WO1994010277A1 - Compositions detergentes empechant le transfert des teintures - Google Patents

Compositions detergentes empechant le transfert des teintures Download PDF

Info

Publication number
WO1994010277A1
WO1994010277A1 PCT/US1993/009936 US9309936W WO9410277A1 WO 1994010277 A1 WO1994010277 A1 WO 1994010277A1 US 9309936 W US9309936 W US 9309936W WO 9410277 A1 WO9410277 A1 WO 9410277A1
Authority
WO
WIPO (PCT)
Prior art keywords
moieties
phenylene
moiety
dye transfer
compounds
Prior art date
Application number
PCT/US1993/009936
Other languages
English (en)
Inventor
Abdennaceur Fredj
James Pyott Johnston
Régine Labeque
Christiaan Arthur Thoen
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK92203287.5T priority Critical patent/DK0594893T3/da
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to KR1019950701582A priority patent/KR100329878B1/ko
Priority to AU53632/94A priority patent/AU669029B2/en
Priority to JP6511120A priority patent/JPH08502547A/ja
Priority to US08/416,678 priority patent/US5597795A/en
Priority to BR9307320A priority patent/BR9307320A/pt
Priority to PL93308544A priority patent/PL175437B1/pl
Publication of WO1994010277A1 publication Critical patent/WO1994010277A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/75Amino oxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters or polycarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3792Amine oxide containing polymers

