WO1994015202A1 - Arrangement for x-ray analysis of the crystalline structure of a sample - Google Patents

Arrangement for x-ray analysis of the crystalline structure of a sample Download PDF

Info

Publication number
WO1994015202A1
WO1994015202A1 PCT/DE1992/001079 DE9201079W WO9415202A1 WO 1994015202 A1 WO1994015202 A1 WO 1994015202A1 DE 9201079 W DE9201079 W DE 9201079W WO 9415202 A1 WO9415202 A1 WO 9415202A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring chamber
arrangement according
ray
sample
housing
Prior art date
Application number
PCT/DE1992/001079
Other languages
German (de)
French (fr)
Inventor
Heinz Von Seggern
Theodor Vetter
Albrecht Winnacker
Michael Thoms
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE4121149A priority Critical patent/DE4121149A1/en
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/DE1992/001079 priority patent/WO1994015202A1/en
Publication of WO1994015202A1 publication Critical patent/WO1994015202A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Definitions

  • the invention relates to an arrangement for analyzing the crystal structure of a sample by diffraction of X-rays, to which a detector is assigned.
  • the diffraction pattern that contains the information to be analyzed is created by diffraction of the X-rays at the lattice planes of the crystal or the crystallites. This is recorded on an X-ray film which generally has a relatively low X-ray absorption. Due to the necessary wet chemical development, the X-ray film can only be used once and a distortion of the stored information cannot be avoided. A disadvantage of the X-ray films is also a relatively low dynamic range and a noticeable non-linearity, which is reflected in an S-shaped gradation curve. The digitization necessary for evaluating the X-ray diffractograms obtained in this way must be carried out in the X-ray film by means of an information scanning with a densitometer, which is carried out after the wet chemical development.
  • the object of the invention is to provide an integrated embodiment of an arrangement for recording the X-ray diffractograms in a structural unit with the X-ray detector and a readout device, with which the X-ray information obtained can be digitized without wet chemical development.
  • Known methods for X-ray analysis are, for example the Debye-Scherrer process, the Laue process and the Bragg or rotary crystal process as well as the Guinier process.
  • the Steenberg process, the deJong-Bouman process, the Buerger precession process, the Schiebold-Sauter process, the See ann-Bohlin process and the pinhole process are also used.
  • the diffractogram can be used to determine crystal parameters, for example lattice spacings, of a sample.
  • the conventional X-ray film is used as the detector (BD Cullity "Elements of X-Ray Diffraction", Addison-Wesley Publ. Comp., Inc., 1967, pages 149 to 172).
  • the invention is now based on the knowledge that the known arrangements for x-ray analysis can be simplified and improved by using the x-ray storage fluorescent materials known per se and it consists in the design features of claim 1. In this arrangement an x-ray film is no longer required.
  • the integrated X-ray analysis camera for recording and digitizing X-ray diffractograms using X-ray storage phosphors provides an analysis system with high dynamics and sufficient linearity of the stored information.
  • the coating of the measuring chamber can be carried out both as an outer coating, preferably for harder X-rays, and as an inner coating, preferably for softer X-rays. If appropriate, the entire measuring chamber can also consist of the X-ray storage phosphor, in particular as a self-supporting ceramic.
  • a pulverized sample is adjusted in the center of the measuring chamber. arranged bar and is penetrated by a focused monochromatic X-ray beam.
  • the X-rays diffracted at a grating plane of the sample lie on a cone, the tip of which lies in the sample and the axis of which lies in the central axis of the primary beam and the jacket of which cuts the X-ray storage phosphor in a circle.
  • the sample is removed from the measuring chamber and the radiation pattern is picked up by the readout unit and fed to an image construction computer; it can be made visible on a screen.
  • a single crystal is adjustably arranged in the center of the measuring chamber and a polychromatic X-ray beam passes through it.
  • a single crystal is also provided as a sample, which is arranged in the center of the measuring chamber, through which monochromatic radiation passes and is rotatable, preferably rotatable step by step.
  • monochromatic radiation passes and is rotatable, preferably rotatable step by step.
  • a sample in the form of a powder layer is provided, which in the transmission method is penetrated by a monochromatic primary X-ray beam entering the measuring chamber or in the backscattering method bends the primary X-ray beam back into the chamber on the opposite chamber wall .
  • the X-ray is taken with a stationary measuring chamber.
  • the sample is removed from the measuring chamber for the reading process. distant, the measuring chamber rotated and at the same time the reading unit pivoted or moved linearly.
  • FIG. 1 shows an integrated
  • FIG. 4 shows an embodiment for the Guinier method with a hollow cylindrical measuring chamber in cross section. This embodiment is schematically illustrated in FIG. 5 for the transmission method in a sectional plan view and in FIG. 6 for the backscattering method also in a sectional plan view.
  • FIG. 7 shows an embodiment of the arrangement with a hollow cylindrical measuring chamber in which the X-ray radiation runs in the axial direction of the measuring chamber.
  • an essentially spherical transparent measuring chamber 2 is provided, which on one of its surfaces, preferably the inner surface, is provided with a storage phosphor 4 which is indicated by dash-dotted lines at a certain distance from the surface for clarification in the drawing.
  • the storage phosphor 4 is assigned a readout beam 9, which is relatively movable in two dimensions to the storage phosphor 4 and is supplied by a readout unit 10.
  • the readout unit 10 can preferably be pivoted in one direction and the measuring chamber rotated about the central axis 5 at the same time.
  • the read-out unit 10 is arranged outside the measuring chamber 2, which is rotatably mounted about an axis of rotation and which can preferably be surrounded by a housing 6, in particular a light-tight housing.
  • the read-out unit 10 is mounted with the aid of a swivel device, for example a swivel arm 8, so that it can swivel about an axis through the center point Mp of the measuring chamber 2 in its circumferential direction, as indicated in the figure by an arrow (not designated in any more detail) is.
  • the read-out unit 10 contains a radiation source 11 for an excitation radiation which is fed to the storage phosphor 4 and there triggers an emission radiation which is fed to a detector 15, which can preferably be a photomultiplier.
  • a laser in particular a semiconductor laser, is preferably suitable for the excitation radiation, the laser light of which can be supplied to the storage phosphor 4, for example via an optical system 12 and a mirror 13.
  • the read-out unit 10 can also contain a light collecting optics 14, preferably a so-called integrating sphere, and a filter 16.
  • a monochromatic X-ray pri-beam 18 passes through a powdery sample 20 which is in the center Mp of the measuring chamber 2 and at the same time in the central axis 5 of the X-ray primary beam 18 is adjustable and preferably at the same time rotatable about the central axis 31 of a sample holder 30.
  • the X-ray primary beam 18 enters the measuring chamber 2 through an inlet tube 22, passes through the sample 20 and arrives in an outlet tube 23 at a beam stop 19, which may preferably consist of lead glass and is therefore transparent, and preferably not with one for adjusting the sample 20 specified fluorescent screen can be provided.
  • the X-ray primary beam 18 is diffracted at the grating planes of the crystals of the powdered sample 20.
  • the housing 6 can preferably consist of two substantially hemispherical shells, not shown in the figure, one of which includes the read-out unit 10 and the other of which is provided with a passage opening 26 for the sample holder 30.
  • the measuring chamber 2 is also provided coaxially to the central axis 31 of the sample holder 30 with a corresponding through opening 27.
  • the measuring chamber 2 with its coated inner surface is provided with a bearing 29 and is positively connected to the inlet pipe 22.
  • the measuring chamber 2 is provided with a drive 28, with the help of which if the stored information is read out, it can be rotated about the central axis 5 of the primary beam 18, as is indicated in the figure by an arrow, which is not identified in any more detail.
  • the entire x-ray storage phosphor 4 can be scanned and the stored information can be read out.
  • a powdery sample 20 is provided, which is arranged in a capillary tube or is designed as a wire or thread with the aid of an adhesive or varnish, the diameter of which in the generally does not significantly exceed 1 mm.
  • This sample is connected to a rod 32 which is passed through the passage opening 27 of the measuring chamber 2.
  • the rod 32 is also passed through the through opening 26 of the housing 6, for example with
  • a feed-through tube 34 and preferably provided with a gas and vacuum-tight closure, which can consist, for example, of a bellows 33.
  • the rod 32 and thus the sample 20 are arranged to be movable in height, side and depth within the measuring chamber 2 with the aid of an adjusting device, which is indicated schematically in the figure only by an adjusting screw 36 to which a spring 37 is assigned.
  • an adjusting device which is indicated schematically in the figure only by an adjusting screw 36 to which a spring 37 is assigned.
  • such a device can still pivot in the plane through the central axis 31 and perpendicular to
  • the rod 32 can also be provided with a drive for a rotary movement, which is shown in the figure only by corresponding Arrows is indicated schematically.
