WO1994011457A1 - Blocs adsorbants pour pompes a chaleur chimiques et leur procede d'obtention - Google Patents

Blocs adsorbants pour pompes a chaleur chimiques et leur procede d'obtention Download PDF

Info

Publication number
WO1994011457A1
WO1994011457A1 PCT/FR1993/001105 FR9301105W WO9411457A1 WO 1994011457 A1 WO1994011457 A1 WO 1994011457A1 FR 9301105 W FR9301105 W FR 9301105W WO 9411457 A1 WO9411457 A1 WO 9411457A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
blocks
binder
thermally conductive
blocks according
Prior art date
Application number
PCT/FR1993/001105
Other languages
English (en)
Inventor
Serge Nicolas
Jean-Louis Reymonet
Jean-Jacques Guilleminot
Francis Meunier
Original Assignee
Ceca S.A.
Elf Aquitaine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceca S.A., Elf Aquitaine filed Critical Ceca S.A.
Priority to JP6511789A priority Critical patent/JPH07504360A/ja
Priority to EP93924689A priority patent/EP0623161A1/fr
Publication of WO1994011457A1 publication Critical patent/WO1994011457A1/fr
Priority to KR1019940702428A priority patent/KR950700377A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/183Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/047Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • F25B35/04Boiler-absorbers, i.e. boilers usable for absorption or adsorption using a solid as sorbent