Definitions

  • the present invention relates to a composition and a process for inhibiting dye transfer between fabrics during washing.
  • Copending EP Patent Application 92202168.8 describes dye transfer inhibiting compostions comprising polyamine N-oxides containing polymers.
  • a process is also provided for laundering operations involving colored fabrics.
  • Terephthalate-based soil release polymers have also been described in the art, for instance in GB 2 137 221, US 4,116,885, US ,132,680, EP 185 427, EP 199 403, EP 241 985 and EP 241 984.
  • the present invention relates to inhibiting dye transfer compositions comprising.
  • compositions of the present invention comprise as essential elements polyamine N-oxide polymers (A) and a terephtalate-based polymer (B).
  • the polyamine N-oxide polymers contain units having the following structure formula :
  • P is a polymerisable unit, whereto the N-O group can be attached to or wherein the N-O group forms part of the polymerisable unit or a combination of both.
  • A is , , , -O-,-S- ; x is or 0 or 1;
  • R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups
  • the N-O group can be represented by the following general structures :
  • R1, R2, R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.
  • the N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
  • Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • Another class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group is attached to the R-group.
  • polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.
  • Preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is attached to said R groups.
  • R groups can be aromatic such as phenyl.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
  • the amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10 : 1 to 1: 1000000.
  • the amount of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by appropriate degree of N- oxidation .
  • the ratio of amine to amine N-oxide is from 3:1 to 1:1000000.
  • the polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide or not.
  • the amine oxide unit of the polyamine N-oxides has a PKa ⁇ 10, preferably PKa ⁇ 7, more preferred PKa ⁇ 6.
  • the polyamine oxides can be obtained in almost any degree of polymerisation.
  • the degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
  • the average molecular weight is within the range of 500 to 1000,000 ; more preferred 1000 to 500,000 ; most preferred 5000 to 100,000.
  • the polyamine N-oxides of the present invention are typically present from 0.01 to 10% , more preferably from 0.05 to 1%, most preferred from 0.05 to 0.5 % by weight of the dye transfer inhibiting composition.
  • terephtalate-based soil release polymers onto the fabrics is improved by the polyamine N-oxide polymers.
  • the soil release polymer adsorbs better onto the surface of the fabrics immersed in the wash solution.
  • the backbone structure is important to the adsorption of the polymers on the fabrics while the end groups confer the soil release properties.
  • the adsorbed polyester then forms a film onto the fabrics which prevents the fabric from bleeding.
  • the said combination of terephthalate-base polymers and polyamine N-oxide containing polymers allows us to formulate dye transfer inhibiting compositions which are very efficient in preventing colour-bleeding and in eliminating transfer of solubilized or suspended dyes.
  • compositions according to the present invention comprise from 0.01 % to 10 % by weight of the total dye transfer inhibiting composition, preferably from 0.05 % to 5 % of a terephthalate-based soil release polymer.
  • soil release polymers have been extensively described in the art , for instance in US 4,116,885, US 4,132,680, EP 185 427, EP 199 403, EP 241 985 and EP 241 984.
  • Suitable polymers for use herein include polymers of the formula :
  • the moiety ⁇ (A-R 1 -A-R 2 ) u (A-R 3 -A-R 2 ) v PA-R 4 -A forms the oligomer or polymer backbone of the compounds.
  • the linking A moieties are essentially or moieties, i.e. the compounds of the present invention are polyesters.
  • the term "the A moieties are essential ly or moieties” refers to compounds where the A moieties consist entirely of moieties or , or are partially substituted with linking moieties such as or
  • linking moieties A consist entirely of (i.e., comprise 100 ⁇ ) moieties or , i.e., each A is either or
  • the R 1 moieties are essentially 1,4-phenylene moieties.
  • the term "the R 1 moieties are essentially 1,4- phenylene moieties” refers to compounds where the R 1 moieties consist entirely of 1,4-phenylene moieties, or are partially substituted with other arylene or alkarylene moieties, alkylene moieties, alkenylene moieties, or mixtures thereof.
  • Arylene and alkarylene moieties which can be partially substituted for 1,4- phenylene include 1,3-phenylene, 1,2-phenylene, 1,8-naphthylene, 1,4-naphthylene, 2,2-biphenylene, 4,4'-biphenylene and mixtures thereof.
  • Alkylene and alkenylene moieties which can be partially substituted include ethylene, 1,2-propylene, 1,4-butylene, 1,5-pentylene, 1,6-hexamethylene, 1,7-heptamethylene, 1,8-octamethylene, 1,4-cyclohexylene, and mixtures thereof.
  • the degree of partial substitution with moieties other than 1,4-phenylene should be. such that the soil release properties of the compound are not adversely affected to any great extent.
  • the degree of partial substitution which can be tolerated will depend upon the backbone length of the compound, i.e., longer backbones can have greater partial substitution for 1,4-phenylene moieties.
  • compounds where the R 1 comprise from about 50 to 100% 1,4-phenylene moieties (from 0 to about 50% moieties other than 1,4-phenylene) have adequate soil release activity.
  • polyesters made according to the present invention with a 40:60 mole ratio of isophthalic (1,3-phenylene) to terephthalic (1,4-phenylene) acid have adequate soil release activity.
  • the R 1 moieties consist entirely of (i.e., comprise 100%) 1,4-phenylene moieties, i.e. each R 1 moiety is 1,4-phenylene.
  • the R 2 moieties are essentially ethylene moieties, or substituted ethylene moieties having C 1 -C 4 alkyl or alkoxy substitutents.
  • the term "the R 2 moieties are essentially ethylene moieties, or substituted ethylene moieties having C 1 -C 4 alkyl or alkoxy substituents" refers to compounds of the present invention where the R 2 moieties consist entirely of ethylene, or substituted ethylene moieties, or are partially substituted with other compatible moieties.
  • moieties examples include linear C 3 -C 6 alkylene moieties such as 1,3-propylene, 1,4-butylene, 1,5-pentylene or 1,6-hexamethylene, 1,2-cycloalkylene moieties such as 1,2-cyclohexylene, 1,4-cycloalkylene moieties such as 1,4-cyclohexylene and 1,4-dimethylene-cyclohexylene, polyoxyalkylated 1,2-hydroxyalkylenes such as -CH 2 -CH- , and oxyalkylene moieties such as