  • the sample 20 is adjusted in the central axis 5 of the X-ray primary beam 18.
  • the X-ray primary beam 18 is concentrated on the sample 20 with the aid of a tubular insert which acts as a collimator 24 and is inserted into the inlet tube 22.
  • the diffracted radiation 52 which is present in the form of a cone in the Debye-Scherrer method, generates a latent image of locally stored electron-hole pairs in the storage phosphor 4, which latent image can be read out again with the aid of the excitation radiation from the radiation source 11 .
  • All photo-stabilizable materials are suitable as storage phosphor 4, preferably barium fluorobromide iodide BaF (Br, _J): Eu with opium activated Eu with 0 ⁇ x ⁇ 1 or also barium broosilicate BaBr 5 SiO.:Eu activated with europium as well Rubidiu bromide RbBr.Tl activated with thallium or corresponding Rubidium iodide RbJ.Tl.
  • the sample 20 is removed from the measuring chamber 2 with the aid of the sample holder 30 and the excitation radiation from the radiation source 11 is supplied to the storage phosphor 4.
  • the measuring chamber 2 is rotated about the central axis 5 of the primary beam 18 and the readout device 10 with the swivel arm 8 is pivoted about its swivel axis.
  • the entire storage phosphor 4 can thus be scanned.
  • the information contained in the triggered emission radiation is fed to a computer and can be used as a reflection image, so-called Diffractograph, be made visible on a screen. Each intersection of the x-rays 52 appears as a peak in the diffractogram.
  • the embodiment shown in FIG. 1 can also be used for the X-ray analysis of a sample, for example for determining the crystal orientation, using the Laue method.
  • the measuring chamber 2 is supplied with a polychromatic primary X-ray beam 18, which then passes through a sample 20 which consists of a single crystal and is arranged in the measuring chamber 2 in a stationary manner during the recording. The diffraction takes place in individual reflections, which each result in a point in the storage phosphor 4. These points are then recorded as a two-dimensional image during the reading.
  • the measuring chamber 2 is rotated relatively slowly and the read-out unit 10 is pivoted continuously or in stages.
  • the arrangement according to FIG. 1 is also suitable for the so-called rotary crystal method, in which a monochromatic X-ray primary beam 18 shines through a sample 20 which likewise consists of a single crystal which can be rotated at the center Mp of the measuring chamber 2, preferably in Steps can be rotated. Individual reflections are also measured in this rotary crystal method, which is preferably used in protein crystallography.
  • a particularly advantageous embodiment of the arrangement consists in that the measuring chamber 2 itself consists of the storage phosphor 4.
  • the transmission method 2 a sample 21 was provided as a thin powdery film, which is arranged on a carrier film 41, which consists of a plastic with low absorption for X-rays, for example polytetrafluoroethylene, and is penetrated by a monochromatic X-ray primary beam 18.
  • the X-ray primary beam 18 is focused on the rear wall of the spherical measuring chamber 2, which is provided there with an aperture 43 for adjusting the X-ray primary beam 18.
  • a holder 42 is inserted into the outlet pipe 23, which is provided with the aperture 43 at its opening facing the measuring chamber 2, which can consist for example of lead or also of stainless steel and in its center is provided with an opening not shown in the figure.
  • an X-ray tube 45 can be provided, whose X-ray beam has a diaphragm, preferably a pinhole 47, and another diaphragm with a collimating effect, a so-called Soller diaphragm 48, and a focusing monochromator 50 of the measuring chamber 2 is supplied, which can be rotated about the central axis 5 of the X-ray primary beam 18.
  • the X-ray beam 52 diffracted in the sample 21 forms a cone, the cone jacket of which intersects the storage phosphor 4 on the inner surface of the measuring chamber 2 in a circular ring, which is indicated in the figure as a dash-dotted line 56.
  • the read-out unit 10 is provided, which in this embodiment is also pivotally arranged between the measuring chamber 2 and the housing 6 in the circumferential direction of the measuring chamber 2.
  • the drive device for pivoting the read-out unit 10 with the aid of the swivel arm 8 about an axis of rotation running perpendicular to the central axis 5 of the X-ray primary beam 18 and perpendicular to the plane of the drawing through the center point Mp of the measuring chamber 2 is not shown in the figure for simplification.
  • a monochromatic X-ray primary beam 18 is likewise fed to the measuring chamber 2.
  • the holder 42 for the perforated diaphragm 43 is inserted into the inlet pipe 22; the X-ray primar beam 18 is focused on the unspecified hole of the perforated diaphragm 43 and then strikes the sample 21 arranged on the opposite wall of the measuring chamber 2, the sample holder 40 of which is inserted into the outlet pipe 23.
  • the diffracted x-ray beam 52 forms a focusing circle on the storage phosphor 4, the dashed projection of which is denoted by 56 in the drawing plane.
  • the reading unit 10 can be moved within the housing 6 relative to the measuring chamber 2 and the entire storage phosphor 4 can be read out for reading, as in the Debye-Scherer method according to FIG.
  • the intensity in the individual cutting circles is preferably determined and summed and assigned to the circumferential angle ⁇ .
  • the monochromatic X-ray primary beam 18 enters the arrangement through a slit diaphragm (not shown in the figure) and an X-ray window 49 of the housing 6, passes through the powdered sample 21 in the wall of the measuring chamber 2 and is at a point on the opposite chamber wall focused.
  • An approximately linear diffraction pattern 54 is formed on the chamber wall, which is indicated by dash-dotted lines in the figure.
  • a drive for a rotary movement of the measuring chamber 2 is designated 58 in the figure.
  • the read-out unit 10 which is movable relative to the measuring chamber 2 can also be connected to the housing 6 with its radiation source 11 and the photodetector 15, in particular integrated into the housing.
  • the X-ray beam 18 is fed to an X-ray tube 45 via a slit diaphragm 46 and a Soller diaphragm 48 as well as a monochromator 50 and an X-ray window 49 of the measuring chamber 2.
  • the storage phosphor 4 is shifted in two dimensions relative to the reading unit 10.
  • the measuring chamber 2 can be rotated about its cylinder axis and at the same time the read-out beam of the radiation source 11 in the direction of the cylinder axis with a relatively high frequency in relation to the rotational speed the measuring chamber 2 are pivoted up and down.
  • the information stored in the storage phosphor 4, which was generated by the X-ray 52 generated by diffraction of the X-ray pri-beam 18 in the sample 21, can thus be read out.
  • an X-ray analysis according to the backscattering method of the Guinier method can also be carried out in this embodiment be performed.
  • the monochromatic X-ray beam '18 is then focused on the opening of a slit diaphragm 51 which is arranged in the holder 42.
  • the diffracted X-ray beam 52 is focused on the storage phosphor 4.
  • the attenuation of the X-rays within the measuring chamber can be reduced by providing a measuring chamber 2 which can be evacuated and possibly filled with a light gas, preferably a noble gas, in particular helium.
  • a light gas preferably a noble gas, in particular helium.
  • a deletion device not shown in the figures for the sake of simplicity — is provided.
  • the embodiment with a cylindrical measuring chamber 2 according to FIGS. 4 to 6 can also be used to analyze a sample according to the Debye-Scherrer method.
  • one in FIG. 4 could not sample shown can be arranged in the center of the measuring chamber 2.
  • This sample could be introduced, for example, by means of a holder, which may be similar to the holder shown in FIG. 1, through an opening which is provided with a closure 61 in the illustration in FIG.
  • the measuring chamber could be provided with collimators similar to those shown in FIG. 1. These collimators would be removed from the measuring chamber 2 for reading.
  • a Debye-Scherer arrangement is provided with a cylindrical measuring chamber 2, which in its axis direction is penetrated by a monochromatic primary X-ray beam 18 which passes through the X-ray window 49 in the housing 6 the housing enters.
  • the sample 20 is also arranged in the cylinder axis and can preferably be rotated perpendicularly to the cylinder axis, as is indicated in the figure by an arrow (not designated in any more detail).
  • the inlet tube 22 for the X-ray primary beam 18 and the outlet tube 23 can preferably each be designed as a collimator.
  • the readout unit 10 with the radiation source 11 and the photodetector 15 is provided with a drive which enables a feed 60 in the axial direction of the measuring chamber 2.
  • the surface of the measuring chamber 2 is lined with the storage phosphor 4.
  • the entire storage phosphor 4 can be scanned by the relative movement of the storage phosphor 4 to the readout beam, preferably the rotary movement of the measuring chamber 2 and the linear movement of the readout unit 10 after the sample 20 has been removed from the measuring chamber 2.
  • the arrangement consists in that the measuring chamber 2, the inner wall of which is coated with the storage phosphor 4, contains a further light-absorbing inner coating which is permeable to X-rays, which is not transparent to the reading beam 9 of the reading unit 10 and thus an action of the Readout beam 9 prevented on other areas of the storage layer 4.
  • a further light-absorbing inner coating which is permeable to X-rays, which is not transparent to the reading beam 9 of the reading unit 10 and thus an action of the Readout beam 9 prevented on other areas of the storage layer 4.
  • a metal layer which may be made of aluminum or lead, for example, and which protects the storage phosphor 4 from undesired low-energy X-ray scatter radiation.