Definitions

  • the present invention aims at the preparation of new zeolite adsorbents for the equipment of chemical heat pumps.
  • Refrigeration systems have undergone a radical change following the questioning of refrigerants of the chlorofluorocarbon (CFC) type, designated as responsible for part of the destruction of the ozone layer and the greenhouse effect.
  • CFC chlorofluorocarbon
  • sorption systems seem well placed for the production of cold from thermal (and not electric) energy.
  • absorption systems implement the physical transformations of a liquid / gas (or vapor) couple.
  • the adsorption systems are differentiated by the use of solid / gas (or vapor) couples, such as for example the calcium chloride / methylamine couple described in an improved form in French patent n ° 2547512 (SNEA) or the zeolite / water pair described in French Patent No. 2,489,488 (Blaizat).
  • REPLACEMENT FE iLL ⁇ clean of the adsorbent bed for example zeolite and binder
  • the adsorbent bed for example zeolite and binder
  • the present invention overcomes these drawbacks with the production of zeolite blocks comprising a frame of material which is a good conductor of heat and a hydrophilic zeolite agglomerated by a zeolitisable silico-aluminous binder.
  • These new adsorbents which are in the form of cylinders several centimeters in diameter, make it possible to increase the power of thermal adsorption machines using torque zeolite / water thanks to the reduction in the duration of the adsorption / desorption cycles, machines which therefore become competitive with systems using the compression of refrigerants.
  • the zeolites useful for carrying out the invention are zeolites which are very hydrophilic and exhibit a notable exothermicity of hydration, in particular zeolites A, X or Y and certain natural zeolites such as clinoptilolite.
  • thermally conductive frames useful for carrying out the invention are on the one hand coherent structures such as sponges or metallic foams of copper, iron or nickel, and more generally of metal which is a good conductor of heat, and on the other hand the wool, mats or felts of metallic thread or carbon fibers.
  • the binders which can be used in the present invention are zeolitisable silico-aluminous pastes, in particular, the mixture of silica sol and sodium aluminate solution, the constituents of which transform by zeolitization into zeolite A.
  • zeolitisable silico-aluminous pastes in particular, the mixture of silica sol and sodium aluminate solution, the constituents of which transform by zeolitization into zeolite A.
  • the principle of use of such binders the agglomeration of zeolite powders in grains, beads or extrusions (see for example the French patent published under No. 2,632,944, CECA SA).
  • zeolitisable binder has proved to be very advantageous, not only by a better cohesion of the blocks and the increase in their content of active zeolite to the detriment of the inert binder, but also, which is more unexpected, by the improvement of thermal transfer and mass transfers of mass.
  • a zeolite powder is mixed with the binder brought to a desirable consistency by water and the rheological properties of which have been adjusted with the aid of agents usual in the matter, like modified celluloses.
  • a thermally conductive frame is placed in a compression mold, the geometry and internal dimensions of which reproduce the characteristics of the interior of the reactor which will receive the adsorbent.
  • the assembly is compressed using a piston for a few minutes.
  • the chosen binder is a zeolitisable binder
  • the block thus shaped is consolidated in its mold by zeolitization of the sodium silico-aluminate gel at approximately 100 ° C.
  • the block is then carefully removed from the mold, dried, then calcined under a stream of air at high temperature (around 550 ° C).
  • zeolite A includes both the zeolite introduced in powder form and that which results from the zeolitization of the binder, and the designation other zeolite includes hydrophilic zeolites other than zeolite A introduced in powder form, in particular X or Y zeolites or natural zeolites such as clinoptilolite.
  • the blocks according to the invention offer a thermal conductivity much higher than that of blocks made up, according to the prior art, of zeolite added with metallic particles, undoubtedly because the simple contact between zeolite particles and metallic particles constitutes an obstacle to thermal conduction substantially equivalent to contact between particles of zeolites. While the thermal conductivity of blocks formed of zeolite powder and copper beads hardly exceeds 0.3 W / m / ° C, values more than twenty times higher are obtained with blocks resulting from the agglomeration of copper and zeolite powder.
  • these blocks are characterized by a porous distribution centered around 0.8 to 1.2 ⁇ m, with a pore volume of between 0.25 and 0.80 cm 3 / g, the consequence of which is excellent permeability, of the order of 10 ⁇ 12 m 2 , characteristics ensuring the speed of the material transfers necessary for the execution of short adsorption / desorption cycles.
  • a) - 200 ml of a solution containing 30 grams of NaOH is prepared from flake soda or sodium hydroxide solution. It is brought to the boil and gradually dispersed therein 50 grams of hydrated alumina. When the solution has become clear, it is made up to 200 ml with water and allowed to cool to room temperature.
  • c) The sodium aluminate solution prepared in a) is added to the preceding dough and kneaded for approximately 10 minutes, then 350 grams of copper beads 1 mm in diameter are added. Mix again for ten minutes to disperse the beads well within the dough. d) - 40 grams of the above mixture are introduced into a mold 4 cm in diameter, and it is compressed for three minutes at 300 bars. e) - The block, still wet, is consolidated in its mold by zeolitization at 100 ° C for 4 hours in a ventilated oven. f) - The block is removed from the mold, then activated at 550 ° C for 1 hour under air sweep; this operation also makes it possible to rid the block of its carboxy-methylcellulose content.
  • thermal conductivity of such a block containing 35% by weight of copper is only 0.3 / m / ° C.
  • Phases a), b) and c) are identical to those of Example 1.
  • d) The humidity of the paste is adjusted by adding 340 grams of water so as to obtain a paste whose loss on ignition at 900 ° C. will be close to 50%.
  • e) At the bottom of a 4 cm diameter mold, there are three sheets of copper foam (ref. Resocell® M 045 from Soratec / Nitech). These sheets are covered with a layer of 6.4 grams of the paste obtained in d), then 6 sheets of copper foam, then 6.4 grams of paste and so on up to a height of 4.5 cm. . f) - The whole is compressed with a piston at a pressure of 300 bars.
  • g) The block is consolidated in its mold by zeolitization at 100 ° C for 4 hours.
  • h) The consolidated block is removed from the mold and then activated at 550 ° C for 1 hour.
  • the thermal conductivity of such a block containing 35% copper is 8 / m / ° C.
  • Example 2 The procedures of Example 2 are reproduced, with the difference that the zeolite 4A is replaced by a NaX zeolite (zeolite Siliporite® G5 from CECA S.A.). A block is thus obtained, the thermal conductivity of which is also 8 W / m / ° C.
  • zeolite Siliporite® G5 from CECA S.A.
  • Example 3 The methods of Example 3 are reproduced, with the difference that the copper foam is replaced by a nickel foam. A block is thus obtained, the thermal conductivity of which is 5.5 W / m / ° C.

