EP1772874B1 - Focal point oriented aperture - Google Patents

Focal point oriented aperture Download PDF

Info

Publication number
EP1772874B1
EP1772874B1 EP06121864A EP06121864A EP1772874B1 EP 1772874 B1 EP1772874 B1 EP 1772874B1 EP 06121864 A EP06121864 A EP 06121864A EP 06121864 A EP06121864 A EP 06121864A EP 1772874 B1 EP1772874 B1 EP 1772874B1
Authority
EP
European Patent Office
Prior art keywords
focal point
radiation
absorption element
oriented aperture
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06121864A
Other languages
German (de)
French (fr)
Other versions
EP1772874A3 (en
EP1772874A2 (en
Inventor
Dr. Rer. Nat. Kurt Osterloh
Prof. Dr. Uwe Ewert
Heinz-Jürgen KNISCHEK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesanstalt fuer Materialforschung und Pruefung BAM
Original Assignee
Bundesanstalt fuer Materialforschung und Pruefung BAM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesanstalt fuer Materialforschung und Pruefung BAM filed Critical Bundesanstalt fuer Materialforschung und Pruefung BAM
Publication of EP1772874A2 publication Critical patent/EP1772874A2/en
Publication of EP1772874A3 publication Critical patent/EP1772874A3/en
Application granted granted Critical
Publication of EP1772874B1 publication Critical patent/EP1772874B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators

Definitions

  • the invention relates to a focal point-oriented diaphragm according to the preamble of claim 1 and a method for producing the same according to the preamble of claim 12.
  • a fundamental problem of X-ray, gamma and neutron beams is the extremely low, practically unusable refraction compared to visible light, which makes it virtually impossible to redirect and focus the radiation to produce an optical image, except in a few cases such as in systems with bundled capillaries for soft X-rays. Also, the deflection of this radiation by reflections is only possible with soft radiation, which also images by means of mirror arrangements are out of the question. In order to produce a controllable beam with a given strength in a desired direction, the suppression of all unwanted radiation must first be effected with the aid of collimators.
  • a gamma spectrometer is positioned which receives radiation from a predetermined direction by means of a collimator system. If it is possible to move this collimator system so that a surface is scanned uniformly line by line, then the spectrum of a radiation can be mapped in this way. Such an arrangement can always make sense if more spectral information is required than that which a flat detector can optionally provide with filter attachments.
  • the object of the invention is to provide a diaphragm, which is provided in particular for high-energy radiation and which allows a rapid displacement of the direction of a beam which passes through a focal point.
  • this object is achieved by means of a focus-oriented aperture with the features mentioned in claim 1 or by means of a method for producing the same with the features mentioned in claim 12.
  • the absorption element can perform a periodic movement and is shaped such that in each position taken during the periodic movement at most one direction exists with the property that radiation, in particular radiation of a particular type of radiation, which falls on a beam passing through a focal point on the diaphragm , is substantially transmitted when the beam is substantially in said direction and otherwise substantially absorbed.
  • radiation type here is radiation of a certain Wavelength range understood (eg X-ray) or radiation, which consists of certain particles (eg neutron radiation).
  • Such a focal point-oriented diaphragm is suitable for two general optical arrangements, firstly an arrangement in which a beam source is positioned at the focal point and a beam is guided by means of the diaphragm over an object to be examined, whose scattered radiation is then measured by a detector, or secondarily Arrangement in which the object to be examined itself produces radiation and the diaphragm serves to direct the radiation of a specific point of the object onto a detector in focus.
  • the selection property of the diaphragm with respect to the beam direction can, on the one hand, relate to radiation of all kinds (regardless of wavelengths and / or particle nature) or, on the other hand, be limited to a specific type of radiation.
  • the diaphragm simultaneously transmits radiation of a first type of radiation (for example X-radiation) in a first direction and radiation of a second type of radiation (for example neutron radiation) in a second direction.
  • a first type of radiation for example X-radiation
  • a second type of radiation for example neutron radiation
  • the different types of radiation can be manifested by different wavelength ranges in electromagnetic waves or by the contrast of particle-electromagnetic radiation.
  • a detection of all relevant measurement points in the object to be examined or on the surface of the same is made possible if at least one of the three components - focus, aperture, object - during the periodically repeating movement of the diaphragm is offset either stepwise or continuously appropriate.
  • the direction selected by the diaphragm naturally refers to a finite solid angle range, which, however, should be suitably limited in order to be able to regard the thus selected measuring range on or in the object to be examined as sufficiently punctiform.
  • the simplest and according to the order of the easiest to realize periodic movement is a rotational movement about a predetermined axis of rotation.
  • the direction vectors selected by the diaphragm then reproduce at least every 360 °. Also obvious are repetitions of the same direction vector every 180 °, 120 °, etc.
  • the resulting rotating aperture can be rotated almost as fast as desired, limits are set by the registration electronics rather than by the mechanical axis bearing and the drive.
  • the absorption element has at least one slit-shaped gap or a slit-shaped region which absorbs the radiation at least to a small extent. This occurs when the direction selected by the shutter changes continuously during the periodic movement.
  • the directions of the radiation selected by the diaphragm lie on a plane, in particular the plane which is defined during a rotational movement of the diaphragm through its axis of rotation and the focal point.
  • the positions of the measuring points on the object to be examined are thus on one line.
  • the cutting beam (electromagnetic radiation or of matter), which serves for the at least partial removal of the material from the absorption element, thus has the same geometric course as the beam which is selected by the manufactured absorption element. It is preferred, during the removal of the material, to let the absorption element carry out at least one period of the periodic movement performed during operation of the diaphragm. Then the high-energy beam describes the same direction changes as the beam selected during operation of the diaphragm.
  • High-pressure water jet cutting is a modern form of cutting technology that delivers a high quality of cut. Fresh water is strongly compressed by a special high-pressure pump, so that a cutting pressure of about 3800 bar can be achieved, and then accelerated through a fine nozzle to a multiple of the speed of sound. If the absorption element consists of harder materials, the cutting performance can be increased by the addition of abrasives.
  • FIG. 1 schematically shows an arrangement with the invention, generally designated 100 aperture.
  • An absorption element 10 in the form of a cylinder of radiation-absorbing material is rotatably suspended about a central longitudinal axis 12. Through the absorption element 10, one or more slits 14 extend.
  • a point-shaped radiation source is positioned, which emits radiation of a specific wavelength range at least in the direction of the absorption element 10.
  • the shape of the slit 14 is designed so that rays emanating from the focal point 16 are absorbed by the absorption element 10, with the exception of a single beam, which runs in a specific selection direction 18.
  • the transmitted beam 18 falls on a specific measuring point 22 of the object 20 to be examined.
  • the radiation backscattered by measuring point 22 is picked up by a detector (not shown).
  • the absorption element 10 is subject to a rotation about the axis of rotation 12. This can be carried out as a uniform movement, which can be maintained even with heavy, massive design using a low-friction axle bearing without great effort. Only the start-up phase requires more energy due to the necessary acceleration.
  • the selection direction 18 of the beam transmitted through the slot 14 changes. When rotated through 180 °, this beam passes over the surface of a fan from the focal point 16 through the axis of rotation 12. The measuring point 22 thus scanned on the surface of the object 20 moves on a line 24.
  • the in FIG. 1 shown geometry also applicable to the case that the object to be examined 20 itself is a radiation source.
  • a detector is then positioned, which captures and measures the radiation emitted by the object 20, which is transmitted by the absorption element 10.
  • the absorption element 10 or the slot 14 selects the direction 18 of the transmitted beam, which falls on the detector at the focal point 16 and, analogous to the first case, starts from a measuring point 22 which rotates about the axis of rotation 12 during the rotation of the absorption element 10 a line 24 moves.
  • the absorption element 10 in the form of a solid cylinder and a non-inventive embodiment in the form of a hollow cylinder or a pipe is conceivable if the wall thickness ensures sufficient absorption.
  • the choice of material of the absorption element 10 depends on the nature of the radiation to be shielded, heavy metals such as copper or tungsten for hard X-ray or gamma radiation or polyethylene for neutron radiation.
  • FIG. 2 shows the operation of the focus-oriented aperture in different rotational positions of the absorption element 10.
  • the opening angle ⁇ is shown with the focal point 16 and above the cylindrical absorption element 10 with the slot openings 14a and 14b.
  • the two slot openings 14a, b have a different length due to the finite angle ⁇ .
  • the exact dimensions of the slot openings 14a, b are determined by the opening angle ⁇ and the distance d of the focal point 16 from the axis of rotation 12.
  • the rotational positions shown in the partial images of the figure are displayed in the schematic inserts bottom left by the arrow directions.
  • the partial images a to c thus represent different rotational positions.
  • the courses of the slot openings 14a, b on the unrolled cylinder jacket are shown as a phase diagram. Therein, the different length of the slot openings 14a, b is particularly clear. Shown are also the top 26 and the bottom 28 of the cylinder 10.
  • the in the respective rotational position of the aperture 100 transmitted beam 18 is marked in the upper partial images as an arrow and thus indicates entry and exit position on the cylinder surface.
  • the in the FIG. 2 marked arrow directions, which represent the transmitted beam 18, have an orientation which corresponds to a positioned in the focal point 16 beam source. Because of the reversibility of the beam guidance, these arrows could also run in exactly the opposite direction if the object 20 to be examined itself is a beam source and a detector is positioned at the focal point 16.
  • the central beam is transmitted as in the first zero position.
  • One of the two boundary lines between top 26 and bottom 28 corresponds to the surface line on the cylinder 10, which is closest to the focal point 16 and through which the selected beam 16 passes.
  • each beam passage through the center of the cylinder 10 corresponds to a phase shift of 180 ° between the entrance and exit points on the surface of the cylinder 10.
  • FIG. 3 represents the integration of the absorption element 10 in an array with shielding 32 (view from above).
  • the absorption element 10 is flanked by two shields 32 with hollow cylindrical end faces, in which it can rotate freely.
  • a controlled drive 34 is to be mounted so that it engages the upper or lower extension of the rotation axis 12, without any part of it can protrude into the beam path.
  • a precise position control 36 communicates with the data acquisition, not shown. Suitable for this purpose is a stepper motor with precise step counting or a position control on the cylinder 10 itself.
  • the drive unit 34 can be integrated into the shield 32 or attached to the side facing away from the radiation. To the mechanics are high requirements because of the exact angular position control to put (direct gear or chain transmission).
  • Each second centrally extending beam through the aperture 100 is in a preferred embodiment switching technically or mechanically with a synchronized further, not shown aperture (in wing design o. ⁇ .) Hidden. This can be accomplished by turning off the emitter in the second half of each rotational movement, when short switching times are possible, or mute the receiver electronics. Should both be difficult or impossible, the rotation can be coupled to an unillustrated shutter which closes the beam path during the second half turn. As long as an electronic hiding the second half-rotation is possible, this is the preferred solution, whereby short sampling times are possible with fast rotational movement.
  • the respective position of the measuring point 22 is communicated to the registering system via the simultaneous state of the rotating cylinder 10. This can be done via a stepper motor or a stroboscope device on the upper or lower edge of the cylinder.
  • the result of a usable half-turn of the cylinder 10 is thus the sweeping of the transmitted beam 18 over a fan, whereby a line 24 is scanned on the object 20 to be examined.
  • a usable half-turn of the cylinder 10 is thus the sweeping of the transmitted beam 18 over a fan, whereby a line 24 is scanned on the object 20 to be examined.
  • the focal point 16 is guided on a fixed radius about the axis of rotation 12 as far as it allows the shielding device 32. In this case, the shielding device 32 itself does not need to be moved.
  • the displacement of the measuring line 24 on the object 20 in a direction perpendicular to the axis of rotation 12 achieved in that the object 20 on a stationary structure of the aperture 100 (eg on a conveyor belt) or vice versa a mobile device with the Aperture 100 is guided past the object 20.
  • a stationary structure of the aperture 100 eg on a conveyor belt
  • FIG. 4 shows an arrangement in which the absorption element has different absorption materials which are effective for different types of radiation.
  • the use of such an arrangement lends itself when the object 20 or a radiation source located in the focal point 16 does not (predominantly) emit homogeneous radiation, which can be shielded with one and the same material (example: isotope source with different types of radiation such as 252 Ca).
  • the absorption element 10 has a hollow cylindrical shell 38 made of a first, for a first radiation type absorbing material M1, for example a heavy metal, which is suitable for shielding X-rays and gamma rays.
  • the cylindrical core portion 40 is composed of a second material M2 absorbing for a second radiation type, for example a hydrogen-rich material such as polyethylene or a light element such as boron for neutron absorption.
  • the shielding member 32 must shield all the types of radiation used effectively, which is accomplished by a bowl-shaped structure with the use of the two materials M1 and M2 (32 a, b).
  • the passage slots 14 in the cylinder parts 38 and 40 which are each effective for a beam type, offset from each other, for example, at an angle of 90 ° about the axis of rotation.
  • more than one beam passes through the absorption element for a certain period of the rotation period, but only at most one for each particular type of radiation.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Beam Exposure (AREA)
  • Powder Metallurgy (AREA)
  • Surgical Instruments (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

