WO1994013653A1 - Method of preparing 3,4-epoxy-1-butene - Google Patents

Method of preparing 3,4-epoxy-1-butene Download PDF

Info

Publication number
WO1994013653A1
WO1994013653A1 PCT/EP1993/003352 EP9303352W WO9413653A1 WO 1994013653 A1 WO1994013653 A1 WO 1994013653A1 EP 9303352 W EP9303352 W EP 9303352W WO 9413653 A1 WO9413653 A1 WO 9413653A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
butene
epoxy
oxygen
butadiene
Prior art date
Application number
PCT/EP1993/003352
Other languages
German (de)
French (fr)
Inventor
Stefan Boeck
Klaus Herzog
Rolf Fischer
Herbert Vogel
Martin Fischer
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU56292/94A priority Critical patent/AU673713B2/en
Priority to KR1019950702392A priority patent/KR0184949B1/en
Priority to US08/406,972 priority patent/US5618954A/en
Priority to DE59305421T priority patent/DE59305421D1/en
Priority to JP6513730A priority patent/JPH08504413A/en
Priority to EP94901917A priority patent/EP0677047B1/en
Priority to CA002151391A priority patent/CA2151391A1/en
Publication of WO1994013653A1 publication Critical patent/WO1994013653A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a process for the preparation of 3,4-epoxy-1-butene by the gas phase epoxidation of 1,3-butadiene by means of oxygen or oxygen-containing gases over silver-containing catalysts and isolation of the 3,4-epoxy-1-butene from the reaction discharge .
  • 3,4-epoxy-1-butene also referred to as butadiene monoxide or vinyl oxirane
  • butadiene monoxide or vinyl oxirane is an intermediate for the production of, for example, tetrahydrofuran, which, for example, can be prepared by the process of US Pat. No. 5,034,545 by isomerization to 2,5-dihydrofuran and its subsequent hydrogenation. It is also used for the production of 1,2-butylene oxide (cf. US Pat. No. 5,117,013).
  • An efficient, economical process for the production of 3,4-epoxy-1-butene is required for the economical production of the aforementioned chemicals, which are required in large quantities, based on the starting material 3,4-epoxy-1-butene. Such a method is not yet available.
  • WO 89/07101 describes a process for the gas phase epoxidation of 1,3-butadiene with oxygen or oxygen-containing gases over silver-containing catalysts.
  • the yields and selectivities achieved are initially quite good, but the silver-containing catalysts used decrease their activity very quickly and almost lose within 24 hours
  • deactivation is presumably caused by the coating of the catalyst surface with decomposition products of vinyloxirane, a process which is referred to below as coking.
  • deactivation is understood to mean the deactivation of the silver catalyst by coking processes in the production of vinyloxirane, which leads to a rapid decrease in activity, ie an activity decrease by more than 50% of the initial activity within a few hours or days silver-containing catalyst leads.
  • This type of deactivation is due to the normal deactivation of the silver-containing catalyst as a result of aging processes that only appear in the course of months and years, such as thermal damage to the catalyst, sintering processes, To distinguish phase segregation or the gradual discharge of catalyst components.
  • US Pat. No. 5,117,012 relates to a process for working up the gaseous reaction discharge from the gas phase epoxidation of 1,3-butadiene according to the process of WO 89/07101, in which the hot, gaseous reaction discharge is carried out using liquid 1,3-butadiene is deterred.
  • the reactor feed from 1,3-butadiene, oxygen and inert gas should contain less than 5 mol%, based on the total feed, of water, since otherwise with considerable losses of 3,4-epoxy-1 -butene due to diol formation.
  • the present invention was based on the object of using a process for the gas phase epoxidation of 1,3-Bu adiene
  • a process for reactivating catalysts used for the production of 3,4-epoxy-1-butene by the gas phase epoxidation of 1,3-butadiene by means of oxygen or oxygen-containing gases and deactivated by coking, silver-containing catalysts was found characterized in that the deactivated, silver-containing catalysts are treated at from 100 to 400 ° C. with water vapor and gases containing oxygen or oxygen.
  • the process according to the invention surprisingly enables long-term operation of the gas-phase epoxidation of 1,3-butadiene with the aid of silver-containing catalysts without any significant loss of activity of the silver-containing catalysts resulting from coking.
  • the process according to the invention makes it possible to reactivate a large part of its original activity in the gas phase epoxidation of 1,3-butadiene in the case of catalysts which have already been deactivated.
  • the reason for these surprising effects of adding water to the gaseous feed to the epoxidation reactor has not yet been clarified. Surprisingly, even in the case of a large amount of water being added to the gaseous feed to the epoxidation reactor, the high selectivity of the silver-containing catalyst with regard to the production of vinyloxirane is retained.
  • the water added to the gaseous feed to the epoxidation reactor is generally 6 to 80 mol%, advantageously 8 to 70 mol% and particularly preferably 10 to 50 mol%, based on the total gaseous feed to the reactor.
  • the water additive is stated in mol%, it is assumed that the gases in the gas mixture behave approximately like ideal gases, so that the m mol% statement practically corresponds to a vol.% Statement.
  • the water is expediently metered in the form of steam to the gaseous feed, the addition of the water by means of atomizers or other devices for introducing water into a gas stream is likewise possible.
  • a gas strona consisting of 1,3-butadiene, oxygen, the water and, if desired, inert gaseous diluents, such as nitrogen, argon, hydrocarbons, such as methane or, under the reaction conditions used Ethane and / or carbon dioxide and / or reaction moderators, such as nitrogen oxides and / or halogen alkanes with at least one hydrogen atom in the molecule, such as methyl chloride, methyl bromide, dichloromethane, dibromomethane, chloroform, bromoform, ethyl chloride, ethyl bromide, dichloroethane, dibromoethane, Vinyl chloride, dichlorethylene, trichlorethylene, dichloropropane, dibromopropane, dichloropropene, dibromopropen, chlorobutane etc., passed into the reactor.
  • inert gaseous diluents such as nitrogen, arg
  • a butadiene / oxygen molar ratio of 0.05 to 40, preferably 0.1 to 25 and in particular 0.3 to 15 is set.
  • the volume fraction of butadiene in the feed to the reactor is generally 5 to 80% by volume, preferably 10 to 70% by volume and particularly preferably 15 to 45% by volume
  • the volume fraction of oxygen in the feed to the reactor is generally 2 to 80% by volume, preferably 3 to 70% by volume and particularly preferably 5 to 45% by volume.
  • Preferred inert gases are nitrogen and the C 1 -C -alkanes, particularly preferably the C 1 -C -alkanes, in particular the methane, are used as inert, gaseous diluents.
  • reaction moderators the addition of which serves to inhibit the further oxidation of vinyloxirane to carbon dioxide and water, 15 are generally present in amounts of 0 to
  • This gas feed is generally at temperatures from 100 ° C. to 400 ° C., preferably from 120 to 350 ° C. and particularly preferably from 150 to 300 ° C. and at a pressure from 0.1 to 100 bar, advantageously from 0 , 5 to 50 bar, in particular from 1 to 30 bar, passed over the silver-containing catalyst and partially oxidized.
  • the reaction gases butadiene, water and vinyloxirane are in the gaseous or supercritical, fluid state.
  • the space velocity of the gas inlet is generally 20 to 20,000 h -1 , preferably from 50 to
  • the conversion of butadiene is generally adjusted to 0.5 to 100 mol%, advantageously to 2 to 80 mol% and particularly preferably to 5 to 20 mol% of the total amount of 1,3-butadiene added. 35
  • the conversion of butadiene can be controlled via the space velocity of the gas feed, the temperature of the catalyst bed and the addition of the halogen-containing reaction moderators.
  • the process according to the invention is preferably operated continuously, it being possible advantageously to use tubular or tube-bundle reactors in which the catalyst is advantageously arranged in a fixed bed.
  • These reactors are preferably operated isothermally, it being possible to use customary heat carriers, for example water, hydrocarbons such as kerosene, naphthalene 45 or biphenyl, and molten salts for such purposes. Water is generally preferred as a heat carrier.
  • the silver-containing catalyst can be arranged in the fixed bed both in a loose catalyst bed which is traversed by the heat transfer tubes and in tubes which are thermostatted from the outside. 5
  • the hot reaction gas leaving the catalyst bed the vinyloxirane, unconverted 1,3-butadiene, optionally containing inert gases and / or reaction moderators, is cooled, for example by means of direct heat exchange, e.g. by injecting a cool solvent or by injecting a cool gas such as nitrogen, air, carbon dioxide etc. into the hot reaction gas or preferably by means of indirect heat exchange, e.g. by conventional coolers or heat exchangers, the hot reaction gas 5 advantageously being used for preheating the reactor feed.
  • the vinyloxirane can be used in a suitable manner, e.g.
  • the solvent used is advantageously selected from those solvents from which the vinyloxirane and / or 1,3-butadiene can be removed in a simple manner.
  • a suitable solvent of this type is e.g. 1,3-butadiene itself (cf. US Pat. No. 5,117,012), water is particularly preferably used for washing out the vinyl oxirane from the reaction gas. While vinyl oxirane dissolves in water, 1,3-butadiene is practically insoluble in water.
  • the water-containing, gaseous 1,3-butadiene and the other water-insoluble constituents of the reaction gas can be separated off from the vinyloxirane-containing, aqueous phase and returned to the reactor.
  • the vinyl oxirane can be easily, e.g. by passing through water vapor, air, nitrogen, carbon dioxide and / or other gases which are inert to vinyloxirane under these conditions and, if necessary, after
  • the temperature of the water for extracting the vinyl oxirane from the reaction discharge is generally up to
  • the carbon dioxide produced as a by-product in the production of vinyloxirane can, if desired, have a washing action from the reaction product freed from vinyloxirane with the aid of suitable solvents or absorbents, in particular a basic agent, such as N-methylpyrrolidone, N-methyldiethanol - Amm, N-methylethanolamm, or aqueous alkali allhydrogen carbonate solutions are extracted. If desired, the carbon dioxide can then be desorbed again from these absorption liquids, for example by heating or stripping with steam or inert gases, and can be used further.
  • suitable solvents or absorbents in particular a basic agent, such as N-methylpyrrolidone, N-methyldiethanol - Amm, N-methylethanolamm, or aqueous alkali allhydrogen carbonate solutions are extracted.
  • suitable solvents or absorbents in particular a basic agent, such as N-methylpyrrolidone, N-methyldiethanol - Amm, N-methylethanolamm, or
  • the gas mixture freed from vinyloxirane and carbon dioxide in this way which essentially consists of 1,3-butadiene, water vapor and inert gases, is advantageously returned to the reactor for the production of vinyloxirane
  • the content of the recirculated gas hereinafter referred to as circulating gas, 1, 3-butadiene, steam, oxygen, inert gas and reaction moderators is expediently set by metering in these gases to an optimum content for the production of vinyloxirane.
  • the catalysts used in the process according to the invention are silver catalysts which contain 0.1 to 50% by weight of silver, advantageously 1 to 30% by weight and particularly preferably 2 to 20% by weight of silver, calculated as Ag and based on the total weight of the catalyst contained on a support material. Pure silver, e.g. Silver crystal powder or electrolyte silver can also be used.
  • a large number of support materials such as silicon dioxide, can be used as support materials for such silver-containing catalysts.
  • carrier materials are used which have a BET surface area of less than 50 m 2 / g, preferably less than 45 10 m 2 / g and in particular less than 2 m 2 / g.
  • Particularly preferred carrier materials include the aluminum oxides, in particular the ⁇ -aluminum oxide, zirconium dioxide, mixtures of ⁇ -alumina and zirconia, titanium dioxide, silicon dioxide and silicon carbide.
  • the porosity of these carrier materials is generally 5 to 90%, preferably 10 to 80%, measured by the method of mercury porosimetry.
  • the external shape of the catalyst supports is generally not critical for the catalyst activity in the process according to the invention.
  • Carriers in the form of balls, cylinders, rings, saddle bodies, spirals or other shapes are used, preferably rings, balls or saddle bodies are used, which generally have a sufficient geometric surface and only a low pressure loss of the Ka ⁇ cause catalyst flow through reaction gas.
  • Silver catalysts which contain 0.001 to 10% by weight of promoters in addition to the silver and the carrier material are preferably used in the process according to the invention.
  • Suitable promoters are e.g. Alkali metals and alkaline earth metals, the rare earth metals, the metals of the IV., V., VI., VII., VIII. And II. Subgroup of the periodic table of the elements as well
  • promoters are the alkali metals and alkaline earth metals, in particular the heavy alkali metals potassium, rubidium and cesium, and the elements of VI. and VII. Subgroup of the Periodic Table of the Elements, in particular molybdenum, tungsten and rhenium. The chemical form in which these promoters are present or act in or on the silver-containing catalyst is not yet known.
  • these promoters are applied to the carrier material in question in the form of their salts, in particular their halides, nitrates, carboxylates, sulfates, carbonates or phosphates, their oxides or hydroxides.
  • the type of anions of the salts of the promoters used is generally of less importance for the catalytic activity of the silver catalysts doped with the promoters.
  • Salts, oxides or hydroxides which are soluble in the solvents used to impregnate the catalyst are preferably used for doping the silver catalysts which can be used in the process according to the invention.
  • Complexes or complex salts of the promoters in question can also be used, for example alkali metal molybdate, alkali metal tungstate or alkali metal rhenate or perrhenate.
  • Catalysts can be used is given below: lithium chloride, lithium bromide, lithium sulfate, lithium nitrate, Lithium carbonate, lithium phosphate, lithium hydroxide, lithium oxide, lithium molybdate, lithium tungsten, lithium rhena, lithium perhenate, lithium aceta, lithium formate, lithium citrate, lithium oxalate etc.
  • alkali metal salts alkali metal hydroxides and / or oxides optionally used together with tungsten, molybdenum or rhenium compounds as promoters.
  • the silver and the promoters can have been applied to the support material in the production of the silver-containing catalysts which can be used in the process according to the invention by the conventional processes for the preparation of catalysts, for example by the silver and the promoters falling onto the support, by drinking the support, by co-precipitating the silver and the other promoters with the carrier material, etc.
  • the order in which the silver and the promoters are deposited on the carrier material can be chosen as desired, in particular in the preparation of the catalysts which can be used according to the invention by impregnating the carrier material , it may be advantageous to drink the silver and the promoters together on the carrier material in one step or to separate the silver and promoters in two steps onto the carrier.
  • the promoter or promoters can be applied to the support before or after the silver. Other variations in the order in which the individual catalyst components are deposited on the carrier are also possible.
  • silver compounds can be used to produce the catalysts which can be used in the process according to the invention.
  • the silver-containing catalysts are preferably prepared by the impregnation process, silver compounds which dissolve in the impregnation medium, generally water or polar organic solvents, preferably protic organic solvents, are generally preferred as the silver source.
  • silver compounds are silver nitrate, silver sulfate, silver acetate, silver oxalate and other silver carboxylates.
  • Soluble complexes of silver preferably complexes of silver with nitrogen-containing bases, such as ammonia, hydrazine, urea, thiourea, guanidine or organic amines, preferably aliphatic amines, can furthermore advantageously be used to apply the silver.
  • the impregnated support can be dried at 20 to 150 ° C., preferably at 50 to 120 ° C., before the support soaked with the silver compound undergoes thermal treatment at temperatures of 150 to 600 ° C, preferably from 180 to 400 ° C for the decomposition of the soaked silver compounds to essentially elemental silver.
  • the silver-containing catalysts prepared in this way they can, if desired, still be at 200 to
  • Suitable silver-containing catalysts which can be used in the process according to the invention are e.g. the catalysts
  • the duration of this catalyst reactivation usually depends on the size of the catalyst batch and the degree of Damage to the catalyst due to coking.
  • the water content of the gas mixture used to reactivate the silver-containing catalysts is generally 5 to 95% by volume, preferably 10 to 80% by volume and particularly preferably 15 to 50% by volume, whereas the oxygen content of the reactivation gas mixture is usually 5 to 95 vol .-%, mainly 10 to 80 vol .-% and in particular 15 to 50 vol .-%.
  • a silver-containing catalyst which contained 15.4% by weight of silver, based on the total catalyst, on a support made of ⁇ -aluminum oxide, a purity of> 98%.
  • the catalyst had been doped with 245 ppm by weight of lithium and 550 ppm by weight of cesium, based on the entire catalyst.
  • the ⁇ -alumina support had a BET surface area of 0.9 m 2 / g (measured according to: Chemie-Ing.-Techn. Vol. 32, 349 (1960); Chemie-Ing.-Techn. Vol. 35, 586 (1963)), a water absorption of 0.47 ml / g (water absorption at 20 ° C.
  • a porosity or an average pore diameter both determined by the method of mercury porosimetry (measuring device: Autopore II, Model 9220 from Micromeritics) of 67% or 10.6 ⁇ m and a bulk density of 0.63 kg / 1.
  • 20 ml of the catalyst were placed in the form of grit with a grain size of 2.0 to 2.5 mm in a steel reactor and the reaction gas flowed through at the desired space velocity.
  • the reactor was electrically heated from the outside.
  • the feed gas and the product gas were analyzed by gas chromatography.
  • the conversion U of 1,3-butadiene and the selectivity S of the conversion to butadiene monoxide were calculated from the volume percentages of the individual components in the gas mixture obtained in this way:
  • the silver-containing catalyst used in the examples was produced by the following procedure:
  • the carrier material made of ⁇ -aluminum oxide 100 parts by weight of the carrier material made of ⁇ -aluminum oxide were soaked in a solution which contains the following constituents: 28.8 parts by weight of silver nitrate, 0.290 parts by weight of lithium nitrate, 0.0723 parts by weight of casium hydroxide, 25.7 Parts by weight of sec-butylamine and 6.3 parts by weight of water.
  • the impregnated support was then converted to the catalyst in a belt calcining furnace under nitrogen at 220 ° C. for 10 minutes and then heated in a chamber furnace to 300 ° C. in air for 5 hours.
  • the catalyst was stirred with a gas mixture of 20 vol .-% of 1,3-butadiene and 20 vol .-% oxygen and the balance nitrogen, at a temperature of 225 ° and at a pressure of 1.5 bar at a space velocity of 1000 _1 charged.
  • the results are listed in Table 1.
  • the catalyst was loaded with a gas mixture of 20 vol .-% of 1,3-butadiene and 20 vol .-% oxygen and the balance nitrogen, at a temperature of 220 ° C and at atmospheric pressure with a speed of 250 Jardinge ⁇ h _1.
  • the test results are shown in Table 2.
  • the catalyst was mixed with a gas mixture of 20 vol.