Abstract

Ces blocs sont constitués d'une trame thermoconductrice, par exemple une éponge métallique, et de zéolite hydrophile agglomérées par un liant zéolitisé. Ces blocs, perméables aux gaz ont une bonne conductibilité thermique, sont moulables aux dimensions des réacteurs des pompes à chaleur chimiques à cycles d'adsorption/désorption rapides dont ils constituent l'élément actif.

Description

Blocs adsorbants pour pompes à chaleur chimiques et leur procédé d'obtention
La présente invention vise à la préparation de nouveaux adsorbants à base de zéolite pour l'équipement des pompes à chaleur chimiques.
Les systèmes de réfrigération sont entrés en pleine mutation suite à la remise en cause des fluides frigorigènes du type chlorofluorocarbones (CFC) désignés comme responsables d'une partie de la destruction de la couche d'ozone et de l'effet de serre. L'industrie chimique a réagi en mettant au point des fluides de remplacement réputés inoffensifs envers l'environnement ; une autre voie de recherche est le développement de techniques alternatives à la technologie éprouvée des compresseurs.
Parmi ces technologies alternatives, les systèmes à sorption paraissent bien placés pour la production de froid à partir d'énergie thermique (et non pas électrique) . On y distingue les systèmes à absorption et les systèmes à adsorption. Les systèmes à absorption mettent en oeuvre les transformations physiques d'un couple liquide/gaz (ou vapeur) . Les systèmes à adsorption s'en différentient par la mise en oeuvre de couples solide/gaz (ou vapeur) , comme par exemple le couple chlorure de calcium/méthylamine décrit dans une forme perfectionnée dans le brevet français n°2547512 (SNEA) ou le couple zéolite/eau décrit dans le brevet français n° 2.489.488 (Blaizat) . Ils ont l'avantage de fonctionner sur un gamme élargie de températures, mais aussi sont-ils affectés par rapport aux systèmes à absorption liquide du gros handicap d'une mauvaise qualité du transfert thermique entre le fluide caloporteur et l'adsorbant solide, généralement sous forme de billes ou d'extrudés. Il faut compenser par un encombrement plus important des machines, dont les coût d'installation et d'exploitation sont forcément plus élevés.
La résistance thermique des adsorbants solides pour systèmes à adsorption est due d'une part à la résistance
FE iLLΞ DE REMPLACEME propre du lit d'adsorbant (par exemple zéolite et liant), et d'autre part, au mauvais contact entre la surface métallique de l'échangeur et le lit fixe granulaire.
On n'a pas réussi à améliorer de façon concluante les transferts thermiques au sein d'un lit granulaire en multipliant le nombre de points de contact entre ses particules, que ce soit en diminuant la taille de ces particules, ou le composant de matériaux de granulométries différentes (cf. Guilleminot J.-J., International Solar Energy Conférence, American Society of Mechanical Engineers, Miami, Floride, avril 1990) . Par ailleurs, pour réduire la contribution d'un espace à très grande porosité à proximité de la paroi d'échange à la résistance thermique des lits granulaires, on a proposé l'utilisation de zéolites agglomérées en blocs à surfaces lisses à la dimension du réacteur qu'elles doivent remplir. Cette mise en forme de l'adsorbant destinée à améliorer les transferts thermiques aux parois (cf. Cacciola G., italian patent n°48591A/88 et Tcherney D. I., Ashraae Transactions, 1988, vol 94, pt.2) ne sont cependant pas suffisantes, car elles ne remédient pas à la résistance propre de l'adsorbant.
On n'a pas mieux résolu le problème par utilisation de lits granulaires mélangés d'adsorbants avec des particules métalliques, tels que ceux dont traite la thèse de J.M. Gurguel (Université Pierre et Marie Curie, Paris VI, 4 décembre 1989) .