  • the degree of partial substitution with these other moieties should be such that the soil release properties of the compounds are not adversely affected to any great extent.
  • the degree of partial substitution which can be tolerated will depend upon the backbone length of the compound, i.e., longer backbones can have greater partial substitution.
  • compounds where the R 2 comprise from about 20 to 100% ethylene, or substituted ethylene moieties (from 0 to about 80% other compatible moieties) have adequate soil release activity.
  • polyesters made according to the present invention with a 75:25 mole ratio of diethylene glycol (-CH 2 CH 2 OCH 2 CH 2 -) to ethylene glycol (ethylene) have adequate soil release activity.
  • R 2 comprises from about 80 to 100% ethylene, or substituted ethylene moieties, and from 0 to about 20% other compatible moieties.
  • suitable ethylene or substituted ethylene moieties include ethylene, 1,2-propylene, 1,2-butylene,
  • R 2 moieties are essentially ethylene moieties
  • 1,2-propylene moieties or mixtures thereof Inclusion of a greater percentage of ethylene moieties tends to improve the soil release activity of the compounds. Surprisingly, inclusion of a greater percentage of 1,2-propylene moieties tends to improve the water solubility of the compounds.
  • suitable substituted C 2 -C 18 hydrocarbylene moieties can include substituted Cg-C.- alkylene, alkenylene, arylene, alkarylene and like moieties.
  • the substituted alkylene or alkenylene moieties can be linear, branched, or cyclic.
  • the R 3 moieties can be all the same (e.g. all substituted arylene) or a mixture (e.g. a mixture of substituted arylenes and substituted alkylenes).
  • R 3 moieties are those which are substituted 1,3-phenylene moieties.
  • the substituted R 3 moieties preferably have only one - SO 3 M,
  • M can be H or any compatible water-soluble cation. Suitable water soluble cations include the water soluble alkali metals such as potassium
  • R 1 and R 2 are each a C 1 -C 20 hydrocarbyl group (e.g. alkyl, hydroxyalkyl) or together form a cyclic or heterocyclic ring of from 4 to 6 carbon atoms (e.g. piperidine, morpholine); R 3 is a
  • R 4 is H (ammonium) or a C 1 -C 20 hydrocarbyl group (quat amine).
  • Typical substituted ammonium cationic groups are those where R 4 is H (ammonium) or C 1 -C 4 alkyl, especially methyl (quat amine); R 1 is C 10 -C 18 alkyl, especially
  • R 2 and R 3 are each C 1 -C 4 alkyl, especially methyl.
  • R 3 moieties having -A ⁇ (R 2 -A-R 4 -A) ⁇ w R 2 -A moieties provide crossl inked backbone compounds. Indeed, syntheses used to make the branched backbone compounds typically provide at least some crossl inked backbone compounds.
  • the moieties -(R 5 O)- and -(CH(Y)CH 2 O)- of the moieties ⁇ (R 5 O) m (CH(Y)CH 2 O) n ⁇ - and ⁇ (OCH(Y)CH 2 ) n (OR 5 ) m ⁇ can be mixed together or preferably form blocks of -(R 4 O)- and -(CH(Y)CH 2 O)- moieties.
  • the blocks of -(R 4 O)- moieties are located next to the backbone of the compound.
  • the moiety -R 2 -A-R 6 - is 1; also, the moiety -R 2 -A-R 6 - is preferably located next to the backbone of the compound.
  • the preferred C 3 -C 4 alkylene is C 3 H 6 (propylene); when R 5 is C 3 -C 4 alkylene, m is preferably from 0 to about 5 and is most preferably 0.
  • R 6 is preferably methylene or 1,4-phenylene.
  • the moiety -(CH(Y)CH 2 O)- preferably comprises at least about 75% by weight of the moiety ⁇ (R 5 O) m (CH(Y)CH 2 O) n ⁇ and most preferably 100% by weight (m is 0).
  • the Y substituents of each moiety ⁇ (R 5 O) m (CH(Y)CH 2 O) n ⁇ are the ether moiety -CH 2 (OCH 2 CH 2 ) p O-X, or are, more typically, a mixture of this ether moiety and H; p can range from 0 to 100, but is typically 0.
  • moiety -(CH(Y)CH 2 O) - can be represented by the following moiety:
  • n. is at least 1 and the sum of n 1 + n 2 is the value for n.
  • n. has an average value of from about 1 to about 10.
  • X can be H, C 1 -C 4 alkyl or , wherein R 7 is C 1 -C 4 alkyl.
  • X is preferably methyl or ethyl, and most preferably methyl.
  • the value for each n is at least about 6, but is preferably at least about 10.
  • the value for each n usually ranges from about 12 to about 113. Typically, the value for each n is in the range of from about 12 to about 43.
  • the maximum value for u + v is generally determined by the process by which the compound is made, but can range up to about 25, i.e. the compounds of the present invention are oligomers or low molecular weight polymers.
  • polyesters used in fiber making typically have a much higher molecular weight, e.g. have from about 50 to about 250 ethylene terephthalate units.
  • the sum of u + v ranges from about 3 to about 10 for the compounds of the present invention.
  • the R 3 moieties have the substituent -A ⁇ (R 2 - A-R 4 -A) ⁇ w ⁇ (R 5 O) m (CH(Y)CH 2 O) n ⁇ X (branched backbone compounds) or -A ⁇ (R 2 -A-R 4 -A) ⁇ w R 2 -A- (crossl inked backbone compounds), the value for w is typically at least 1 and is determined by the process by which the compound is made. For these branched and crossl inked backbone compounds the value for u + v + w is from about 3 to about 25.
  • Preferred compounds in this class of polymers are block polyesters having the formula:
  • R 1 moieties are all 1,4-phenylene moieties;
  • the R 2 moieties are essentially ethylene moieties, 1,2-propylene moieties or mixtures thereof;
  • R 3 moieties are all potassium or preferrably sodium 5-sulfo-1,3-phenylene moieties or substituted
  • R 4 moieties are R 1 or R 3 moieties, or mixtures thereof; each X is ethyl or preferably methyl; each n, is from 1 to about 5; the sum of each n 1 + n 2 is from about 12 to about 43; when w is 0, u + v is from about 3 to about 10; when w is at least
  • u + v + w is from about 3 to about 10.
  • Particularly preferred block polyesters are those where v is
  • u typically ranges from about 3 to about
  • the moiety - ⁇ (A-R 1 -A-R 2 ) u (A-R 1 -A-R 3 ) v ⁇ -A-R 1 -A- forms the oligomer or polymer backbone of the compounds.
  • Groups X- ⁇ (OCH 2 CH(Y)) n (OR 4 ) m ⁇ - and ⁇ (R 4 O) m (CH(Y)CH 2 O) n ⁇ X are generally connected at the ends of the oligomer/polymer backbone.
  • the linking A moieties are essentially or moieties, i.e. the compounds of the present invention are polyesters.
  • the term "the A moieties are essentially or moieties" refers to compounds where the A moieties consist entirely of moieties or , or are partially substituted with linking moieties such as or
  • linking moieties A consist entirely of (i.e., comprise 100%) moieties or , i.e., each A is either or
  • the R 1 moieties are essentially 1,4-phenylene moieties.
  • the term "the R 1 moieties are essentially 1,4- phenylene moieties” refers to compounds where the R moieties consist entirely of 1,4-phenylene moieties, or are partially substituted with other arylene or alkarylene moieties, alkylene moieties, alkenylene moieties, or mixtures thereof.