Abstract

The invention concerns a method of preparing 3,4-epoxy-1-butene by the gas-phase epoxidation of 1,3-butadiene by oxygen or oxygen -containing gases over silver-containing catalysts, and the isol ation of the 3,4-epoxy-1-butene from the reaction products. This is achieved by carrying out the gas-phase epoxidation in the presence of 6 to 80 mole % of steam, calculated relative to the gas mixture fed to the reactor.

Description

Verfahren zur Herstellung von 3,4-Epoxy-l-butenProcess for the preparation of 3,4-epoxy-1-butene
Beschreibungdescription
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 3,4-Epoxy-l-buten durch die Gasphasenepoxidierung von 1, 3-Butadien mittels Sauerstoff oder sauerstoffhaltigen Gasen an silberhaltigen Katalysatoren und Isolierung des 3,4-Epoxy- 1-butens aus dem Reaktionsaustrag.The present invention relates to a process for the preparation of 3,4-epoxy-1-butene by the gas phase epoxidation of 1,3-butadiene by means of oxygen or oxygen-containing gases over silver-containing catalysts and isolation of the 3,4-epoxy-1-butene from the reaction discharge .
3,4-Epoxy-l-buten, auch als Butadienmonoxid oder als Vinyloxiran bezeichnet, ist ein Zwischenprodukt zur Herstellung von bei¬ spielsweise Tetrahydrofuran, das daraus z.B. nach dem Verfahren von US-A 5 034 545 durch die Isomerisierung zu 2,5-Dihydrofuran und dessen nachfolgende Hydrierung hergestellt werden kann. Außerdem dient es zur Herstellung von 1,2-Butylenoxid (vgl. US-A 5 117 013). Für eine wirtschaftliche Produktion der zuvor genannten, in großen Mengen benötigten Chemikalien auf der Basis des Ausgangsmaterials 3,4-Epoxy-l-buten ist ein leistungsfähiges, wirtschaftliches Verfahren zur Herstellung von 3,4-Epoxy-l-buten erforderlich. Ein derartiges Verfahren ist aber bislang nicht verfügbar.3,4-epoxy-1-butene, also referred to as butadiene monoxide or vinyl oxirane, is an intermediate for the production of, for example, tetrahydrofuran, which, for example, can be prepared by the process of US Pat. No. 5,034,545 by isomerization to 2,5-dihydrofuran and its subsequent hydrogenation. It is also used for the production of 1,2-butylene oxide (cf. US Pat. No. 5,117,013). An efficient, economical process for the production of 3,4-epoxy-1-butene is required for the economical production of the aforementioned chemicals, which are required in large quantities, based on the starting material 3,4-epoxy-1-butene. Such a method is not yet available.
So beschreibt WO 89/07101 ein Verfahren zur Gasphasenepoxidierung von 1,3-Butadien mit Sauerstoff oder sauerstoffhaltigen Gasen an silberhaltigen Katalysatoren. Die dabei erzielten Ausbeuten und Selektivitäten sind anfangs recht gut, allerdings lassen die da¬ bei verwendeten silberhaltigen Katalysatoren sehr schnell in ihrer Aktivität nach und verlieren innerhalb 24 Stunden nahezuFor example, WO 89/07101 describes a process for the gas phase epoxidation of 1,3-butadiene with oxygen or oxygen-containing gases over silver-containing catalysts. The yields and selectivities achieved are initially quite good, but the silver-containing catalysts used decrease their activity very quickly and almost lose within 24 hours
90 % ihrer ursprünglichen Aktivität. Somit ist dieses Verfahren für die Herstellung von 3,4-Epoxy-l-buten im industriellen Ma߬ stab ungeeignet.90% of their original activity. This process is therefore unsuitable for the production of 3,4-epoxy-1-butene on an industrial scale.
Vermutlich wird diese Desaktivierung durch die Belegung der Kata¬ lysatoroberfläche mit Zersetzungsprodukten des Vinyloxirans ver¬ ursacht, ein Vorgang, der im folgenden als Verkokung bezeichnet wird. Unter Desaktivierung wird im folgenden, falls nicht anders angemerkt, die Desaktivierung des Silberkatalysators durch Verko- kungsprozesse bei der Vinyloxiranerzeugung verstanden, die zu ei¬ ner raschen Aktivitätsabnahme, d.h. zu einer Aktivitätsabnähme um mehr als 50 % der Anfangsaktivität innerhalb weniger Stunden oder Tage, des silberhaltigen Katalysators führt. Diese Art der Des¬ aktivierung ist von der normalen Desaktivierung des silber- haltigen Katalysators infolge von erst im Laufe von Monaten und Jahren in Erscheinung tretenden Alterungsprozessen, wie thermischen Schädigungen des Katalysators, Sinterungsvorgängen, Phasenentmischungen oder dem allmählichen Austrag von Katalysa¬ torbestandteilen, zu unterscheiden.This deactivation is presumably caused by the coating of the catalyst surface with decomposition products of vinyloxirane, a process which is referred to below as coking. In the following, unless otherwise noted, deactivation is understood to mean the deactivation of the silver catalyst by coking processes in the production of vinyloxirane, which leads to a rapid decrease in activity, ie an activity decrease by more than 50% of the initial activity within a few hours or days silver-containing catalyst leads. This type of deactivation is due to the normal deactivation of the silver-containing catalyst as a result of aging processes that only appear in the course of months and years, such as thermal damage to the catalyst, sintering processes, To distinguish phase segregation or the gradual discharge of catalyst components.
US-A 5 117 012 betrifft ein Verfahren zur Aufarbeitung des gas- formigen Reaktionsaustrags aus der Gasphasenepoxidierung von 1,3-Butadien nach dem Verfahren von WO 89/07101, in dem der heiße, gasformige Reaktionsaustrag mit Hilfe von flussigem 1,3-Butadien abgeschreckt wird. In dieser Schrift wird erwähnt, daß der Reaktorzulauf aus 1,3-Butadien, Sauerstoff und Inertgas weniger als 5 mol-%, bezogen auf den gesamten Zulauf, an Wasser enthalten soll, da andernfalls mit erheblichen Verlusten an 3,4-Epoxy-l-buten infolge Diolbildung zu rechnen sei.US Pat. No. 5,117,012 relates to a process for working up the gaseous reaction discharge from the gas phase epoxidation of 1,3-butadiene according to the process of WO 89/07101, in which the hot, gaseous reaction discharge is carried out using liquid 1,3-butadiene is deterred. In this document it is mentioned that the reactor feed from 1,3-butadiene, oxygen and inert gas should contain less than 5 mol%, based on the total feed, of water, since otherwise with considerable losses of 3,4-epoxy-1 -butene due to diol formation.
Der vorliegenden Erfindung lag nunmehr die Aufgabe zugrunde, ein Verfahren zur Gasphasenepoxidierung von 1,3-Bu adien mittelsThe present invention was based on the object of using a process for the gas phase epoxidation of 1,3-Bu adiene
Sauerstoff oder sauerstoffhaltigen Gasen zu finden, das es ermög¬ licht, 3,4-Eρoxy-l-buten im industriellen Maßstab auf wirtschaft¬ liche Weise herzustellen, wobei insbesondere die Aktivität der dazu eingesetzten Katalysatoren langfristig erhalten bleiben sollte.Finding oxygen or oxygen-containing gases which makes it possible to produce 3,4-epoxy-1-butene on an industrial scale in an economical manner, the activity of the catalysts used in particular being retained over the long term.
Dementsprechend wurde ein Verfahren zur Herstellung vonAccordingly, a process for producing
3, 4-Epoxy-l-buten durch die Gasphasenepoxidierung von 1,3-Buta- dien mittels Sauerstoff oder sauerstoffhaltigen Gasen an silber- haltigen Katalysatoren und Isolierung des 3,4-Epoxy-l-butens aus dem Reaktionsaustrag gefunden, das dadurch gekennzeichnet ist, daß man die Gasphasenepoxidierung in Gegenwart von 6 bis 80 mol-% Wasserdampf, bezogen auf das dem Reaktor zugefuhrte Gasgemisch, durchfuhrt.3, 4-epoxy-l-butene found by the gas phase epoxidation of 1,3-butadiene using oxygen or oxygen-containing gases on silver-containing catalysts and isolation of the 3,4-epoxy-l-butene from the reaction product, which is characterized in that is that the gas phase epoxidation is carried out in the presence of 6 to 80 mol% of water vapor, based on the gas mixture fed to the reactor.
Des weiteren wurde ein Verfahren zur Reaktivierung von zur Her¬ stellung von 3,4-Epoxy-l-buten durch die Gasphasenepoxidierung von 1,3-Butadien mittels Sauerstoff oder sauerstoffhaltigen Gasen verwendeter, durch Verkokung desaktivierter, silberhaltiger Kata- lysatoren gefunden, das dadurch gekennzeichnet ist, daß man die desaktivierten, silberhaltigen Katalysatoren bei Temperaturen von 100 bis 400°C mit Wasserdampf und Sauerstoff oder Sauerstoff ent¬ haltenden Gasen behandelt.Furthermore, a process for reactivating catalysts used for the production of 3,4-epoxy-1-butene by the gas phase epoxidation of 1,3-butadiene by means of oxygen or oxygen-containing gases and deactivated by coking, silver-containing catalysts, was found characterized in that the deactivated, silver-containing catalysts are treated at from 100 to 400 ° C. with water vapor and gases containing oxygen or oxygen.
Das erfindungsgemäße Verfahren ermöglicht überraschenderweise den langfristigen Betrieb der Gasphasenepoxidierung von 1,3-Butadien mit Hilfe silberhaltiger Katalysatoren, ohne daß es zu nennens¬ werten Aktivitatsverlusten der silberhalt.igen Katalysatoren in¬ folge Verkokung kommt. Darüber hinaus ermöglicht es das erfin- dungsgemaße Verfahren, bei bereits desaktivierten Katalysatoren einen Großteil ihrer Ursprungliehen Aktivität bei der Gasphasen¬ epoxidierung von 1,3-Butadien zu reaktivieren. Die Ursache für diese überraschenden Effekte eines Wasserzusatzes zum gasformigen Zulauf des Epoxidierungsreaktors ist noch nicht geklart. Erstaunlicherweise bleibt selbst im Falle eines hohen Wasserzusatzes zum gasformigen Zulauf des Epoxidierungsreaktors, die hohe Selektivität des silberhaltigen Katalysators bezuglich der Erzeugung von Vinyloxiran erhalten.The process according to the invention surprisingly enables long-term operation of the gas-phase epoxidation of 1,3-butadiene with the aid of silver-containing catalysts without any significant loss of activity of the silver-containing catalysts resulting from coking. In addition, the process according to the invention makes it possible to reactivate a large part of its original activity in the gas phase epoxidation of 1,3-butadiene in the case of catalysts which have already been deactivated. The reason for these surprising effects of adding water to the gaseous feed to the epoxidation reactor has not yet been clarified. Surprisingly, even in the case of a large amount of water being added to the gaseous feed to the epoxidation reactor, the high selectivity of the silver-containing catalyst with regard to the production of vinyloxirane is retained.
Der Wasserzusatz zum gasformigen Zulauf des Epoxidierungsreaktors betragt im allgemeinen 6 bis 80 mol-%, vorteilhaft 8 bis 70 mol-% und besonders bevorzugt 10 bis 50 mol-%, bezogen auf den ge¬ samten, gasformigen Zulauf zum Reaktor. Bei der Angabe des Was¬ serzusatzes in mol-% wird davon ausgegangen, daß sich die Gase im Gasgemisch annähernd wie ideale Gase verhalten, so daß die Angabe m mol-% praktisch einer Angabe in Vol.—% entspricht. Zweck- maßigerweise wird das Wasser in Form von Dampf zum gasformigen Zulauf dosiert, der Zusatz des Wassers mittels Zerstäubern oder anderen Vorrichtungen zur Einbringung von Wasser in einen Gas¬ strom ist ebenfalls möglich.The water added to the gaseous feed to the epoxidation reactor is generally 6 to 80 mol%, advantageously 8 to 70 mol% and particularly preferably 10 to 50 mol%, based on the total gaseous feed to the reactor. When the water additive is stated in mol%, it is assumed that the gases in the gas mixture behave approximately like ideal gases, so that the m mol% statement practically corresponds to a vol.% Statement. The water is expediently metered in the form of steam to the gaseous feed, the addition of the water by means of atomizers or other devices for introducing water into a gas stream is likewise possible.