La présente invention porte remède à ces inconvénients avec la réalisation de blocs de zéolite comportant une trame de matériau bon conducteur de la chaleur et une zéolite hydrophile agglomérées par un liant silico-alumineux zéolitisable. Ces nouveaux adsorbants, qui se présentent sous forme de cylindres de plusieurs centimètres de diamètre, rendent possible l'augmentation de la puissance des machines thermiques à adsorption utilisant le couple zéolite/eau grâce à la diminution de la durée des cycles d'adsorption/desorption, machines qui dès lors deviennent compétitives vis-à-vis des systèmes utilisant la compression des fluides frigorigènes.
Les zéolites utiles pour la réalisation de l'invention sont les zéolites très hydrophiles et présentant une exothermicité d'hydratation notable, en particulier les zéolites A, X ou Y et certaines zéolites naturelles comme la clinoptilolite.
Les trames thermoconductrices utiles pour la réalisation de l'invention sont d'une part des structures cohérentes comme les éponges ou les mousses métalliques de cuivre, fer ou nickel, et plus généralement de métal bon conducteur de la chaleur, et d'autre part les laines, mats ou feutres de fils métalliques ou de fibres de carbone.
Les liants utilisables dans la présente invention sont des pâtes silico-alumineuses zéolitisables, en particulier, le mélange de sol de silice et de solution d'aluminate de sodium dont les constituants se transforment par zéolitisation en zéolite A. On connaît le principe de l'utilisation de tels liants l'agglomération de poudres de zéolite en grains, billes ou extrudes (voir par exemple le brevet français publié sous le n 2.632.944, CECA S.A.).
L'utilisation d'un liant zéolitisable s'est révélée très avantageuse, non seulement par une meilleure cohésion des blocs et l'augmentation de leur teneur en zéolite active au détriment du liant inerte, mais encore, ce qui est plus inattendu, par l'amélioration du transfert thermique et des transferts de matière dans leur masse.
Pour réaliser les blocs selon l'invention, on empâte une poudre de zéolite, avec le liant amené à consistance désirable par de l'eau et dont les propriétés rhéologiques ont été réglées à l'aide d'agents habituels en la matière, comme les celluloses modifiées. Avec cette pâte, on remplit une trame thermoconductrice disposée dans un moule de compression dont la géométrie et les dimensions internes reproduisent les caractéristiques de 1'intérieur du réacteur qui recevra l'adsorbant. L'ensemble est compressé à l'aide d'un piston pendant quelques minutes. Quand le liant choisi est un liant zéolitisable, le bloc ainsi conformé est consolidé dans son moule par zéolitisation du gel de silico-aluminate de sodium à environ 100°C. Le bloc est alors démoulé avec précaution, séché, puis calciné sous courant d'air à haute température (environ 550°C) .
Les proportions relatives des divers constituants des blocs selon l'invention résultent d'un juste équilibre entre les propriétés thermoconductrices attachées à la trame, la capacité thermique attachée aux composantes zéolitiques, et la cohésion assurée par le liant. Ces proportions ne sont pas très contraignantes. Dans le cas des blocs obtenus par agglomération avec un liant zéolitisable, on recommande de se maintenir dans les limites de pourcentage en poids suivantes :
10% < zéolite A < 95%,
0 < autre zéolite < 85%,
5% < substance thermoconductrice < 50%, où la proportion de zéolite A comprend à la fois la zéolite introduite sous forme de poudre et celle qui provient de la zéolitisation du liant, et la dénomination autre zéolite englobe les zéolites hydrophiles autres que la zéolite A introduites sous forme de poudre, en particulier des zéolites X ou Y ou les zéolites naturelles comme la clinoptilolite.