  • Arylene and alkarylene moieties which can be partially substituted for 1,4- phenylene include 1,3-phenylene, 1,2-phenylene, 1,8-naphthylene, 1,4-naphthylene, 2,2-biphenylene, 4,4'-biphenylene and mixtures thereof.
  • Alkylene and alkenylene moieties which can be partially substituted include ethylene, 1,2-propylene, 1,4-butylene, 1,5-pentylene, 1,6-hexamethylene, 1,7-heptamethylene, 1,8-octamethylene, 1,4-cyclohexylene, and mixtures thereof.
  • arylene, alkarylene, alkylene and alkenylene moieties can be unsubstituted or can have at least one -SO 3 M,-COOM or -A-R 7 ⁇ A-R 1 -A-R 7 -O ⁇ w X substituent or at least one moiety
  • R 7 is the moiety R 2 or R 3 ; and w is 0 or at least 1.
  • these substituted R 1 moieties have only one -SO 3 M, -COOM or -A-R 7
  • M can be H or any compatible water-soluble cation. Suitable water-soluble cations include the water-soluble alkali metals such as potassium (K + ) and especially sodium (Na + ), as well as ammonium (NH 4 + ). Also suitable are substituted ammonium cations having the formula:
  • R 1 and R 2 are each a C 1 -C 20 hydrocarbyl group (e.g. alkyl, hydroxyalkyl) or together form a cyclic or heterocyclic ring of from 4 to 6 carbon atoms (e.g. piperidine, morpholine); R 3 is a
  • R 4 is H (ammonium) or a C 1 -C 20 hydrocarbyl group (quat amine).
  • Typical substituted ammonium cationic groups are those where R 4 is H (ammonium) or C 1 -C 4 alkyl, especially methyl (quat amine); R 1 is C 10 -C 18 alkyl, especially
  • R 2 and R 3 are each C 1 -C 4 alkyl, especially methyl.
  • the R 1 moieties having -A-R 7 ⁇ A-R 1 -A-R 7 -O] w X substituents provide branched backbone compounds.
  • the R 1 moieties having -A-R 7 ⁇ A-R 1 -A-R 7 -O] w X substituents provide branched backbone compounds.
  • the R 1 moieties having -A-R 7 ⁇ A-R 1 -A-R 7 -O] w X substituents provide branched backbone compounds.
  • the R 1 moieties having -A-R 7 ⁇ A-R 1 -A-R 7 -O] w X substituents provide branched backbone compounds.
  • the R 1 moieties having -A-R 7 ⁇ A-R 1 -A-R 7 -O] w X substituents provide branched backbone compounds.
  • A- moieties provide cross-linked backbone compounds. Indeed, syntheses used to make the branched backbone compounds typically provide at least some cross-linked backbone compounds.
  • the degree of partial substitution with moieties other than 1,4-phenylene should be such that the soil release properties of the compound are not adversely affected to any great extent.
  • the degree of partial substitution which can be tolerated will depend upon the backbone length of the compound, i.e., longer backbones can have greater partial substitution for 1,4-phenylene moieties.
  • compounds where the R 1 comprise from about 50 to 100% 1,4-phenylene moieties (from 0 to about 50% moieties other than 1,4-phenylene) have adequate soil release activity.
  • the R 1 moieties consist entirely of (i.e., comprise 100%) 1,4-phenylene moieties, i.e. each R 1 moiety is 1,4-phenylene.
  • the R 2 moieties are essentially substituted ethylene moieties having C 1 -C 4 alkyl or alkoxy substitutents.
  • the term "the R 2 moieties are essentially substituted ethylene moieties having C 1 -C 4 alkyl or alkoxy substituents” refers to compounds of the present invention where the R 2 moieties consist entirely of substituted ethylene moieties, or are partially replaced with other compatible moieties.
  • moieties examples include linear C 2 -C 8 alkylene moieties such as ethylene, 1,3-propylene, 1,4-butylene, 1,5-pentylene or 1,6-hexamethylene, 1,2-cycloalkylene moieties such as 1,2-cyclohexylene, 1,4-cycloalkylene moieties such as 1,4-cyclohexylene and 1,4-dimethylene-cyclohexylene, polyoxyalkylated 1,2-hydroxyalkylenes such as and oxyalkylene moieties such as
  • the degree of partial replacement with these other moieties should be such that the soil release and solubility properties of the compounds are not adversely affected to any great extent.
  • the degree of partial replacement which can be tolerated will depend upon the soil release and solubility properties desired, the backbone length of the compound, (i.e., longer backbones generally can have greater partial replacement), and the type of moiety involved (e.g., greater partial substitution with ethylene moieties generally decreases solubility).
  • compounds where the R 2 corvrise from about 20 to 100% substituted ethylene moieties (from 0 to about 80% other compatible moieties) have adequate soil release activity. However, it is generally desirable to minimize such partial replacement for best soil release activity and solubility properties.
  • R 2 comprises from about 80 to 100% substituted ethylene moieties, and from 0 to about 20% other compatible moieties.
  • suitable substituted ethylene moieties include
  • R 2 moieties are essentially 1,2-propylene moieties.
  • the R 3 moieties are essentially the polyoxyethylene moiety -(CH 2 CH 2 O) -CH 2 CH 2 -.
  • the term "the R 3 moieties are essentially the polyoxyethylene moiety -(CH 2 CH 2 O) -H 2 CH 2 -” refers to compounds of the present invention in which the R 3 moieties consist entirely of this polyoxyethylene moiety, or further include other compatible moieties. Examples of these other moieties induce C 3 -C 6 oxyalkylene moieties such as oxypropylene and oxybutylene, polyoxyalkylene moieties such as polyoxypropylene and polyoxybutylene, and polyoxyalkylated 1,2-hydroxyalkylene oxides such as
  • the polyoxyethylene moiety comprises from about 50 to 100% of each R 3 moiety.
  • the polyoxyethylene moiety comprises from about 90 to 100% of each R 3 moiety.
  • the value for q is at least about 9, and is preferably at least about 12.
  • the value for q usually ranges from about 12 to about 180.
  • the value for q is in the range of from about 12 to about 90.
  • the moieties -(R 4 O)- and -(CH(Y)CH 2 O)- of the moieties ⁇ (R 4 O) m (CH(Y)CH 2 O) n ⁇ and ⁇ (OCH(Y)CH 2 ) (OR 4 ) m ⁇ can be mixed together or preferably form blocks of -(R 4 O)- and -(CH(Y)CH 2 O)- moieties.
  • the blocks of -(R 4 O)- moieties are located next to the backbone of the compound.
  • the moiety -R 2 -A-R 5 - is 1; also, the moiety -R 2 -A-R 5 - is preferably located next to the backbone of the compound.
  • the preferred C 3 -C 4 alkylene is C 3 H 6 (propylene); when R 4 is C 3 -C 4 alkylene, m is preferably from 0 to about 10 and is most preferably 0.
  • R 5 is preferably methylene or 1,4-phenylene.
  • the moiety -(CH(Y)CH 2 O)- preferably comprises at least about 75% by weight of the moiety ⁇ (R 4 O) m (CH(Y)CH 2 O) n ⁇ and most preferably 100% by weight (m is 0).
  • the Y substituents of each moiety are H, the ether moiety -CH 2 (OCH 2 CH 2 ) p O-X, or a mixture of this ether moiety and H; p can range from 0 to 100, but is typically 0. Typically, the Y substituents are all H.