A focus orientating aperture for a high energy radiation beam from a source (16) comprises, an absorption cylinder (10) capable of periodic motion, e.g. axial rotation, and provided with one or more apertures (14), such that all radiation incident on the cylinder surface is absorbed, but a uni-directional ray (18) along the axis of the aperture is transmitted to an investigated sample or work surface. an INDEPENDENT CLAIM is included for a method of manufacturing a perforated absorption cylinder, particularly by the use of a high pressure (approx.3800 bar) water cutting jet. Dependent on the application, the absorption cylinder may comprise e.g. a cylindrical outer sheath of copper, tungsten, or heavy metal, with an inner core of polyethylene or boron. The collimation device can be used in the reverse sense to handle radiation scattered from a surface, with a detection element positioned at the focal point (16).

Description

Die Erfindung betrifft eine brennpunktorientierte Blende gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zur Herstellung derselben gemäß dem Oberbegriff des Anspruchs 12.The invention relates to a focal point-oriented diaphragm according to the preamble of claim 1 and a method for producing the same according to the preamble of claim 12.

Ein grundsätzliches Problem der Röntgen-, Gamma- und Neutronenstrahlen ist die im Vergleich zu sichtbarem Licht äußerst geringe, praktisch nicht nutzbare Brechung, welche das Umlenken und das Fokussieren der Strahlung zur Erstellung einer optischen Abbildung praktisch unmöglich macht, abgesehen von wenigen Fällen wie bei Systemen mit gebündelten Kapillaren für weiche Röntgenstrahlung. Auch das Umlenken dieser Strahlung durch Reflektionen ist nur bei weicher Strahlung möglich, wodurch auch Abbildungen mit Hilfe von Spiegelanordnungen nicht in Frage kommen. Um einen kontrollierbaren Strahl mit einer vorgegebenen Stärke in eine gewünschte Richtung zu erzeugen muss zunächst die Ausblendung aller unerwünschten Strahlung mit Hilfe von Kollimatoren erfolgen. Besonders bei harter Strahlung sind Mindestschichtdicken zu beachten, wodurch Abschirmungen und Blenden ein erhebliches Gewicht erlangen können und somit mechanisch schwer beweglich werden. Dies wird besonders dann zum Problem, wenn schnell bewegende Punktstrahlen ("pencil beam") z.B. zur Abtastung von Oberflächen benötigt werden. Die Massenträgheit gewichtiger Kollimatoren lässt nur gleichförmige Bewegungen und nur langsame Richtungsänderungen zu. Schnelles zeilenweises Überstreichen einer Fläche ist auf diesem Wege kaum möglich oder zumindest sehr aufwändig.A fundamental problem of X-ray, gamma and neutron beams is the extremely low, practically unusable refraction compared to visible light, which makes it virtually impossible to redirect and focus the radiation to produce an optical image, except in a few cases such as in systems with bundled capillaries for soft X-rays. Also, the deflection of this radiation by reflections is only possible with soft radiation, which also images by means of mirror arrangements are out of the question. In order to produce a controllable beam with a given strength in a desired direction, the suppression of all unwanted radiation must first be effected with the aid of collimators. Minimum layer thicknesses must be taken into account, especially with hard radiation, as a result of which shields and diaphragms can acquire considerable weight and thus become mechanically difficult to move. This becomes a problem especially when fast moving pencil beams, e.g. needed for scanning surfaces. The mass inertia of weighty collimators allows only uniform movements and only slow changes of direction. Fast line by line sweeping a surface is hardly possible in this way or at least very expensive.