Abstract

In order to analyse a sample by means of X-rays, in particular to determine the structure of crystals, a preferably transparent measurement chamber (2) is provided as detector, having a wall provided with a recording fluorescent substance (4). The measurement chamber (2) is arranged in a housing (6) which also contains a reading unit (10) movable in two directions with respect to the measurement chamber (2). This integrated X-ray analysis camera allows X-ray diffractogrammes to be easily and very efficiently taken and digitalised, thanks to the use of X-ray recording fluorescent substances. An X-ray film is thus no longer required.

Description

Anordnung zur Analyse der Kristallstruktur einer Probe mit RöntgenstrahlenArrangement for analyzing the crystal structure of a sample using X-rays
Die Erfindung betrifft eine Anordnung zur Analyse der Kri- stallstruktur einer Probe durch Beugung von Röntgenstrah¬ len, denen ein Detektor zugeordnet ist.The invention relates to an arrangement for analyzing the crystal structure of a sample by diffraction of X-rays, to which a detector is assigned.
Bei der Aufnahme von Röntgendiffraktogrammen entsteht durch Beugung der Röntgenstrahlung an Gitterebenen des Kristalls oder der Kristallite ein Beugungsmuster, das die zu analysierende Information enthält. Diese wird auf einem Röntgenfilm aufgezeichnet, der im allgemeinen eine ver¬ hältnismäßig geringe Röntgenabsorption aufweist. Aufgrund der notwendigen naßchemischen Entwicklung kann der Rönt- genfilm nur einmal verwendet werden und eine Verzerrung der gespeicherten Information läßt sich nicht vermeiden. Ein Nachteil der Röntgenfilme besteht ferner in einer ver¬ hältnismäßig geringen Dynamik und einer bemerkbaren Nicht- linearität, die sich in einer S-förmigen Gradationskurve widerspiegelt. Eine zur Auswertung der so erhaltenen Rönt¬ gendiffraktogramme notwendige Digitalisierung muß beim Röntgenfilm durch eine der naßchemischen Entwicklung nach¬ geschaltete Informationsabtastung mit einem Densitometer durchgeführt werden.When X-ray diffractograms are recorded, the diffraction pattern that contains the information to be analyzed is created by diffraction of the X-rays at the lattice planes of the crystal or the crystallites. This is recorded on an X-ray film which generally has a relatively low X-ray absorption. Due to the necessary wet chemical development, the X-ray film can only be used once and a distortion of the stored information cannot be avoided. A disadvantage of the X-ray films is also a relatively low dynamic range and a noticeable non-linearity, which is reflected in an S-shaped gradation curve. The digitization necessary for evaluating the X-ray diffractograms obtained in this way must be carried out in the X-ray film by means of an information scanning with a densitometer, which is carried out after the wet chemical development.
Aufgabe der Erfindung ist es, eine integrierte Ausfüh¬ rungsform einer Anordnung zur Aufnahme der Röntgendiffrak- togramme in einer Baueinheit mit dem Röntgendetektor und einer Ausleseeinrichtung anzugeben, mit der eine Digitali- sierung der erhaltenen Röntgeninfor ation ohne naßchemi¬ sche Entwicklung möglich ist.The object of the invention is to provide an integrated embodiment of an arrangement for recording the X-ray diffractograms in a structural unit with the X-ray detector and a readout device, with which the X-ray information obtained can be digitized without wet chemical development.
Bekannte Verfahren zur Röntgenanalyse sind beispielsweise das Debye-Scherrer-Verfahren, das Laue-Verfahren und das Bragg- oder Drehkristall-Verfahren sowie das Guinier-Ver- fahren. Ferner gebräuchlich ist das Weißenberg-Verfahren, das deJong-Bouman-Verfahren, das Buerger-Präzessionsver- fahren, das Schiebold-Sauter-Verfahren, das See ann-Boh- lin-Verfahren und das Pinhole-Verfahren. Mit dem Diffrak- togramm können Kristallparameter, beispielsweise Gitter¬ abstände, einer Probe bestimmt werden. Bei diesen Methoden wird als Detektor der konventionelle Röntgenfilm verwendet (B. D. Cullity "Elements of X-Ray Diffraction" , Addison- Wesley Publ. Comp., Inc., 1967, Seiten 149 bis 172).Known methods for X-ray analysis are, for example the Debye-Scherrer process, the Laue process and the Bragg or rotary crystal process as well as the Guinier process. The Weißenberg process, the deJong-Bouman process, the Buerger precession process, the Schiebold-Sauter process, the See ann-Bohlin process and the pinhole process are also used. The diffractogram can be used to determine crystal parameters, for example lattice spacings, of a sample. In these methods, the conventional X-ray film is used as the detector (BD Cullity "Elements of X-Ray Diffraction", Addison-Wesley Publ. Comp., Inc., 1967, pages 149 to 172).
Die Erfindung beruht nun auf der Erkenntnis, daß durch Verwendung der an sich bekannten Röntgenspeicherleucht- Stoffe die bekannten Anordnungen zur Röntgenanalyse ver¬ einfacht und verbessert werden können und sie besteht in den Gestaltungsmerkmalen des Anspruchs 1. In dieser Anord¬ nung ist ein Röntgenfilm nicht mehr erforderlich. Durch die integrierte Röntgenanalytik-Kamera zur Aufnahme und Digitalisierung von Röntgendiffraktogrammen unter Verwen¬ dung von Röntgenspeicherleuchtstoffen wird ein Analyse¬ system mit hoher Dynamik und ausreichender Linearität der gespeicherten Information erhalten. Die Beschichtung der Meßkammer kann sowohl als Außenbeschichtung, vorzugsweise für härtere Röntgenstrahlung, als auch als Innenbeschich- tung, vorzugsweise für weichere Röntgenstrahlung, ausge¬ führt sein. Gegebenenfalls kann auch die gesamte Meßkammer aus dem Röntgenspeicherleuchtstoff, insbesondere als selbsttragende Keramik, bestehen.The invention is now based on the knowledge that the known arrangements for x-ray analysis can be simplified and improved by using the x-ray storage fluorescent materials known per se and it consists in the design features of claim 1. In this arrangement an x-ray film is no longer required. The integrated X-ray analysis camera for recording and digitizing X-ray diffractograms using X-ray storage phosphors provides an analysis system with high dynamics and sufficient linearity of the stored information. The coating of the measuring chamber can be carried out both as an outer coating, preferably for harder X-rays, and as an inner coating, preferably for softer X-rays. If appropriate, the entire measuring chamber can also consist of the X-ray storage phosphor, in particular as a self-supporting ceramic.
In einer Ausführungsform der Anordnung gemäß der Erfindung für einen Betrieb nach dem Debye-Scherrer-Prinzip ist eine pulverisierte Probe im Mittelpunkt der Meßkammer justier- bar angeordnet und wird von einem fokussierten monochroma¬ tischen Röntgenstrahl durchsetzt. Die an einer Gitterebene der Probe gebeugten Röntgenstrahlen liegen auf einem Ke¬ gel, dessen Spitze in der Probe und dessen Achse in der Mittelachse des Primärstrahls liegt und dessen Mantel den Röntgenspeicherleuchtstoff in einem Kreis schneidet. Zur Auslesung wird die Probe aus der Meßkammer entfernt und das Strahlungsmuster von der Ausleseeinheit aufgenommen und einem Bildaufbaurechner zugeführt; es kann auf einem Bildschirm sichtbar gemacht werden.In one embodiment of the arrangement according to the invention for operation according to the Debye-Scherrer principle, a pulverized sample is adjusted in the center of the measuring chamber. arranged bar and is penetrated by a focused monochromatic X-ray beam. The X-rays diffracted at a grating plane of the sample lie on a cone, the tip of which lies in the sample and the axis of which lies in the central axis of the primary beam and the jacket of which cuts the X-ray storage phosphor in a circle. For the readout, the sample is removed from the measuring chamber and the radiation pattern is picked up by the readout unit and fed to an image construction computer; it can be made visible on a screen.
Für eine Aufnahme eines Röntgendiffraktogramms nach dem Laue-Verfahren wird ein Einkristall justierbar im Mittel¬ punkt der Meßkammer angeordnet und von einem polychromati- sehen Röntgenstrahl durchsetzt. Nach dem Drehkristall-Ver¬ fahren ist als Probe ebenfalls ein Einkristall vorgesehen, der im Mittelpunkt der Meßkammer angeordnet ist, dort von einer monochromatischen Strahlung durchsetzt wird und drehbar ist, vorzugsweise jeweils stufenweise drehbar. Bei diesem bekannten Verfahren werden jeweils Einzelreflexe des Beugungsmusters gemessen.To record an X-ray diffractogram according to the Laue method, a single crystal is adjustably arranged in the center of the measuring chamber and a polychromatic X-ray beam passes through it. After the rotary crystal method, a single crystal is also provided as a sample, which is arranged in the center of the measuring chamber, through which monochromatic radiation passes and is rotatable, preferably rotatable step by step. In this known method, individual reflections of the diffraction pattern are measured.
Für eine Anordnung nach dem Guinier-Verfahren ist eine Probe in der Form einer Pulverschicht vorgesehen, die bei der Transmissionsmethode von einem monochromatischen, in die Meßkammer eintretenden Röntgenprimärstrahl durchsetzt wird bzw. bei der Rückstreuungsmethode den Röntgenprimär¬ strahl an der gegenüberliegenden Kammerwand in die Kammer zurückbeugt. Bei diesen beiden Meßprinzipien zeigen die von der Probe gebeugten Röntgenstrahlen in Richtung eines Kegels, der symmetrisch um die Primärstrahlachse verläuft. Die Röntgenaufnahme erfolgt bei ortsfester Meßkammer. Für den Auslesevorgang wird die Probe aus der Meßkammer ent- fernt, die Meßkammer gedreht und zugleich die Ausleseein¬ heit geschwenkt oder linear bewegt.For an arrangement according to the Guinier method, a sample in the form of a powder layer is provided, which in the transmission method is penetrated by a monochromatic primary X-ray beam entering the measuring chamber or in the backscattering method bends the primary X-ray beam back into the chamber on the opposite chamber wall . With these two measuring principles, the X-rays diffracted from the sample point in the direction of a cone that runs symmetrically about the primary beam axis. The X-ray is taken with a stationary measuring chamber. The sample is removed from the measuring chamber for the reading process. distant, the measuring chamber rotated and at the same time the reading unit pivoted or moved linearly.