Les blocs selon 1•invention offrent une conductivité thermique bien supérieure à celle des blocs constitués, selon l'art antérieur, de zéolite additionnée de particules métalliques, sans doute parce que le simple contact entre particules de zéolite et particules métalliques constitue un obstacle à la conduction thermique sensiblement équivalent au contact entre particules de zéolites. Alors que la conductivité thermique de blocs formés de poudre de zéolite et de billes de cuivre ne dépasse guère 0,3 W/m/°C, on atteint des valeurs plus de vingt fois supérieures avec des blocs résultant de l'agglomération de mousse de cuivre et de poudre de zéolite.
Outre leur bonne conductibilité thermique, ces blocs sont caractérisés par une distribution poreuse centrée autour de 0,8 à 1,2 μm, avec un volume poreux compris entre 0,25 et 0,80 cm3/g, dont la conséquence est une excellente perméabilité, de l'ordre de 10~12 m2, caractéristiques assurant la rapidité des transferts de matière nécessaire pour l'exécution de cycles courts adsorption/désorption.
Les exemples non limitatifs suivants illustrent 1'invention.
EXEMPLE 1 : préparation d'un bloc d'adsorbant à base de zéolite 4A contenant des billes de cuivre (exemple comparatif) .
a) - On prépare 200 ml d'une solution contenant 30 grammes de NaOH à partir de soude en paillettes ou de lessive de soude. On porte à l'ébullition, et on y disperse petit à petit 50 grammes d'alumine hydratée. Quand la solution est devenue claire, on la complète à 200 ml avec de l'eau et on laisse refroidir à la température ambiante. b) - Par ailleurs, on mélange pendant 10 minutes dans un malaxeur à meules, 800 grammes de poudre de zéolite 4A (équivalent anhydre) avec 25 grammes de carboxyméthyl- cellulose et 150 grammes de sol de silice à 30% en poids. On obtient ainsi une pâte homogène. c) - On ajoute à la pâte précédente la solution d'aluminate de soude préparée en a) et on malaxe environ 10 minutes, puis on ajoute 350 grammes de billes de cuivre de 1 mm de diamètre. On malaxe à nouveau pendant une dizaine de minutes pour bien disperser les billes au sein de la pâte. d) - On introduit 40 grammes du mélange précédent dans un moule de 4 cm de diamètre, et on comprime pendant trois minutes à 300 bars. e) - Le bloc encore humide est consolidé dans son moule par zéolitisation à 100°C pendant 4 heures en étuve ventilée. f) - Le bloc est démoulé, puis activé à 550°C pendant 1 heure sous balayage d'air ; cette opération permet en outre de débarrasser le bloc de son contenu en carboxy- méthylcellulose.
La conductivité thermique d'un tel bloc contenant 35% en poids de cuivre n'est que de 0,3 /m/°C.
EXEMPLE 2 : préparation d'un bloc d'adsorbant à base de zéolite 4A et de mousse de cuivre.
Les phases a) , b) et c) sont identiques à celles de 1'exemple 1.
d) - On ajuste l'humidité de la pâte par addition 340 grammes d'eau de façon à obtenir une pâte dont la perte au feu à 900°C sera proche de 50%. e) - Dans le fond d'un moule de 4 cm de diamètre, on dispose trois feuilles de mousse de cuivre (réf. Resocell® M 045 de Soratec/Nitech) . On recouvre ces feuilles d'une couche de 6,4 grammes de la pâte obtenue en d) , puis 6 feuilles de mousse de cuivre, puis 6,4 grammes de pâte et ainsi de suite jusqu'à une hauteur de 4,5 cm. f) - On comprime le tout avec un piston à une pression de 300 bars. g) - Le bloc est consolidé dans son moule par zéolitisation à 100°C pendant 4 heures. h) - Le bloc consolidé est démoulé puis activé à 550°C pendant 1 heure. La conductivité thermique d'un tel bloc contenant 35% de cuivre est de 8 /m/°C.
EXEMPLE 3
On reproduit les modalités de l'exemple 2, à la différence que la zéolite 4A est remplacée par une zéolite NaX (zéolite Siliporite® G5 de CECA S.A.). On obtient ainsi un bloc dont la conductivité thermique est également de 8 W/m/°C.
EXEMPLE 4
On reproduit les modalités de l'exemple 3, à la différence que la mousse de cuivre est remplacée par une mousse de nickel. On obtient ainsi un bloc dont la conductivité thermique est de 5,5 W/m/°C.

