 1993-01-16 | 1993-12-15 | Magnetlagerzelle mit rotor und stator |
JP51639494A JP3786420B2 (ja) | 1993-01-16 | 1993-12-15 | 回転子と固定子とを有する磁気軸受けセル |
EP94903777A EP0679230B1 (de) | 1993-01-16 | 1993-12-15 | Magnetlagerzelle mit rotor und stator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4301076.8 | 1993-01-16 | ||
DE4301076A DE4301076A1 (de) | 1993-01-16 | 1993-01-16 | Magnetlagerzelle mit Rotor und Stator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994016235A1 true WO1994016235A1 (de) | 1994-07-21 |
Family
ID=6478346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1993/003540 WO1994016235A1 (de) | 1993-01-16 | 1993-12-15 | Magnetlagerzelle mit rotor und stator |
Country Status (5)
Country | Link |
---|---|
US (1) | US5729065A (de) |
EP (1) | EP0679230B1 (de) |
JP (1) | JP3786420B2 (de) |
DE (2) | DE4301076A1 (de) |
WO (1) | WO1994016235A1 (de) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2732734B1 (fr) * | 1995-04-07 | 1997-06-27 | Aerospatiale | Palier magnetique miniature a au moins un axe actif |
EP1070377A4 (de) | 1998-04-08 | 2001-10-17 | Thermo Black Clawson Inc | Integrierte maschine zur erzeugung und verarbeitung von papier mit integriertem antrieb und integrierter kontrolle, sowie methode zu ihrer verwendung |
JP4024382B2 (ja) * | 1998-05-15 | 2007-12-19 | 株式会社東芝 | 磁気軸受装置 |
DE19825854A1 (de) * | 1998-06-10 | 1999-12-16 | Leybold Vakuum Gmbh | Magnetlagerzelle |
KR100486698B1 (ko) * | 1998-07-28 | 2005-08-31 | 삼성전자주식회사 | 베어링시스템및이를적용한스핀들모터조립체 |
US6087750A (en) * | 1999-05-18 | 2000-07-11 | Pacific Scientific Electro Kinetics Division | Permanent magnet generator |
US6198194B1 (en) | 1999-09-17 | 2001-03-06 | Trw Inc. | Segmented rotor for an electric machine |
JP2001182746A (ja) * | 1999-12-27 | 2001-07-06 | Ebara Corp | 磁気軸受装置 |
US6975050B2 (en) * | 2000-01-07 | 2005-12-13 | Black & Decker Inc. | Brushless DC motor |
US6538403B2 (en) | 2000-01-07 | 2003-03-25 | Black & Decker Inc. | Brushless DC motor sensor control system and method |
US7058291B2 (en) | 2000-01-07 | 2006-06-06 | Black & Decker Inc. | Brushless DC motor |
EP1301724B1 (de) * | 2000-07-13 | 2006-10-25 | ROLLS-ROYCE plc | Magnetlager |
DE10043302A1 (de) * | 2000-09-02 | 2002-03-14 | Forschungszentrum Juelich Gmbh | Magnetlagerung |
US6503050B2 (en) * | 2000-12-18 | 2003-01-07 | Applied Materials Inc. | Turbo-molecular pump having enhanced pumping capacity |
DE10108810A1 (de) * | 2001-02-16 | 2002-08-29 | Berlin Heart Ag | Vorrichtung zur axialen Förderung von Flüssigkeiten |
DE10123138B4 (de) * | 2001-04-30 | 2007-09-27 | Berlin Heart Ag | Verfahren zur Lageregelung eines permanentmagnetisch gelagerten rotierenden Bauteils |
EP1304790A1 (de) * | 2001-10-18 | 2003-04-23 | "VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK", afgekort "V.I.T.O." | Dauermagnet- Generator/Motor mit axialem Fluss |
DE10216421A1 (de) * | 2002-04-12 | 2003-10-30 | Forschungszentrum Juelich Gmbh | Magnetführungseinrichtung |
US20050204479A1 (en) * | 2004-03-18 | 2005-09-22 | Maytag Corporation | Self-cleaning spinner top |
WO2006123659A1 (ja) * | 2005-05-17 | 2006-11-23 | Denso Corporation | モータとその制御装置 |
FR2895046B1 (fr) * | 2005-12-21 | 2009-05-29 | Thales Sa | Dispositif d'amortissement |
US7868511B2 (en) * | 2007-05-09 | 2011-01-11 | Motor Excellence, Llc | Electrical devices using disk and non-disk shaped rotors |