Benötigt wird hingegen ein sich schnell bewegender Punktstrahl z.B. bei der Röntgenrückstreutechnik. Dabei wird ein Objekt mit einem wandernden Strahl Punkt für Punkt abgetastet. Es wird die von einem Punkt zurückgestrahlte Streustrahlung über mehrere, zum Teil großflächige, Detektoren gemessen. Die Ortskoordinaten des Messpunktes sind durch die Position des kollimierten Strahles gegeben. Durch versetztes zeilenweises Fortbewegen des Strahles lässt sich somit ein Bild aus den Streustrahlintensitäten zusammensetzen. Solche Systeme sind mit starren Kollimatorsystemen, die über eine Rahmenmechanik stetig fortbewegt werden, zum Abtasten großer Flächen, die einseitig zugänglich sind, verwirklicht.What is needed, however, is a fast-moving spot beam, for example in X-ray backscatter technology. An object is scanned point by point with a wandering beam. It is the backscattered scattered radiation from a point over several, sometimes large area, detectors measured. The location coordinates of the measuring point are given by the position of the collimated beam. By staggered line by line movement of the beam can thus be an image from the scattered beam intensities put together. Such systems are realized with rigid collimator systems that are steadily advanced via frame mechanics for scanning large areas that are unilaterally accessible.

Ein ähnliches Problem stellt sich bei der ortsselektiven spektroskopischen Abtastung flächenhafter heterogener Strahlenquellen (z.B. Sammeltonnen für radioaktiven Abfall). In einem bestimmten Brennpunkt wird ein Gamma-Spektrometer positioniert, welches mit Hilfe eines Kollimatorsystems Strahlung aus einer festgelegten Richtung empfängt. Wenn es gelingt, dieses Kollimatorsystem so zu bewegen, dass damit eine Fläche gleichmäßig zeilenweise abgetastet wird, dann kann auf diesem Wege das Spektrum einer Strahlung kartographiert werden. Eine solche Anordnung kann immer dann sinnvoll werden, wenn mehr spektrale Information benötigt wird als diejenige, die ein Flachdetektor gegebenenfalls mit Filtervorsätzen liefern kann.A similar problem arises with the site-selective spectroscopic scanning of areal heterogeneous radiation sources (e.g., collection bin for radioactive waste). At a certain focal point, a gamma spectrometer is positioned which receives radiation from a predetermined direction by means of a collimator system. If it is possible to move this collimator system so that a surface is scanned uniformly line by line, then the spectrum of a radiation can be mapped in this way. Such an arrangement can always make sense if more spectral information is required than that which a flat detector can optionally provide with filter attachments.

Aufgabe der Erfindung ist es, eine Blende anzugeben, welche insbesondere für hochenergetische Strahlung vorgesehen ist und welche ein schnelles Versetzen der Richtung eines Strahls, welcher durch einen Brennpunkt verläuft, ermöglicht.The object of the invention is to provide a diaphragm, which is provided in particular for high-energy radiation and which allows a rapid displacement of the direction of a beam which passes through a focal point.

Erfindungsgemäß wird diese Aufgabe mittels einer brennpunktorientierten Blende mit den im Anspruch 1 genannten Merkmalen oder mittels eines Verfahrens zur Herstellung derselben mit den im Anspruch 12 genannten Merkmalen gelöst.According to the invention this object is achieved by means of a focus-oriented aperture with the features mentioned in claim 1 or by means of a method for producing the same with the features mentioned in claim 12.

Das Absorptionselement kann eine periodische Bewegung ausführen und ist derart geformt, dass in jeder während der periodischen Bewegung eingenommenen Lage höchstens eine Richtung existiert mit der Eigenschaft, dass Strahlung, insbesondere Strahlung einer bestimmten Strahlenart, welche auf einem durch einen Brennpunkt verlaufenden Strahl auf die Blende fällt, im Wesentlichen durchgelassen wird, wenn der Strahl im Wesentlichen in besagter Richtung verläuft und sonst im Wesentlichen absorbiert wird. Unter Strahlenart wird hier Strahlung eines bestimmten Wellenlängenbereichs verstanden (z.B. Röntgenstrahlung) oder auch Strahlung, welche aus bestimmten Partikeln besteht (z.B. Neutronenstrahlung). Geeignet ist eine solche brennpunktorientierte Blende für zwei generelle optische Anordnungen, erstens eine Anordnung, in welcher im Brennpunkt eine Strahlquelle positioniert ist und mithilfe der Blende ein Strahl über ein zu untersuchendes Objekt geführt wird, dessen Streustrahlung dann durch einen Detektor gemessen wird, oder zweitens eine Anordnung, in welcher das zu untersuchende Objekt selbst Strahlung produziert und die Blende dazu dient, die Strahlung eines bestimmten Punktes des Objektes auf einen im Brennpunkt befindlichen Detektor zu lenken. Die Selektionseigenschaft der Blende bezüglich der Strahlrichtung kann sich einerseits auf Strahlung aller Art (unabhängig von Wellenlängen und/oder Partikelnatur) beziehen oder andererseits auf eine bestimmte Strahlenart beschränkt sein. Insbesondere ist es möglich, dass die Blende gleichzeitig Strahlung einer ersten Strahlenart (z.B. Röntgenstrahlung) in eine erste Richtung und Strahlung einer zweiten Strahlenart (z.B. Neutronenstrahlung) in eine zweite Richtung durchlässt. Wie oben bereits erwähnt, können sich die verschiedenen Strahlenarten durch unterschiedliche Wellenlängenbereiche bei elektromagnetischen Wellen oder durch den Gegensatz Partikel-elektromagnetische Strahlung manifestieren.The absorption element can perform a periodic movement and is shaped such that in each position taken during the periodic movement at most one direction exists with the property that radiation, in particular radiation of a particular type of radiation, which falls on a beam passing through a focal point on the diaphragm , is substantially transmitted when the beam is substantially in said direction and otherwise substantially absorbed. By radiation type here is radiation of a certain Wavelength range understood (eg X-ray) or radiation, which consists of certain particles (eg neutron radiation). Such a focal point-oriented diaphragm is suitable for two general optical arrangements, firstly an arrangement in which a beam source is positioned at the focal point and a beam is guided by means of the diaphragm over an object to be examined, whose scattered radiation is then measured by a detector, or secondarily Arrangement in which the object to be examined itself produces radiation and the diaphragm serves to direct the radiation of a specific point of the object onto a detector in focus. The selection property of the diaphragm with respect to the beam direction can, on the one hand, relate to radiation of all kinds (regardless of wavelengths and / or particle nature) or, on the other hand, be limited to a specific type of radiation. In particular, it is possible that the diaphragm simultaneously transmits radiation of a first type of radiation (for example X-radiation) in a first direction and radiation of a second type of radiation (for example neutron radiation) in a second direction. As mentioned above, the different types of radiation can be manifested by different wavelength ranges in electromagnetic waves or by the contrast of particle-electromagnetic radiation.

Eine Erfassung aller relevanten Messpunkte im zu untersuchenden Objekt oder auf der Oberfläche desselben wird ermöglicht, wenn mindestens eine der drei Komponenten - Brennpunkt, Blende, Objekt - während der sich periodisch wiederholenden Bewegung der Blende entweder schrittweise oder kontinuierlich passend versetzt wird. Die von der Blende selektierte Richtung bezieht sich im praktischen Fall natürlich auf einen endlichen Raumwinkelbereich, der jedoch geeignet begrenzt sein sollte, um den dadurch selektierten Messbereich auf oder in dem zu untersuchenden Objekt als hinreichend punktförmig ansehen zu können.A detection of all relevant measurement points in the object to be examined or on the surface of the same is made possible if at least one of the three components - focus, aperture, object - during the periodically repeating movement of the diaphragm is offset either stepwise or continuously appropriate. In the practical case, the direction selected by the diaphragm naturally refers to a finite solid angle range, which, however, should be suitably limited in order to be able to regard the thus selected measuring range on or in the object to be examined as sufficiently punctiform.

Die einfachste und anordnungsgemäß am leichtesten zu realisierende periodische Bewegung ist eine Drehbewegung um eine vorgegebene Drehachse. Die von der Blende selektierten Richtungsvektoren reproduzieren sich dann wenigstens alle 360°. Naheliegend sind auch Wiederholungen desselben Richtungsvektors alle 180°, 120° etc. Die dadurch entstehende Drehblende kann nahezu beliebig schnell gedreht werden, Grenzen werden eher durch die Registrierelektronik als durch die mechanische Achsenlagerung und den Antrieb gesetzt.The simplest and according to the order of the easiest to realize periodic movement is a rotational movement about a predetermined axis of rotation. The direction vectors selected by the diaphragm then reproduce at least every 360 °. Also obvious are repetitions of the same direction vector every 180 °, 120 °, etc. The resulting rotating aperture can be rotated almost as fast as desired, limits are set by the registration electronics rather than by the mechanical axis bearing and the drive.