Claims

REVENDICATIONS
1. Blocs d'adsorbants pour pompes à chaleur chimiques constitués d'une trame thermoconductrice et de poudre de zéolite hydrophile agglomérées par un liant, caractérisés en ce que le liant est une composition silicoalumineuse zéolitisée.
2. Blocs selon la revendication 1, caractérisés en ce que leur volume poreux est compris entre 0,25 et 0,80 cm3/g.
3. Blocs selon la revendication 1, caractérisés en ce que la poudre de zéolite est une poudre d'une zéolite hydrophile prise dans le groupe constitué par les zéolites A, X, Y et les zéolites naturelles telle que la clinoptilolite.
4. Blocs selon la revendication 1, caractérisés en ce que leur trame thermoconductrice est constituée d'une mousse métallique.
5. Blocs selon la revendication 1, caractérisés en ce que leur trame thermoconductrice est constituée de laines, mats ou feutres de fils métalliques ou de fibres de carbone.
6. Procédé pour 1'obtention de blocs d•adsorbants constitués d'une zéolite hydrophile liée par un liant zéolitisé dans une trame thermoconductrice, comprenant les opérations suivantes : - empâtage d'une poudre de zéolite au moyen d'une pâte silicoalumineuse zéolitisable,
- dispersion de la pâte dans une trame thermoconductrice au sein d'un moule,
- compression du système trame/pâte, - consolidation par zéolitisation à environ 100°C,
- démoulage séchage,
- calcination à environ 550°C.
PCT/FR1993/001105 1992-11-13 1993-11-10 Blocs adsorbants pour pompes a chaleur chimiques et leur procede d'obtention WO1994011457A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6511789A JPH07504360A (ja) 1992-11-13 1993-11-10 化学的ヒートポンプ用の吸着剤ブロックとその製造方法
EP93924689A EP0623161A1 (fr) 1992-11-13 1993-11-10 Blocs adsorbants pour pompes a chaleur chimiques et leur procede d'obtention
KR1019940702428A KR950700377A (ko) 1992-11-13 1994-07-13 화학열 펌프용 흡착 블록 및 이의 제조방법(absorbent units for chemical heat pumps and process for their production)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR92/13682 1992-11-13
FR9213682A FR2698098B1 (fr) 1992-11-13 1992-11-13 Blocs adsorbants pour pompes à chaleur chimiques et leur procédé d'obtention.

Publications (1)

Publication Number Publication Date
WO1994011457A1 true WO1994011457A1 (fr) 1994-05-26

Family

ID=9435524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/001105 WO1994011457A1 (fr) 1992-11-13 1993-11-10 Blocs adsorbants pour pompes a chaleur chimiques et leur procede d'obtention

Country Status (6)

Country Link
EP (1) EP0623161A1 (fr)
JP (1) JPH07504360A (fr)
KR (1) KR950700377A (fr)
CA (1) CA2126992A1 (fr)
FR (1) FR2698098B1 (fr)
WO (1) WO1994011457A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003979B1 (en) 2000-03-13 2006-02-28 Sun Microsystems, Inc. Method and apparatus for making a sorber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9502292D0 (en) * 1995-02-06 1995-03-29 Bratton Graham J Adsorbent material
DE19730136A1 (de) * 1997-07-14 1999-01-21 Electrolux Leisure Appliances Gerät der Klimatechnik sowie dessen Komponenten
WO2010068326A1 (fr) * 2008-12-10 2010-06-17 Uop Llc Milieu adsorbant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2103509A (en) * 1982-06-02 1983-02-23 Exxon Research Engineering Co Adsorbents or sorbents for heat pumps
DE3347700A1 (de) * 1983-12-31 1985-07-11 Fritz Dipl.-Ing. Kaubek Zeolithformlinge mit hoher waermeleitung und verfahren zur herstellung
WO1989012603A2 (fr) * 1988-06-17 1989-12-28 Ceca S.A. Granule de zeolites a liant zeolitique
US5120694A (en) * 1989-07-28 1992-06-09 Uop Method of coating aluminum substrates with solid adsorbent
DE4112358A1 (de) * 1991-04-16 1992-10-22 Bayerische Motoren Werke Ag Zeolithformling mit einem metalltraeger
JPH1048194A (ja) * 1996-08-03 1998-02-20 Horiba Ltd 元素分析装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2103509A (en) * 1982-06-02 1983-02-23 Exxon Research Engineering Co Adsorbents or sorbents for heat pumps
DE3347700A1 (de) * 1983-12-31 1985-07-11 Fritz Dipl.-Ing. Kaubek Zeolithformlinge mit hoher waermeleitung und verfahren zur herstellung
WO1989012603A2 (fr) * 1988-06-17 1989-12-28 Ceca S.A. Granule de zeolites a liant zeolitique
US5120694A (en) * 1989-07-28 1992-06-09 Uop Method of coating aluminum substrates with solid adsorbent
DE4112358A1 (de) * 1991-04-16 1992-10-22 Bayerische Motoren Werke Ag Zeolithformling mit einem metalltraeger
JPH1048194A (ja) * 1996-08-03 1998-02-20 Horiba Ltd 元素分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 16, no. 434 (M - 1308) 10 September 1992 (1992-09-10) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003979B1 (en) 2000-03-13 2006-02-28 Sun Microsystems, Inc. Method and apparatus for making a sorber