WO2008141224A1 (en) * | 2007-05-09 | 2008-11-20 | Motor Excellence, Llc. | Generators using electromagnetic rotors |
EP2342800A2 (de) | 2008-11-03 | 2011-07-13 | Motor Excellence, LLC | Mehrphasige quer- oder mischflusssysteme |
KR101064226B1 (ko) | 2009-06-18 | 2011-09-14 | 한국과학기술연구원 | 하이브리드 스러스트 마그네틱 베어링 |
US9287739B2 (en) * | 2009-07-30 | 2016-03-15 | Bison Gear & Engineering Corp. | Axial flux stator and method of manufacture thereof |
JP5507967B2 (ja) * | 2009-11-09 | 2014-05-28 | 株式会社日立製作所 | 回転電機 |
US8395291B2 (en) | 2010-03-15 | 2013-03-12 | Electric Torque Machines, Inc. | Transverse and/or commutated flux systems for electric bicycles |
JP5748161B2 (ja) | 2010-03-15 | 2015-07-15 | エレクトリック トルク マシーンズ インコーポレイテッド | 位相オフセットを有する横方向および/または整流磁束システム |
WO2011115632A1 (en) * | 2010-03-15 | 2011-09-22 | Motor Excellence Llc | Transverse and/or commutated flux systems configured to provide reduced flux leakage, hysteresis loss reduction, and phase matching |
CN101832335B (zh) * | 2010-05-25 | 2012-06-20 | 南京化工职业技术学院 | 永磁偏置轴向径向磁轴承 |
US8581463B2 (en) * | 2010-06-01 | 2013-11-12 | Lawrence Livermore National Laboratory, Llc | Magnetic bearing element with adjustable stiffness |
US8854171B2 (en) | 2010-11-17 | 2014-10-07 | Electric Torque Machines Inc. | Transverse and/or commutated flux system coil concepts |
US8952590B2 (en) | 2010-11-17 | 2015-02-10 | Electric Torque Machines Inc | Transverse and/or commutated flux systems having laminated and powdered metal portions |
EP2641316B1 (de) | 2010-11-17 | 2019-02-13 | Motor Excellence, LLC | Quer- oder mischflusssysteme mit segmentierten statorlamellen |
CN103591139B (zh) * | 2013-11-22 | 2015-08-12 | 江苏理工学院 | 用于高速转子的被动径向永磁轴承 |
CN111609035A (zh) * | 2020-04-17 | 2020-09-01 | 北京航空航天大学宁波创新研究院 | 主被动磁悬浮轴承 |
CN112065903A (zh) * | 2020-09-14 | 2020-12-11 | 浙江工业大学 | 一种刚度线性永磁弹簧 |
GB2621342A (en) * | 2022-08-09 | 2024-02-14 | Leybold Gmbh | Eddy current damper and vacuum pump |
CN117307603B (zh) * | 2023-09-11 | 2024-06-11 | 淮阴工学院 | 一种径向轴向悬浮力独立的混合励磁磁轴承 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3409047A1 (de) * | 1984-03-13 | 1985-09-19 | Kernforschungsanlage Jülich GmbH, 5170 Jülich | Magnetlager zur dreiachsigen lagerstabilisierung von koerpern |
EP0332979A2 (de) * | 1988-03-12 | 1989-09-20 | Forschungszentrum Jülich Gmbh | Magnetische Lagerung mit Permanentmagneten zur Aufnahme der radialen Lagerkräfte |
EP0467341A1 (de) * | 1990-07-17 | 1992-01-22 | Koyo Seiko Co., Ltd. | Supraleitende Lagervorrichtung |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3698775A (en) * | 1970-04-01 | 1972-10-17 | Technical Management Services | Magnetic support and motor structure |
DE2919236C2 (de) * | 1979-05-12 | 1982-08-12 | Kernforschungsanlage Jülich GmbH, 5170 Jülich | Magnetisches Schwebelager für einen Rotor |
DE3239328C2 (de) * | 1982-10-23 | 1993-12-23 | Pfeiffer Vakuumtechnik | Magnetisch gelagerte Turbomolekularpumpe mit Schwingungsdämpfung |
SU1395860A1 (ru) * | 1986-01-29 | 1988-05-15 | Московский Институт Радиотехники,Электроники И Автоматики | Управл ема магнитна опора |
DE4020726A1 (de) * | 1990-06-29 | 1992-01-02 | Marinescu Geb Bikales | Magnetlager |
US5084644A (en) * | 1990-12-20 | 1992-01-28 | Nova Corporation Of Alberta | Control of magnetization of a machine with axial magnetic bearings |
RU2089761C1 (ru) * | 1991-02-27 | 1997-09-10 | Лейболд Акциенгезельшафт | Магнитная опора |