Weitere besonders vorteilhafte Ausführungsformen der An- Ordnung zur Aufnahme von Röntgendiffraktogrammen einer kristallinen Probe durch Beugung eines Röntgenprimär- strahls ergeben sich aus den Unteransprüchen.Further particularly advantageous embodiments of the arrangement for recording X-ray diffractograms of a crystalline sample by diffraction of an X-ray primary beam result from the subclaims.
Zur weiteren Erläuterung der Erfindung wird auf die Zeich- nung Bezug genommen, in deren Figur 1 eine integrierteTo further explain the invention, reference is made to the drawing, in which FIG. 1 shows an integrated
Röntgenanalytik-Kamera gemäß der Erfindung in tw-Geometrie schematisch veranschaulicht ist, die für das Debye-Scher- rer-, Laue- oder auch das Drehkristall-Verfahren verwendet werden kann. Eine Ausführungsfo'rm der Anordnung nach dem Guinier-Verfahren für die Transmissionsmethode ist in Fi¬ gur 2 und eine Ausführungsform für die Rückstreuungsmetho- de in Figur 3 veranschaulicht. Figur 4 zeigt eine Ausfüh¬ rungsform für das Guinier-Verfahren mit einer hohlzylind¬ rischen Meßkammer im Querschnitt. In Figur 5 ist diese Ausführungsform für die Transmissionsmethode in einer geschnittenen Draufsicht und in Figur 6 für die Rück- streuungsmethode ebenfalls in einer geschnittenen Drauf¬ sicht schematisch veranschaulicht. In Figur 7 ist eine Ausführungsform der Anordnung mit einer hohlzylindrischen Meßkammer dargestellt, bei der die Röntgenstrahlung in Achsrichtung der Meßkammer verläuft.X-ray analysis camera according to the invention in tw geometry is schematically illustrated, which can be used for the Debye-Scherer, Laue or the rotary crystal method. A Ausführungsfo 'rm of the arrangement according to the Guinier method for the transmission method is in Fi¬ gur 2 and illustrates an embodiment for the de Rückstreuungsmetho- in FIG. 3 FIG. 4 shows an embodiment for the Guinier method with a hollow cylindrical measuring chamber in cross section. This embodiment is schematically illustrated in FIG. 5 for the transmission method in a sectional plan view and in FIG. 6 for the backscattering method also in a sectional plan view. FIG. 7 shows an embodiment of the arrangement with a hollow cylindrical measuring chamber in which the X-ray radiation runs in the axial direction of the measuring chamber.
In der Ausführungsform einer integrierten Röntgenanalytik- Kamera zur Aufnahme und Digitalisierung von Röntgendif- fraktogrammen unter Verwendung von Röntgenspeicherleucht- stoffen nach dem bekannten Debye-Scherrer-Verfahren gemäß Figur 1 ist eine im wesentlichen kugelförmige transparente Meßkammer 2 vorgesehen, die an einer ihrer Oberflächen, vorzugsweise der inneren Oberfläche, mit einem Speicher¬ leuchtstoff 4 versehen ist, der zur Verdeutlichung in der Zeichnung in einem gewissen Abstand von der Oberfläche strichpunktiert angedeutet ist. Dem Speicherleuchtstoff 4 ist ein Auslesestrahl 9 zugeordnet, der in zwei Dimensio¬ nen relativ beweglich ist zum Speicherleuchtstoff 4 und von einer Ausleseeinheit 10 geliefert wird. Vorzugsweise kann die Ausleseeinheit 10 in einer Richtung geschwenkt und zugleich die Meßkammer um die Mittelachse 5 gedreht werden. Die Ausleseeinheit 10 ist außerhalb der um eine Drehachse drehbar gelagerten Meßkammer 2 angeordnet, die vorzugsweise von einem Gehäuse 6, insbesondere einem lichtdichten Gehäuse, umgeben sein kann. Die Ausleseein¬ heit 10 ist mit Hilfe einer Schwenkvorrichtung, beispiels- weise eines Schwenkarms 8, um eine Achse durch den Mittel¬ punkt Mp der Meßkammer 2 in deren Umfangsrichtung schwenk¬ bar gelagert, wie es in der Figur durch einen nicht näher bezeichneten Pfeil angedeutet ist. Die Ausleseeinheit 10 enthält eine Strahlungsquelle 11 für eine Anregungsstrah- lung, die dem Speicherleuchtstoff 4 zugeführt wird und dort eine Emissionsstrahlung auslöst, die einem Detektor 15 zugeführt wird, der vorzugsweise ein Photomultiplier sein kann. Für die Anregungsstrahlung ist vorzugsweise ein Laser, insbesondere ein Halbleiterlaser, geeignet, dessen Laserlicht dem Speicherleuchtstoff 4, beispielsweise über eine Optik 12 und einen Spiegel 13, zugeführt werden kann. Die Ausleseeinheit 10 kann ferner eine Lichtsammeioptik 14, vorzugsweise eine sogenannte Ulbrichtkugel, sowie ein Filter 16 enthalten.In the embodiment of an integrated X-ray analysis camera for recording and digitizing X-ray diffractograms using X-ray storage fluorescent materials according to the known Debye-Scherrer method according to FIG. 1, an essentially spherical transparent measuring chamber 2 is provided, which on one of its surfaces, preferably the inner surface, is provided with a storage phosphor 4 which is indicated by dash-dotted lines at a certain distance from the surface for clarification in the drawing. The storage phosphor 4 is assigned a readout beam 9, which is relatively movable in two dimensions to the storage phosphor 4 and is supplied by a readout unit 10. The readout unit 10 can preferably be pivoted in one direction and the measuring chamber rotated about the central axis 5 at the same time. The read-out unit 10 is arranged outside the measuring chamber 2, which is rotatably mounted about an axis of rotation and which can preferably be surrounded by a housing 6, in particular a light-tight housing. The read-out unit 10 is mounted with the aid of a swivel device, for example a swivel arm 8, so that it can swivel about an axis through the center point Mp of the measuring chamber 2 in its circumferential direction, as indicated in the figure by an arrow (not designated in any more detail) is. The read-out unit 10 contains a radiation source 11 for an excitation radiation which is fed to the storage phosphor 4 and there triggers an emission radiation which is fed to a detector 15, which can preferably be a photomultiplier. A laser, in particular a semiconductor laser, is preferably suitable for the excitation radiation, the laser light of which can be supplied to the storage phosphor 4, for example via an optical system 12 and a mirror 13. The read-out unit 10 can also contain a light collecting optics 14, preferably a so-called integrating sphere, and a filter 16.
Ein monochromatischer Röntgenpri ärstrahl 18 durchsetzt eine pulverförmige Probe 20, die im Mittelpunkt Mp der Meßkammer 2 und zugleich in der Mittelachse 5 des Röntgen- primärstrahls 18 justierbar und vorzugsweise zugleich um die Mittelachse 31 einer Probenhalterung 30 drehbar an¬ geordnet ist. Der Rontgenprimarstrahl 18 tritt durch ein Eintrittsrohr 22 in die Meßkammer 2 ein, durchsetzt die Probe 20 und gelangt in einem Austrittsrohr 23 zu einem Strahlstopp 19, der vorzugsweise aus Bleiglas bestehen kann und somit durchsichtig ist und zur Justierung der Probe 20 vorzugsweise noch mit einem nicht näher bezeich¬ neten fluoreszierenden Schirm versehen sein kann. Der Rontgenprimarstrahl 18 wird an Gitterebenen der Kristalle der pulverförmigen Probe 20 gebeugt. Mit der Drehung der Probe 20 um die Mittelachse 5 erhält man ein Beugungs¬ muster in der Form eines Kegels, dessen Spitze in der Probe 20 und dessen Achse in der Mittelachse 5 des Rönt- genprimärstrahls 18 liegt und dessen Mantel den Speicher¬ leuchtstoff 4 in einem Kreis schneidet. Die Projektion dieses Kreises in die Zeichenebene ist in der Figur strichpunktiert angedeutet und mit 56 bezeichnet. In die¬ sem Kreisring wird die gebeugte Strahlung 52 vom Speicher- leuchtstoff absorbiert und die Information gemäß der In¬ tensität des gebeugten Röntgenstrahls gespeichert.A monochromatic X-ray pri-beam 18 passes through a powdery sample 20 which is in the center Mp of the measuring chamber 2 and at the same time in the central axis 5 of the X-ray primary beam 18 is adjustable and preferably at the same time rotatable about the central axis 31 of a sample holder 30. The X-ray primary beam 18 enters the measuring chamber 2 through an inlet tube 22, passes through the sample 20 and arrives in an outlet tube 23 at a beam stop 19, which may preferably consist of lead glass and is therefore transparent, and preferably not with one for adjusting the sample 20 specified fluorescent screen can be provided. The X-ray primary beam 18 is diffracted at the grating planes of the crystals of the powdered sample 20. With the rotation of the sample 20 about the central axis 5, a diffraction pattern in the form of a cone is obtained, the tip of which lies in the sample 20 and the axis of which lies in the central axis 5 of the primary X-ray beam 18 and the jacket of which stores the phosphor 4 in cuts a circle. The projection of this circle into the plane of the drawing is indicated in dash-dot lines in the figure and is denoted by 56. In this circular ring, the diffracted radiation 52 is absorbed by the storage phosphor and the information is stored in accordance with the intensity of the diffracted X-ray beam.