  • the moiety -(CH(Y)CH 2 O) n - can be represented by the following moiety:
  • n 1 is at least 1 and the sum of n 1 + n 2 is the value for n.
  • n. has an average value of from about 1 to about
  • X can be H, C 1 -C 4 alkyl or , wherein R 7 is C 1 -C 4 alkyl.
  • X is preferably methyl or ethyl, and most preferably methyl.
  • the value for each n is at least about 6, but is preferably at least about
  • each n usually ranges from about 12 to about 113. Typically, the value for each n is in the range of from about 12 to about 45.
  • the average value of u can range from about 2 to about 50; the average value of v can range from about 1 to about 20; and the average value of u + v can range from about 3 to about 70.
  • the average values for u, v and u + v are generally determined by the process by which the compound is made. Generally, the larger the average value for v or the smaller the average value for u + v, the more soluble is the compound.
  • the average value for u is from about 5 to about 20; the average value for v is from about 1 to about 10; and the average value for u + v is from about 6 to about 30.
  • the ratio of u to v is at least about 1 and is typically from about 1 to about 6.
  • Preferred compounds in this class of polymers are polyesters having the formula:
  • Hi ghly preferred polymers for use herei n are polymers of the formul a :
  • X can be any suitable capping group, with each X being selected from the group consisting of H , and alkyl or acyl groups containing from 1 to about 4 carbon atoms, preferably 1 to 2 carbon atoms , most preferably alkyl.
  • n is selected for water solubility and is a range of values which generally averages from about 10 to about 50, preferably from about 10 to about 25.
  • the selection of u is critical to formulation in a liquid detergent having a relatively high ionic strength. There should be very little material , preferably less than about 10 mot %, more preferably less than 5 mol %, most preferably less than 1 mol %, in which u is greater than 5. Furthermore there should be at least 20 mol % , preferably at least 40 mol %, of material in which u ranges from 3 to 5.
  • the R 1 moieties are essentially 1 ,4-phenylene moieties.
  • the term "the R 1 moieties are essentially 1 ,4-phenylene moieties” refers to compounds where the R moieties consist entirely of 1 ,4-phenylene moieties , or are partially substituted with other arylene or alkarylene moieties , alkylene moieties, alkenylene moieties , or mixtures thereof.
  • Arylene and alkarylene moieties which can be partially substituted for 1 ,4-phenylene include 1 ,3-phenylene, 1 , 2-phenylene . 1,8-naphthylene, 1,4-naphthylene, 2,2-biphenylene,
  • Alkylene and alkenylene moieties which can be partially substituted include ethylene, 1,2-propylene, 1,4-butylene, 1,5-pentylene, 1,6-hexamethylene, 1,7-heptamethylene, 1,8-octamethylene, 1,4-cyclohexylene, and mixtures thereof.
  • the degree of partial substitution with moieties other than 1,4-phenylene should be such that the soil release properties of the compound are not adversely affected to any great extent.
  • the degree of partial substitution which can be tolerated will depend upon the backbone length of the compound, i.e., longer backbones can have greater partial substitution for 1,4-phenylene moieties.
  • compounds where the R 1 comprise from about 50% to 100% 1,4-phenylene moieties (from 0 to about 50% moieties other than 1,4-phenylene) have adequate soil release activity.
  • polyesters made according to the present invention with a 40:60 mole ratio of isophthalic (1 ,3-phenylene) to terephthaiic (1,4-phenylene) acid have adequate soil release activity.
  • the R 1 moieties consist entirely of (i.e., comprise 100%) 1,4-phenylene moieties, i.e. each R 1 moiety is 1,4-phenylene.
  • suitable ethylene or substituted ethylene moieties include ethylene, 1,2-propylene, 1,2-butylene,
  • R 1 moieties are essentially ethylene moieties, or. preferably, 1,2-propylene moieties or mixtures thereof.
  • R 2 moieties are 1 ,2-propylene moieties.
  • soil release components which are soluble in cool (15°C) ethanol are also useful in compositions of the invention.
  • n averages at least about 10, but a distribution of n values is present.
  • the value for each n usually ranges from about 10 to about 50.
  • the value for each n averages in the range of from about 10 to about 25.
  • a preferred process for making the soil release component comprises the step of extracting a polymer having a typical distribution in which a substantial portion comprises a material in which u is equal to or greater than 6 with essentially anhydrous ethanol at low temperatures, e.g. from about 10°C to about 15°C, preferably less than about 13°C.
  • the ethanol soluble fraction is substantially free of the longer polymers and is much easier to incorporate into isotropic heavy duty liquids , especially those with higher builder levels.
  • the polymers wherein u is less than about 3 are essentially of no value in providing soil release effects , they can be more easily incorporated than higher u values.
  • a more preferred process for making the soil release component is by direct synthesis.
  • X is methyl, n is 16, R 1 is 1,4-phenylene moiety, R 2 is 1,2-propylene moiety and u is essentially between 3 and 5.
  • the present compositions are conveniently used as additives to conventional detergent compositions for use in laundry operations.
  • the present invention also encompasses dye transfer inhibiting compositions which will contain detergent ingredients and thus serve as detergent compositions.
  • a wide range of surfactants can be used in the detergent compositions.
  • anionic surfactants are particularly suitable herein, especially mixtures of sulphonate and sulphate surfactants in a weight ratio of from 5:1 to 1:2, preferably from 3:1 to 2:3, more preferably from 3:1 to 1:1.
  • Preferred sulphonates include alkyl benzene sulphonates having from 9 to 15, especially 11 to 13 carbon atoms in the alkyl radical, and alpha-sulphonated methyl fatty acid esters in which the fatty acid is derived from a C 12 -C 18 fatty source preferably from a C 16 -C 18 fatty source.
  • the cation is an alkali metal, preferably sodium.
  • Preferred sulphate surfactants are alkyl sulphates having from 12 to 18 carbon atoms in the alkyl radical, optionally in admixture with ethoxy sulphates having from 10 to 20, preferably 10 to 16 carbon atoms in the alkyl radical and an average degree of ethoxylation of 1 to 6.
  • alkyl sulphates herein are tallow alkyl sulphate, coconut alkyl sulphate, and c 14-15 alkyl sulphates.
  • the cation in each instance is again an alkali metal cation, preferably sodium.
  • One class of nonionic surfactants useful in the present invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic- lipophilic balance (HLB) in the range from 8 to 17, preferably from 9.5 to 13.5, more preferably from 10 to 12.5.