US5250865A (en) * | 1992-04-30 | 1993-10-05 | Avcon - Advanced Controls Technology, Inc. | Electromagnetic thrust bearing for coupling a rotatable member to a stationary member |
US5514924A (en) * | 1992-04-30 | 1996-05-07 | AVCON--Advanced Control Technology, Inc. | Magnetic bearing providing radial and axial load support for a shaft |
US5315197A (en) * | 1992-04-30 | 1994-05-24 | Avcon - Advance Controls Technology, Inc. | Electromagnetic thrust bearing using passive and active magnets, for coupling a rotatable member to a stationary member |
-
1993
- 1993-01-16 DE DE4301076A patent/DE4301076A1/de not_active Withdrawn
- 1993-12-15 DE DE59303784T patent/DE59303784D1/de not_active Expired - Lifetime
- 1993-12-15 WO PCT/EP1993/003540 patent/WO1994016235A1/de active IP Right Grant
- 1993-12-15 US US08/491,987 patent/US5729065A/en not_active Expired - Lifetime
- 1993-12-15 JP JP51639494A patent/JP3786420B2/ja not_active Expired - Fee Related
- 1993-12-15 EP EP94903777A patent/EP0679230B1/de not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3409047A1 (de) * | 1984-03-13 | 1985-09-19 | Kernforschungsanlage Jülich GmbH, 5170 Jülich | Magnetlager zur dreiachsigen lagerstabilisierung von koerpern |
EP0155624A1 (de) * | 1984-03-13 | 1985-09-25 | Forschungszentrum Jülich Gmbh | Magnetlager zur dreiachsigen Lagerstabilisierung von Körpern |
EP0332979A2 (de) * | 1988-03-12 | 1989-09-20 | Forschungszentrum Jülich Gmbh | Magnetische Lagerung mit Permanentmagneten zur Aufnahme der radialen Lagerkräfte |
EP0467341A1 (de) * | 1990-07-17 | 1992-01-22 | Koyo Seiko Co., Ltd. | Supraleitende Lagervorrichtung |
Also Published As
Publication number | Publication date |
---|---|
EP0679230A1 (de) | 1995-11-02 |
US5729065A (en) | 1998-03-17 |
EP0679230B1 (de) | 1996-09-11 |
JP3786420B2 (ja) | 2006-06-14 |
DE59303784D1 (de) | 1996-10-17 |
DE4301076A1 (de) | 1994-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0679230B1 (de) | Magnetlagerzelle mit rotor und stator | |
EP0572441B1 (de) | Magnetlagerzelle | |
EP0729217B1 (de) | Hybriderregte elektrische Maschine | |
DE2917217C2 (de) | ||
CH625366A5 (de) | ||
EP1313951A1 (de) | Vakuumpumpe | |
DE2500211B2 (de) | Trägheitsschwungrad für einen Satelliten | |
DE1538800A1 (de) | Elektrische Maschine | |
DE4423620A1 (de) | Mittels Permanentmagneten erregbarer elektrischer Motor, insbesondere Innenläufer- oder Außenläufermotor | |
DE19523789C2 (de) | Bürstenloser Elektromotor | |
DE4126137A1 (de) | Motor mit einem drehmagnet | |
DE2504766A1 (de) | Wirbelstromdaempfer | |
DE3641369C2 (de) | ||
DE69102222T2 (de) | Schrittmotor vom Permanentmagnet-Typ. | |
DE3149943C2 (de) | Zweiphasenschrittmotor | |
EP0711023A2 (de) | Induktionsmotor mit axialem Luftspalt | |
DE2929095A1 (de) | Hysterese-kupplung | |
WO1986001050A1 (en) | Axially compact direct control motor | |
DE4020726A1 (de) | Magnetlager | |
DE2535149C3 (de) | Aus zwei gleichartigen Baugruppen bestehender Kleinmotor | |
DE10055080A1 (de) | Elektrische Linearmaschine | |
EP1084351B1 (de) | Magnetlagerzelle | |
EP1541893B1 (de) | Dämpfungsvorrichtung | |
DE2831774A1 (de) | Elektromotor mit einem scheibenrotor | |
DE3939081C2 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1994903777 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08491987 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1994903777 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1994903777 Country of ref document: EP |