Das Gehäuse 6 kann vorzugsweise aus zwei im wesentlichen halbkugelförmigen, in der Figur nicht näher bezeichneten Schalen bestehen, von denen eine die Ausleseeinheit 10 einschließt und die andere mit einer Durchführungsöffnung 26 für die Probenhalterung 30 versehen ist. Auch die Me߬ kammer 2 ist koaxial zur Mittelachse 31 der Probenhalte¬ rung 30 mit einer entsprechenden Durchführungsöffnung 27 versehen. Die Meßkammer 2 mit ihrer beschichteten Innen¬ fläche ist mit einem Lager 29 versehen und mit dem Ein¬ trittsrohr 22 formschlüssig verbunden. Ferner ist die Me߬ kammer 2 mit einem Antrieb 28 versehen, mit dessen Hilfe sie im Falle der Auslesung der gespeicherten Information um die Mittelachse 5 des Primärstrahls 18 gedreht werden kann, wie es in der Figur durch einen nicht näher bezeich¬ neten Pfeil angedeutet ist. Wird die Meßkammer 2 um die Mittelachse 5 gedreht und zugleich die Ausleseeinheit 10 mit ihrer Strahlungsquelle 11 für den Auslesestrahl in Umfangsrichtung der Meßkammer 2 geschwenkt, so kann der gesamte Röntgenspeicherleuchtstoff 4 abgetastet und die gespeicherte Information ausgelesen werden.The housing 6 can preferably consist of two substantially hemispherical shells, not shown in the figure, one of which includes the read-out unit 10 and the other of which is provided with a passage opening 26 for the sample holder 30. The measuring chamber 2 is also provided coaxially to the central axis 31 of the sample holder 30 with a corresponding through opening 27. The measuring chamber 2 with its coated inner surface is provided with a bearing 29 and is positively connected to the inlet pipe 22. Furthermore, the measuring chamber 2 is provided with a drive 28, with the help of which if the stored information is read out, it can be rotated about the central axis 5 of the primary beam 18, as is indicated in the figure by an arrow, which is not identified in any more detail. If the measuring chamber 2 is rotated about the central axis 5 and at the same time the readout unit 10 with its radiation source 11 for the readout beam is pivoted in the circumferential direction of the measuring chamber 2, the entire x-ray storage phosphor 4 can be scanned and the stored information can be read out.
In der dargestellten Ausführungsform einer nach dem Debye- Scherrer-Verfahren zu analysierenden Probe 20 ist eine pulverförmige Probe 20 vorgesehen, die in einer Kapillar¬ röhre angeordnet ist oder mit Hilfe eines Klebers oder Lackes als Draht oder Faden gestaltet ist, dessen Durch¬ messer im allgemeinen 1 mm nicht wesentlich überschreitet. Diese Probe ist mit einem Stab 32 verbunden, der durch die Durchführungsöffnung 27 der Meßkammer 2 hindurchgeführt ist. Der Stab 32 ist auch durch die Durchführungsöffnung 26 des Gehäuses 6 hindurchgeführt, beispielsweise mitIn the illustrated embodiment of a sample 20 to be analyzed by the Debye-Scherrer method, a powdery sample 20 is provided, which is arranged in a capillary tube or is designed as a wire or thread with the aid of an adhesive or varnish, the diameter of which in the generally does not significantly exceed 1 mm. This sample is connected to a rod 32 which is passed through the passage opening 27 of the measuring chamber 2. The rod 32 is also passed through the through opening 26 of the housing 6, for example with
Hilfe eines Durchführungsrohres 34, und vorzugsweise mit einem gas- und vakuumdichten Verschluß versehen, der bei¬ spielsweise aus einem Faltenbalg 33 bestehen kann. Der Stab 32 und damit die Probe 20 sind mit Hilfe einer Ju- stiereinrichtung innerhalb der Meßkammer 2 nach Höhe, Seite und Tiefe bewegbar angeordnet, was in der Figur lediglich durch eine Justierschraube 36, der eine Feder 37 zugeordnet ist, schematisch angedeutet ist. In gleicher Weise kann eine derartige Einrichtung noch zum Schwenken in der Ebene durch die Mittelachse 31 und senkrecht zurWith the aid of a feed-through tube 34, and preferably provided with a gas and vacuum-tight closure, which can consist, for example, of a bellows 33. The rod 32 and thus the sample 20 are arranged to be movable in height, side and depth within the measuring chamber 2 with the aid of an adjusting device, which is indicated schematically in the figure only by an adjusting screw 36 to which a spring 37 is assigned. In the same way, such a device can still pivot in the plane through the central axis 31 and perpendicular to
Zeichenebene verstellt werden. Zusätzlich kann der Stab 32 noch mit einem Antrieb für eine Drehbewegung versehen sein, was in der Figur lediglich durch entsprechende Pfeile schematisch angedeutet ist. Mit Hilfe dieser Pro¬ benhalterung 30 wird die Probe 20 in der Mittelachse 5 des Röntgenprimärstrahls 18 justiert. Der Rontgenprimarstrahl 18 wird mit Hilfe eines rohrförmigen Einsatzes, der als Kollimator 24 wirkt und in das Eintrittsrohr 22 eingesetzt ist, auf die Probe 20 konzentriert. Hinter der Probe 20 tritt der Primärstrahl in einen Hohlkörper 25 ein, der im wesentlichen zur Absorption der Primärstrahlung dient und an dessen Ende der Strahlstopp 19 angeordnet ist.Drawing level can be adjusted. In addition, the rod 32 can also be provided with a drive for a rotary movement, which is shown in the figure only by corresponding Arrows is indicated schematically. With the aid of this sample holder 30, the sample 20 is adjusted in the central axis 5 of the X-ray primary beam 18. The X-ray primary beam 18 is concentrated on the sample 20 with the aid of a tubular insert which acts as a collimator 24 and is inserted into the inlet tube 22. Behind the sample 20, the primary beam enters a hollow body 25 which essentially serves to absorb the primary radiation and at the end of which the beam stop 19 is arranged.
Durch die gebeugte Strahlung 52, die beim Debye-Scherrer- Verfahren in Form eines Kegels vorliegt, wird im Speicher¬ leuchtstoff 4 ein latentes Bild von örtlich gespeicherten Elektronen-Lochpaaren erzeugt, das mit Hilfe der Anre- gungsstrahlung der Strahlungsquelle 11 wieder ausgelesen werden kann. Als Speicherleuchtstoff 4 sind alle photo- sti ulierbaren Materialien geeignet, vorzugsweise mit Eu¬ ropium aktiviertes Bariumfluorbromidjodid BaF(Br,_ J ) :Eu mit 0 < x < 1 oder auch mit Europium aktiviertes Barium- bro osilikat BaBr5SiO.:Eu sowie mit Thallium aktiviertes Rubidiu bromid RbBr.Tl oder auch entsprechendes Rubidium- jodid RbJ.Tl.The diffracted radiation 52, which is present in the form of a cone in the Debye-Scherrer method, generates a latent image of locally stored electron-hole pairs in the storage phosphor 4, which latent image can be read out again with the aid of the excitation radiation from the radiation source 11 . All photo-stabilizable materials are suitable as storage phosphor 4, preferably barium fluorobromide iodide BaF (Br, _J): Eu with opium activated Eu with 0 <x <1 or also barium broosilicate BaBr 5 SiO.:Eu activated with europium as well Rubidiu bromide RbBr.Tl activated with thallium or corresponding Rubidium iodide RbJ.Tl.
Zum Auslesen der gespeicherten Information wird die Probe 20 mit Hilfe des Probenhalters 30 aus der Meßkammer 2 ent¬ fernt und dem Speicherleuchtstoff 4 die Anregungsstrahlung der Strahlungsquelle 11 zugeführt. Zugleich wird die Me߬ kammer 2 um die Mittelachse 5 des Primärstrahls 18 gedreht und die Ausleseeinrichtung 10 mit dem Schwenkarm 8 um des- sen Schwenkachse geschwenkt. Damit kann der gesamte Spei¬ cherleuchtstoff 4 abgetastet werden. Die in der ausgelö¬ sten Emissionsstrahlung enthaltene Information wird einem Rechner zugeführt und kann als Reflexbild, als sogenanntes Diffraktogra m, auf einem Bildschirm sichtbar gemacht wer¬ den. Jeder Schnittkreis der Röntgenstrahlung 52 erscheint dabei im Diffraktogram als ein Peak.To read out the stored information, the sample 20 is removed from the measuring chamber 2 with the aid of the sample holder 30 and the excitation radiation from the radiation source 11 is supplied to the storage phosphor 4. At the same time, the measuring chamber 2 is rotated about the central axis 5 of the primary beam 18 and the readout device 10 with the swivel arm 8 is pivoted about its swivel axis. The entire storage phosphor 4 can thus be scanned. The information contained in the triggered emission radiation is fed to a computer and can be used as a reflection image, so-called Diffractograph, be made visible on a screen. Each intersection of the x-rays 52 appears as a peak in the diffractogram.
Die in Figur 1 dargestellte Ausführungsform kann auch zur Röntgenanalyse einer Probe, beispielsweise zur Ermittlung der Kristallorientierung, nach dem Laue-Verfahren verwen¬ det werden. In dieser Ausführungsform wird der Meßkammer 2 ein polychromatischer Rontgenprimarstrahl 18 zugeführt, der dann eine Probe 20 durchstrahlt, die aus einem Ein¬ kristall besteht und bei der Aufnahme ortsfest in der Me߬ kammer 2 angeordnet ist. Die Beugung erfolgt in Einzel¬ reflexen, die jeweils einen Punkt im Speicherleuchtstoff 4 ergeben. Diese Punkte werden dann bei der Auslesung als zweidimensionales Bild erfaßt. Dabei wird die Meßkammer 2 verhältnismäßig langsam gedreht und die Ausleseeinheit 10 kontinuierlich oder stufenweise geschwenkt.The embodiment shown in FIG. 1 can also be used for the X-ray analysis of a sample, for example for determining the crystal orientation, using the Laue method. In this embodiment, the measuring chamber 2 is supplied with a polychromatic primary X-ray beam 18, which then passes through a sample 20 which consists of a single crystal and is arranged in the measuring chamber 2 in a stationary manner during the recording. The diffraction takes place in individual reflections, which each result in a point in the storage phosphor 4. These points are then recorded as a two-dimensional image during the reading. The measuring chamber 2 is rotated relatively slowly and the read-out unit 10 is pivoted continuously or in stages.