  • HLB hydrophilic- lipophilic balance
  • the hydrophobic (lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
  • Especially preferred nonionic surfactants of this type are the C 9 -C 15 primary alcohol ethoxylates containing 3-8 moles of ethylene oxide per mole of alcohol, particularly the C 14 -C 15 primary alcohols containing 6-8 moles of ethylene oxide per mole of alcohol and the C 12 -C 14 primary alcohols containing 3-5 moles of ethylene oxide per mole of alcohol.
  • Another class of nonionic surfactants comprises alkyl polyglucoside compounds of general formula
  • RO C n H 2n O
  • t Z x wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
  • Compounds of this type and their use in detergent are disclosed in EP-B 0 070 077, 0 075 996 and 0 094 118.
  • nonionic surfactants are poly hydroxy fatty acid amide surfactants of the formula , wherein R 1 is H, or R 1 is C 1-4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R 2 is C 5-31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R 1 is methyl
  • R 2 is a straight C 11-15 alkyl or alkenyl chain such as coconut alkyl or mixtures thereof
  • Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
  • compositions according to the present invention may further comprise a builder system.
  • a builder system Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates and fatty acids, materials such as ethylenediamine tetraacetate, metal ion sequestrants such as aminopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid.
  • phosphate builders can also be used herein.
  • Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B or HS.
  • SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na 2 Si 2 O 5 ).
  • Suitable polycarboxylates builders for use herein include citric acid, preferably in the form of a water-soluble salt, derivatives of succinic acid of the formula R-CH(COOH)CH2(COOH) wherein R is C10-20 alkyl or alkenyl. preferably C12-16, or wherein R can be substituted with hydroxyl, sulfo sulfoxyl or sulfone substituents.
  • lauryl succinate examples include lauryl succinate , myristyl succinate, palmityl succinate2-dodecenylsuccinate, 2-tetradecenyl succinate.
  • Succinate builders are preferably used in the form of their water-soluble salts, including sodium, potassium, ammonium and alkanolammonium salts.
  • polycarboxylates are oxodisuccinates and mixtures of tartrate monosuccinic and tartrate disuccinic acid such as described in US 4,663,071.
  • suitable fatty acid builders for use herein are saturated or unsaturated C10- 18 fatty acids, as well as well as the corresponding soaps.
  • Preferred saturated species have from 12 to 16 carbon atoms in the alkyl chain.
  • the preferred unsaturated fatty acid is oleic acid.
  • Preferred builder systems for use in granular compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A, and a watersoluble carboxylate chelating agent such as citric acid.
  • builder materials that can form part of the builder system for use in granular compositions the purposes of the invention include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amiono polyalkylene phosphonates and amino polycarboxylates.
  • Suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about
  • Detergency builder salts are normally included in amounts of from 10% to 80% by weight of the composition preferably from 20% to 70% and most usually from 30% to 60% by weight.
  • detergent compositions may be employed, such as bleaches, suds boosting or depressing agents, enzymes and stabilizers or activators therefor, soil-suspending agents soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and perfumes.
  • the detergent compositions according to the invention can be in liquid, paste or granular forms.
  • Granular compositions according to the present invention can also be in "compact form", i.e. they may have a relatively higher density than conventional granular detergents, i.e. from 550 to 950 g/l; in such case, the granular detergent compositions according to the present invention will contain a lower amount of "inorganic filler salt", compared to conventional granular detergents; typical filler salts are alkaline earth metal salts of sulphates and chlorides, typically sodium sulphate; "compact” detergents typically comprise not more than 10% filler salt .
  • the liquid .compositions according to the present invention can also be in "compact form", in such case, the liquid detergent compositions according to the present invention will contain a lower amount of water, compared to conventional liquid detergents.
  • the present invention also relates to a process for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering operations involving colored fabrics.
  • the process comprises contacting fabrics with a laundering solution as hereinbefore described.
  • the process of the invention is conveniently carried out in the course of the washing process.
  • the washing process is preferably carried out at 5 °C to 75 °C, especially 20 to 60, but the polymers are effective at up to 95 °C.
  • the pH of the treatment solution is preferably from 7 to 11, especially from
  • the process and compositions of the invention can also be used as additive during laundry operations.
  • compositions of the present invention are meant to exemplify compositions of the present invention , but are not necessarily meant to limit or otherwise define the scope of the invention, said scope being determined according to claims which follow.
  • a liquid detergent composition according to the present invention is prepared, having the following composition :
  • a compact granular detergent composition according to the present invention is prepared, having the following formulation: Linear alkyl benzene sulphonate 11.40
  • compositions according to the present invention will be further illustrated by the following examples.
  • the following liquid detergent compositions are made by mixing the listed ingredients in the listed proportions (weight %).
  • compositions comprise a pH-jump system which consists of polyhydroxy fatty acid amide surfactants and borate and/or propanediol.
  • the compositions are formulated at a pH below 7, preferably at a pH of 6.5. Upon dilution, these formulations provide a wash pH of at least 7.4.
  • This pH-jump allows compositions which are unstable at a certain pH to be formulated at a lower pH. Examples of such compositions are polymer-containing compositions which have a better stability of the polymers at a lower pH.
  • Other advantages of the pH-jump system include the improved bleachable stain removal upon pretreatment and lower formulation cost, in that less neutralizing agent is required to obtain a higher pH.
  • DC 3421 is a silicone oil commercially available from Dow Corning.
  • (2) is a silicone glycol emulsifier available from Dow Corning.