Also Published As

Publication number Publication date
EP0623161A1 (fr) 1994-11-09
KR950700377A (ko) 1995-01-16
JPH07504360A (ja) 1995-05-18
FR2698098A1 (fr) 1994-05-20
CA2126992A1 (fr) 1994-05-26
FR2698098B1 (fr) 1994-12-16

Similar Documents

Publication Publication Date Title
Srivastava et al. A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems
US6113673A (en) Gas storage using fullerene based adsorbents
US7456131B2 (en) Increased thermal conductivity monolithic zeolite structures
Yuan et al. Inorganic composite sorbents for water vapor sorption: A research progress
WO2019105356A1 (fr) Matériau composite et procédé de préparation associé
CN112691645B (zh) 一种碳气凝胶/金属有机骨架复合材料及其制备方法和在气体存储中的应用
Rocky et al. Recent advances of composite adsorbents for heat transformation applications
CN101961644B (zh) 一种氯化物-碳质骨架复合吸附剂及其制备方法
JP2017532283A (ja) 天然炭水化物からの微多孔質炭素吸着剤
Du et al. Synthesis of mechanically robust porous carbon monoliths for CO2 adsorption and separation
US9579627B2 (en) Carbon molecular sieve and pellet compositions useful for C2-C3 alkane/alkene separations
JPH04506631A (ja) 活性複合体及び反応媒体としての該複合体の使用
JP3634114B2 (ja) 成形用吸着剤の製造方法と、これを用いた一体成形構造の吸着熱交換器とその製造方法
Najafi et al. Effect of binder on CO2, CH4, and N2 adsorption behavior, structural properties, and diffusion coefficients on extruded zeolite 13X
CN113332958A (zh) 一种含氮铝基金属-有机框架材料的成型方法及其空气吸水应用
CN106076260A (zh) 一种金属有机骨架‑氧化石墨复合材料的室温快速制备方法
Mohapatra et al. Salt in matrix for thermochemical energy storage-A review
JPH07257917A (ja) 活性複合体の製造方法及び該方法により製造された活性複合体
WO1994011457A1 (fr) Blocs adsorbants pour pompes a chaleur chimiques et leur procede d&#39;obtention
CN114632479A (zh) 一种石墨烯/纳米纤维素/聚乙烯亚胺气凝胶的制备方法
EP3366748B1 (fr) Matériau composite pour stockage thermochimique et procédé permettant de former un matériau composite
Yang et al. One-step fabrication of size-controllable, biowaste-templated Li4SiO4 spherical pellets via freeze-drying method for cyclic CO2 capture
JP4663044B2 (ja) ガス吸脱着反応材用伝熱促進材および伝熱性に優れたガス吸脱着反応材
Wang et al. Property and Energy Conversion Technology of Solid Composite Sorbents
JP2004148312A (ja) (CFx)n含有吸着剤組成物の形成方法、該形成方法を実施する際に用いられる中間体物質、及びガス流からフッ素含有ガスを優先的に分離するために該組成物を用いる方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2126992

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993924689

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1994 256449

Country of ref document: US

Date of ref document: 19941025

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1993924689

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1996 732834

Country of ref document: US

Date of ref document: 19961015

Kind code of ref document: A

WWW Wipo information: withdrawn in national office

Ref document number: 1993924689

Country of ref document: EP