Außerdem ist die Anordnung gemäß Figur 1 auch für das so- genannte Drehkristall-Verfahren geeignet, bei dem ein monochromatischer Rontgenprimarstrahl 18 eine Probe 20 durchstrahlt, die ebenfalls aus einem Einkristall besteht, der im Mittelpunkt Mp der Meßkammer 2 drehbar ist, vor¬ zugsweise in Stufen drehbar. Auch bei diesem Drehkristall- Verfahren, das vorzugsweise in der Proteinkristallographie angewendet wird, werden Einzelreflexe gemessen.In addition, the arrangement according to FIG. 1 is also suitable for the so-called rotary crystal method, in which a monochromatic X-ray primary beam 18 shines through a sample 20 which likewise consists of a single crystal which can be rotated at the center Mp of the measuring chamber 2, preferably in Steps can be rotated. Individual reflections are also measured in this rotary crystal method, which is preferably used in protein crystallography.
Eine besonders vorteilhafte Ausführungsform der Anordnung besteht darin, daß die Meßkammer 2 selbst aus dem Spei- cherleuchtstoff 4 besteht.A particularly advantageous embodiment of the arrangement consists in that the measuring chamber 2 itself consists of the storage phosphor 4.
Für eine Ausführungsform der Anordnung nach dem sogenann¬ ten Guinier-Verfahren ist bei der Transmissionsmethode ge- maß Figur 2 eine Probe 21 als dünner pulverförmiger Film vorgesehen, der auf einer Trägerfolie 41 angeordnet ist, die aus einem Kunststoff mit geringer Absorption für Rönt¬ genstrahlung, beispielsweise Polytetrafluorethylen, be- steht und von einem monochromatischen Rontgenprimarstrahl 18 durchsetzt wird. Der Rontgenprimarstrahl 18 ist auf die Rückwand der kugelförmigen Meßkammer 2 fokussiert, die dort mit einer Lochblende 43 zur Justierung des Röntgen- primärstrahls 18 versehen ist. Nach dem Satz über die Gleichheit der Umfangswinkel über demselben Bogen werden die Reflexe, die von der Peripherie eines Kreises unter einem Beugungswinkel, bezogen auf den Primärstrahl 18, ausgehen, auf einen Punkt des Speicherleuchtstoffs 4 der Meßkammer 2 fokussiert. In dieser Ausführungsform für die Analyse in Transmission wird in das Austrittsrohr 23 eine Halterung 42 eingesetzt, die an ihrer der Meßkammer 2 zu¬ gewandten Öffnung mit der Lochblende 43 versehen ist, die beispielsweise aus Blei oder auch aus rostfreiem Stahl bestehen kann und in ihrem Mittelpunkt mit einer in der Figur nicht näher bezeichneten Öffnung versehen ist.For an embodiment of the arrangement according to the so-called Guinier method, the transmission method 2, a sample 21 was provided as a thin powdery film, which is arranged on a carrier film 41, which consists of a plastic with low absorption for X-rays, for example polytetrafluoroethylene, and is penetrated by a monochromatic X-ray primary beam 18. The X-ray primary beam 18 is focused on the rear wall of the spherical measuring chamber 2, which is provided there with an aperture 43 for adjusting the X-ray primary beam 18. According to the theorem on the equality of the circumferential angles over the same arc, the reflections which originate from the periphery of a circle at a diffraction angle with respect to the primary beam 18 are focused on a point of the storage phosphor 4 of the measuring chamber 2. In this embodiment for the analysis in transmission, a holder 42 is inserted into the outlet pipe 23, which is provided with the aperture 43 at its opening facing the measuring chamber 2, which can consist for example of lead or also of stainless steel and in its center is provided with an opening not shown in the figure.
Für den monochromatischen Rontgenprim rstrahl 18 kann bei¬ spielsweise eine Röntgenröhre 45 vorgesehen sein, deren Röntgenstrahl über eine Blende, vorzugsweise eine Loch- blende 47, und eine weitere Blende mit Kollimatorwirkung, eine sogenannte Sollerblende 48, sowie einen fokussieren- den Monochromator 50 der Meßkammer 2 zugeführt wird, wel¬ che um die Mittelachse 5 des Röntgenprimärstrahls 18 dreh¬ bar ist. Der in der Probe 21 gebeugte Röntgenstrahl 52 bildet einen Kegel, dessen Kegelmantel den Speicherleucht¬ stoff 4 an der inneren Oberfläche der Meßkammer 2 in einem Kreisring schneidet, der in der Figur als strichpunktierte Schnittgerade 56 angedeutet ist. Relativ beweglich zur Meßkammer 2 ist die Ausleseeinheit 10 vorgesehen, die auch in dieser Ausführungsform zwischen der Meßkammer 2 und dem Gehäuse 6 in Umfangsrichtung der Meßkammer 2 schwenkbar angeordnet ist. Die Antriebsvorrichtung für die Schwenkung der Ausleseeinheit 10 mit Hilfe des Schwenkarms 8 um eine senkrecht zur Mittelachse 5 des Röntgenprimärstrahls 18 und senkrecht zur Zeichenebene durch den Mittelpunkt Mp der Meßkammer 2 verlaufende Drehachse ist in der Figur zur Vereinfachung nicht dargestellt. Mit der Schwenkung der Ausleseeinrichtung 10 in Umfangsrichtung der Meßkammer 2 und zugleich einer Drehung der Meßkammer 2 um die Mittel¬ achse des Primärstrahls 18 kann die gesamte Fläche des Speicherleuchtstoffs 4 abgetastet werden.For the monochromatic X-ray prim ray 18, for example, an X-ray tube 45 can be provided, whose X-ray beam has a diaphragm, preferably a pinhole 47, and another diaphragm with a collimating effect, a so-called Soller diaphragm 48, and a focusing monochromator 50 of the measuring chamber 2 is supplied, which can be rotated about the central axis 5 of the X-ray primary beam 18. The X-ray beam 52 diffracted in the sample 21 forms a cone, the cone jacket of which intersects the storage phosphor 4 on the inner surface of the measuring chamber 2 in a circular ring, which is indicated in the figure as a dash-dotted line 56. Relatively mobile to Measuring chamber 2, the read-out unit 10 is provided, which in this embodiment is also pivotally arranged between the measuring chamber 2 and the housing 6 in the circumferential direction of the measuring chamber 2. The drive device for pivoting the read-out unit 10 with the aid of the swivel arm 8 about an axis of rotation running perpendicular to the central axis 5 of the X-ray primary beam 18 and perpendicular to the plane of the drawing through the center point Mp of the measuring chamber 2 is not shown in the figure for simplification. With the swiveling of the reading device 10 in the circumferential direction of the measuring chamber 2 and at the same time a rotation of the measuring chamber 2 about the central axis of the primary beam 18, the entire surface of the storage phosphor 4 can be scanned.
In der Ausführungsform einer Anordnung zur Röntgenanalyse nach dem Guinier-Verfahren mit der Rückstreuungsmethode gemäß Figur 3 wird der Meßkammer 2 ebenfalls ein monochro¬ matischer Rontgenprimarstrahl 18 zugeführt. In dieser Aus¬ führungsform ist die Halterung 42 für die Lochblende 43 in das Eintrittsrohr 22 eingesetzt; der Rontgenprimar¬ strahl 18 ist auf das nicht näher bezeichnete Loch der Lochblende 43 fokussiert und trifft dann auf die an der gegenüberliegenden Wand der Meßkammer 2 angeordnete Probe 21, deren Probenhalter 40 in das Austrittsrohr 23 einge- setzt ist. Der rückgebeugte Röntgenstrahl 52 bildet auf dem Speicherleuchtstoff 4 einen Fokussierungskreis, dessen gestrichelte Projektion auf die Zeichenebene mit 56 be¬ zeichnet ist. Auch in dieser Ausführungsform kann die Aus¬ leseeinheit 10 innerhalb des Gehäuses 6 relativ zur Meß- kammer 2 bewegt und zur Auslesung, wie beim Debye-Scher- rer-Verfahren gemäß Figur 1, der gesamte Speicherleucht¬ stoff 4 ausgelesen werden. Vorzugsweise wird jedoch nur die Intensität in den einzelnen Schnittkreisen ermittelt und summiert und jeweils dem Umfangswinkel ~~ zugeordnet.In the embodiment of an arrangement for X-ray analysis according to the Guinier method with the backscattering method according to FIG. 3, a monochromatic X-ray primary beam 18 is likewise fed to the measuring chamber 2. In this embodiment, the holder 42 for the perforated diaphragm 43 is inserted into the inlet pipe 22; the X-ray primar beam 18 is focused on the unspecified hole of the perforated diaphragm 43 and then strikes the sample 21 arranged on the opposite wall of the measuring chamber 2, the sample holder 40 of which is inserted into the outlet pipe 23. The diffracted x-ray beam 52 forms a focusing circle on the storage phosphor 4, the dashed projection of which is denoted by 56 in the drawing plane. In this embodiment too, the reading unit 10 can be moved within the housing 6 relative to the measuring chamber 2 and the entire storage phosphor 4 can be read out for reading, as in the Debye-Scherer method according to FIG. However, only the intensity in the individual cutting circles is preferably determined and summed and assigned to the circumferential angle ~~ .
In der Ausführungsform einer Anordnung gemäß Figur 4 mit einer zylindrischen Meßkammer 2, die als axialer Schnitt durch die Zylinderachse dargestellt ist und die von einem Gehäuse 6 umgeben ist, das aus einem nicht näher bezeich¬ neten topfför igen Teil und einem ebenfalls nicht bezeich¬ neten Deckel besteht, tritt der monochromatische Rontgen¬ primarstrahl 18 durch eine in der Figur nicht dargestellte Schlitzblende und ein Röntgenfenster 49 des Gehäuses 6 in die Anordnung ein, durchsetzt die pulverförmige Probe 21 in der Wand der Meßkammer 2 und ist auf einen Punkt an der gegenüberliegenden Kammerwand fokussiert. Auf der Kammer¬ wand entsteht ein annähernd lineares Beugungsmuster 54, das in der Figur strichpunktiert angedeutet ist. Ein An¬ trieb für eine Drehbewegung der Meßkammer 2 ist in der Figur mit 58 bezeichnet.In the embodiment of an arrangement according to FIG. 4 with a cylindrical measuring chamber 2, which is shown as an axial section through the cylinder axis and which is surrounded by a housing 6, which consists of a pot-shaped part, which is not described in more detail, and a part which is also not indicated Cover exists, the monochromatic X-ray primary beam 18 enters the arrangement through a slit diaphragm (not shown in the figure) and an X-ray window 49 of the housing 6, passes through the powdered sample 21 in the wall of the measuring chamber 2 and is at a point on the opposite chamber wall focused. An approximately linear diffraction pattern 54 is formed on the chamber wall, which is indicated by dash-dotted lines in the figure. A drive for a rotary movement of the measuring chamber 2 is designated 58 in the figure.