Abstract

L'invention se rapporte à des compositions empêchant le transfert des teintures, ces compositions comprenant des polymères renfermant du N-oxyde de polyamine et des polymères à base de téréphtalate.
PCT/US1993/009936 1992-10-27 1993-10-15 Compositions detergentes empechant le transfert des teintures WO1994010277A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK92203287.5T DK0594893T3 (da) 1992-10-27 1992-10-27 Farveoverføringsinhiberende detergentsammensætninger
KR1019950701582A KR100329878B1 (ko) 1992-10-27 1993-10-15 염료이동을억제하는세제조성물
AU53632/94A AU669029B2 (en) 1992-10-27 1993-10-15 Detergent compositions inhibiting dye transfer
JP6511120A JPH08502547A (ja) 1992-10-27 1993-10-15 染料の移動を抑止する洗剤組成物
US08/416,678 US5597795A (en) 1992-10-27 1993-10-15 Detergent compositions inhibiting dye transfer
BR9307320A BR9307320A (pt) 1992-10-27 1993-10-15 Composições detergentes inibidoras de transferéncia de corantes
PL93308544A PL175437B1 (pl) 1992-10-27 1993-10-15 Kompozycja inhibitująca przenoszenie barwnika

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP92203287.5 1992-10-27
EP92203287A EP0594893B1 (fr) 1992-10-27 1992-10-27 Compositions détergentes empêchant le transfert de colorant

Publications (1)

Publication Number Publication Date
WO1994010277A1 true WO1994010277A1 (fr) 1994-05-11

Family

ID=8210998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/009936 WO1994010277A1 (fr) 1992-10-27 1993-10-15 Compositions detergentes empechant le transfert des teintures

Country Status (19)

Country Link
EP (1) EP0594893B1 (fr)
JP (1) JPH08502547A (fr)
KR (1) KR100329878B1 (fr)
CN (1) CN1047619C (fr)
AT (1) ATE163036T1 (fr)
AU (1) AU669029B2 (fr)
BR (1) BR9307320A (fr)
CA (1) CA2148005C (fr)
CZ (1) CZ288208B6 (fr)
DE (1) DE69224385T2 (fr)
DK (1) DK0594893T3 (fr)
ES (1) ES2111607T3 (fr)
GR (1) GR3026078T3 (fr)
HU (1) HU217365B (fr)
MX (1) MX9306674A (fr)
PH (1) PH31042A (fr)
PL (1) PL175437B1 (fr)
TW (1) TW276269B (fr)
WO (1) WO1994010277A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007336A1 (fr) * 1993-09-10 1995-03-16 The Procter & Gamble Company Polymere de suppression de taches dans des compositions detergentes contenant des agents d'inhibition de transfert de couleur
EP0786517A1 (fr) 1996-01-25 1997-07-30 Unilever N.V. Composition détergente
US5783548A (en) * 1992-11-06 1998-07-21 The Procter & Gamble Company Stable liquid detergent compositions inhibiting dye transfer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU607975B2 (en) * 1987-04-23 1991-03-21 Fmc Corporation Insecticidal cyclopropyl-substituted di(aryl) compounds
AU678838B2 (en) * 1993-09-07 1997-06-12 Colgate-Palmolive Company, The Laundry detergent compositions containing lipase and soil release polymer
US5876625A (en) * 1996-07-22 1999-03-02 Carnegie Mellon University Metal ligand containing bleaching compositions
DE102004018051A1 (de) * 2004-04-08 2005-11-10 Clariant Gmbh Wasch- und Reinigungsmittel enthaltend Farbfixiermittel und Soil Release Polymere
WO2021067983A1 (fr) * 2019-09-30 2021-04-08 The Procter & Gamble Company Compositions de soin de tissu comprenant un copolymère et procédés associés

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547932A (en) * 1967-10-24 1970-12-15 Colgate Palmolive Co Hydroxyalkyl piperidine or pyrrolidine oxides
US4394305A (en) * 1981-03-17 1983-07-19 The Procter & Gamble Company Alpha-oxyalkylene amine oxide compounds useful in detergents
GB2137221A (en) * 1983-03-29 1984-10-03 Colgate Palmolive Co Soil releasing detergent
EP0241985B1 (fr) * 1986-04-15 1991-01-23 The Procter & Gamble Company Polyesters du type 1,2-propylène téréphtalate-polyoxyéthylène téréphtalate, coiffés, utilisés comme agents anti-salissures
EP0185427B1 (fr) * 1984-12-21 1992-03-04 The Procter & Gamble Company Polyesters blocs et composés similaires utiles comme agents de détachage dans les compositions de détergent
EP0199403B1 (fr) * 1985-04-15 1993-12-15 The Procter & Gamble Company Compositions détergentes liquides stables
EP0241984B1 (fr) * 1986-04-15 1994-03-16 The Procter & Gamble Company Polyesters à blocs ayant des groupes terminaux ramifiés hydrophiles utilisables comme agents de libération des saletés dans des compositions de détergents