Zur Durchfuhrung des erfindungsgemaßen Verfahrens wird ein Gas- strona, bestehend aus 1,3-Butadien, Sauerstoff, dem Wasser und ge- wunschtenfalls unter den angewandten Reaktionsbedingungen iner¬ ten, gasformigen Verdünnungsmitteln, wie Stickstoff, Argon, Koh¬ lenwasserstoffen, wie Methan oder Ethan und/oder Kohlendioxid und/oder Reaktionsmoderatoren, wie Stickstoffoxiden und/oder Ha- logenalkanen mit mindestens einem Wasserstoffatom im Molekül, wie Methylchlorid, Methylbromid, Dichlormethan, Dibrommethan, Chloro¬ form, Bromoform, Ethylchlorid, Ethylbromid, Dichlorethan, Dibrom- ethan, Vinylchlorid, Dichlorethylen, Trichlorethylen, Dichlor- propan, Dibrompropan, Dichlorpropen, Dibrompropen, Chlorbutan usw., in den Reaktor geleitet. In der Regel wird dabei ein Butadien/Sauerstoff-Molverhaitnis von 0,05 bis 40, vorzugsweise von 0,1 bis 25 und insbesondere von 0,3 bis 15 eingestellt. Der Volumenanteil von Butadien im Zulauf zum Reaktor betragt im all- gemeinen 5 bis 80 Vol.-%, vorzugsweise 10 bis 70 Vol.—% und be¬ sonders bevorzugt 15 bis 45 Vol.—% und der Volumenanteil des Sauerstoffs im Zulauf zum Reaktor betragt im allgemeinen 2 bis 80 Vol.—%, vorzugsweise 3 bis 70 Vol.-% und besonders bevorzugt 5 bis 45 Vol.-%.To carry out the process according to the invention, a gas strona consisting of 1,3-butadiene, oxygen, the water and, if desired, inert gaseous diluents, such as nitrogen, argon, hydrocarbons, such as methane or, under the reaction conditions used Ethane and / or carbon dioxide and / or reaction moderators, such as nitrogen oxides and / or halogen alkanes with at least one hydrogen atom in the molecule, such as methyl chloride, methyl bromide, dichloromethane, dibromomethane, chloroform, bromoform, ethyl chloride, ethyl bromide, dichloroethane, dibromoethane, Vinyl chloride, dichlorethylene, trichlorethylene, dichloropropane, dibromopropane, dichloropropene, dibromopropen, chlorobutane etc., passed into the reactor. As a rule, a butadiene / oxygen molar ratio of 0.05 to 40, preferably 0.1 to 25 and in particular 0.3 to 15 is set. The volume fraction of butadiene in the feed to the reactor is generally 5 to 80% by volume, preferably 10 to 70% by volume and particularly preferably 15 to 45% by volume, and the volume fraction of oxygen in the feed to the reactor is generally 2 to 80% by volume, preferably 3 to 70% by volume and particularly preferably 5 to 45% by volume.
Bevorzugte Inertgase sind Stickstoff sowie die Cι~ bis C -Alkane, besonders bevorzugt werden die Cι~ bis C -Alkane, insbesondere das Methan, als inerte, gasformige Verdünnungsmittel benutzt. Zweck- maßigerweise wird das betreffende Inertgas oder ein Gemisch aus zweien oder mehreren unter den Reaktionsbedingungen inerten Ga¬ sen, vorzugsweise aus zweien oder mehreren der zuvor genannten Inertgase, besonders bevorzugt die genannten Alkane und insbeson- dere das Methan, dem Gaszulauf in solchen Mengen zugesetzt, daß das dem Reaktor zugefuhrte Gasgemisch 2 bis 87 Vol.-%, vorzugs¬ weise 5 bis 79 Vol.-% und besonders bevorzugt 10 bis 70 Vol.-% des betreffenden Inertgases enthalt. Es wurde festgestellt, daß 5 durch die Zugabe der genannten Kohlenwasserstoffe zum Gaszulauf des erfmdungsgemäßen Verfahrens, das Sauerstoff/Butadien-Molver- haltnis auf höhere Werte als bei alleiniger Verwendung des Inert¬ gases Stickstoff eingestellt werden kann, ohne daß dieses Gemisch zundfahig, d.h. explosiv, wird. Dieser Effekt fuhrt neben wirt- 10 schaftlichen Vorteilen zu einem betrachtlichen Gewinn an Sicher¬ heit bei der Betreibung des erfindungsgemaßen Verfahrens.Preferred inert gases are nitrogen and the C 1 -C -alkanes, particularly preferably the C 1 -C -alkanes, in particular the methane, are used as inert, gaseous diluents. The inert gas in question or a mixture of two or more gases inert under the reaction conditions, preferably two or more of the aforementioned inert gases, particularly preferably the alkanes mentioned and in particular the methane added to the gas feed in such quantities that the gas mixture fed to the reactor contains 2 to 87 vol.%, preferably 5 to 79 vol.% and particularly preferably 10 to 70 vol.% of the inert gas in question. It was found that 5 by adding the hydrocarbons mentioned to the gas feed of the process according to the invention, the oxygen / butadiene molar ratio can be set to higher values than when using the inert gas nitrogen alone, without this mixture being ignitable, ie explosive , becomes. In addition to economic advantages, this effect leads to a considerable gain in safety when operating the method according to the invention.
Die Reaktionsmoderatoren, deren Zusatz zur Inhibierung der Wei- teroxidation des Vinyloxirans zu Kohlendioxid und Wasser dient, 15 werden dem Gasstrom im allgemeinen in Mengen von 0 bisThe reaction moderators, the addition of which serves to inhibit the further oxidation of vinyloxirane to carbon dioxide and water, 15 are generally present in amounts of 0 to
10.000 mol-ppm, vorzugsweise von 0,1 bis 1000 und insbesondere von 0,2 bis 100 mol-ppm, bezogen auf die gesamte Gasmischung, zudosiert.10,000 mol-ppm, preferably from 0.1 to 1000 and in particular from 0.2 to 100 mol-ppm, based on the total gas mixture.
20 Dieser Gaszulauf wird im allgemeinen bei Temperaturen von 100°C bis 400°C, vorzugsweise von 120 bis 350°C und besonders bevorzugt von 150 bis 300°C und bei einem Druck von 0,1 bis 100 bar, vor¬ teilhaft von 0,5 bis 50 bar, insbesondere von 1 bis 30 bar über den silberhaltigen Katalysator geleitet und partiell oxidiert.This gas feed is generally at temperatures from 100 ° C. to 400 ° C., preferably from 120 to 350 ° C. and particularly preferably from 150 to 300 ° C. and at a pressure from 0.1 to 100 bar, advantageously from 0 , 5 to 50 bar, in particular from 1 to 30 bar, passed over the silver-containing catalyst and partially oxidized.
25 Unter den angewandten Bedingungen sind die Reaktionsgase Buta¬ dien, Wasser und Vinyloxiran im gasformigen oder überkritischen, fluiden Zustand. Die Raumgeschwindigkeit des Gaszulaufs betragt bei der bevorzugten, kontinuierlichen Betriebsweise des Verfah¬ rens im allgemeinen 20 bis 20.000 h_1, vorzugsweise von 50 bis25 Under the conditions used, the reaction gases butadiene, water and vinyloxirane are in the gaseous or supercritical, fluid state. In the preferred, continuous mode of operation of the method, the space velocity of the gas inlet is generally 20 to 20,000 h -1 , preferably from 50 to
30 15.000 h-1 und besonders bevorzugt von 100 bis 10.000 h"1.30 15,000 h -1 and particularly preferably from 100 to 10,000 h " 1 .
Der Umsatz des Butadiens wird in der Regel auf 0,5 bis 100 mol-%, vorteilhaft auf 2 bis 80 mol-% und besonders bevorzugt auf 5 bis 20 mol-% der gesamten zugeführten 1, 3-Butadienmenge eingestellt. 35 Der Umsatz des Butadiens kann über die Raumgeschwindigkeit des Gaszulaufs, die Temperatur der Katalysatorschüttung und durch den Zusatz der halogenhaltigen Reaktionsmoderatoren gesteuert werden.The conversion of butadiene is generally adjusted to 0.5 to 100 mol%, advantageously to 2 to 80 mol% and particularly preferably to 5 to 20 mol% of the total amount of 1,3-butadiene added. 35 The conversion of butadiene can be controlled via the space velocity of the gas feed, the temperature of the catalyst bed and the addition of the halogen-containing reaction moderators.
Vorzugsweise wird das erfindungsgemaße Verfahren kontinuierlich 40 betrieben, wobei vorteilhaft Rohr- oder Rohrbundelreaktoren, in denen der Katalysator vorteilhaft in einem Festbett angeordnet ist, verwendet werden können. Diese Reaktoren werden vorzugsweise isotherm betrieben, wobei für derartige Zwecke übliche Warmetra¬ ger, z.B. Wasser, Kohlenwasserstoffe, wie Kerosin, Naphthalin 45 oder Biphenyl, und Salzschmelzen verwendet werden können. Wasser wird in der Regel als Warmetrager bevorzugt eingesetzt. Bei der isothermen Betriebsweise kann der silberhaltige Katalysa¬ tor im Festbett sowohl in einer losen Katalysatorschuttung, die von den Warmetragerrohren durchzogen wird, als auch in Rohren, die von außen thermostatisiert werden, angeordnet werden. 5The process according to the invention is preferably operated continuously, it being possible advantageously to use tubular or tube-bundle reactors in which the catalyst is advantageously arranged in a fixed bed. These reactors are preferably operated isothermally, it being possible to use customary heat carriers, for example water, hydrocarbons such as kerosene, naphthalene 45 or biphenyl, and molten salts for such purposes. Water is generally preferred as a heat carrier. In the isothermal mode of operation, the silver-containing catalyst can be arranged in the fixed bed both in a loose catalyst bed which is traversed by the heat transfer tubes and in tubes which are thermostatted from the outside. 5
Zur Aufarbeitung wird das heiße, die Katalysatorschuttung ver¬ lassende Reaktionsgas, das Vinyloxiran, nicht umgesetztes 1, 3-Butadien, gegebenenfalls Inertgase und/oder Reaktions¬ moderatoren enthalt, abgekühlt, beispielsweise mittels direktem 0 Wärmeaustausch, z.B. durch Einspritzen eines kühlen Losungs¬ mittels oder durch Eindusen eines kühlen Gases, wie Stickstoff, Luft, Kohlendioxid usw., in das heiße Reaktionsgas oder vorzugs¬ weise mittels indirektem Wärmeaustausch, z.B. durch herkömmliche Kuhler oder Wärmeaustauscher, wobei zweckmaßigerweise das heiße 5 Reaktionsgas zur Vorwarmung des Reaktorzulaufs genutzt wird. Nach der Abkühlung des Reaktionsgases kann das Vinyloxiran in ge¬ eigneter Weise, z.B. durch Kondensation, oder bevorzugt durch eine Wasche des Reaktionsgases in einem Gaswäscher mit einem ge¬ eigneten Losungsmittel aus dem Gasstrom entfernt werden. Als Lo- 0 sungsmittel wählt man zu diesem Zweck vorteilhaft solche Losungs¬ mittel aus, aus denen das Vinyloxiran und/oder das 1,3-Butadien auf einfache Art und Weise abgetrennt werden können. Ein geeigne¬ tes derartiges Losungsmittel ist z.B. 1,3-Butadien selbst (vgl. US-A 5 117 012), besonders bevorzugt wird Wasser zum Auswaschen 5 des Vinyloxirans aus dem Reaktionsgas verwendet. Wahrend sich Vi¬ nyloxiran in Wasser lost, ist 1,3-Butadien in Wasser praktisch unlöslich. In einem Gas-Flussig-Abscheider können das wasserhal¬ tige, gasformige 1,3-Butadien und die anderen wasserunlöslichen Bestandteile des Reaktionsgases von der vinyloxiranhaltigen, waß- 0 rigen Phase abgetrennt und wieder in den Reaktor zurückgeführt werden. Aus der wäßrigen Phase kann das Vinyloxiran auf einfache Weise, z.B. durch Durchleiten von Wasserdampf, Luft, Stickstoff, Kohlendioxid und/oder anderen gegenüber Vinyloxiran unter diesen Bedingungen inerten Gasen ausgetrieben und gegebenenfalls nachFor working up, the hot reaction gas leaving the catalyst bed, the vinyloxirane, unconverted 1,3-butadiene, optionally containing inert gases and / or reaction moderators, is cooled, for example by means of direct heat exchange, e.g. by injecting a cool solvent or by injecting a cool gas such as nitrogen, air, carbon dioxide etc. into the hot reaction gas or preferably by means of indirect heat exchange, e.g. by conventional coolers or heat exchangers, the hot reaction gas 5 advantageously being used for preheating the reactor feed. After the reaction gas has cooled, the vinyloxirane can be used in a suitable manner, e.g. be removed from the gas stream by condensation, or preferably by washing the reaction gas in a gas scrubber with a suitable solvent. For this purpose, the solvent used is advantageously selected from those solvents from which the vinyloxirane and / or 1,3-butadiene can be removed in a simple manner. A suitable solvent of this type is e.g. 1,3-butadiene itself (cf. US Pat. No. 5,117,012), water is particularly preferably used for washing out the vinyl oxirane from the reaction gas. While vinyl oxirane dissolves in water, 1,3-butadiene is practically insoluble in water. In a gas-liquid separator, the water-containing, gaseous 1,3-butadiene and the other water-insoluble constituents of the reaction gas can be separated off from the vinyloxirane-containing, aqueous phase and returned to the reactor. From the aqueous phase the vinyl oxirane can be easily, e.g. by passing through water vapor, air, nitrogen, carbon dioxide and / or other gases which are inert to vinyloxirane under these conditions and, if necessary, after
35 einer weiteren destillativen Reinigung in reiner Form isoliert werden.35 a further purification by distillation can be isolated in pure form.
Die Temperatur des Wassers zur Extraktion des Vinyloxirans aus dem Reaktionsaustrag wird im allgemeinen auf Temperaturen bisThe temperature of the water for extracting the vinyl oxirane from the reaction discharge is generally up to
40 100°C, vorzugsweise auf Temperaturen bis 80°C, insbesondere auf Temperaturen bis 60°C eingestellt. Zur Extraktion des Vinyloxirans aus dem Reaktionsaustrag können an sich herkömmliche Vorrichtun¬ gen verwendet werden, wie sie zur Extraktion oder Absorption von Gasen benutzt werden, z.B. Extraktionskolonnen.40 100 ° C, preferably at temperatures up to 80 ° C, especially at temperatures up to 60 ° C. For the extraction of the vinyl oxirane from the reaction discharge, conventional devices such as those used for the extraction or absorption of gases, e.g. Extraction columns.
45 Das als Nebenprodukt bei der Herstellung von Vinyloxiran entste¬ hende Kohlendioxid kann gewunschtenfalls durch eine Wasche aus dem von Vinyloxiran befreiten Reaktionsaustrag mit Hilfe geeigne¬ ter Losungs- oder Absorptionsmittel, insbesondere basisch wirken- 5 der Absorp ionsmittel, wie N-Methylpyrrolidon, N-Methyldiethanol- amm, N-Methylethanolamm, oder wäßriger Alkalime allhydrogencar- bonatlosungen, extrahiert werden. Gewunschtenfalls kann das Koh¬ lendioxid aus diesen Absorptionsflussigkeiten anschließend wieder desorbiert werden, z.B. durch Erwärmung oder Abtreiben mit Dampf 0 oder Inertgasen, und weiterverwendet werden.45 The carbon dioxide produced as a by-product in the production of vinyloxirane can, if desired, have a washing action from the reaction product freed from vinyloxirane with the aid of suitable solvents or absorbents, in particular a basic agent, such as N-methylpyrrolidone, N-methyldiethanol - Amm, N-methylethanolamm, or aqueous alkali allhydrogen carbonate solutions are extracted. If desired, the carbon dioxide can then be desorbed again from these absorption liquids, for example by heating or stripping with steam or inert gases, and can be used further.
Das solchermaßen vom Vinyloxiran und Kohlendioxid befreite Gasge¬ misch, das im wesentlichen aus 1,3-Butadien, Wasserdampf und In¬ ertgasen besteht, wird vorteilhaft wieder in den Reaktor zur Her- 5 Stellung von Vinyloxiran zurückgeführt, wobei der Gehalt des ruckgefuhrten Gases, im folgenden als Kreisgas bezeichnet, an 1, 3-Butadien, Wasserdampf, Sauerstoff, Inertgas und Reaktionsmo¬ deratoren zweckmaßigerweise durch Zudosieren dieser Gase auf ei¬ nen für die Herstellung von Vinyloxiran optimalen Gehalt einge- 0 stellt wird. Zur Vermeidung der Anreicherung von Nebenprodukten im Kreisgas kann es vorteilhaft sein, einen kleinen Anteil des Kreisgases, im allgemeinen nicht mehr als 15 Vol.-% aus dem Kreisgasstrom auszuschließen.The gas mixture freed from vinyloxirane and carbon dioxide in this way, which essentially consists of 1,3-butadiene, water vapor and inert gases, is advantageously returned to the reactor for the production of vinyloxirane, the content of the recirculated gas hereinafter referred to as circulating gas, 1, 3-butadiene, steam, oxygen, inert gas and reaction moderators is expediently set by metering in these gases to an optimum content for the production of vinyloxirane. To avoid the accumulation of by-products in the cycle gas, it can be advantageous to exclude a small proportion of the cycle gas, generally not more than 15% by volume, from the cycle gas stream.
5 Als Katalysatoren werden im erfindungsgemäßen Verfahren Silberka¬ talysatoren verwendet, die 0,1 bis 50 Gew.-% Silber, vorteilhaft 1 bis 30 Gew.-% und besonders bevorzugt 2 bis 20 Gew.-% Silber, berechnet als Ag und bezogen auf das Gesamtgewicht des Katalysa¬ tors, auf einem Tragermaterial enthalten. Pures Silber, z.B. Sil- 0 berkristallpulver oder ElektrolytSilber, kann ebenfalls verwendet werden.The catalysts used in the process according to the invention are silver catalysts which contain 0.1 to 50% by weight of silver, advantageously 1 to 30% by weight and particularly preferably 2 to 20% by weight of silver, calculated as Ag and based on the total weight of the catalyst contained on a support material. Pure silver, e.g. Silver crystal powder or electrolyte silver can also be used.
Als Tragermaterialien für derartige silberhaltige Katalysatoren können eine Vielzahl von Tragermaterialien wie Siliciumdioxid,A large number of support materials, such as silicon dioxide, can be used as support materials for such silver-containing catalysts.
35 Aluminiumoxide, Silicium-Aluminium-Mischoxide, Titanoxide,35 aluminum oxides, silicon-aluminum mixed oxides, titanium oxides,
Lanthanoxid, Magnesiumoxid, Bornitrid, Borcarbid, Siliciumnitrid, Siliciumcarbid, Zinkoxid, Zinnoxide, Eisenoxide, Calciumoxid, Bariumoxid, Strontiumoxid, Zirkoniumdioxid, Kohlenstoff, Bor¬ phosphat, Zirkoniumphosphat, Thoriumoxid, Galliumoxid, IndiumoxidLanthanum oxide, magnesium oxide, boron nitride, boron carbide, silicon nitride, silicon carbide, zinc oxide, tin oxides, iron oxides, calcium oxide, barium oxide, strontium oxide, zirconium dioxide, carbon, boron phosphate, zirconium phosphate, thorium oxide, gallium oxide, indium oxide
40 oder ahnliche Tragermaterialien, allein oder m Gemischen mit anderen Tragermaterialien dienen.40 or similar carrier materials, alone or mixed with other carrier materials.
Im allgemeinen werden Tragermaterialien benutzt, die eine BET- Oberflache von weniger als 50 m2/g, vorzugsweise weniger als 45 10 m2/g und insbesondere weniger als 2 m2/g haben. Besonders be¬ vorzugte Tragermaterialien umfassen die Aluminiumoxide, insbeson¬ dere das α-Aluminiumoxid, Zirkoniumdioxid, Mischungen aus α-Aluminiumoxid und Zirkoniumdioxid, Titandioxid, Siliciumdioxid und Siliciumcarbid. Die Porosität dieser Tragermateπalien be¬ tragt im allgemeinen 5 bis 90 %, vorzugsweise 10 bis 80 %, ge¬ messen nach dem Verfahren der Quecksilberporosimetrie.In general, carrier materials are used which have a BET surface area of less than 50 m 2 / g, preferably less than 45 10 m 2 / g and in particular less than 2 m 2 / g. Particularly preferred carrier materials include the aluminum oxides, in particular the α-aluminum oxide, zirconium dioxide, mixtures of α-alumina and zirconia, titanium dioxide, silicon dioxide and silicon carbide. The porosity of these carrier materials is generally 5 to 90%, preferably 10 to 80%, measured by the method of mercury porosimetry.
Die äußere Form der Katalysatortrager ist in der Regel im erfin- dungsgemaßen Verfahren für die Katalysatoraktivitat nicht kri¬ tisch. So können z.B. Trager in Form von Kugeln, Zylindern, Ringen, Sattelkorpern, Spiralen oder anderen Formgebungen einge- setzt werden, vorzugsweise werden Ringe, Kugeln oder Sattelkorper benutzt, die in der Regel eine ausreichende geometrische Oberfla¬ che haben und dabei einen nur niedrigen Druckverlust des die Ka¬ talysatorschuttung durchströmenden Reaktionsgases verursachen.The external shape of the catalyst supports is generally not critical for the catalyst activity in the process according to the invention. For example, Carriers in the form of balls, cylinders, rings, saddle bodies, spirals or other shapes are used, preferably rings, balls or saddle bodies are used, which generally have a sufficient geometric surface and only a low pressure loss of the Ka ¬ cause catalyst flow through reaction gas.
Vorzugsweise werden im erfindungsgemaßen Verfahren solche Silber¬ katalysatoren verwendet, die außer dem Silber und dem Trager¬ material noch 0,001 bis 10 Gew.-% an Promotoren enthalten. Ge¬ eignete Promotoren sind z.B. Alkalimetalle und Erdalkalimetalle, die Seltenerdmetalle, die Metalle der IV., V., VI., VII., VIII. und II. Nebengruppe des Periodensystems der Elemente sowieSilver catalysts which contain 0.001 to 10% by weight of promoters in addition to the silver and the carrier material are preferably used in the process according to the invention. Suitable promoters are e.g. Alkali metals and alkaline earth metals, the rare earth metals, the metals of the IV., V., VI., VII., VIII. And II. Subgroup of the periodic table of the elements as well
Kupfer, Gold und Thallium. Besonders bevorzugte Promotoren sind die Alkalimetalle und Erdalkalimetalle, insbesondere die schweren Alkalimetalle Kalium, Rubidium und Cäsium sowie die Elemente der VI. und VII. Nebengruppe des Periodensystems der Elemente, insbe- sondere Molybdän, Wolfram und Rhenium. Die chemische Form, in der diese Promotoren im oder auf dem silberhaltigen Katalysator vor¬ liegen oder wirken, ist noch nicht bekannt.Copper, gold and thallium. Particularly preferred promoters are the alkali metals and alkaline earth metals, in particular the heavy alkali metals potassium, rubidium and cesium, and the elements of VI. and VII. Subgroup of the Periodic Table of the Elements, in particular molybdenum, tungsten and rhenium. The chemical form in which these promoters are present or act in or on the silver-containing catalyst is not yet known.
Im allgemeinen werden diese Promotoren in Form ihrer Salze, ins- besondere ihrer Halogenide, Nitrate, Carboxylate, Sulfate, Carbo- nate oder Phosphate, ihrer Oxide oder Hydroxide auf das betref¬ fende Tragermaterial aufgebracht. Die .Art der Anionen der Salze der verwendeten Promotoren ist im allgemeinen von geringerer Be¬ deutung für die katalytische Aktivität der mit den Promotoren do- tierten Silberkatalysatoren. Vorzugsweise werden solche Salze, Oxide oder Hydroxide zur Dotierung der im erfindungsgemaßen Ver¬ fahren verwendbaren Silberkatalysatoren eingesetzt, die in den zur Trankung des Katalysators verwendeten Losungsmitteln loslich sind. Es können auch Komplexe oder Komplexsalze der betreffenen Promotoren verwendet werden, beispielsweise Alkalimetall-Molyb- date, Alkalimetall-Wolframate oder Alkalimetall-Rhenate oder Perrhenate.In general, these promoters are applied to the carrier material in question in the form of their salts, in particular their halides, nitrates, carboxylates, sulfates, carbonates or phosphates, their oxides or hydroxides. The type of anions of the salts of the promoters used is generally of less importance for the catalytic activity of the silver catalysts doped with the promoters. Salts, oxides or hydroxides which are soluble in the solvents used to impregnate the catalyst are preferably used for doping the silver catalysts which can be used in the process according to the invention. Complexes or complex salts of the promoters in question can also be used, for example alkali metal molybdate, alkali metal tungstate or alkali metal rhenate or perrhenate.
Eine beispielhafte Aufzahlung von Verbindungen, die als Promotoren zur Dotierung der erfindungsgemaß einsetzbarenAn exemplary listing of compounds that can be used as promoters for doping the invention
Katalysatoren benutzt werden können, wird im folgenden gegeben: Lithiumchlorid, Lithiumbromid, Lithiumsulfat, Lithiumnitrat, Lithiumcarbonat, Lithiumphosphat, Lithiumhydroxid, Lithiumoxid, Lithiummolybdat, Lithiumwolframa , Lithiumrhena , Lithiumper- rhenat, Lithiumaceta , Lithiumformiat, Lithiumeitrat, Lith um- oxalat usw. sowie die entsprechenden Salze, Hydroxide und Oxide des Natriums, Kaliums, Rubidiums und .Cäsiums, Magnesiumnitrat, Magnesiumsulfat, Magnesiumformiat, Magnesiumchlorid, Magnesium- acetat, Magnesiumeitrat usw., Calciumchlorid, Calciumbromid, Cal- ciumhydroxid, Calciumcitrat, Calciumacetat, Calciumnitrat usw., Bariumchlorid, Bariumoxid, Bariumhydroxid, Bariumnitrat, usw. Be- sonders bevorzugt werden Alkalimetallsalze, Alkalimetallhydroxide und/oder -oxide gegebenenfalls zusammen mit Wolfram-, Molyb¬ dän- oder Rheniumverbindungen als Promotoren verwendet.Catalysts can be used is given below: lithium chloride, lithium bromide, lithium sulfate, lithium nitrate, Lithium carbonate, lithium phosphate, lithium hydroxide, lithium oxide, lithium molybdate, lithium tungsten, lithium rhena, lithium perhenate, lithium aceta, lithium formate, lithium citrate, lithium oxalate etc. and the corresponding salts, hydroxides and oxides of sodium, potassium, rubidium and .Cesium, magnesium nitrate, Magnesium sulfate, magnesium formate, magnesium chloride, magnesium acetate, magnesium citrate etc., calcium chloride, calcium bromide, calcium hydroxide, calcium citrate, calcium acetate, calcium nitrate etc., barium chloride, barium oxide, barium hydroxide, barium nitrate, etc. Particularly preferred are alkali metal salts, alkali metal hydroxides and / or oxides optionally used together with tungsten, molybdenum or rhenium compounds as promoters.
Das Silber und die Promotoren können bei der Herstellung der im erfindungsgemaßen Verfahren verwendbaren silberhaltigen Kataly¬ satoren nach den herkömmlichen Verfahren zur Herstellung von Katalysatoren auf das Tragermaterial aufgebracht worden sein, beispielsweise durch Auffallen des Silbers und der Promotoren auf den Trager, durch Trankung des Tragers, durch gemeinsame Fallung des Silbers und der anderen Promotoren mit dem Tragermaterial usw. Die Reihenfolge, in der das Silber und die Promotoren auf dem Tragermaterial abgeschieden werden kann beliebig gewählt wer¬ den, insbesondere bei der Herstellung der erfindungsgemaß ver¬ wendbaren Katalysatoren durch Imprägnierung des Tragermaterials, kann es unter Umstanden vorteilhaft sein, das Silber und die Pro¬ motoren gemeinsam in einer Stufe auf das Tragermaterial aufzu¬ tranken oder Silber und Promotoren getrennt, in zwei Stufen auf den Trager abzuscheiden. Dabei können der oder die Promotoren vor oder nach dem Silber auf den Trager aufgebracht werden. Andere Variationen der Reihenfolge, in der die einzelnen Katalysator¬ bestandteile auf dem Trager abgeschieden werden, sind ebenfalls möglich.The silver and the promoters can have been applied to the support material in the production of the silver-containing catalysts which can be used in the process according to the invention by the conventional processes for the preparation of catalysts, for example by the silver and the promoters falling onto the support, by drinking the support, by co-precipitating the silver and the other promoters with the carrier material, etc. The order in which the silver and the promoters are deposited on the carrier material can be chosen as desired, in particular in the preparation of the catalysts which can be used according to the invention by impregnating the carrier material , it may be advantageous to drink the silver and the promoters together on the carrier material in one step or to separate the silver and promoters in two steps onto the carrier. The promoter or promoters can be applied to the support before or after the silver. Other variations in the order in which the individual catalyst components are deposited on the carrier are also possible.
Zur Herstellung der im erfindungsgemaßen Verfahren verwendbaren Katalysatoren können praktisch alle SilberVerbindungen benutzt werden. Da die silberhaltigen Katalysatoren vorzugsweise nach dem Impragnierverfahren hergestellt werden, sind im allgemeinen sol¬ che Silberverbindungen als Silberquelle bevorzugt, die sich im Impragniermedium, im allgemeinen Wasser oder polare organische Losungsmittel, vorzugsweise protische organische Losungsmittel, losen. Beispiele für solche Silberverbindungen sind Silbernitrat, Silbersulfat, Silberacetat, Silberoxalat und andere Silber- carboxylate. Weiterhin können losliche Komplexe des Silbers, vor¬ zugsweise Komplexe des Silbers mit stickstoffhaltigen Basen, wie Ammoniak, Hydrazm, Harnstoff, Thioharnstoff, Guanidin oder or¬ ganischen Aminen, vorzugsweise aliphatischen Ammen, vorteilhaft zur Aufbringung des Silbers verwendet werden. An die Aufbringung des Silbers und der jeweiligen Promotoren in einer oder mehreren Stufen kann sich eine Trocknung des imprägnierten Tragers bei 20 bis 150°C, vorzugsweise bei 50 bis 120°C anschließen, bevor der mit der Silberverbindung getränkte Trager einer thermischen Be- 5 handlung bei Temperaturen von 150 bis 600°C, vorzugsweise von 180 bis 400°C zwecks Zersetzung der aufgetrankten SilberVerbindungen zu im wesentlichen elementarem Silber unterworfen wird. Zur weiteren Stabilisierung der so hergestellten, silberhaltigen Katalysatoren können diese gewunschtenfalls noch bei 200 bisPractically all silver compounds can be used to produce the catalysts which can be used in the process according to the invention. Since the silver-containing catalysts are preferably prepared by the impregnation process, silver compounds which dissolve in the impregnation medium, generally water or polar organic solvents, preferably protic organic solvents, are generally preferred as the silver source. Examples of such silver compounds are silver nitrate, silver sulfate, silver acetate, silver oxalate and other silver carboxylates. Soluble complexes of silver, preferably complexes of silver with nitrogen-containing bases, such as ammonia, hydrazine, urea, thiourea, guanidine or organic amines, preferably aliphatic amines, can furthermore advantageously be used to apply the silver. At the boarding of the silver and the respective promoters in one or more stages, the impregnated support can be dried at 20 to 150 ° C., preferably at 50 to 120 ° C., before the support soaked with the silver compound undergoes thermal treatment at temperatures of 150 to 600 ° C, preferably from 180 to 400 ° C for the decomposition of the soaked silver compounds to essentially elemental silver. To further stabilize the silver-containing catalysts prepared in this way, they can, if desired, still be at 200 to
10 800°C, vorzugsweise bei 250 bis 600°C calciniert und/oder im Was¬ serstoffström reduziert werden. Die Art und Weise der Herstellung derartiger Katalysatoren ist an sich bekannt (vgl. WO 89/07101). Geeignete silberhaltige Katalysatoren, die im erfindungsgemaßen Verfahren eingesetzt werden können, sind z.B. die Katalysatoren10 800 ° C, preferably calcined at 250 to 600 ° C and / or reduced in the hydrogen flow. The manner in which such catalysts are produced is known per se (cf. WO 89/07101). Suitable silver-containing catalysts which can be used in the process according to the invention are e.g. the catalysts
15 gemäß WO 89/07101 und US-A 5 081 096.15 according to WO 89/07101 and US-A 5 081 096.
Der erfindungsgemaße Wasserzusatz zum Gaszulauf ermöglicht es überraschenderweise, das Verfahren zur Herstellung von Vinyl¬ oxiran durch die partielle Oxidation von 1,3-Butadien mit moleku-The addition of water to the gas inlet according to the invention surprisingly enables the process for the production of vinyloxirane by the partial oxidation of 1,3-butadiene with molecular
20 larem Sauerstoff in der Gasphase (Gasphasenepoxidierung) langfri¬ stig zu betreiben, ohne daß es zu einem nennenswerten Aktivitats- verlust des Katalysators infolge Verkokung kommt. Mit Hilfe des erfindungsgemäßen Wasserzusatzes zum Gaszulauf der 1,3-Butadien- Epoxidierung gelingt es sogar, silberhaltigen Katalysatoren, die20 larem oxygen in the gas phase (gas phase epoxidation) to operate long-term without there being any significant loss of activity of the catalyst as a result of coking. With the help of the water additive according to the invention for the gas feed of 1,3-butadiene epoxidation, it is even possible to use silver-containing catalysts which
25 wahrend ihrer nicht erfindungsgemäßen Verwendung als Katalysator zur Herstellung von Vinyloxiran, innerhalb weniger Stunden ihre katalytische Aktivität infolge Verkokung größtenteils eingebüßt haben, wieder den größten Teil ihrer Katalysatoraktivitat zuruck- zuverleihen, d.h. diese wieder zu reaktivieren.25 during their use, not according to the invention, as a catalyst for the production of vinyloxirane, having largely lost their catalytic activity as a result of coking within a few hours, to restore most of their catalyst activity, i.e. reactivate them again.
3030
Es ist aber auch möglich, durch Verkokung desaktivierte silber¬ haltige Katalysatoren aus der Vinyloxiran-Herstellung in einer separaten Behandlung mit Wasserdampf und Sauerstoff oder Sauer¬ stoff enthaltenden Gasen zu reaktivieren. In der Regel wird dieseHowever, it is also possible to reactivate by coking deactivated silver-containing catalysts from the production of vinyl oxirane in a separate treatment with gases containing water vapor and oxygen or oxygen. As a rule, this will
35 Reaktivierung chargenweise durchgeführt, eine kontinuierliche Reaktivierung des Katalysators durch dessen Behandlung mit Was¬ serdampf und Sauerstoff oder Sauerstoff enthaltenden Gasen, z.B. in Wirbelschichtreaktoren oder Drehrohröfen, ist aber ebenfalls möglich. Zur Reaktivierung werden über die bei der Vinyloxiran-35 reactivation carried out in batches, a continuous reactivation of the catalyst by treating it with water vapor and gases containing oxygen or oxygen, e.g. in fluidized bed reactors or rotary kilns, but is also possible. To reactivate the vinyloxirane
40 Herstellung verkokten Katalysatorchargen im Reaktor, vorzugsweise einem Rohrreaktor, Wasserdampf und Sauerstoff oder Sauerstoff enthaltende Gase bei Temperaturen von im allgemeinen 100 bis 400°C, vorzugsweise von 150 bis 300°C und. insbesondere von 180 bis 250°C und einem Druck von im allgemeinen 0,1 bis 100 bar, vorzugs-40 Production of coked catalyst batches in the reactor, preferably a tubular reactor, water vapor and oxygen or oxygen-containing gases at temperatures of generally 100 to 400 ° C, preferably 150 to 300 ° C and. in particular from 180 to 250 ° C. and a pressure of generally 0.1 to 100 bar, preferably
45 weise von 1 bis 30 bar und insbesondere von 1 bis 20 bar gelei¬ tet. Die Zeitdauer dieser Katalysatorreaktivierung hangt in der Regel von der Große der Katalysatorcharge und vom Grad der Scha- digung des Katalysators infolge der Verkokung ab. Der Wasserge¬ halt des zur Reaktivierung der silberhaltigen Katalysatoren ein¬ gesetzten Gasgemisches beträgt im allgemeinen 5 bis 95 Vol.-%, vorzugsweise 10 bis 80 Vol.-% und besonders bevorzugt 15 bis 50 Vol.-%, wohingegen der Sauerstoffgehalt des Reaktivierungsgas- gemisches in der Regel 5 bis 95 Vol.-%, vornehmlich 10 bis 80 Vol.-% und insbesondere 15 bis 50 Vol.—% beträgt. Zweckmäßi¬ gerweise wird das Reaktivierungsgasgemisch mit einer Raumge¬ schwindigkeit von 20 bis 20 000 h-1, vorzugsweise von 50 bis 15 000 h_1 und besonders bevorzugt von 100 bis 10 000 h"1 über den desaktivierten Katalysator geleitet. Mit Hilfe der erfindungsge¬ mäßen Katalysatorbehandlung kann den desaktivierten, silberhalti¬ gen Katalysatoren aus der Vinyloxiran-Herstellung wieder bis zu 60 % ihrer ursprünglichen Aktivität zurückverliehen werden.45 wise from 1 to 30 bar and in particular from 1 to 20 bar. The duration of this catalyst reactivation usually depends on the size of the catalyst batch and the degree of Damage to the catalyst due to coking. The water content of the gas mixture used to reactivate the silver-containing catalysts is generally 5 to 95% by volume, preferably 10 to 80% by volume and particularly preferably 15 to 50% by volume, whereas the oxygen content of the reactivation gas mixture is usually 5 to 95 vol .-%, mainly 10 to 80 vol .-% and in particular 15 to 50 vol .-%. Zweckmäßi¬ gerweise the reactivating gas mixture with a Raumge¬ speed is 20 to 20,000 h -1, preferably from 50 to 15,000 h _1, and particularly preferably from 100 to 10000 h "1 on the deactivated catalyst passed. With the help of erfindungsge¬ According to the catalyst treatment, the deactivated, silver-containing catalysts from the vinyloxirane production can be restored to up to 60% of their original activity.
BeispieleExamples
Es wurde in sämtlichen Beispielen ein silberhaltiger Katalysator eingesetzt, der 15,4 Gew.-% Silber, bezogen auf den gesamten Ka- talysator, auf einem Träger aus α-Aluminiumoxid, einer Reinheit von > 98 % enthielt. Zusätzlich war der Katalysator mit 245 Gew.- pp Lithium und 550 Gew.-ppm Cäsium, bezogen auf den gesamten Ka¬ talysator, dotiert worden. Der α-Aluminiumoxid-Träger hatte eine BET-Oberfläche von 0,9 m2/g (gemessen nach: Chemie-Ing.-Techn. Bd. 32, 349 (1960); Chemie-Ing.-Techn. Bd. 35, 586 (1963)), eine Wasseraufnähme von 0,47 ml/g (Wasseraufnahme bei 20°C nach 5 Minu¬ ten) , eine Porosität bzw. einen mittleren Porendurchmesser, bei¬ des bestimmt nach dem Verfahren der Quecksilberporosimetrie (Me߬ gerät: Autopore II, Modell 9220 der Fa. Micromeritics) von 67 % bzw. 10,6 μm und ein Schüttgewicht von 0,63 kg/1. 20 ml des Kata¬ lysators wurden in Form von Splitt einer Korngröße von 2,0 bis 2, 5 mm in einen stählernen Reaktor gefüllt und bei der gewünsch¬ ten Raumgeschwindigkeit mit Reaktionsgas durchströmt. Der Reaktor wurde von außen elektrisch beheizt. Das Einsatzgas und das Pro- duktgas wurden gaschromatographisch analysiert. Aus den so erhal¬ tenen Vol.-%-Anteilen der einzelnen Komponenten im Gasgemisch wurde der Umsatz U an 1,3-Butadien und die Selektivität S der Um¬ setzung zu Butadienmonoxid berechnet:In all of the examples, a silver-containing catalyst was used which contained 15.4% by weight of silver, based on the total catalyst, on a support made of α-aluminum oxide, a purity of> 98%. In addition, the catalyst had been doped with 245 ppm by weight of lithium and 550 ppm by weight of cesium, based on the entire catalyst. The α-alumina support had a BET surface area of 0.9 m 2 / g (measured according to: Chemie-Ing.-Techn. Vol. 32, 349 (1960); Chemie-Ing.-Techn. Vol. 35, 586 (1963)), a water absorption of 0.47 ml / g (water absorption at 20 ° C. after 5 minutes), a porosity or an average pore diameter, both determined by the method of mercury porosimetry (measuring device: Autopore II, Model 9220 from Micromeritics) of 67% or 10.6 μm and a bulk density of 0.63 kg / 1. 20 ml of the catalyst were placed in the form of grit with a grain size of 2.0 to 2.5 mm in a steel reactor and the reaction gas flowed through at the desired space velocity. The reactor was electrically heated from the outside. The feed gas and the product gas were analyzed by gas chromatography. The conversion U of 1,3-butadiene and the selectivity S of the conversion to butadiene monoxide were calculated from the volume percentages of the individual components in the gas mixture obtained in this way:
1,3-Butadiengehalt im Zulauf - 1,3-Butadiengehalt im Abgas • 1001,3-butadiene content in the feed - 1,3-butadiene content in the exhaust gas • 100
U [%] =U [%] =
1,3-Butadiengehalt im Zulauf Vinyloxirangehalt im Abgas 100 s [ % ;1,3-butadiene content in the feed Vinyl oxirane content in the exhaust gas 100 s [%;
1, 3-Butadιengehalt im Zulauf - 1,3-Butadιengehalt im Abgas Aufgrund der Fehlerbreite des Analysensystems muß beim Umsatzwert eine Standardabweichung von ± 1 Prozentpunkt und beim Selektivi- tatswert eine Standardabweichung von ± 2 Prozentpunkten berück¬ sichtigt werden.1, 3-butadiene content in the inlet - 1,3-butadiene content in the exhaust gas Because of the range of errors in the analysis system, a standard deviation of ± 1 percentage point must be taken into account for the sales value and a standard deviation of ± 2 percentage points for the selectivity value.
Der in den Beispielen verwendete silberhaltige Katalysator wurde nach dem folgenden Verfahren hergestellt:The silver-containing catalyst used in the examples was produced by the following procedure:
100 Gew.-teile des Tragermaterials aus α-Aluminiumoxid wurden mit einer Losung getrankt, die folgende Bestandteile enthält: 28,8 Gew.-teile Silbernitrat, 0,290 Gew.-teile Lithiumnitrat, 0,0723 Gew.-teile Casiumhydroxid, 25,7 Gew.-teile sek.-Butylamin und 6,3 Gew.-teile Wasser. Anschließend wurde der imprägnierte Trager in einem Bandcalcinierofen unter Stickstoff bei 220°C bin¬ nen 10 Minuten zum Katalysator umgewandelt und danach in einem Kammerofen 5 Stunden unter Luft auf 300°C erhitzt.100 parts by weight of the carrier material made of α-aluminum oxide were soaked in a solution which contains the following constituents: 28.8 parts by weight of silver nitrate, 0.290 parts by weight of lithium nitrate, 0.0723 parts by weight of casium hydroxide, 25.7 Parts by weight of sec-butylamine and 6.3 parts by weight of water. The impregnated support was then converted to the catalyst in a belt calcining furnace under nitrogen at 220 ° C. for 10 minutes and then heated in a chamber furnace to 300 ° C. in air for 5 hours.
Beispiel 1 (nicht erfindungsgemäß)Example 1 (not according to the invention)
Der Katalysator wurde mit einem Gasgemisch aus 20 Vol.—% 1,3-Butadien und 20 Vol.—% Sauerstoff, Rest Stickstoff, bei einer Temperatur von 225° und bei einem Druck von 1,5 bar mit einer Raumgeschwindigkeit von 1000 h_1 belastet. Die Ergebnisse sind in Tabelle 1 aufgelistet.The catalyst was stirred with a gas mixture of 20 vol .-% of 1,3-butadiene and 20 vol .-% oxygen and the balance nitrogen, at a temperature of 225 ° and at a pressure of 1.5 bar at a space velocity of 1000 _1 charged. The results are listed in Table 1.
Beispiel 2 (erfindungsgemäß)Example 2
Der nach einer Laufzeit von 24 h desaktivierte Katalysator aus Beispiel 1 wurde mit einer Gasmischung aus 20 Vol.—% 1,3-Buta¬ dien, 20 Vol.—% Sauerstoff und 8 Vol.—% Wasserdampf, Rest Stick- Stoff, bei 225°C und bei einem Druck von 1,5 bar mit einer Raumge¬ schwindigkeit von 1090 h_1 belastet. Die Versuchsergebnisse sind in Tabelle 1 aufgeführt. Tabelle 1The catalyst from Example 1, deactivated after a running time of 24 h, was mixed with a gas mixture of 20% by volume 1,3-butadiene, 20% by volume oxygen and 8% by volume water vapor, the rest being nitrogen 225 ° C and at a pressure of 1.5 bar with a Raumge¬ speed of 1090 h _1 . The test results are shown in Table 1. Table 1
Figure imgf000014_0001
Figure imgf000014_0001
Wie der Vergleich der Beispiele 1 und 2 zeigt, kann die Des¬ aktivierung eines zur Synthese von Vinyloxiran aus Butadien und Sauerstoff eingesetzten Katalysators durch Eindosierung von Wasserdampf wieder rückgängig gemacht werden.As the comparison of Examples 1 and 2 shows, the deactivation of a catalyst used for the synthesis of vinyloxirane from butadiene and oxygen can be reversed by metering in water vapor.
Beispiel 3 (nicht erfindungsgemäß)Example 3 (not according to the invention)
Der Katalysator wurde mit einem Gasgemisch aus 20 Vol.—% 1,3-Butadien und 20 Vol.—% Sauerstoff, Rest Stickstoff, bei einer Temperatur von 220°C und bei Atmosphärendruck mit einer Raumge¬ schwindigkeit von 250 h_1 belastet. Die Versuchsergebnisse sind in Tabelle 2 aufgeführt.The catalyst was loaded with a gas mixture of 20 vol .-% of 1,3-butadiene and 20 vol .-% oxygen and the balance nitrogen, at a temperature of 220 ° C and at atmospheric pressure with a speed of 250 Raumge¬ h _1. The test results are shown in Table 2.
Tabelle 2Table 2
Figure imgf000014_0002
Figure imgf000014_0002
Beispiel 4 (erfindungsgemäß)Example 4
Der Katalysator wurde mit einem Gasgemisch aus 20 Vol.-%The catalyst was mixed with a gas mixture of 20 vol.
1, 3-Butadien, 20 Vol.—% Sauerstoff und 10 Vol.—% Wasserdampf, Rest Stickstoff, bei einer Temperatur von 220°C und bei Atmos¬ phärendruck mit einer Raumgeschwindigkeit von 250 h-1 belastet. Die Versuchsergebnisse sind in Tabelle 3 dargestellt. Tabelle 31,3-butadiene, 20% by volume oxygen and 10% by volume water vapor, the rest nitrogen, at a temperature of 220 ° C. and at atmospheric pressure with a space velocity of 250 h -1 . The test results are shown in Table 3. Table 3
Figure imgf000015_0001
Figure imgf000015_0001
Wie der Vergleich der Beispiele 3 und 4 in den Tabellen 2 und 3 zeigt, kann durch Eindosieren von Wasserdampf die Desaktivierung eines zur Herstellung von Vinyloxiran aus 1,3-Butadien und Sauer- stoff verwendeten Katalysators verhindert werden, ohne daß die Selektivität für Vinyloxiran nennenswert beeinträchtigt wird. As the comparison of Examples 3 and 4 in Tables 2 and 3 shows, the deactivation of a catalyst used for the production of vinyl oxirane from 1,3-butadiene and oxygen can be prevented by metering in water vapor without the selectivity for vinyl oxirane being noteworthy is affected.

Claims

Patentansprüche Claims
1. Verfahren zur Herstellung von 3,4-Epoxy-l-buten durch die Gasphasenepoxidierung von 1,3-Butadien mittels Sauerstoff oder sauerstoffhaltigen Gasen an silberhaltigen Katalysatoren und Isolierung des 3,4-Epoxy-l-butens aus dem Reaktionsaus¬ trag, dadurch gekennzeichnet, daß man die Gasphasenepoxidie¬ rung in Gegenwart von 6 bis 80 mol-% Wasserdampf, bezogen auf das dem Reaktor zugeführte Gasgemisch, durchführt.1. Process for the preparation of 3,4-epoxy-1-butene by the gas phase epoxidation of 1,3-butadiene by means of oxygen or oxygen-containing gases over silver-containing catalysts and isolation of the 3,4-epoxy-1-butene from the reaction discharge, characterized in that the gas phase epoxidation is carried out in the presence of 6 to 80 mol% of water vapor, based on the gas mixture fed to the reactor.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man durch Verkokung desaktivierte silberhaltige Katalysatoren verwendet.2. The method according to claim 1, characterized in that one uses by coking deactivated silver-containing catalysts.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das 3, 4-Epoxy-l-buten mit Wasser aus dem Reaktionsaustrag extrahiert wird.3. The method according to claim 1, characterized in that the 3, 4-epoxy-1-butene is extracted with water from the reaction discharge.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das 3,4-Epoxy-l-buten mit Wasser einer Temperatur bis 100°C aus dem Reaktionsaustrag extrahiert wird.4. The method according to claim 1, characterized in that the 3,4-epoxy-1-butene is extracted with water at a temperature up to 100 ° C from the reaction discharge.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nicht reagiertes 1,3-Butadien aus dem Reaktionsaustrag nach Abtren¬ nung des 3 ,4-Epoxy-l-butens wieder in den Reaktor zur Her¬ stellung von 3,4-Epoxy-l-buten zurückgeführt wird.5. The method according to claim 1, characterized in that unreacted 1,3-butadiene from the reaction discharge after Abtren¬ tion of the 3, 4-epoxy-1-butene back into the reactor for the manufacture of 3,4-epoxy l-butene is recycled.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nicht reagiertes 1,3-Butadien aus dem Reaktionsaustrag nach Abtren¬ nung des 3,4-Epoxy-l-butens und nach Abtrennung des im Reak¬ tionsaustrag enthaltenen Kohlendioxids wieder in den Reaktor zur Herstellung von 3,4-Epoxy-l-buten zurückgeführt wird.6. The method according to claim 1, characterized in that unreacted 1,3-butadiene from the reaction discharge after separation of the 3,4-epoxy-1-butene and after separation of the carbon dioxide contained in the reaction discharge back into the reactor Production of 3,4-epoxy-1-butene is recycled.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Gasphasenepoxidierung in Gegenwart von 2 bis 87 Vol.—%, bezogen auf das Volumen des dem Reaktor zugeführten Gas¬ gemisches, eines Ci- bis C -Alkans ausführt.7. The method according to claim 1, characterized in that one carries out the gas phase epoxidation in the presence of 2 to 87% by volume, based on the volume of the gas mixture fed to the reactor, of a Ci to C alkane.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Gasphasenepoxidierung in Gegenwart von 2 bis 87 Vol.-% Methan, bezogen auf das Volumen des dem Reaktor zugeführten Gasgemisches, ausführt. 8. The method according to claim 1, characterized in that one carries out the gas phase epoxidation in the presence of 2 to 87 vol .-% methane, based on the volume of the gas mixture fed to the reactor.
9. Verfahren zur Reaktivierung von zur Herstellung von 3,4-Epoxy-l-buten durch die Gasphasenepoxidierung von 1,3-Butadien mittels Sauerstoff oder sauerstoffhaltigen Gasen verwendeter, durch Verkokung desaktivierter, silberhaltiger Katalysatoren, dadurch gekennzeichnet, daß man diese Kataly¬ satoren bei Temperaturen von 150 bis 500°C mit Wasser und Sauerstoff oder Sauerstoff enthaltenden Gasen behandelt. 9. A process for reactivating 3,4-epoxy-1-butene by the gas phase epoxidation of 1,3-butadiene by means of oxygen or oxygen-containing gases, used by coking deactivated, silver-containing catalysts, characterized in that these catalysts treated at temperatures of 150 to 500 ° C with water and oxygen or gases containing oxygen.
PCT/EP1993/003352 1992-12-11 1993-11-30 Method of preparing 3,4-epoxy-1-butene WO1994013653A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU56292/94A AU673713B2 (en) 1992-12-11 1993-11-30 Method of preparing 3,4-epoxy-1-butene
KR1019950702392A KR0184949B1 (en) 1992-12-11 1993-11-30 Method of preparing 3,4-epoxy-1-butene
US08/406,972 US5618954A (en) 1992-12-11 1993-11-30 Preparation of 3,4-epoxy-1-butene
DE59305421T DE59305421D1 (en) 1992-12-11 1993-11-30 METHOD FOR PRODUCING 3,4-EPOXY-1-BUTEN
JP6513730A JPH08504413A (en) 1992-12-11 1993-11-30 Method for producing 3,4-epoxy-1-butene
EP94901917A EP0677047B1 (en) 1992-12-11 1993-11-30 Method of preparing 3,4-epoxy-1-butene
CA002151391A CA2151391A1 (en) 1992-12-11 1993-11-30 Preparation of 3,4-epoxy-1-butene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4241942.5 1992-12-11
DE4241942A DE4241942A1 (en) 1992-12-11 1992-12-11 Process for the preparation of 3,4-epoxy-1-butene

Publications (1)

Publication Number Publication Date
WO1994013653A1 true WO1994013653A1 (en) 1994-06-23

Family

ID=6475082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/003352 WO1994013653A1 (en) 1992-12-11 1993-11-30 Method of preparing 3,4-epoxy-1-butene

Country Status (10)

Country Link
US (2) US5618954A (en)
EP (1) EP0677047B1 (en)
JP (1) JPH08504413A (en)
KR (1) KR0184949B1 (en)
AT (1) ATE148696T1 (en)
AU (1) AU673713B2 (en)
CA (1) CA2151391A1 (en)
DE (2) DE4241942A1 (en)
ES (1) ES2098120T3 (en)
WO (1) WO1994013653A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009850A1 (en) * 1993-10-04 1995-04-13 Eastman Chemical Company Gas phase process for the epoxidation of non-allylic olefins
US6600056B1 (en) 1999-09-21 2003-07-29 Nippon Shokubai Co., Ltd. Catalyst for production of epoxides and methods for production thereof and epoxides

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455713B1 (en) 1998-09-14 2002-09-24 Eastman Chemical Company Reactivation of Cs-promoted, Ag catalysts for the selective epoxidation of butadiene to 3,4-epoxy-1-butene
US6018061A (en) * 1999-05-05 2000-01-25 Eastman Chemical Company Process for recovering 3,4-epoxy-1-butene
US6011163A (en) * 1999-05-20 2000-01-04 Eastman Chemical Company Use of fluorinated hydrocarbons as reaction media for selective epoxidation of olefins
DE19944536C2 (en) * 1999-09-17 2002-08-29 Xcellsis Gmbh Process for the periodic reactivation of a copper-containing catalyst material
US6172245B1 (en) 1999-12-16 2001-01-09 Eastman Chemical Company Gas phase process for the epoxidation of non-allylic olefins
US6270739B1 (en) 2000-06-16 2001-08-07 Eastman Chemical Company Process for the removal of carbon dioxide from 3,4-epoxy-1-butene process recycle streams
US6392066B1 (en) 2001-02-22 2002-05-21 Sri International Epoxidation of olefins using lanthanide-promoted silver catalysts
US6509485B2 (en) 2001-02-22 2003-01-21 Sri International Preparation of epoxides from alkanes using lanthanide-promoted silver catalysts
US6596882B2 (en) 2001-07-20 2003-07-22 Eastman Chemical Company Recovery and purification of 3,4-epoxy-1-butene using water-miscible solvents
US6395913B1 (en) 2001-07-20 2002-05-28 Eastman Chemical Company Recovery and purification of 3,4-epoxy-1-butene
US6500970B1 (en) * 2001-07-20 2002-12-31 Eastman Chemical Company Recovery and purification of 3,4-epoxy-1-butene using high-boiling solvents
US6582565B1 (en) 2002-01-17 2003-06-24 Eastman Chemical Company Recovery of 3,4-epoxy-1-butene by extractive distillation
US7319156B2 (en) 2003-03-25 2008-01-15 Sumitomo Chemical Company, Limited Process for producing olefin oxide
JP4572551B2 (en) * 2003-03-25 2010-11-04 住友化学株式会社 Production method of olefin oxide
US7348444B2 (en) * 2003-04-07 2008-03-25 Shell Oil Company Process for the production of an olefin oxide
DE102004050506A1 (en) * 2004-10-15 2006-04-20 Degussa Ag Process for the preparation of olefin oxides and peroxides, reactor and its use
WO2006090754A1 (en) * 2005-02-25 2006-08-31 Sumitomo Chemical Company, Limited Process for production of olefin oxide
US7459589B2 (en) * 2005-12-22 2008-12-02 Shell Oil Company Process for the preparation of an alkylene glycol
US20070203352A1 (en) * 2005-12-22 2007-08-30 Bolk Jeroen W Method Of Installing An Epoxidation Catalyst In A Reactor, A Method Of Preparing An Epoxidation Catalyst, An Epoxidation Catalyst, A Process For The Preparation Of An Olefin Oxide Or A Chemical Derivable From An Olefin Oxide, And A Reactor Suitable For Such A Process
US8357812B2 (en) * 2005-12-22 2013-01-22 Shell Oil Company Process for preparing a rejuvenated epoxidation catalyst
US20070203350A1 (en) * 2005-12-22 2007-08-30 Bolk Jeroen W Method Of Installing An Epoxidation Catalyst In A Reactor, A Method Of Preparing An Epoxidation Catalyst, An Epoxidation Catalyst, A Process For The Preparation Of An Olefin Oxide Or A Chemical Derivable From An Olefin Oxide, And A Reactor Suitable For Such A Process
US20070213545A1 (en) * 2005-12-22 2007-09-13 Bolk Jeroen W Method Of Installing An Epoxidation Catalyst In A Reactor, A Method Of Preparing An Epoxidation Catalyst, An Epoxidation Catalyst, A Process For The Preparation Of An Olefin Oxide Or A Chemical Derivable From An Olefin Oxide, And A Reactor Suitable For Such A Process
US20070197808A1 (en) * 2005-12-22 2007-08-23 Bolk Jeroen W Method Of Installing An Epoxidation Catalyst In A Reactor, A Method Of Preparing An Epoxidation Catalyst, An Epoxidation Catalyst, A Process For The Preparation Of An Olefin Oxide Or A Chemical Derivable From An Olefin Oxide, And A Reactor Suitable For Such A Process
US7704908B2 (en) * 2005-12-22 2010-04-27 Shell Oil Company Method for reusing rhenium from a donor spent epoxidation catalyst
US20070151451A1 (en) * 2005-12-22 2007-07-05 Rekers Dominicus M Process for the cooling, concentration or purification of ethylene oxide
US20070197801A1 (en) * 2005-12-22 2007-08-23 Bolk Jeroen W Method of installing an epoxidation catalyst in a reactor, a method of preparing an epoxidation catalyst, an epoxidation catalyst, a process for the preparation of an olefin oxide or a chemical derivable from an olefin oxide, and a reactor suitables for such a process
US20070203349A1 (en) * 2005-12-22 2007-08-30 Bolk Jeroen W Method Of Installing An Epoxidation Catalyst In A Reactor, A Method Of Preparing An Epoxidation Catalyst, An Epoxidation Catalyst, A Process For The Preparation Of An Olefin Oxide Or A Chemical Derivable From An Olefin Oxide, And A Reactor Suitable For Such A Process
US20070154377A1 (en) * 2005-12-22 2007-07-05 Rekers Dominicus M Process for the removal of combustible volatile contaminant materials from a process stream
US20070203348A1 (en) * 2005-12-22 2007-08-30 Bolk Jeroen W Method Of Installing An Epoxidation Catalyst In A Reactor, A Method Of Preparing An Epoxidation Catalyst, An Epoxidation Catalyst, A Process For The Preparation Of An Olefin Oxide Or A Chemical Derivable From An Olefin Oxide, And A Reactor Suitable For Such A Process
US20080154051A1 (en) * 2006-12-20 2008-06-26 Jeroen Willem Bolk Method of installing an epoxidation catalyst in a reactor, a method of preparing an epoxidation catalyst, an epoxidation catalyst, a process for the preparation of an olefin oxide or a chemical derivable from an olefin oxide, and a reactor suitable for such a process
US20080154052A1 (en) * 2006-12-20 2008-06-26 Jeroen Willem Bolk Method of installing an epoxidation catalyst in a reactor, a method of preparing an epoxidation catalyst, an epoxidation catalyst, a process for the preparation of an olefin oxide or a chemical derivable from an olefin oxide, and a reactor suitable for such a process
DE102008028760B9 (en) * 2008-06-17 2010-09-30 Zylum Beteiligungsgesellschaft Mbh & Co. Patente Ii Kg Process for the separation of NOx from an epoxide-containing gas stream
RU2757051C2 (en) 2016-12-02 2021-10-11 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Methods for processing ethylene epoxidation catalyst and related methods for producing ethylene oxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2342791A1 (en) * 1976-03-05 1977-09-30 Ici Ltd PERFECTED PROCESS FOR THE CATALYTIC PRODUCTION OF OLEFIN OXIDE
EP0326392A1 (en) * 1988-01-28 1989-08-02 Eastman Chemical Company Selective epoxidation of olefins
US5117012A (en) * 1991-10-07 1992-05-26 Eastman Kodak Company Recovery of 3,4-epoxy-1-butene from 1,3-butadiene oxidation effluents

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB315412A (en) * 1928-07-13 1930-06-05 Cie Int Fab Essences & Petrole Improvements relating to the regeneration of catalysts
GB451130A (en) * 1934-04-24 1936-07-30 Fr De Catalyse Generalisee Soc Improved process for direct production of propylene oxide
US2353508A (en) * 1942-01-26 1944-07-11 Phillips Petroleum Co Process for reactivation of catalysts
US2479884A (en) * 1946-06-11 1949-08-23 Allied Chem & Dye Corp Process of reactivating a poisoned silver surface catalyst
SU910184A1 (en) * 1979-06-15 1982-03-07 Предприятие П/Я Р-6913 Method of regenerating rhodium containing catalyst for delkylation of alkyl benzenes
US4429055A (en) * 1982-07-06 1984-01-31 E. I. Du Pont De Nemours & Company Oxidation catalyst
US4474997A (en) * 1982-07-06 1984-10-02 E. I. Du Pont De Nemours And Company Oxidation process and catalyst therefor
US4751210A (en) * 1987-05-21 1988-06-14 Intevep, S.A. Regeneration of an iron based natural catalyst used in the hydroconversion of heavy crudes and residues
US4897498A (en) * 1988-01-28 1990-01-30 Eastman Kodak Company Selective monoepoxidation of olefins
DE3926147A1 (en) * 1989-08-08 1991-02-14 Basf Ag METHOD FOR PRODUCING 2,5-DIHYDROFURANES
US5117013A (en) * 1990-05-03 1992-05-26 Eastman Kodak Company Process for the selective hydrogenation γ, δ-epoxyalkenes to epoxyalkanes
US5235121A (en) * 1991-08-02 1993-08-10 Phillips Petroleum Company Method for reforming hydrocarbons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2342791A1 (en) * 1976-03-05 1977-09-30 Ici Ltd PERFECTED PROCESS FOR THE CATALYTIC PRODUCTION OF OLEFIN OXIDE
EP0326392A1 (en) * 1988-01-28 1989-08-02 Eastman Chemical Company Selective epoxidation of olefins
US5117012A (en) * 1991-10-07 1992-05-26 Eastman Kodak Company Recovery of 3,4-epoxy-1-butene from 1,3-butadiene oxidation effluents

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009850A1 (en) * 1993-10-04 1995-04-13 Eastman Chemical Company Gas phase process for the epoxidation of non-allylic olefins
CN1062267C (en) * 1993-10-04 2001-02-21 伊斯曼化学公司 Gas phase process for the epoxidation of non-allylic olefins
US6600056B1 (en) 1999-09-21 2003-07-29 Nippon Shokubai Co., Ltd. Catalyst for production of epoxides and methods for production thereof and epoxides

Also Published As

Publication number Publication date
DE59305421D1 (en) 1997-03-20
AU673713B2 (en) 1996-11-21
AU5629294A (en) 1994-07-04
US5618954A (en) 1997-04-08
CA2151391A1 (en) 1994-06-23
KR0184949B1 (en) 1999-05-01
KR950704285A (en) 1995-11-17
EP0677047A1 (en) 1995-10-18
ATE148696T1 (en) 1997-02-15
JPH08504413A (en) 1996-05-14
ES2098120T3 (en) 1997-04-16
EP0677047B1 (en) 1997-02-05
DE4241942A1 (en) 1994-06-16
US5905161A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
EP0677047B1 (en) Method of preparing 3,4-epoxy-1-butene
DE2820170C2 (en)
US4007135A (en) Promoted silver catalyst for producing alkylene oxides
US5407888A (en) Silver catalyst
KR0147853B1 (en) Alkylene oxide catalysts having enhanced activity and/or stability
US5801259A (en) Ethylene oxide catalyst and process
DE602004009776T2 (en) OLEFINE POXIDATION METHOD AND CATALYST FOR USE IN THE PROCESS
US4410450A (en) Process for producing fluid catalyst having good activity from coarse catalyst
JPH04298241A (en) Superhigh performance alkylene oxide catalyst having improved stability
DE2454972A1 (en) Silver olefin oxidation catalysts - supported on specified carriers and promoted esp. with barium
EP2440538B1 (en) Use of structured catalyst beds to produce ethylene oxide
EP0208180A1 (en) Process for the preparation of 1,2-dichloroethane by oxychlorination of ethylene on copper-containing supported catalysts
DD151878A5 (en) SUPPLY CATALYST OF SILVER
JPS6121208B2 (en)
EP0796839B1 (en) Process for the preparation of a mixture of amino-methyl-cyclohexanes and diamino-methyl-cyclohexanes
EP2350033B1 (en) Method for producing an alkylene oxide
US5736483A (en) Niobium or tantalum promoted silver catalyst
CN110357837B (en) Ethylene epoxidation method
EP0712334B1 (en) Epoxidation catalyst
DD203827A5 (en) METHOD FOR PRODUCING A SILVER CATALYST
EP1283206A2 (en) Process for the epoxidation of hydrocarbons
EP1155740B1 (en) Catalysts for heterogeneously catalysed reactions
EP0557833B1 (en) Process for the preparation of ethylene oxide
DE10240128A1 (en) Silver catalyst for the epoxidation of propylene
DE60200307T2 (en) Selective epoxidation of conjugated diolefins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994901917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08406972

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2151391

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1994901917

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994901917

Country of ref document: EP