Wie dem Schnitt senkrecht zur Zylinderachse gemäß Figur 5 zu entnehmen ist, kann in dieser Ausführungsform die re¬ lativ zur Meßkammer 2 bewegliche Ausleseeinheit 10 mit ihrer Strahlungsquelle 11 und dem Photodetektor 15 auch mit dem Gehäuse 6 verbunden sein, insbesondere im Gehäuse integriert sein. In dieser Ausführungsform wird der Rönt- genstrahl 18 einer Röntgenröhre 45 über eine Schlitzblende 46 und eine Sollerblende 48 sowie einen Monochromator 50 und ein Röntgenfenster 49 der Meßkammer 2 zugeführt. Zur Auslesung wird der Speicherleuchtstoff 4 in zwei Dimensio¬ nen relativ zur Ausleseeinheit 10 verschoben. In einer be- sonders einfachen Ausführungsform kann die Meßkammer 2 um ihre Zylinderachse gedreht und zugleich der Auslesestrahl der Strahlungsquelle 11 in Richtung der Zylinderachse mit verhältnismäßig hoher Frequenz im Verhältnis zur Drehzahl der Meßkammer 2 auf- und abgeschwenkt werden. Damit kann die im Speicherleuchtstoff 4 gespeicherte Information, die durch den - durch Beugung des Röntgenpri ärstrahls 18 in der Probe 21 entstandenen - Röntgenstrahl 52 erzeugt wur- de, ausgelesen werden.As can be seen from the section perpendicular to the cylinder axis according to FIG. 5, in this embodiment the read-out unit 10, which is movable relative to the measuring chamber 2, can also be connected to the housing 6 with its radiation source 11 and the photodetector 15, in particular integrated into the housing. In this embodiment, the X-ray beam 18 is fed to an X-ray tube 45 via a slit diaphragm 46 and a Soller diaphragm 48 as well as a monochromator 50 and an X-ray window 49 of the measuring chamber 2. For the reading, the storage phosphor 4 is shifted in two dimensions relative to the reading unit 10. In a particularly simple embodiment, the measuring chamber 2 can be rotated about its cylinder axis and at the same time the read-out beam of the radiation source 11 in the direction of the cylinder axis with a relatively high frequency in relation to the rotational speed the measuring chamber 2 are pivoted up and down. The information stored in the storage phosphor 4, which was generated by the X-ray 52 generated by diffraction of the X-ray pri-beam 18 in the sample 21, can thus be read out.
Wie dem Schnitt gemäß Figur 6 zu entnehmen ist, in der lediglich die Anordnung der hohlzylindrischen Meßkammer 2 innerhalb des ebenfalls hohlzylindrischen Gehäuses 6 mit der Ausleseeinheit 10 schematisch dargestellt ist, kann auch bei dieser Ausführungsform eine Röntgenanalyse nach der Rückstreuungs ethode des Guinier-Verfahrens durch¬ geführt werden. In dieser Ausführungsform ist dann der monochromatische Röntgenstrahl '18 auf die Öffnung einer Schlitzblende 51 fokussiert, die in der Halterung 42 an¬ geordnet ist. Von der an der gegenüberliegenden Wand der Meßkammer 2 angeordneten Probe 21 wird der rückgebeugte Röntgenstrahl 52 auf den Speicherleuchtstoff 4 fokussiert.As can be seen from the section according to FIG. 6, in which only the arrangement of the hollow cylindrical measuring chamber 2 within the likewise hollow cylindrical housing 6 with the readout unit 10 is shown schematically, an X-ray analysis according to the backscattering method of the Guinier method can also be carried out in this embodiment be performed. In this embodiment, the monochromatic X-ray beam '18 is then focused on the opening of a slit diaphragm 51 which is arranged in the holder 42. From the sample 21 arranged on the opposite wall of the measuring chamber 2, the diffracted X-ray beam 52 is focused on the storage phosphor 4.
Die Schwächung der Röntgenstrahlen innerhalb der Meßkammer kann dadurch vermindert werden, daß eine evakuierbare und gegebenenfalls mit einem leichten Gas, vorzugsweise einem Edelgas, insbesondere Helium, füllbare Meßkammer 2 vorge¬ sehen ist.The attenuation of the X-rays within the measuring chamber can be reduced by providing a measuring chamber 2 which can be evacuated and possibly filled with a light gas, preferably a noble gas, in particular helium.
Zum optischen Löschen der nach dem Auslesen noch verblei¬ benden Information ist eine - in den Figuren zur Verein¬ fachung nicht dargestellte - Löscheinrichtung vorgesehen.For the optical deletion of the information that remains after reading out, a deletion device — not shown in the figures for the sake of simplicity — is provided.
Die Ausführungsform mit einer zylindrischen Meßkammer 2 gemäß den Figuren 4 bis 6 kann auch zur Analyse einer Probe nach dem Debye-Scherrer-Verfahren verwendet werden. In dieser Ausführungsform könnte eine in der Figur 4 nicht dargestellte Probe im Zentrum der Meßkammer 2 angeordnet werden. Diese Probe könnte beispielsweise mittels einer Halterung, die beispielsweise der in Figur 1 dargestellten Halterung ähnlich sein kann, durch eine Öffnung eingeführt werden, die in der Darstellung der Figur 4 mit einem Ver¬ schluß 61 versehen ist. Zur Justierung der Probe und zur Aufnahme der Beugungsreflexe könnte die Meßkammer mit ähn¬ lichen Kollimatoren versehen sein, wie sie in Figur 1 dar¬ gestellt sind. Zur Auslesung würden diese Kollimatoren aus der Meßkammer 2 entfernt.The embodiment with a cylindrical measuring chamber 2 according to FIGS. 4 to 6 can also be used to analyze a sample according to the Debye-Scherrer method. In this embodiment, one in FIG. 4 could not sample shown can be arranged in the center of the measuring chamber 2. This sample could be introduced, for example, by means of a holder, which may be similar to the holder shown in FIG. 1, through an opening which is provided with a closure 61 in the illustration in FIG. To adjust the sample and to record the diffraction reflections, the measuring chamber could be provided with collimators similar to those shown in FIG. 1. These collimators would be removed from the measuring chamber 2 for reading.
In der Ausführungsform gemäß Figur 7 ist eine Debye-Scher- rer-Anordnung mit einer zylindrischen Meßkammer 2 vorge¬ sehen, die in ihrer Achsrichtun'g von einem monochromati- sehen Rontgenprimarstrahl 18 durchsetzt wird, der durch das im Gehäuse 6 angeordnete Röntgenfenster 49 in das Ge¬ häuse eintritt. In der Zylinderachse ist auch die Probe 20 angeordnet, die vorzugsweise senkrecht zur Zylinderachse drehbar ist, wie es in der Figur durch einen nicht näher bezeichneten Pfeil angedeutet ist. Das Eintrittsrohr 22 für den Rontgenprimarstrahl 18 und das Austrittsrohr 23 können vorzugsweise jeweils als Kollimator ausgeführt sein. Die Ausleseeinheit 10 mit der Strahlungsquelle 11 und dem Photodetektor 15 ist mit einem Antrieb versehen, der einen Vorschub 60 in Achsrichtung der Meßkammer 2 er¬ möglicht. Die Oberfläche der Meßkammer 2 ist mit dem Spei¬ cherleuchtstoff 4 ausgekleidet. Durch die Relativbewegung des Speicherleuchtstoffs 4 zum Auslesestrahl, vorzugsweise die Drehbewegung der Meßkammer 2 und die Linearbewegung der Ausleseeinheit 10 nach Entfernen der Probe 20 aus der Meßkammer 2, kann der gesamte Speicherleuchtstoff 4 abge¬ tastet werden. Eine besonders vorteilhafte weitere Ausführungsform derIn the embodiment according to FIG. 7, a Debye-Scherer arrangement is provided with a cylindrical measuring chamber 2, which in its axis direction is penetrated by a monochromatic primary X-ray beam 18 which passes through the X-ray window 49 in the housing 6 the housing enters. The sample 20 is also arranged in the cylinder axis and can preferably be rotated perpendicularly to the cylinder axis, as is indicated in the figure by an arrow (not designated in any more detail). The inlet tube 22 for the X-ray primary beam 18 and the outlet tube 23 can preferably each be designed as a collimator. The readout unit 10 with the radiation source 11 and the photodetector 15 is provided with a drive which enables a feed 60 in the axial direction of the measuring chamber 2. The surface of the measuring chamber 2 is lined with the storage phosphor 4. The entire storage phosphor 4 can be scanned by the relative movement of the storage phosphor 4 to the readout beam, preferably the rotary movement of the measuring chamber 2 and the linear movement of the readout unit 10 after the sample 20 has been removed from the measuring chamber 2. A particularly advantageous further embodiment of the
Anordnung besteht darin, daß die Meßkammer 2, deren Innen¬ wand mit dem Speicherleuchtstoff 4 beschichtet ist, eine weitere Licht absorbierende, jedoch für Röntgenstrahlen durchlässige Innenbeschichtung enthält, die für den Aus¬ lesestrahl 9 der Ausleseeinheit 10 nicht transparent ist und somit eine Einwirkung des Auslesestrahls 9 auf andere Bereiche der Speicherschicht 4 verhindert. Unter Umständen kann es zweckmäßig sein, die Speicherschicht 4 oder die erwähnte Licht absorbierende Innenbeschichtung mit einer Metallschicht zu versehen, die beispielsweise aus Alumi¬ nium oder Blei bestehen kann und den Speicherleuchtstoff 4 vor unerwünschter niederenergetischer Röntgenstreustrah- lung schützt. The arrangement consists in that the measuring chamber 2, the inner wall of which is coated with the storage phosphor 4, contains a further light-absorbing inner coating which is permeable to X-rays, which is not transparent to the reading beam 9 of the reading unit 10 and thus an action of the Readout beam 9 prevented on other areas of the storage layer 4. Under certain circumstances, it may be expedient to provide the storage layer 4 or the light-absorbing inner coating mentioned with a metal layer, which may be made of aluminum or lead, for example, and which protects the storage phosphor 4 from undesired low-energy X-ray scatter radiation.