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548744A (en) * 1983-07-22 1985-10-22 Connor Daniel S Ethoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions
EP0508034B1 (fr) * 1991-04-12 1996-02-28 The Procter & Gamble Company Composition détergente contenant des polyvinylpyrrolidones

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547932A (en) * 1967-10-24 1970-12-15 Colgate Palmolive Co Hydroxyalkyl piperidine or pyrrolidine oxides
US4394305A (en) * 1981-03-17 1983-07-19 The Procter & Gamble Company Alpha-oxyalkylene amine oxide compounds useful in detergents
GB2137221A (en) * 1983-03-29 1984-10-03 Colgate Palmolive Co Soil releasing detergent
EP0185427B1 (fr) * 1984-12-21 1992-03-04 The Procter & Gamble Company Polyesters blocs et composés similaires utiles comme agents de détachage dans les compositions de détergent
EP0199403B1 (fr) * 1985-04-15 1993-12-15 The Procter & Gamble Company Compositions détergentes liquides stables
EP0241985B1 (fr) * 1986-04-15 1991-01-23 The Procter & Gamble Company Polyesters du type 1,2-propylène téréphtalate-polyoxyéthylène téréphtalate, coiffés, utilisés comme agents anti-salissures
EP0241984B1 (fr) * 1986-04-15 1994-03-16 The Procter & Gamble Company Polyesters à blocs ayant des groupes terminaux ramifiés hydrophiles utilisables comme agents de libération des saletés dans des compositions de détergents

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783548A (en) * 1992-11-06 1998-07-21 The Procter & Gamble Company Stable liquid detergent compositions inhibiting dye transfer
WO1995007336A1 (fr) * 1993-09-10 1995-03-16 The Procter & Gamble Company Polymere de suppression de taches dans des compositions detergentes contenant des agents d'inhibition de transfert de couleur
TR28330A (tr) * 1993-09-10 1996-04-25 Procter & Gamble Temizleme performansinin gelistirilmesi icin boya transferi engelleyici maddeleri ihtiva eden deterjan bilesimler icinde kir salma polimeri.
EP0786517A1 (fr) 1996-01-25 1997-07-30 Unilever N.V. Composition détergente

Also Published As

Publication number Publication date
DE69224385D1 (de) 1998-03-12
PL308544A1 (en) 1995-08-21
HU9501189D0 (en) 1995-06-28
CN1089645A (zh) 1994-07-20
ES2111607T3 (es) 1998-03-16
CZ105895A3 (en) 1995-12-13
TW276269B (fr) 1996-05-21
JPH08502547A (ja) 1996-03-19
MX9306674A (es) 1994-04-29
CA2148005C (fr) 1999-04-13
DK0594893T3 (da) 1998-03-02
KR950704463A (ko) 1995-11-20
AU5363294A (en) 1994-05-24
CN1047619C (zh) 1999-12-22
CZ288208B6 (en) 2001-05-16
CA2148005A1 (fr) 1994-05-11
PL175437B1 (pl) 1998-12-31
EP0594893B1 (fr) 1998-02-04
DE69224385T2 (de) 1998-08-20
AU669029B2 (en) 1996-05-23
GR3026078T3 (en) 1998-05-29
BR9307320A (pt) 1999-06-01
HU217365B (hu) 2000-01-28
EP0594893A1 (fr) 1994-05-04
HUT71958A (en) 1996-02-28
KR100329878B1 (ko) 2002-08-08
PH31042A (en) 1997-12-29
ATE163036T1 (de) 1998-02-15

Similar Documents

Publication Publication Date Title
EP0538228A1 (fr) Détergents avec additifs pour éviter le transfert de colorant
WO1995013354A1 (fr) Compositions detersives inhibant le transfert de colorants
US5474576A (en) Detergent compositions inhibiting dye transfer in washing
US5783548A (en) Stable liquid detergent compositions inhibiting dye transfer
AU669029B2 (en) Detergent compositions inhibiting dye transfer
EP0576777B1 (fr) Compositions détergentes liquides aqueuses concentrées contenant polyvinylpyrrolidone et un polymère antisalissure à base de polytéréphtalate
AU670851B2 (en) Stable liquid detergent compositions inhibiting dye transfer
EP0710275A1 (fr) Compositions detergentes inhibant le transfert de colorants en cours de lavage
US5597795A (en) Detergent compositions inhibiting dye transfer
EP0672099B1 (fr) Compositions de detergents liquides stables inhibant le transfert des couleurs
EP0553607B1 (fr) Détergents avec additifs pour éviter le transfert de colorant
WO1995021013A1 (fr) Composition antimousse, son procede de production et procede de production d'un detergent contenant un antimousse
EP0754748B1 (fr) Compositions détergentes empêchant le transfert de colorant
EP0596184B1 (fr) Compositions détergentes avec additifs pour empêcher le transfert de colorant
US20240117279A1 (en) Biodegradable soil release polyester polymer and the cleaning composition comprising the same
WO1997004065A1 (fr) Adoucissant liquide stable pour compositions de lavage
EP0553608B1 (fr) Détergents avec additifs pour éviter le transfert de colorant
JP3795066B2 (ja) 転染抑制洗剤組成物
IE922733A1 (en) Detergent compositions inhibiting dye transfer in washing
CA2127095A1 (fr) Compositions detergentes inhibant le transfert de colorants renfermant un catalyseur, un polymere et une enzyme produisant du peroxyde
WO1993015176A1 (fr) Compositions detersives inhibant le transfert de teinture et contenant un catalyseur, un stabilisateur a amine et une enzyme produisant du peroxyde

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CZ HU JP KR PL SK US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PV1995-1058

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2148005

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08416678

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: PV1995-1058

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: PV1995-1058

Country of ref document: CZ