In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass das Absorptionselement mindestens einen schlitzförmigen Spalt oder ein die Strahlung zumindest gering absorbierenden schlitzförmigen Bereich aufweist. Dieser entsteht, wenn sich die von der Blende selektierte Richtung bei der periodischen Bewegung kontinuierlich ändert.In a preferred embodiment of the invention, it is provided that the absorption element has at least one slit-shaped gap or a slit-shaped region which absorbs the radiation at least to a small extent. This occurs when the direction selected by the shutter changes continuously during the periodic movement.

Insbesondere ist bevorzugt, dass die von der Blende selektierten Richtungen der Strahlung auf einer Ebene liegen, insbesondere der Ebene, welche bei einer Drehbewegung der Blende durch deren Drehachse und den Brennpunkt definiert wird. Die Positionen der Messpunkte auf dem zu untersuchenden Objekt liegen dadurch auf einer Zeile. Durch die oben erwähnte Versetzung einer der drei Anordnungselemente kann dadurch eine konventionelle Abrasterung des Objektes erreicht und die Erstellung eines Rasterbildes ermöglicht werden.In particular, it is preferred that the directions of the radiation selected by the diaphragm lie on a plane, in particular the plane which is defined during a rotational movement of the diaphragm through its axis of rotation and the focal point. The positions of the measuring points on the object to be examined are thus on one line. By the above-mentioned displacement of one of the three arrangement elements thereby a conventional scanning of the object can be achieved and the creation of a raster image can be made possible.

Die erfindungsgemäße Blende kann durch ein konventionelles Fräsverfahren hergestellt werden. Außerdem wird die technische Aufgabe der Erfindung durch ein spezielles Verfahren zur Herstellung der erfindungsgemäßen Blende gelöst. Es umfasst folgende Verfahrensschritte:

  • Bereitstellung eines Absorptionselements aus einem für die vorgesehene Strahlung geeignet absorbierenden Material,
  • Entfernung von Material in den Richtungen, in welcher die Blende einen Strahl durchlassen soll, durch einen Schneidstrahl.
The panel according to the invention can be produced by a conventional milling method. In addition, the technical object of the invention is achieved by a special method for producing the diaphragm according to the invention. It comprises the following process steps:
  • Providing an absorbent element of material suitable for the intended radiation,
  • Removal of material in the directions in which the aperture is to transmit a beam through a cutting jet.

Der Schneidstrahl (elektromagnetische Strahlung oder aus Materie), welcher zur zumindest teilweisen Entfernung des Materials aus dem Absorptionselement dient, hat somit den gleichen geometrischen Verlauf wie der Strahl, welcher durch das gefertigte Absorptionselement selektiert wird. Bevorzugt ist dabei, während der Entfernung des Materials das Absorptionselement mindestens eine Periode der im Betrieb der Blende ausgeführten periodischen Bewegung ausführen zu lassen. Dann beschreibt der hochenergetische Strahl die gleichen Richtungswechsel wie der im Betrieb von der Blende selektierte Strahl.The cutting beam (electromagnetic radiation or of matter), which serves for the at least partial removal of the material from the absorption element, thus has the same geometric course as the beam which is selected by the manufactured absorption element. It is preferred, during the removal of the material, to let the absorption element carry out at least one period of the periodic movement performed during operation of the diaphragm. Then the high-energy beam describes the same direction changes as the beam selected during operation of the diaphragm.

Weiter ist bevorzugt, dass die Entfernung des Materials durch Hochdruckwasserstrahlschneiden erfolgt. Das Hochdruckwasserstrahlschneiden ist eine moderne Form der Schneidtechnik, welches eine hohe Schnittqualität liefert. Durch eine spezielle Hochdruckpumpe wird dabei Frischwasser stark komprimiert, so dass ein Schneiddruck von ca. 3800 bar erreicht werden kann, und dann durch eine feine Düse auf ein Mehrfaches der Schallgeschwindigkeit beschleunigt. Wenn das Absorptionselement aus härteren Materialien besteht, so kann die Schneidleistung durch die Hinzufügung von Abrasivmitteln gesteigert werden.It is further preferred that the removal of the material takes place by high pressure water jet cutting. High-pressure water jet cutting is a modern form of cutting technology that delivers a high quality of cut. Fresh water is strongly compressed by a special high-pressure pump, so that a cutting pressure of about 3800 bar can be achieved, and then accelerated through a fine nozzle to a multiple of the speed of sound. If the absorption element consists of harder materials, the cutting performance can be increased by the addition of abrasives.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred embodiments of the invention will become apparent from the remaining, mentioned in the dependent claims characteristics.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Anordnung mit der erfindungsgemäßen Blende,
Figur 2
Funktionsweise der fokal ausgerichteten Blende in drei verschiedenen Drehpositionen,
Figur 3
die Integration der erfindungsgemäßen Blende in eine Gesamtabschirmung und
Figur 4
die erfindungsgemäße Blende mit Abschirmung durch zwei verschiedene Materialien.
The invention will be explained in more detail in embodiments with reference to the accompanying drawings. Show it:
FIG. 1
an arrangement with the diaphragm according to the invention,
FIG. 2
Operation of the focal-aligned aperture in three different rotational positions,
FIG. 3
the integration of the diaphragm according to the invention in an overall shield and
FIG. 4
the panel according to the invention with shielding by two different materials.

Figur 1 zeigt schematisch eine Anordnung mit der erfindungsgemäßen, insgesamt mit 100 bezeichneten Blende. Ein Absorptionselement 10 in Form eines Zylinders aus strahlenabsorbierendem Material ist drehbar um eine zentrale Längsachse 12 aufgehängt. Durch das Absorptionselement 10 verlaufen ein oder mehrere Schlitze 14. Im Brennpunkt 16 ist eine punktförmige Strahlquelle positioniert, welche Strahlung eines bestimmten Wellenlängenbereiches zumindest in Richtung des Absorptionselementes 10 aussendet. Die Form des Schlitzes 14 ist derart gestaltet, dass Strahlen, welche vom Brennpunkt 16 ausgehen, vom Absorptionselement 10 absorbiert werden, mit Ausnahme eines einzigen Strahles, welcher in einer bestimmten Selektionsrichtung 18 verläuft. Der durchgelassene Strahl 18 fällt auf einen bestimmten Messpunkt 22 des zu untersuchenden Objektes 20. Die von Messpunkt 22 rückgestreute Strahlung wird durch einen nicht dargestellten Detektor aufgefangen. FIG. 1 schematically shows an arrangement with the invention, generally designated 100 aperture. An absorption element 10 in the form of a cylinder of radiation-absorbing material is rotatably suspended about a central longitudinal axis 12. Through the absorption element 10, one or more slits 14 extend. In the focal point 16, a point-shaped radiation source is positioned, which emits radiation of a specific wavelength range at least in the direction of the absorption element 10. The shape of the slit 14 is designed so that rays emanating from the focal point 16 are absorbed by the absorption element 10, with the exception of a single beam, which runs in a specific selection direction 18. The transmitted beam 18 falls on a specific measuring point 22 of the object 20 to be examined. The radiation backscattered by measuring point 22 is picked up by a detector (not shown).

Das Absorptionselement 10 unterliegt einer Rotation um die Drehachse 12. Diese kann als gleichförmige Bewegung ausgeführt werden, welche auch bei schwerer, massiver Gestaltung unter Verwendung einer reibungsarmen Achslagerung ohne großen Aufwand aufrecht erhalten werden kann. Nur die Anlaufphase benötigt durch die notwendige Beschleunigung mehr Energie. Während der Drehung des Absorptionselementes 10 ändert sich die Selektionsrichtung 18 des vom Schlitz 14 durchgelassenen Strahles. Bei einer Drehung um 180° überstreicht dieser Strahl die Fläche eines Fächers vom Brennpunkt 16 durch die Drehachse 12. Der dadurch abgetastete Messpunkt 22 auf der Oberfläche des Objektes 20 bewegt sich auf einer Zeile 24.The absorption element 10 is subject to a rotation about the axis of rotation 12. This can be carried out as a uniform movement, which can be maintained even with heavy, massive design using a low-friction axle bearing without great effort. Only the start-up phase requires more energy due to the necessary acceleration. During the rotation of the absorption element 10, the selection direction 18 of the beam transmitted through the slot 14 changes. When rotated through 180 °, this beam passes over the surface of a fan from the focal point 16 through the axis of rotation 12. The measuring point 22 thus scanned on the surface of the object 20 moves on a line 24.

Wegen der Umkehrbarkeit der Strahlenführung ist die in Figur 1 dargestellte Geometrie auch anwendbar auf den Fall, dass das zu untersuchende Objekt 20 selbst eine Strahlenquelle ist. Im Brennpunkt 16 wird dann ein Detektor positioniert, welcher die vom Objekt 20 ausgesandte Strahlung, welche von dem Absorptionselement 10 durchgelassen wird, auffängt und misst. Auch hier selektiert das Absorptionselement 10 bzw. der Schlitz 14 die Richtung 18 des durchgelassenen Strahles, welche auf den Detektor im Brennpunkt 16 fällt und analog zum ersten Fall von einem Messpunkt 22 ausgeht, welcher sich bei der Rotation des Absorptionselementes 10 um die Drehachse 12 auf einer Zeile 24 fortbewegt.Because of the reversibility of the beam guidance, the in FIG. 1 shown geometry also applicable to the case that the object to be examined 20 itself is a radiation source. At the focal point 16, a detector is then positioned, which captures and measures the radiation emitted by the object 20, which is transmitted by the absorption element 10. Here, too, the absorption element 10 or the slot 14 selects the direction 18 of the transmitted beam, which falls on the detector at the focal point 16 and, analogous to the first case, starts from a measuring point 22 which rotates about the axis of rotation 12 during the rotation of the absorption element 10 a line 24 moves.

Anstelle der Ausführung des Absorptionselementes 10 in Form eines massiven Zylinders ist auch eine nicht erfindungsgemäße Ausführung in Form eines Hohlzylinders bzw. eines Rohres denkbar, wenn die Wanddicke eine ausreichende Absorption gewährleistet. Die Wahl des Materials des Absorptionselementes 10 hängt von der Natur der abzuschirmenden Strahlung ab, Schwermetalle wie zum Beispiel Kupfer oder Wolfram für harte Röntgen- oder Gammastrahlung oder Polyethylen für Neutronenstrahlung.Instead of the embodiment of the absorption element 10 in the form of a solid cylinder and a non-inventive embodiment in the form of a hollow cylinder or a pipe is conceivable if the wall thickness ensures sufficient absorption. The choice of material of the absorption element 10 depends on the nature of the radiation to be shielded, heavy metals such as copper or tungsten for hard X-ray or gamma radiation or polyethylene for neutron radiation.

Figur 2 zeigt die Funktionsweise der brennpunktorientierten Blende in verschiedenen Drehpositionen des Absorptionselementes 10. In den unteren Bildteilen ist der Öffnungswinkel α mit dem Brennpunkt 16 und darüber das zylindrische Absorptionselement 10 mit den Schlitzöffnungen 14a und 14b dargestellt. Dabei handelt es sich um eine Draufsicht auf das Absorptionselement 10, wobei die auf der Oberseite verlaufenden Teile der Schlitzöffnungen 14a, b durch eine durchgezogene Linie und die auf der Unterseite durch eine gestrichelte Linie dargestellt sind. Die beiden Schlitzöffnungen 14a, b weisen aufgrund des endlichen Winkels α eine unterschiedliche Länge auf. Die exakten Maße der Schlitzöffnungen 14a, b werden durch den Öffnungswinkel α und den Abstand d des Brennpunktes 16 von der Drehachse 12 bestimmt. Der Abstand des dem Brennpunkt 16 zugewandten Öffnungsrandes von Blendenzentrum beträgt a1=(d-r)tan(α/2), wenn mit r der Radius des Zylinders bezeichnet wird. Derjenige auf der abgewandten Seite beläuft sich analog dazu auf a2= (d+r) tan (α/2). Die in den Teilbildern der Figur dargestellten Drehstellungen werden in den schematischen Einsätzen unten links durch die Pfeilrichtungen angezeigt. Die Teilbilder a bis c stellen somit verschiedene Drehpositionen dar. In den oberen Teilbildern sind die Verläufe der Schlitzöffnungen 14a, b auf dem abgerollten Zylindermantel als Phasendiagramm dargestellt. Darin wird die unterschiedliche Länge der Schlitzöffnungen 14a, b besonders deutlich. Dargestellt sind auch die Oberseite 26 und die Unterseite 28 des Zylinders 10. Der in der jeweiligen Drehposition der Blende 100 durchgelassene Strahl 18 ist in den oberen Teilbildern als Pfeil markiert und deutet somit Eintritts- und Austrittsposition auf der Zylinderoberfläche an. Die in der Figur 2 markierten Pfeilrichtungen, welche den durchgelassenen Strahl 18 repräsentieren, weisen eine Orientierung auf, welche einer im Brennpunkt 16 positionierten Strahlquelle entspricht. Wegen der Umkehrbarkeit der Strahlenführung könnten diese Pfeile auch in genau umgekehrter Richtung verlaufen, wenn das zu untersuchende Objekt 20 selbst Strahlquelle ist und im Brennpunkt 16 ein Detektor positioniert ist. FIG. 2 shows the operation of the focus-oriented aperture in different rotational positions of the absorption element 10. In the lower parts of the image, the opening angle α is shown with the focal point 16 and above the cylindrical absorption element 10 with the slot openings 14a and 14b. This is a plan view of the absorption element 10, wherein the top-running parts of the slot openings 14a, b are shown by a solid line and the underside by a dashed line. The two slot openings 14a, b have a different length due to the finite angle α. The exact dimensions of the slot openings 14a, b are determined by the opening angle α and the distance d of the focal point 16 from the axis of rotation 12. The distance of the focal point 16 facing the opening edge of aperture center is a 1 = (dr) tan (α / 2), if where r is the radius of the cylinder. The one on the opposite side is analogous to a 2 = (d + r) tan (α / 2). The rotational positions shown in the partial images of the figure are displayed in the schematic inserts bottom left by the arrow directions. The partial images a to c thus represent different rotational positions. In the upper partial images, the courses of the slot openings 14a, b on the unrolled cylinder jacket are shown as a phase diagram. Therein, the different length of the slot openings 14a, b is particularly clear. Shown are also the top 26 and the bottom 28 of the cylinder 10. The in the respective rotational position of the aperture 100 transmitted beam 18 is marked in the upper partial images as an arrow and thus indicates entry and exit position on the cylinder surface. The in the FIG. 2 marked arrow directions, which represent the transmitted beam 18, have an orientation which corresponds to a positioned in the focal point 16 beam source. Because of the reversibility of the beam guidance, these arrows could also run in exactly the opposite direction if the object 20 to be examined itself is a beam source and a detector is positioned at the focal point 16.

Der Reihe nach durchläuft die brennpunktorientierte Blende 100 folgende Stationen:

  1. 1. Erste Randstellung (Figur 2a):
    • Ein Strahl 18 durchläuft im maximalen Öffnungswinkel ungehindert das Absorptionselement 10 vom Ende der kürzeren strahlerseitigen Schlitzöffnung 14a zum entsprechenden Ende der längeren, strahlerabgewandten Schlitzöffnung 14b. Alle anderen Strahlen werden durch die Verdrehung des Blendenschlitzes 14 bzw. durch die strahlenabsorbierende Materie im Absorptionselement 10 absorbiert.
  2. 2. Erste Nullstellung (Figur 2b):
    • Nach einer Drehung um 90° bezüglich der ersten Randstellung tritt der durchgelassene Strahl 18 genau senkrecht zur Drehachse 12 durch den Schlitz 14. In den Positionen zwischen der ersten Randstellung und der Nullstellung durchläuft der Strahl 18 kontinuierlich alle Winkel zwischen α/2 und 0 (Winkel gemessen zwischen Strahlrichtung 18 und dem Lot vom Brennpunkt 16 auf die Drehachse 12). Für jeden dieser durchgelassenen Strahlen 18 wird immer nur eine nahezu punktförmige Durchtrittsöffnung vom Schlitz 14 freigegeben.
  3. 3. Zweite Randstellung (Figur 2c) :
    • Zwischen Nullstellung und zweiter Randstellung wiederholt sich spiegelverkehrt der gleiche Verlauf wie zwischen der ersten Randstellung und der Nullstellung, bis der durchgelassene Strahl 18 das Absorptionselement 10 am entgegengesetzten Ende unter dem Winkel α/2 durchläuft. Insgesamt liegen die Richtungen der durchgelassenen Strahlen 18 während der Drehung der Blende 100 auf einem Fächer mit dem Öffnungswinkel α. Entsprechend tastet der durchgelassene Strahl 18 eine Zeile 24 von Messpunkten 22 auf dem zu untersuchenden Objekt 20 ab.
In turn, the focus-oriented aperture 100 passes through the following stations:
  1. 1. First edge position ( FIG. 2a ):
    • A beam 18 passes through the absorption element 10 at the maximum opening angle unhindered from the end of the shorter projector-side slot opening 14a to the corresponding end of the longer, beam-facing slot opening 14b. All other beams are absorbed by the rotation of the diaphragm slot 14 or by the radiation-absorbing material in the absorption element 10.
  2. 2. First zero position ( FIG. 2b ):
    • After rotation through 90 ° with respect to the first edge position, the transmitted beam 18 passes through the slot 14 exactly perpendicular to the axis of rotation 12. In the positions between the first edge position and the zero position, the beam 18 continuously traverses all angles between α / 2 and 0 (angle measured between the beam direction 18 and the solder from the focal point 16 to the axis of rotation 12). For each of these transmitted beams 18 only one almost punctiform passage opening is released from the slot 14.
  3. 3. Second edge position ( Figure 2c ):
    • Between zero position and second edge position is mirrored the same course repeated as between the first edge position and the zero position until the transmitted beam 18 passes through the absorption element 10 at the opposite end at the angle α / 2. Overall, the directions of the transmitted rays 18 are during the rotation of the diaphragm 100 on a fan with the opening angle α. Accordingly, the transmitted beam 18 scans a line 24 of measuring points 22 on the object 20 to be examined.

Nicht dargestellt ist die zweite Nullstellung nach einer weiteren Drehung um 90°. Aus Symmetriegründen wird wie in der ersten Nullstellung der zentrale Strahl durchgelassen.Not shown is the second zero position after another rotation by 90 °. For symmetry reasons, the central beam is transmitted as in the first zero position.

Die eine von den beiden Grenzlinien zwischen Oberseite 26 und Unterseite 28 (markiert durch die Pfeile 30) entspricht der Mantellinie auf dem Zylinder 10, welche dem Brennpunkt 16 am nächsten ist und durch welche der selektierte Strahl 16 verläuft.One of the two boundary lines between top 26 and bottom 28 (marked by the arrows 30) corresponds to the surface line on the cylinder 10, which is closest to the focal point 16 and through which the selected beam 16 passes.

Wenn die beschriebenen drei Stadien zusammengefasst werden, so ergibt sich, dass die Fortbewegung des durchgelassenen Strahles 18 über eine Zeile 24 durch eine halbe Drehung des Zylinders 10 erfolgt.When the three stages described are summarized, it follows that the movement of the transmitted beam 18 via a line 24 by a half turn of the cylinder 10 takes place.

Bei einer langsamen Drehbewegung ist es vorstellbar, den Zylinder 10 nach einer Halbdrehung für die nächste Zeile 24 wieder zurückzudrehen, um damit die nächste Zeile 24 in umgekehrter Richtung durchzulaufen. Mechanisch günstiger ist es jedoch, den Zylinder in einer ständigen Rotationsbewegung zu belassen.In a slow rotational movement, it is conceivable, the cylinder 10 after a half turn for the next line 24 back to turn back, so as to pass through the next line 24 in the opposite direction. Mechanically cheaper, however, it is to leave the cylinder in a constant rotational movement.

Während der den oben beschriebenen Drehstellungen folgenden halben Drehung des Zylinders 10 wird keine Strahlrichtung 18 selektiert, mit Ausnahme der zweiten Nullstellung (nach einer Drehung von 90° nach Stellung 3 (s.o.)), in welcher der Zentralstrahl (parallel zum Lot des Brennpunktes 16 auf die Drehachse 12) durchgelassen wird. Somit entspricht jeder Strahlendurchgang durch das Zentrum des Zylinders 10 einer Phasenverschiebung um 180° zwischen Ein- und Austrittsstelle auf der Oberfläche des Zylinders 10.During the half rotation of the cylinder 10 following the above-described rotational positions no beam direction 18 is selected, with the exception of the second zero position (after a rotation of 90 ° to position 3 (see above)), in which the central beam (parallel to the solder of the focal point 16) the axis of rotation 12) is allowed to pass. Thus, each beam passage through the center of the cylinder 10 corresponds to a phase shift of 180 ° between the entrance and exit points on the surface of the cylinder 10.

Figur 3 stellt die Integration des Absorptionselementes 10 in eine Anordnung mit Abschirmelementen 32 dar (Ansicht von oben). Im dargestellten Fall wird das Absorptionselement 10 von zwei Abschirmungen 32 mit hohlzylindrischen Stirnflächen flankiert, in denen es sich frei drehen kann. Mechanisch ist das Absorptionselement 10 so zu lagern, dass es um die zentrale Achse 12 frei drehbar ist. Ein gesteuerter Antrieb 34 ist so anzubringen, dass er an der oberen oder unteren Verlängerung der Drehachse 12 greift, ohne dass irgendein Teil davon in den Strahlengang hineinragen kann. Eine präzise Positionskontrolle 36 kommuniziert mit der nicht dargestellten Datenerfassung. Geeignet hierfür ist ein Schrittmotor mit präziser Schrittzählung oder eine Positionskontrolle am Zylinder 10 selbst. Die Antriebseinheit 34 kann sowohl in die Abschirmung 32 integriert oder an der strahlenabgewandten Seite angebracht sein. An die Mechanik sind hohe Anforderungen wegen der genauen Winkelpositionskontrolle zu stellen (direkte Zahnrad- oder Kettenübertragung). FIG. 3 represents the integration of the absorption element 10 in an array with shielding 32 (view from above). In the case shown, the absorption element 10 is flanked by two shields 32 with hollow cylindrical end faces, in which it can rotate freely. Mechanically, the absorption element 10 is to be stored so that it is freely rotatable about the central axis 12. A controlled drive 34 is to be mounted so that it engages the upper or lower extension of the rotation axis 12, without any part of it can protrude into the beam path. A precise position control 36 communicates with the data acquisition, not shown. Suitable for this purpose is a stepper motor with precise step counting or a position control on the cylinder 10 itself. The drive unit 34 can be integrated into the shield 32 or attached to the side facing away from the radiation. To the mechanics are high requirements because of the exact angular position control to put (direct gear or chain transmission).

Jeder zweite zentral verlaufende Strahl durch die Blende 100 wird in bevorzugter Ausführung schalttechnisch oder mechanisch mit einer synchronisierten weiteren, nicht dargestellten Blende (in Flügelausführung o. ä.) ausgeblendet. Dies kann dadurch bewerkstelligt werden, dass in der zweiten Hälfte jeder Rotationsbewegung der Strahler abgeschaltet, wenn kurze Schaltzeiten möglich sind, oder die Empfängerelektronik stumm geschaltet wird. Sollte beides schwer oder nicht möglich sein, kann mit der Drehbewegung ein nicht dargestellter Verschluss gekoppelt werden, der den Strahlengang während der zweiten Halbdrehung verschließt. Solange ein elektronisches Ausblenden der zweiten Halbdrehung möglich ist, ist dies die bevorzugte Lösung, wodurch bei schneller Drehbewegung kurze Abtastzeiten möglich sind. Die jeweilige Position des Messpunktes 22 wird über den zeitgleichen Stand des rotierenden Zylinders 10 dem registrierenden System mitgeteilt. Dies kann über einen Schrittmotor oder über eine Stroboskop-Einrichtung am oberen oder unteren Zylinderrand erfolgen.Each second centrally extending beam through the aperture 100 is in a preferred embodiment switching technically or mechanically with a synchronized further, not shown aperture (in wing design o. Ä.) Hidden. This can be accomplished by turning off the emitter in the second half of each rotational movement, when short switching times are possible, or mute the receiver electronics. Should both be difficult or impossible, the rotation can be coupled to an unillustrated shutter which closes the beam path during the second half turn. As long as an electronic hiding the second half-rotation is possible, this is the preferred solution, whereby short sampling times are possible with fast rotational movement. The respective position of the measuring point 22 is communicated to the registering system via the simultaneous state of the rotating cylinder 10. This can be done via a stepper motor or a stroboscope device on the upper or lower edge of the cylinder.

Das Ergebnis einer nutzbaren Halbdrehung des Zylinders 10 ist somit das Überstreichen des durchgelassenen Strahles 18 über einen Fächer, wodurch auf dem zu untersuchenden Objekt 20 eine Zeile 24 abgetastet wird. Für die Erfassung von Flächen ist in der in Figur 3 dargestellten Ausführungsform vorgesehen, dass der Brennpunkt 16 auf einem festen Radius um die Drehachse 12 soweit geführt wird, wie es die Abschirmungseinrichtung 32 zulässt. Dabei braucht die Abschirmungseinrichtung 32 selbst nicht bewegt zu werden.The result of a usable half-turn of the cylinder 10 is thus the sweeping of the transmitted beam 18 over a fan, whereby a line 24 is scanned on the object 20 to be examined. For the registration of areas is in the in FIG. 3 illustrated embodiment, that the focal point 16 is guided on a fixed radius about the axis of rotation 12 as far as it allows the shielding device 32. In this case, the shielding device 32 itself does not need to be moved.

In weiteren, nicht dargestellten Ausführungen wird die Verschiebung der Messzeile 24 auf dem Objekt 20 in einer Richtung senkrecht zur Drehachse 12 dadurch erreicht, dass das Objekt 20 an einem stationären Aufbau der Blende 100 (z.B. auf einem Transportband) oder umgekehrt ein fahrbares Gerät mit der Blende 100 am Objekt 20 vorbeigeführt wird. Außerdem bietet sich die Möglichkeit, das Absorptionselement 10 auf einem Kreisbogen um den Brennpunkt 16 zu bewegen.In further embodiments, not shown, the displacement of the measuring line 24 on the object 20 in a direction perpendicular to the axis of rotation 12 achieved in that the object 20 on a stationary structure of the aperture 100 (eg on a conveyor belt) or vice versa a mobile device with the Aperture 100 is guided past the object 20. In addition, it is possible to move the absorption element 10 on a circular arc around the focal point 16.

Figur 4 zeigt eine Anordnung, in welcher das Absorptionselement unterschiedliche Absorptionsmaterialien aufweist, welche für unterschiedliche Strahlenarten wirksam sind. Die Verwendung einer solchen Anordnung bietet sich an, wenn das Objekt 20 oder eine im Brennpunkt 16 befindliche Strahlenquelle nicht (vorwiegend) homogene Strahlung aussendet, welche mit ein und demselben Material abgeschirmt werden kann (Beispiel: Isotopenquelle mit unterschiedlichen Strahlenarten wie 252Ca). Das Absorptionselement 10 weist einen hohlzylinderförmigen Mantel 38 aus einem ersten, für eine erste Strahlungsart absorbierenden Material M1 auf, z.B. einem Schwermetall, welches zur Abschirmung von Röntgen- und Gammastrahlen geeignet ist. Der zylinderförmige Kernbereich 40 besteht aus einem zweiten, für eine zweite Strahlungsart absorbierenden Material M2, z.B. einem wasserstoffreichen Material wie Polyethylen oder einem leichten Element wie Bor zur Neutronenabsorption. FIG. 4 shows an arrangement in which the absorption element has different absorption materials which are effective for different types of radiation. The use of such an arrangement lends itself when the object 20 or a radiation source located in the focal point 16 does not (predominantly) emit homogeneous radiation, which can be shielded with one and the same material (example: isotope source with different types of radiation such as 252 Ca). The absorption element 10 has a hollow cylindrical shell 38 made of a first, for a first radiation type absorbing material M1, for example a heavy metal, which is suitable for shielding X-rays and gamma rays. The cylindrical core portion 40 is composed of a second material M2 absorbing for a second radiation type, for example a hydrogen-rich material such as polyethylene or a light element such as boron for neutron absorption.

Auch das Abschirmelement 32 muss alle verwendeten Strahlenarten wirksam abschirmen, was durch einen schalenförmigen Aufbau mit der Verwendung von den beiden Materialien M1 und M2 (32 a, b) bewerkstelligt wird.Also, the shielding member 32 must shield all the types of radiation used effectively, which is accomplished by a bowl-shaped structure with the use of the two materials M1 and M2 (32 a, b).

Zur besseren Auswertung der gemessenen Signale sind die Durchtrittsschlitze 14 in den Zylinderteilen 38 und 40, welche jeweils für einen Strahlentyp wirksam sind, gegeneinander versetzt angeordnet, z.B. um einen Winkel von 90° um die Drehachse. Es treten somit während einer bestimmten Dauer der Rotationsperiode mehr als ein Strahl durch das Absorptionselement, allerdings nur höchstens einer für jeden bestimmten Strahlentyp.For better evaluation of the measured signals, the passage slots 14 in the cylinder parts 38 and 40, which are each effective for a beam type, offset from each other, for example, at an angle of 90 ° about the axis of rotation. Thus, more than one beam passes through the absorption element for a certain period of the rotation period, but only at most one for each particular type of radiation.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Absorptionselementabsorbing element
1212
Drehachseaxis of rotation
1414
Schlitzslot
14a, b14a, b
Schlitzöffnungenslot openings
1616
Brennpunktfocus
1818
Selektionsrichtung / durchgelassener StrahlSelection direction / transmitted beam
2020
Objektobject
2222
Messpunktmeasuring point
2424
Messzeilemeasuring line
2626
Oberseite des ZylindersTop of the cylinder
2828
Unterseite des ZylindersBottom of the cylinder
3030
Position der Mantellinie auf dem ZylinderPosition of the generatrix on the cylinder
3232
Absorptionselementabsorbing element
32a, b32a, b
Absorptionselemente aus verschieden absorbierenden MaterialienAbsorbent elements of different absorbent materials
3434
Antriebdrive
3636
Positionskontrolleposition control
3838
Mantel des AbsorptionselementsSheath of the absorption element
4040
Kern des AbsorptionselementsCore of the absorption element
100100
Blendecover

Claims (12)

  1. A focal point-oriented aperture (100) with an absorption element (10), wherein said absorption element (10) is capable of executing a periodic movement, and is formed in such a manner that in each position adopted during the periodic movement, a maximum of one direction (18) exists with the property that radiation, in particular radiation of a particular type of beam, which falls on a beam which runs through a focal point (16) onto the focal point oriented aperture (100) is essentially allowed through when the beam runs essentially in the said direction (18), and is otherwise essentially absorbed, characterized in that the absorption element (10) comprises the form of a solid cylinder.
  2. A focal point-oriented aperture according to claim 1, characterized in that the periodic movement which can be executed by the absorption element (10) is a rotational movement around a rotational axis (12).
  3. A focal point-oriented aperture according to any one of the preceding claims, characterized in that the absorption element (10) comprises at least one slit-shaped gap (14) or a slit-shaped area which is at least slightly absorbent.
  4. A focal point-oriented aperture according to either of claims 2 or 3, characterized in that the said directions (18) lie on one plane, in particular, the plane which is defined by the rotational axis (12) and the focal point (16).
  5. A focal point-oriented aperture according to any one of the preceding claims, characterized in that the cylinder comprises different materials in its core (40), and in the mantle area (38), which absorb different types of beam in a different manner.
  6. A focal point-oriented aperture according to any one of the preceding claims, characterized in that a detector is provided in the focal point (16).
  7. A focal point-oriented aperture according to any one of the preceding claims, characterized in that a beam source is provided in the focal point (16).
  8. A focal point-oriented aperture according to any one of claims 2 to 7, characterized in that the focal point (16) can be moved in a circular movement around the rotational axis as the centre point.
  9. A focal point-oriented aperture according to any one of the preceding claims, characterized in that the absorption element (10) is surrounded by stationary shields which absorb the radiation.
  10. A method for producing a focal point-oriented aperture (100) according to any one of the preceding claims, characterized by the following process stages:
    - preparation of an absorption element (10) from a material which is suitable for absorbing the intended radiation,
    - removal of material in the directions in which the focal point-oriented aperture (100) is designed to allow a beam through by means of a cutting beam.
  11. A method according to claim 10, characterized in that the removal of the material is achieved using high-pressure water jet cutting.
  12. A method according to either of claims 10 or 11, characterized in that the absorption element (10) executes at least one period of the said periodic movement while the material is being removed.
EP06121864A 2005-10-06 2006-10-06 Focal point oriented aperture Not-in-force EP1772874B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005048519A DE102005048519A1 (en) 2005-10-06 2005-10-06 Focused aperture

Publications (3)

Publication Number Publication Date
EP1772874A2 EP1772874A2 (en) 2007-04-11
EP1772874A3 EP1772874A3 (en) 2007-08-22
EP1772874B1 true EP1772874B1 (en) 2009-01-14

Family

ID=37769388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06121864A Not-in-force EP1772874B1 (en) 2005-10-06 2006-10-06 Focal point oriented aperture

Country Status (3)

Country Link
EP (1) EP1772874B1 (en)
AT (1) ATE421151T1 (en)
DE (2) DE102005048519A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810281A (en) * 2016-05-03 2016-07-27 北京华力兴科技发展有限责任公司 Chopper and back scatter imaging device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007057261B3 (en) * 2007-11-26 2009-08-06 BAM Bundesanstalt für Materialforschung und -prüfung Apparatus and method for producing slit diaphragms
DE102009021750B4 (en) * 2009-05-12 2013-01-17 BAM Bundesanstalt für Materialforschung und -prüfung Pivotally movable slotted diaphragm device
ATE545935T1 (en) 2009-12-08 2012-03-15 Bam Bundesanstalt Matforschung ASYMMETRICAL SLIT PANEL AND DEVICE AND METHOD FOR PRODUCING THE SAME
EP2548207B1 (en) * 2010-03-14 2020-02-12 Rapiscan Systems, Inc. Beam forming apparatus
GB2494967B (en) * 2010-03-14 2017-04-12 Rapiscan Systems Inc Personnel screening system
CN103728326A (en) * 2010-12-31 2014-04-16 同方威视技术股份有限公司 Ray beam scanning device and method for back scattering imaging
CN102565110B (en) * 2010-12-31 2015-04-01 同方威视技术股份有限公司 Device and method for scanning ray bundles for backscatter imaging
CN103776847B (en) * 2012-10-24 2016-04-27 清华大学 Radiation-emitting device and imaging system
US11280898B2 (en) 2014-03-07 2022-03-22 Rapiscan Systems, Inc. Radar-based baggage and parcel inspection systems
AU2015353439A1 (en) 2014-11-25 2017-06-29 Rapiscan Systems, Inc. Intelligent security management system
DE102015008272A1 (en) 2015-06-18 2016-12-22 Kurt Osterloh Slit diaphragm system for hard radiation imaging
US10082473B2 (en) 2015-07-07 2018-09-25 General Electric Company X-ray filtration
DE102016004624A1 (en) 2016-04-13 2017-10-19 Kurt Osterloh The gamma eye: A device for imaging high-energy objects
GB2572700A (en) 2016-09-30 2019-10-09 American Science & Eng Inc X-Ray source for 2D scanning beam imaging
DE102017005302A1 (en) 2017-05-30 2018-12-06 Kurt Osterloh Design of a gamma camera with a rotating collimator for displaying radiant objects
CN113936838B (en) * 2021-10-11 2023-09-26 散裂中子源科学中心 Two-stage positioning neutron diaphragm switching mechanism

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031401A (en) * 1975-03-14 1977-06-21 American Science & Engineering, Inc. Radiant energy imaging scanning
JPS5293384A (en) * 1976-01-31 1977-08-05 Shimadzu Corp Radiation collimeter for segmental scanning
DE3135421A1 (en) * 1981-09-07 1983-03-24 Siemens AG, 1000 Berlin und 8000 München X-RAY EXAMINATION DEVICE
DE3886334D1 (en) * 1987-10-05 1994-01-27 Philips Patentverwaltung Arrangement for examining a body with a radiation source.
DE3829688A1 (en) * 1988-09-01 1990-03-15 Philips Patentverwaltung ARRANGEMENT FOR GENERATING A X-RAY OR GAMMA RAY WITH A SMALL SECTION AND CHANGING DIRECTION
DE3908966A1 (en) * 1989-03-18 1990-09-20 Philips Patentverwaltung ARRANGEMENT FOR GENERATING A X-RAY OR Gamma RAY WITH A SMALL SECTION AND CHANGEABLE LOCATION
FR2790100B1 (en) * 1999-02-24 2001-04-13 Commissariat Energie Atomique TWO-DIMENSIONAL DETECTOR OF IONIZING RADIATION AND METHOD OF MANUFACTURING THE SAME
WO2002082065A2 (en) * 2001-04-03 2002-10-17 Koninklijke Philips Electronics N.V. Computed tomography apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810281A (en) * 2016-05-03 2016-07-27 北京华力兴科技发展有限责任公司 Chopper and back scatter imaging device

Also Published As

Publication number Publication date
EP1772874A3 (en) 2007-08-22
DE102005048519A1 (en) 2007-04-19
DE502006002637D1 (en) 2009-03-05
ATE421151T1 (en) 2009-01-15
EP1772874A2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
EP1772874B1 (en) Focal point oriented aperture
DE19942211C2 (en) Device for reading bendable imaging plates
DE4122273C2 (en) Device for transversely cutting a moving strip
EP1215482A2 (en) Object examination device
DE102013004503B4 (en) Use of an X-ray device for the examination of crystal defects
DE19650545A1 (en) Collimation device for reducing the x-ray dose for the patient
DE3829688A1 (en) ARRANGEMENT FOR GENERATING A X-RAY OR GAMMA RAY WITH A SMALL SECTION AND CHANGING DIRECTION
DE10010588A1 (en) Computer tomography scanner has focal point with variable number of positions moved in longitudinal direction whilst object is being scanned.
EP0714037A2 (en) Arrangement for the measurement of the momentum transfer spectrum of elastically scattered X-ray quanta
EP0462658A2 (en) Arrangement for the measurement of the pulse transfer spectrum of X-ray quanta
DE102005029674B4 (en) Diaphragm for an imaging device limits high-energy radiation from a radiation source so as to orientate it along an optical axis towards an imaging area based on a pin camera principle
DE4042165A1 (en) Optoelectronic target detection system with a very large detection field
EP0184247A2 (en) Arrangement for examining a body by gamma or X-rays
DE2714397A1 (en) METHOD AND DEVICE FOR MEASURING THIN FILMS WITH REFLECTIVE SURFACES USING INFRARED RADIATION
DE3147689A1 (en) ADDITIONAL DEVICE FOR CARRYING OUT REFLECTION MEASURES WITH AN IR SPECTROMETER
DE102005011467B4 (en) Adjustable focal length collimator, directed method and X-ray inspection system
DE102008048917B4 (en) X-ray diffraction apparatus with a Debye-Scherrer optical system and X-ray diffraction measurement method for this apparatus
CH630176A5 (en) Method of producing a tomogram and device for tomographically investigating an object
DE10125454B4 (en) Device for X-ray analysis with a multi-layer mirror and an output collimator
EP0074021B1 (en) X-ray examination apparatus
EP2124231A2 (en) Aperture for an imaging device
DE102005039642B3 (en) Collimator system for x-ray diffractometery, e.g. for luggage inspection, has primary collimator with ring-shaped opening, and secondary collimator with cylindrical- and conical-surface apertures
DE102022112766A1 (en) Spectrometer system for laser-induced plasma spectral analysis
DE10035917B4 (en) Device for radiation analysis with variable collimator and variable collimator
DE10259696B4 (en) Device for measuring the thickness of thin layers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: G21K 1/02 20060101AFI20070717BHEP

17P Request for examination filed

Effective date: 20080220

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KNISCHEK, HEINZ-JUERGEN

Inventor name: OSTERLOH, DR. RER. NAT. KURT

Inventor name: EWERT, PROF. DR. UWE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006002637

Country of ref document: DE

Date of ref document: 20090305

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090425

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090414

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090514

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

26N No opposition filed

Effective date: 20091015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091022

Year of fee payment: 4

BERE Be: lapsed

Owner name: BUNDESANSTALT FUR MATERIALFORSCHUNG UND -PRUFUNG

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101021

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091006

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111103

Year of fee payment: 6

Ref country code: NL

Payment date: 20111025

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002637

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002637

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130501

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 421151

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121006

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121006

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006002637

Country of ref document: DE

Ref country code: DE

Ref legal event code: R409

Ref document number: 502006002637

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 502006002637

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006002637

Country of ref document: DE

Effective date: 20140501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141031

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006002637

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503