Claims

Patentansprüche Claims
1. Anordnung zur Analyse der Kristallstruktur einer Probe mit Röntgenstrahlen, denen ein Detektor zugeordnet ist, g e k e n n z e i c h n e t durch folgende Merkmale: a) als Detektor ist eine Meßkammer (2) vorgesehen, die wenigstens teilweise aus einer Schicht aus einem Spei¬ cherleuchtstoff (4) besteht, b) die Meßkammer (2) bildet eine Baueinheit mit einem Ge- häuse (6) und einer Ausleseeinheit (10), die mit einem1. Arrangement for analyzing the crystal structure of a sample with X-rays, to which a detector is assigned, characterized by the following features: a) a measuring chamber (2) is provided as the detector, which consists at least partially of a layer of a storage phosphor (4) , b) the measuring chamber (2) forms a structural unit with a housing (6) and a readout unit (10), which with a
Auslesestrahl (9) versehen ist, c) der Auslesestrahl (9) und der Speicherleuchtstoff (4) sind in zwei Dimensionen relativ zueinander beweglich.Readout beam (9) is provided, c) the readout beam (9) and the storage phosphor (4) are movable in two dimensions relative to each other.
2. Anordnung nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Meßkammer (2) trans¬ parent ist und den Speicherleuchtstoff (4) als Innenbe¬ schichtung enthält.2. Arrangement according to claim 1, so that the measuring chamber (2) is transparent and contains the storage phosphor (4) as an inner coating.
3. Anordnung nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Meßkammer (2) den Speicherleuchtstoff (4) als Außenbeschichtung enthält.3. Arrangement according to claim 1, d a d u r c h g e ¬ k e n n z e i c h n e t that the measuring chamber (2) contains the storage phosphor (4) as an outer coating.
4. Anordnung nach Anspruch 1, d a d u r c h g e - k e n n z e i c h n e t , daß die Meßkammer (2) aus dem Speicherleuchtstoff (4) besteht.4. Arrangement according to claim 1, d a d u r c h g e - k e n n z e i c h n e t that the measuring chamber (2) consists of the storage phosphor (4).
5. Anordnung nach Anspruch 1, g e k e n n z e i c h ¬ n e t durch eine Meßkammer (2) in Form einer Hohlkugel, die um eine Drehachse durch den Mittelpunkt Mp der Kugel drehbar gelagert und in einem ortsfesten Gehäuse (6) an¬ geordnet ist, das die Ausleseeinheit (10) enthält, die in Umfangsrichtung der Meßkammer (2) um eine senkrecht zur5. Arrangement according to claim 1, gekennzeich ¬ net by a measuring chamber (2) in the form of a hollow ball which is rotatably mounted about an axis of rotation through the center point Mp of the ball and is arranged in a stationary housing (6) which the readout unit ( 10), which in the circumferential direction of the measuring chamber (2) by a perpendicular to
332 02 01 Drehachse der Meßkammer (2) gerichtete Schwenkachse schwenkbar ist (Figur 1).332 02 01 The axis of rotation of the measuring chamber (2) is pivotable (Figure 1).
6. Anordnung nach Anspruch 5, d a d u r c h g e - k e n n z e i c h n e t , daß die Drehachse der Meßkam¬ mer (2) zugleich die Mittelachse (5) eines Röntgenprimär- strahls (18) ist, der die im Mittelpunkt Mp der Meßkammer (2) angeordnete Probe (20) durchsetzt.6. Arrangement according to claim 5, dadurchge - indicates that the axis of rotation of the measuring chamber (2) is also the central axis (5) of an X-ray primary beam (18) which is the sample (20) arranged in the center Mp of the measuring chamber (2) ) enforced.
7. Anordnung nach Anspruch 5, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Ausleseeinheit (10) über wenigstens einen Schwenkarm (8) mit dem Gehäuse (6) formschlüssig verbunden ist.7. Arrangement according to claim 5, d a d u r c h g e ¬ k e n n z e i c h n e t that the read-out unit (10) via at least one swivel arm (8) with the housing (6) is positively connected.
8. Anordnung nach Anspruch 5, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Ausleseeinheit (10) zwischen der Meßkammer (2) und dem Gehäuse (6) angeordnet ist.8. Arrangement according to claim 5, d a d u r c h g e ¬ k e n n z e i c h n e t that the readout unit (10) between the measuring chamber (2) and the housing (6) is arranged.
9. Anordnung nach Anspruch 5, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Meßkammer (2) mit wenigstens einem Kollimator (24) für den in die Meßkammer (2) eintretenden Rontgenprim rstrahl (18) versehen ist.9. Arrangement according to claim 5, so that the measuring chamber (2) is provided with at least one collimator (24) for the X-ray priming beam (18) entering the measuring chamber (2).
10. Anordnung nach Anspruch 1, g e k e n n z e i c h ¬ n e t durch eine Meßkammer (2) in Form eines Hohlzylin- ders, der um die Zylinderachse drehbar gelagert und von einem hohlzylindrischen Gehäuse (6) umgeben ist, sowie durch einen Rontgenprimarstrahl (18) , der senkrecht zur Zylinderachse in die Meßkammer (2) eintritt, und durch einen Auslesestrahl, der in Richtung der Drehachse relativ zur Meßkammer (2) schwenkbar ist (Figur 4).10. The arrangement according to claim 1, marked ¬ net by a measuring chamber (2) in the form of a hollow cylinder which is rotatably mounted about the cylinder axis and surrounded by a hollow cylindrical housing (6), and by an X-ray primary beam (18) which is vertical enters the measuring chamber (2) to the cylinder axis, and through a readout beam which can be pivoted in the direction of the axis of rotation relative to the measuring chamber (2) (FIG. 4).
02 02 02 02
11. Anordnung nach Anspruch 10, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Ausleseeinheit (10) mit dem Gehäuse (6) formschlüssig verbunden ist.11. The arrangement according to claim 10, that the readout unit (10) is positively connected to the housing (6).
12. Anordnung nach Anspruch 11, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Ausleseeinheit (10) im Gehäuse (6) integriert ist.12. The arrangement according to claim 11, d a d u r c h g e ¬ k e n n z e i c h n e t that the readout unit (10) in the housing (6) is integrated.
13. Anordnung nach Anspruch 1, g e k e n n z e i c h - n e t durch ein lichtdichtes Gehäuse (6).13. Arrangement according to claim 1, g e k e n n z e i c h - n e t through a light-tight housing (6).
14. Anordnung nach Anspruch 1, g e k e n n z e i c h ¬ n e t durch eine zylindrische Meßkammer (2), die um die Zylinderachse, die zugleich die Mittelachse eines Rönt- genprimärstrahls (18) bildet, drehbar gelagert ist, sowie durch eine in Richtung der Zylinderachse verschiebbare Ausleseeinheit (10) (Figur 7).14. Arrangement according to claim 1, characterized by a cylindrical measuring chamber (2) which is rotatably mounted about the cylinder axis, which also forms the central axis of an X-ray primary beam (18), and by a read-out unit which can be displaced in the direction of the cylinder axis ( 10) (Figure 7).
15. Anordnung nach einem der Ansprüche 1, 5 und 14, g e k e n n z e i c h n e t durch eine justierbare und drehbare Probe (20).15. Arrangement according to one of claims 1, 5 and 14, g e k e n n z e i c h n e t by an adjustable and rotatable sample (20).
16. Anordnung nach Anspruch 1, g e k e n n z e i c h ¬ n e t durch eine evakuierbare Meßkammer (2).16. The arrangement according to claim 1, g e k e n n z e i c h ¬ n e t through an evacuable measuring chamber (2).
02 03 02 03
PCT/DE1992/001079 1991-06-26 1992-12-22 Arrangement for x-ray analysis of the crystalline structure of a sample WO1994015202A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4121149A DE4121149A1 (en) 1991-06-26 1991-06-26 X=ray analysis equipment for sample crystal structure - uses transparent measurement chamber having wall provided with retention fluorescent material
PCT/DE1992/001079 WO1994015202A1 (en) 1991-06-26 1992-12-22 Arrangement for x-ray analysis of the crystalline structure of a sample

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4121149A DE4121149A1 (en) 1991-06-26 1991-06-26 X=ray analysis equipment for sample crystal structure - uses transparent measurement chamber having wall provided with retention fluorescent material
PCT/DE1992/001079 WO1994015202A1 (en) 1991-06-26 1992-12-22 Arrangement for x-ray analysis of the crystalline structure of a sample

Publications (1)

Publication Number Publication Date
WO1994015202A1 true WO1994015202A1 (en) 1994-07-07

Family

ID=25904940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/001079 WO1994015202A1 (en) 1991-06-26 1992-12-22 Arrangement for x-ray analysis of the crystalline structure of a sample

Country Status (2)

Country Link
DE (1) DE4121149A1 (en)
WO (1) WO1994015202A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2343825A (en) * 1998-11-13 2000-05-17 Rigaku Denki Co Ltd X-ray micro-diffraction apparatus comprising a cylindrical surrounding the specimen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027361B2 (en) * 1998-07-17 2000-04-04 科学技術振興事業団 Imaging plate X-ray diffractometer
DE19904476C2 (en) * 1999-02-04 2001-05-31 Schneider Elektrotechnik Gmbh Image plate diffractometer
DE19962198C2 (en) * 1999-12-22 2001-12-13 Max Planck Gesellschaft Irradiation facility with a highly flexible membrane bellows

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2539196A (en) * 1948-07-22 1951-01-23 Westinghouse Electric Corp Radiation detector
DE1936591A1 (en) * 1969-07-18 1971-02-04 Bradaczek Dr Hans Vidicon single crystal diffractometer
US4485481A (en) * 1982-09-29 1984-11-27 Fuji Photo Film Co., Ltd. Computed tomographic method
WO1989003526A1 (en) * 1987-10-16 1989-04-20 Eastman Kodak Company Powder diffraction method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2539196A (en) * 1948-07-22 1951-01-23 Westinghouse Electric Corp Radiation detector
DE1936591A1 (en) * 1969-07-18 1971-02-04 Bradaczek Dr Hans Vidicon single crystal diffractometer
US4485481A (en) * 1982-09-29 1984-11-27 Fuji Photo Film Co., Ltd. Computed tomographic method
WO1989003526A1 (en) * 1987-10-16 1989-04-20 Eastman Kodak Company Powder diffraction method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 451 (P-1424)18. September 1992 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2343825A (en) * 1998-11-13 2000-05-17 Rigaku Denki Co Ltd X-ray micro-diffraction apparatus comprising a cylindrical surrounding the specimen
GB2343825B (en) * 1998-11-13 2003-05-14 Rigaku Denki Co Ltd Method for X-ray micro-diffraction measurement and X-ray micro-diffraction apparatus

Also Published As

Publication number Publication date
DE4121149A1 (en) 1993-01-07

Similar Documents

Publication Publication Date Title
DE60213994T2 (en) WAVE LENGTH-DISPERSIVE X-RAY FLUORESCENT SYSTEM WITH FOCUSING SOUND OPTICS AND A FOCUSING MONOCHROMATOR FOR COLLAPSE
DE3840736C2 (en)
EP1772874B1 (en) Focal point oriented aperture
Parrish et al. Synchrotron X-ray polycrystalline diffractometry
DE2312507A1 (en) DEVICE FOR X-RAY DIFFICULTY MEASUREMENTS USING WHITE X-RAYS
EP0213428A1 (en) Arrangement to produce computer-radiographic X-ray images
DE19524371A1 (en) Fluorescent X-ray radiation analysis device
Janssens X-ray based methods of analysis
DE2415403A1 (en) DEVICE FOR MEASURING MECHANICAL TENSIONS ON THE SURFACE OF A BODY MADE OF POLYCRYSTALLINE MATERIAL
WO1995022758A1 (en) X-ray analysis device
WO1994015202A1 (en) Arrangement for x-ray analysis of the crystalline structure of a sample
DE102007043820B4 (en) Method for determining a correction value of a brake spot position of an X-ray source of a measuring arrangement and a measuring arrangement for generating radiographic images
Parrish Advances in X-ray diffractometry of clay minerals
DE4304938C2 (en) Multi-axis goniometer
DE102008008829A1 (en) Method for registration of real structure-information in solid crystal bodies by X-ray radiation, involves representing crystallographic real structure of solid crystal body by hard X-ray braking radiation on detector holding surface
DE4017100A1 (en) Fuel rod content inspection unit - has gamma radiation for excitation of low gamma emitting materials
DE2910250C3 (en) Polychromatic X-ray source
Atou et al. A high resolution laboratory‐based high pressure x‐ray diffraction system
EP0959344B1 (en) Method and assembly for carrying out irradiation tests on units
DE3442061C2 (en)
Larsson et al. X-ray microbeam spectroscopy with the use of capillary optics
O'Connor et al. X‐ray diffractometry of airborne particulates deposited on membrane filters
WO2009121932A2 (en) Rotating table for spatial, high-resolution computer laminography
DE2347037C3 (en) Measurement system of a borehole probe
DE19955848A1 (en) Production of X-ray images, e.g. mammograms, uses an X-ray source whose rays pass through collimating crystals and a collimator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase