WO1994009175A1 - Method of continuously carburizing metal strip - Google Patents

Method of continuously carburizing metal strip Download PDF

Info

Publication number
WO1994009175A1
WO1994009175A1 PCT/JP1993/001486 JP9301486W WO9409175A1 WO 1994009175 A1 WO1994009175 A1 WO 1994009175A1 JP 9301486 W JP9301486 W JP 9301486W WO 9409175 A1 WO9409175 A1 WO 9409175A1
Authority
WO
WIPO (PCT)
Prior art keywords
carburizing
concentration
metal strip
furnace
carburization
Prior art date
Application number
PCT/JP1993/001486
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuguhiko Nakagawa
Koushi Kuramoto
Nobuaki Hanazono
Jun Morozumi
Susumu Satoh
Susumu Okada
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to EP93922640A priority Critical patent/EP0626467B1/en
Priority to DE69310897T priority patent/DE69310897T2/en
Priority to KR1019940702014A priority patent/KR100266037B1/en
Priority to JP6509838A priority patent/JP2944755B2/en
Publication of WO1994009175A1 publication Critical patent/WO1994009175A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Definitions

  • the present invention relates to a continuous carburizing method for continuous gas carburizing of a metal strip.
  • the present invention relates to a method for continuously carburizing a strip made of ultra-low carbon steel from an annealing furnace through a carburizing furnace.
  • the strip be passed at a passing speed set by operating conditions other than the carburizing treatment in a surface reaction rate-controlling region before the carbon concentration of the surface portion of the strip reaches the equilibrium concentration between the strip and the atmosphere gas.
  • Atmosphere gas composition and composition gas concentration as an atmosphere specification where sting does not occur in order to achieve carburization with the amount of carburizing that occurs and to obtain the desired carburizing concentration distribution in steel. It is suitable for controlling furnace temperature, metal zone temperature, and passing speed.
  • ductility As evaluation indexes for such metal sheets, for example, ductility, deep drawability, aging, strength, secondary work brittleness, bake hardenability, spot weldability, and the like can be considered.
  • the deep drawability is particularly important, and when this deep drawability is evaluated by a Rankford value (hereinafter, r value: metal plate width distortion Z plate thickness distortion), carbon in steel (hereinafter, referred to as C) is evaluated. It is known that it is most advantageous to reduce the amount.
  • the low carbon content improves the ductility (Elongation: E 1) and the normal temperature aging property (Aging Index: the lower the AI, the better). .
  • a metal strip made of ultra-low carbon steel is recrystallized and annealed by continuous annealing to obtain the above-mentioned ductility, deep drawability, and room-temperature delayed aging.
  • the present applicant As shown in the figure, we have developed a continuous annealing carburizing facility described in Japanese Patent Application Laid-Open No. 4-88816.
  • the metal zone temperature in the carburizing zone 4 Carburizing is performed by controlling the atmosphere specifications, transfer speed (furnace time) and cooling conditions so that the surface carburized depth and concentration distribution can be set to desired values (form) while satisfying the material specifications of the metal strip. Enables continuous production of strips.
  • the carburized depth and the method of controlling the carburizing concentration is as follows: During the carburizing period, a carburizing gas is spouted out at a predetermined flow rate to infiltrate the carbon into the surface of the metal band, and during the diffusion period following the carburizing period, the carburizing gas is exhausted and depressurized sufficiently Under the condition, the carbon permeated into the surface of the metal belt is diffused, and by controlling the carburizing period and the diffusion period, the carburizing concentration distribution form consisting of the carburizing depth and the carburizing concentration is controlled. According to the method for controlling the carburizing depth and the carburizing concentration, it is possible to prevent uneven carburization, which is likely to occur particularly in gas jet carburizing requiring a thin carburized layer (carburized skin).
  • the carburizing condition of the metal band is obtained from the specifications required for the metal intended to improve the secondary work brittleness resistance (Japanese Patent Application Laid-Open No. H3-193934). Since the concentration and carburizing depth are extremely small, in this case, it is necessary to perform carburizing treatment in the surface reaction rate-controlling region, and it is considered that the metal layer surface layer is always in equilibrium with the carburizing force of the atmospheric gas. in COZC 0 carbon potential (C potential) due to management of 2 control, were found not to control the carburization of the metal strip.
  • the atmosphere gas composition under carburizing conditions can be obtained by chemical equilibrium.However, conventional solutions can list all possible gas-phase reactions, and from the equilibrium relationship between these individual reactions, a non-linear The gas composition was obtained by solving the simultaneous equations. However, it is extremely difficult to determine the exact limit of soot generation (sooting, inging) from the reaction equation of the gas phase system.
  • the plate temperature is controlled mainly by heat transfer, but at the same time, the upper and lower limits of the in-furnace temperature (hereinafter also referred to as furnace temperature) itself are calculated by calculating the capacity of each furnace. Also exists. For example, in the IJ Tropical heating furnace and the Tropical soaking furnace, the upper limit of the furnace temperature is set based on the capacity of the furnace, and the aging factor between the radiant tube, furnace wall, hearth roll, etc. is taken into account. The in-furnace time (that is, heating time or soaking time) of the strip that satisfies the upper and lower limits of the sheet temperature from the heat balance is set. Then, the passing speed to satisfy the furnace time is set. Further, in the cooling furnace of each cooling zone, the heat transfer coefficient of the cooling gas jet or the like is used as the heat transfer coefficient.
  • the specifications of the carburized thin steel sheet tend to require more detailed conditions, and in order to satisfy such specifications, the distribution of the carburizing concentration of the surface layer of the metal strip, that is, It has become necessary to control and control even the profile of the carburizing concentration in the depth direction.
  • baking coating is often performed after pressing, so that during press processing, the ductility E1 and deep drawability r value are exhibited and the formability is high, and during baking coating, It is necessary to have such properties that the bake hardenability BH is exhibited to improve the strength.
  • these steel sheets are also required to have normal-temperature delayed aging (low AI) that can maintain their formability until press working.
  • the present invention has been developed in view of such problems, and in particular, the sheet passing speed is regulated by operating conditions other than the carburizing process, and the carburizing process performed at the sheet passing speed is performed in the surface reaction controlled speed range. It is an object of the present invention to provide a control method capable of obtaining a desired carburizing amount and a carburizing concentration distribution in a metal strip while preventing sooting even when the carburizing is performed.
  • the present inventors have developed the present invention based on the following findings.
  • the total amount of each component in the carburizing furnace is constant, even if the amount of each component changes in the carburizing furnace, when considered at the elemental level.
  • the free energy of the cast in the carburizing furnace is reduced by a change that occurs naturally, and the system is in an equilibrium state between the atmosphere gas and the metal band in the carburizing furnace. The cast free energy is at a minimum.
  • the equilibrium state of the furnace atmosphere can be determined, and the reaction in the direction in which free C (soot) is generated can be reduced or suppressed.
  • the elementary elements brought into the source system be constant with respect to the elements brought out of the atmosphere gas by the reaction in the surface zone of the metal strip
  • the actual case of continuous carburization We focused on the fact that it was not possible to calculate the true equilibrium state, that is, the true sooting generation limit.
  • the material balance of each element level in the furnace is not considered This makes it possible to increase the potential of the atmosphere composition while preventing the occurrence of sooting, as compared with a case where these are calculated simply from the equilibrium state obtained from the supplied gas composition flow rate and the furnace temperature. In other words, it is possible to improve the actual operation capacity, such as increasing the CO passing rate in the atmospheric gas to increase the sheet passing speed.
  • nitrogen in the atmosphere gas composition is considered to be an inert gas for diluting the concentration of the atmosphere gas, a similar inert gas such as argon Ar may be used.
  • the amount of carburization that is, the surface reaction rate, and focused on the fact that this reaction rate should be integrated over time.
  • This time ie, the carburizing time
  • the reaction was controlled by controlling the gas composition included in the carburization reaction formula and the deoxygenation reaction formula considered in the surface reaction between the metal strip and the atmospheric gas. I found that I could control the speed.
  • the temperature dependence coefficient relating to the surface reaction rate of carburization is calculated from the prediction formula, and the surface reaction rate of carburization is calculated from the temperature dependence coefficient and the prediction formula relating to the carbon monoxide partial pressure or the carbon monoxide partial pressure and the hydrogen partial pressure.
  • the carburizing amount in the metal strip can be calculated based on the prediction formula relating to the carburizing time from the above, and conversely, the carburizing amount in the metal strip is set from the specifications required for the steel sheet after carburizing, and By setting the parameters appropriately according to the actual continuous carburization using the control variables interposed in each prediction formula as parameters, the specifications of the steel sheet can be adjusted under the most efficient carburizing conditions. A satisfactory amount of carburization into the metal strip can be obtained. In addition, especially when the supply and discharge flow rates of the atmospheric gas are small at high temperatures, the effect of inhibiting the carburizing reaction should be taken into account. and H 2 0 partial pressure control amount, i.e., more be added as a parameter, C 0 2, H 2 0 it is possible to accurately control the carburizing amount to metallic band at carburizing conditions present.
  • C 0 2 and H 2 ⁇ concentration of the ambient gas in the composition may be reduced by increasing the introduced flow of the ambient gas, also increased by reducing the projection's flow rate of the atmospheric gas be able to.
  • the correlation between the carburizing time and the passing speed may be determined by considering the composition of the atmosphere gas in the carburizing furnace and the temperature of the metal strip. In this case, when the regulated threading speed has a certain range, it is also possible to add the parameter of the prediction formula to the carburizing time in pursuit of further control accuracy.
  • the continuous carburizing method of the metal strip of the present invention for example, in order to perform necessary carburization control, heat treatment and carburization are performed simultaneously, or carburization is performed at a somewhat lower temperature after heat treatment.
  • the same control can be performed by, for example, considering the sheet passing speed in a time series.
  • the carburizing concentration at a predetermined depth in the surface layer of the metal strip is determined by the carbon diffusion based on the so-called Fick's law, where the carburizing time (including the diffusion time) and the carburizing temperature are all parameters.
  • Fick's law where the carburizing time (including the diffusion time) and the carburizing temperature are all parameters.
  • the carburizing concentration distribution form is based on the carbon diffusion model formula.
  • the carbon diffusion model formula is determined, and even when the total carburizing amount is different, other one or more points
  • the carbon diffusion model equation is determined.
  • the carburizing concentration at each point in the depth direction satisfying the carburizing concentration distribution form Calculates the carburizing concentration distribution state that falls within the predetermined allowable range of the target value, for example.
  • the metal zone temperature, the atmosphere gas composition, and the carburizing time which are the parameters of the carbon diffusion model formula, and even if the total carburizing amount is not set, this carbon diffusion model formula can be used.
  • the carburizing amount By integrating the obtained carburizing concentration distribution in the depth direction, it is possible to set the carburizing amount.
  • the surface reaction rate in the above-mentioned surface reaction-limiting region is determined. Of course, it is also possible to apply.
  • the solid solution C existing in the surface layer of the metal strip in the carburizing step is still in a state where it can be diffused or decarburized.
  • the cooling rate it is possible to control the diffusion and decarburization of the solute C to fix the solute C to a desired carburized concentration distribution state.
  • FIG. 1 is a conceptual illustration of the heat treatment process performed in the continuous annealing carburizing equipment
  • Fig. 2 is a continuous annealing subject to carburizing control using the continuous strip carburizing method of the present invention
  • FIG. 3 is a schematic diagram showing an example of a carburizing facility
  • FIG. 3 is an explanatory diagram of a diffusion-limited region after the carbon concentration in the surface layer of the metal band reaches the equilibrium concentration and a surface reaction-limited region before the carbon concentration reaches the equilibrium concentration.
  • FIG. 4 is a flowchart of an algorithm for constructing the overall line control logic performed in the continuous annealing carburizing equipment of FIG. 2, and FIG.
  • FIG. 5 is a surface reaction in the continuous metal carburizing method of the present invention.
  • FIG. 6 shows the logic for performing carburizing control using the continuous strip carburizing method of the present invention.
  • Algorithmic algorithm to build one embodiment FIG. 7 is a graph showing CO--comparing the sting occurrence limit obtained by the continuous carburizing method of the metal strip of the present invention with the sting occurrence limit obtained without considering the material balance in the furnace.
  • FIG. 8 is a correlation diagram between an observed value and a calculated value obtained carburizing quantity by Arugorizu arm of the six-view embodiment, FIG. 9, the algorithm of the embodiment of FIG. 6 FIG.
  • FIG. 10 is an explanatory diagram of various carburizing conditions calculated to obtain a target carburizing amount according to an embodiment of the present invention.
  • FIG. 10 shows a target carburizing amount under a condition in which a threading speed is set by the algorithm of the embodiment of FIG.
  • Fig. 11 is an explanatory diagram of the carburizing conditions calculated to obtain the carburized concentration distribution and the measured carburized concentration distribution obtained according to the carbon diffusion model equation using the continuous carburizing method of the metal strip of the present invention.
  • Fig. 12 is an explanatory diagram showing an example of the correlation with Fig. 13 is an explanatory diagram showing an example of the carburizing concentration distribution obtained when the atmosphere gas composition concentration and the carburizing time are controlled by the algorithm of Fig. 13.
  • FIG. 13 controls the cooling rate after carburizing by the algorithm of the embodiment of Fig. 6.
  • FIG. 14 is an explanatory diagram showing an example of a carburizing concentration distribution obtained in the case of performing the above-described process.
  • FIG. 9 is an explanatory diagram showing a result.
  • FIG. 2 shows an example of a continuous annealing and carburizing facility for a strip made of ultra-low carbon steel in which the method for continuously carburizing a metal strip according to the present invention has been implemented.
  • the ultra-low carbon steel strip A is provided with a coil unwinder, a welding machine, a washing machine, etc. so as to satisfy the history and history of the sheet temperature control shown in FIG.
  • the equipment, pre-tropical zone 1, heating zone 2, isotropical zone 3, carburizing zone 4, first cooling zone 5, second cooling zone 6, shearing equipment, winder, and other unshown equipment are passed through in this order.
  • the heating zone 2 is for heating the strip A, which is continuously passed from the inlet side equipment and is preheated in the pre-tropical zone 1, to a temperature higher than the recrystallization temperature.
  • the strip A is heated so that the temperature of the strip A becomes 700 to 950 ° C at ⁇ 100 ° C. Then, the heated strip A is maintained at a temperature higher than the recrystallization temperature for a necessary time in the soaking zone 3, whereby the ⁇ 1, 1, 1 ⁇ texture advantageous for deep drawing can be developed.
  • a number of radiant tubes are arranged near the passing path of strip A, which passes through the heating zone 2 and the solitary zone 3 while moving up and down through the Haas mouth.
  • the temperature inside the furnace (furnace temperature) is controlled by burning the fuel gas supplied to the flat tube.
  • the setting of the supply flow rate of the fuel gas is performed by a host computer (not shown), which will be described later, sets an upper limit value of the furnace temperature based on a heat balance in consideration of a heat transfer coefficient between the radiant tube, the strip, the hearth roll, and the like.
  • the supply flow rate of the fuel gas to the radiant tube is set in the furnace by adding the exhaust gas loss heat, the furnace body heat dissipation, etc. to the amount of heat to the strip that passes through and carries the heat from the furnace.
  • the furnace requirement obtained from the heat balance (required) is the same as the calorific value, and it can be performed by a host computer (not shown) in accordance with the control algorithm for the entire line described later.
  • the carburizing zone 4 is formed by a host computer (not shown) in which the carburizing furnace in the carburizing zone 4 is formed by forming a carburized phase in which solute carbon (C) is present in an extremely thin portion (surface layer) of the surface of the strip A.
  • the temperature of the metal zone is controlled at 700 to 950 ° C, and the strip is kept at a temperature of 700 ° C or more, preferably a recrystallization temperature or less.
  • the passing speed is controlled so as to pass in 0 to 120 seconds. This control is performed in order to keep the carburizing amount (carburizing reaction speed x carburizing time) constant in the strip passing direction and to suppress variations in the material.
  • the furnace temperature control if the strip temperature is less than 700, the carburizing reaction rate on the metal strip surface is reduced and the heat treatment productivity is reduced, and if the temperature in the furnace exceeds 950 ° C, transformation occurs. This is done to avoid the problem of material deterioration beyond the point and satisfy carburizing conditions. Further, as is known, if free carbon [C] adheres to the surface of the steel sheet, that is, deterioration of the chemical conversion treatment and the like, and quality deterioration and adverse effects in the post-process are caused. At the same time, the reaction in the furnace accelerates in a predetermined direction, for example, in the direction of the carburizing reaction. As a result, if the dew point rises, the carburizing reaction is hindered, and oxidation occurs on the strip surface, causing a temper color. And the furnace temperature is controlled critically based on the carburizing condition setting algorithm described later.
  • composition and supply / discharge flow rate of the carburizing gas supplied into the carburizing furnace are determined by the host computer based on thermodynamics (atmosphere) that minimizes the free energy in the furnace in consideration of the material balance in the furnace described later. (Composition) Controlled according to various conditions calculated based on the model formula. The composition and supply and discharge flow rates of the carburizing gas are controlled so as to prevent the sting and to suppress the rise in the dew point to prevent the carburizing reaction speed from lowering and the temper collar.
  • the specification of the strip such as the carburized concentration distribution and the carburized depth of the carburized layer formed on the strip to be described later, is given top priority, and the composition of the carburized gas and the It goes without saying that supply and discharge flow rates are calculated.
  • the physical properties in the carburizing furnace, the furnace temperature, the metal zone temperature, the passing speed, ie, the carburizing time, and the atmosphere gas composition are regarded as the physical quantities to be controlled (control quantities) in the actual case of continuous carburizing. From the specifications such as the required carburized concentration distribution of the carburized layer to be formed on the strip, the carburized depth, etc., for example, the necessary carburized amount is set, and various basic formulas for these control amounts, which are set in advance, will be described later. Each control amount for realizing the carburization amount is calculated by appropriately selecting the control amount, and the control amounts are set in consideration of the capacity and process of other equipment.
  • the strip in the carburizing furnace goes up and down the furnace through the hearth rolls 10.
  • These hearth rolls 10 are cooled, for example, in the vicinity of bearings, in order to maintain their rotation and roll crown in a predetermined state. Also mouth
  • the chrome Cr alloy is used for the hearth roll to maintain the strength and wear resistance of the roll itself.
  • the carburizing atmosphere gas reaches the vicinity of the hearth roll, cooling is performed and sooting proceeds, so that carbon adheres to the hearth roll and then diffuses into the hearth roll.
  • the Cr and C are combined to precipitate Cr carbide, thereby breaking or expanding the crystal grains of the heat-resistant alloy used for the hearth roll, while reducing the solid solution Cr.
  • the hearth roll is embrittled and oxidized, so that pore-shaped corrosion proceeds.
  • the hearth roll chamber is separated from the carburizing atmosphere by a non-contact sealing device 11 to prevent the hearth roll from deteriorating, and the hearth roll is deteriorated in the hearth roll chamber.
  • a non-contact sealing device 11 to prevent the hearth roll from deteriorating, and the hearth roll is deteriorated in the hearth roll chamber.
  • the sealing layer provided between the hearth roll chamber and the carburizing atmosphere chamber has a three-layer structure. Ejects the above-mentioned weakly carburizing atmosphere gas, ejects the above-mentioned carburizing atmosphere gas to the seal layer on the carburizing atmosphere chamber side, and exhausts gas from the intermediate seal layer.
  • the flow rate of each atmosphere gas is controlled so as to flow toward the intermediate seal layer by controlling the flow rate, and a circulating flow generated by a plate surface airflow accompanying the passing of the strip is formed on an end face in the width direction of the strip in the seal layer.
  • the exhaust port is configured to exhaust air.
  • the strip A sent from the carburized zone 4 is passed through the first cooling zone 5.
  • the strip after carburizing is heated to a steel sheet temperature. Cool rapidly at a cooling rate of 5 ° C / sec. Or more until the force becomes 600 ° C or less, preferably about 500 ° C to 400 ° C.
  • the cooling gas flow rate, the flow rate and the cooling roll temperature which are blown from the cooling gas jet to the strip conveyed in the cooling zone by the host computer, so that the cooling condition can be achieved.
  • the winding angle is controlled.
  • the strip A sent from the first cooling zone 5 is then passed through the second cooling zone 6.
  • gas cooling is performed to a steel sheet temperature of about 250 to 200 ° C. In this way, it is possible to finally obtain a cold rolled steel sheet for ultra-low carbon press forming in which the amount and form of solid solution C in the surface layer are controlled.
  • the temperature of the metal zone involved in the carburizing reaction is also referred to as the carburizing temperature, but it is clear from the above description that the substantial control factor is the furnace temperature.
  • the amount of carburizing in the steel sheet is given as a condition for obtaining the target material, including the case where the carburizing concentration distribution in the steel sheet is required.
  • the carburizing amount is set by integrating the distribution in the depth direction.
  • the upper limit of the carburizing temperature is set to be lower than the recrystallization temperature due to the material conditions.
  • it is necessary to increase the carburizing reaction speed based on the principle of carburizing amount carburizing reaction speed x carburizing time. The higher the value, the better. This also helps to prevent the occurrence of stinging described later and raises the CO concentration upper limit.
  • the occurrence limit of the above-mentioned sooting can be obtained by a thermodynamic (atmosphere composition) model formula in consideration of the material balance. It is difficult to set a result that the C_ ⁇ concentration and H. 2 concentration involved in. Therefore, the present invention previously sets the carburizing reaction rate equation which does not inhibit the, for example, based on the CO concentrations obtained by the generated not atmosphere composition model formula of the soot, and H 2 concentration using the equation Calculate You.
  • a thermodynamic (atmosphere composition) model formula in consideration of the material balance. It is difficult to set a result that the C_ ⁇ concentration and H. 2 concentration involved in. Therefore, the present invention previously sets the carburizing reaction rate equation which does not inhibit the, for example, based on the CO concentrations obtained by the generated not atmosphere composition model formula of the soot, and H 2 concentration using the equation Calculate You.
  • the constant a is specifically in fundamental equations of the surface reaction rate, which will be described later, it is set to a value to suppress the generation concentration of C 0 2 and H 2 0 to inhibit the reaction to a minimum, usually from 0.5 to 1. It is often set in the range of 0. That is, when this relational expression is satisfied, the carburizing reaction rate based on the surface reaction rate equation becomes the maximum.
  • the carburizing time for achieving a desired carburizing concentration distribution is set based on the set surface reaction rate. That is, when increasing only the C concentration in the surface layer to steepen the gradient with the C concentration in the inner layer, the carburizing reaction speed may be increased (the carburizing force is increased) to shorten the carburizing time. Conversely, when increasing the entire C concentration of the steel sheet to make the C concentration gradient between the inner layer and the surface layer gentler, the carburizing reaction rate should be reduced (the carburizing power is reduced) and the carburizing time should be increased. .
  • the control of the carburizing reaction rate and the carburizing time satisfies the above-mentioned constraint condition of constant carburizing amount.
  • the optimum strip speed is set in each plate temperature control zone other than the carburizing zone by calculating the capacity and process of each furnace.
  • any stripping speed is equal to the entire equipment. It is necessary to judge whether the speed of the passing plate is limited. In this case, all specifications of the steel plate must be considered, and the specifications are given as absolute conditions.
  • the maximum threading speed obtained in the carburized zone is larger than the minimum value of each maximum threading speed obtained in each of the sheet temperature control zones, the maximum threading speed of each of the temperature control zones is obtained.
  • the carburizing time becomes longer, it is necessary to reset the direction to decrease the carburizing reaction rate, that is, to reduce the CO concentration and the H 2 concentration in the atmosphere gas under the above-mentioned constraint condition of the constant amount of carburizing. In other words, the condition that does not cause sooting is necessarily satisfied.
  • the maximum threading speed of the carburized zone is set to the line threading speed. In order to satisfy the sheet temperature of each sheet temperature control zone at this sheet passing speed, it is necessary to reset the furnace temperature / fuel supply amount as the sheet temperature control amount.
  • control concepts are embodied in the algorithm shown in FIG. 4 performed by the host computer.
  • step S20 in the carburizing zone and each sheet temperature control zone, the maximum value of the passing speed that satisfies the heating, carburizing, and cooling specifications of various steel sheets is set using the upper limit of the installation capacity as a constraint.
  • the heat transfer between the radiant tube, the furnace wall, the strip, the hearth roll, and the like is performed based on a mathematical model based on the heat transfer theory.
  • a process model formula is set. Based on this process model formula, the target plate is set within the range of the furnace temperature and fuel gas supply flow rate or the capacity of the electric heating device that can be set on the equipment. Calculate the maximum value of the passing speed that satisfies the temperature (hereinafter referred to as the maximum passing speed).
  • an atmosphere gas composition model in the carburizing furnace was set in consideration of the material balance in the carburizing furnace. From the composition model and the carburizing reaction rate equation, calculate the maximum passing speed that is less than or equal to the upper limit of the atmosphere gas composition (specifically, CO 2) that does not cause sting and that satisfies the target carburizing amount.
  • the upper limit of the atmosphere gas composition specifically, CO 2
  • cooling zones 5 and 6 when a cooling roll system other than the gas jet system or a mist cooling system is used as the cooling system, heat transfer between the medium and the strip used in these cooling devices is taken into consideration. The same calculation may be performed using the model formula obtained.
  • the calculated maximum passing speeds of the heat treatment zones including the carburized zone are compared, and the minimum value is set as the maximum passing speed of the entire line.
  • step S21 the entire line set in step S20 is set.
  • the maximum stripping speed determine the set value of the controlled variable that satisfies the heating, carburizing and cooling specifications of the steel sheet in each of the thermomechanical zones including the carburized zone.
  • the furnace temperature that satisfies the target plate temperature is set using the heat transfer model described in step S20.
  • This furnace temperature may control the fuel gas supply flow rate or the load of the electric heating device by feedback control, and minimize the sheet temperature fluctuation at the seam of the coil of the steel sheet based on the process model calculation described above.
  • the optimum time series of the fuel gas supply flow rate or the load of the electric heating device to be calculated may be calculated by the optimum route calculation, and the feed-forward control may be performed based on the calculated time series.
  • the target value is only the carburizing amount, or the target value of the C concentration distribution in the steel sheet thickness direction is specified together with the carburizing amount. If only the target carburization amount is specified, the atmosphere gas composition that satisfies the target carburization amount is calculated using the atmosphere gas composition model described in step S20 and the carburization reaction rate equation on the steel sheet surface. On the other hand, if the target value of the C concentration distribution in the thickness direction of the steel sheet is specified along with the target carburization amount, not only the carburization time but also the cooling time, together with the atmosphere gas composition model and the carburization reaction rate equation on the steel sheet surface.
  • the C concentration distribution pattern in the target steel sheet thickness direction can be adjusted within the range where the threading speed is equal to or less than the maximum threading speed of the entire line set in step S20.
  • the threading speed reset here is set as the threading speed of the entire line after this step.
  • the logic for setting the passing speed so that the C concentration distribution form in the thickness direction of the steel sheet satisfies the target value has been described in step S21. In order to prevent the setting from being changed due to factors, it is desirable to set the passing speed that satisfies the C concentration distribution in the thickness direction of the steel sheet in step S23 described later. 23.
  • the wind speed of the cooling gas jet is adjusted by the fan speed so as to satisfy the target cooling speed and the target cooling end temperature.
  • step S22 the heat roll of each heat treatment zone including the carburized zone is removed.
  • the maximum crowning speed is calculated by predicting the crown by using the sheet temperature model and the heat balance model of the roll chamber, and calculating the maximum sheet passing speed so that the roll crown is within the meandering limit of the strip ⁇ ⁇ ⁇ ⁇ ⁇ the limit of buckling. Perform crown calculation. If the maximum threading speed calculated here is higher than the maximum threading speed of the entire line set in the steps up to step S21, the process proceeds to the next step S23.
  • step S21 If the maximum threading speed calculated here is smaller than the maximum threading speed of the entire line set in the steps up to step S21, the maximum threading speed obtained by this thermal crown calculation Is reset to the threading speed of the entire line, and the flow shifts to step S21.
  • step S23 if the target threading speed has been specified in advance for operational reasons such as coil seam welding and coil inspection, and for other reasons (mainly trouble), the designation is made. After checking that the set passing speed is equal to or less than the maximum passing speed of the entire line set in steps S20 to S22, the passing speed of the entire line is set to the designated passing speed. I do.
  • step S24 the control amount satisfying the heating, carburizing and cooling specifications of the steel sheet in each heat treatment zone including the carburizing zone with respect to the finally set threading speed of the entire line. Calculate and set.
  • the content of the calculation in this step is the same as that in step S21, but the setting calculation of the sheet passing speed based on the C concentration distribution in the thickness direction of the steel sheet is not performed.
  • the description of the sheet temperature control for satisfying the target temperature in the carburized zone 4 is omitted, but the sheet temperature control of the carburized zone 4 is described in the explanation of the logic. It can be considered that it is the same content as the plate temperature control in the heating zone 2 and the average tropical zone 3.
  • the carburizing conditions in this example were The level of the power compared to the carburizing conditions and the items required to satisfy the carburizing conditions will be described.
  • the strip is a continuous body made of the ultra-low carbon steel described above, and the purpose is to improve the surface characteristics of the strip and to improve the material of the steel sheet itself. Done. Therefore, for example, if the carburizing conditions of the metal strip are determined from the specifications (for example, Japanese Patent Application Laid-Open No. 3-193934) required for the metal intended to improve the secondary work brittleness resistance, In the example, the C content in the material is 20 ppm, the required carburizing amount is 200 ppm or less, the carburizing depth is 50 to 200 m, and the carburizing time depends on the passing speed is 1 20 seconds or less.
  • the specifications for example, Japanese Patent Application Laid-Open No. 3-193934
  • the carburization rate was reduced as shown in Fig. 3.
  • This is a surface reaction rate-determining region according to the reaction rate, and the carburizing rate is proportional to time itself. Since the carburization amount and carburization depth are in non-equilibrium state in this surface reaction rate-determining region, the actual operation management index is simply C potential control by C potential control so that the equilibrium C concentration in the surface layer in the steel is obtained.
  • ⁇ / C_ ⁇ not only manage 2, taking into account the number of controlled variables in the furnace, so as to obtain a carburized amount determined from the required steel specifications specifications, is necessary to set the carburizing condition is there.
  • the passing speed is set from the actual sheet temperature control performed in the heat section other than the carburizing zone as in the algorithm shown in FIG.
  • the speed at which the response speed is the fastest is controlled based on the operating conditions. Therefore, in the continuous carburizing method of the present invention, except for the carburizing treatment, If the stripping speed is regulated by the continuous annealing and carburizing operation conditions, the carburizing condition that satisfies the carburizing amount of the metal belt surface layer from the required specifications of the steel sheet is set under the stripping speed. I do.
  • the atmosphere gas composition under carburizing conditions can be determined by chemical equilibrium.
  • all possible reactions are listed, and the gas composition is obtained from the equilibrium relation of these reactions by solving a system of nonlinear equations.
  • thermodynamic (atmosphere composition) model formula was considered as follows, and an atmosphere gas composition for preventing occurrence of sooting was obtained.
  • the objective function is the cast free energy of the whole system obtained using the concentration of each component gas in the production system as a variable, and the elemental components brought into the original system are constant.
  • the minimum value is reached. What is necessary is just to obtain the concentration of each component gas. This component gas concentration becomes the equilibrium composition of the atmosphere gas at the given furnace temperature and furnace pressure.
  • C content is expressed as one of the condensed species in the mouthpiece described below.
  • n number of gas species
  • number of condensed species
  • the free energy f s i of the i-th gas species with respect to the gas product is represented by the following 2 with the number of moles of the gas species being x e i with respect to the molar energy C s i of the i-th gas species. Equations 4 to 4 are given.
  • j 1, 2,, m a 8 : Number of atoms of j-th element contained in molecule of i-th gas species
  • an atmosphere composition model equation linearized from Equations 8 and 1 is set by a program stored in the host computer, and a solution obtained from this atmosphere composition model equation is set. We decided to converge and obtain the optimal solution.
  • Fig. 14 shows the calculation results and the actual measurement results.
  • Equation 10 is a function calculated based on the specifications of the steel sheet and the surface reaction rate.
  • V Surface reaction rate
  • t Carburizing time
  • w Sheet width
  • V k ⁇ PCO (PCO / (PC0 + (a c / K))) (14)
  • H 2 + C 0 2 ⁇ H 2 0 + C ⁇ (16) Based on these reaction equations, H 2 has the effect of accelerating the carburization reaction. It was expressed by seven equations.
  • V k]-f, (PCO, ⁇ 2 , ⁇ 0 ) (17)
  • the surface reaction rate V is expressed by the following equation (20) or (21) in consideration of these carburizing reaction inhibitory factors.
  • V k, ⁇ f, (PCO, PH 2 , 6> o) x ⁇ ⁇ fa (PC0, PC0 2 )
  • V k, ⁇ f, ( PCO, PH 2, 6> o) -k 2 - f 2 (PC0 2, PH 2 0)
  • reaction rate constant, k 2 can be set by the following equation (22).
  • Equation 23 the diffusion state of C into steel is expressed by the following carbon diffusion model equation based on Fick's law, as shown in Equation 23 below.
  • T carburizing temperature
  • a proportional coefficient
  • b constant
  • the amount of carburizing to the steel sheet can be calculated by the above-mentioned formula (17), formula (21), formula (22) and formula (23).
  • the carburizing concentration is set at one point of the desired carburizing concentration distribution under the condition of constant carburizing amount, the above-mentioned carbon diffusion model equation is set, and even when the carburizing amount is different, the carburizing concentration distribution at two or more points is different. If the concentration is set, it means that the carbon diffusion model formula is set.
  • the carburizing time t in the above equation 23 is the value obtained by dividing the effective carburizing furnace length L by the stripping speed L s. Therefore, this calculated value is used when time-integrating the above equation (23) with the carburizing time.
  • the above calculation is sequentially performed by a program stored in the host computer in advance, and the specifications of the carburized steel sheet, that is, in this embodiment, the desired carburized concentration, the carburized amount of the strip given from the cloth, and the atmosphere
  • the algorithm for setting the carburizing conditions, which matches the amount of carburizing on the strip calculated from the amount of C reduction in the gas, is shown in the flowchart of FIG.
  • step S1 the condition of the steel sheet after carburizing is set, the composition of the atmosphere gas, the flow rate of the input gas, the carburizing temperature and passing speed, the steel sheet specifications and the carburizing concentration distribution of the steel sheet are used to determine the surface of the steel sheet.
  • the conditions such as the C concentration C, at the specified depth X, are read.
  • the threading speed is set to L S, and it is corrected in a flow that is performed later. Parameter.
  • step S2 the set carburizing amount A C for the steel sheet is set based on the steel sheet specification and the steel sheet specification, and the C amount per unit time taken out of the carburizing furnace by the strip is calculated.
  • step S3 the atmosphere composition model formula is set from the composition of the atmosphere gas read in step S1.
  • step S the atmosphere in consideration of the C amount taken out of the carburizing furnace by the strip according to the atmosphere composition model formula set in step S3. Calculate the concentration of each component of the gas.
  • step S5 the surface reaction rate of the steel sheet is calculated based on the equation (17) .t) o
  • step S6 in which the carburization rate in the steel is calculated based on the above equation 23, and the amount of C diffusion into the steel is calculated.
  • step S7 when the carburizing time has elapsed, the process proceeds to step S7, and the surface reaction rate per unit time and unit area calculated in step S5 or step S6 described above or the rate of reaction into steel is calculated.
  • the amount of diffusion C is integrated with the processing time and the total surface area of the steel sheet to calculate the amount of carburization AC 'to the steel sheet.
  • step S8 it is determined whether or not the absolute value of the difference between the set carburizing amount ⁇ C and the calculated carburizing amount ⁇ C is smaller than a predetermined value a, and the absolute value of the difference between the two is determined. If is smaller than the predetermined value a, the process shifts to step S10. Otherwise, the process shifts to step S9.
  • step S9 the set carburizing amount is corrected based on the carburizing amount based on the following equation 25, and the process proceeds to step S3.
  • a C A C + (A C-A C) x b (25)
  • step S10 it is determined whether the absolute value of the difference between the target carburization amount ⁇ (. And the set carburization amount AC is smaller than a predetermined value d, and the absolute value of the difference between the two is greater than the predetermined value d. If smaller, the process proceeds to step S12. Otherwise, the process proceeds to step S11.
  • step S11 at least one of the parameters of the atmosphere gas flow rate, the atmosphere composition, the passing speed, and the carburization temperature is changed in order to obtain the set carburization amount set from the carburization concentration distribution condition.
  • the process moves to step S2.
  • the predetermined carburizing amount ⁇ C for example, the predetermined carburizing amount ⁇ C.
  • LS to compensate for the difference between To correct this, the corrected threading speed LS may be calculated based on, for example, the following equation (26).
  • the C concentration C 'at the designated depth X, from the steel sheet surface is calculated according to the diffusion model in steel set in the step S6.
  • step S13 the setting C concentration C of the specified depth X, from the steel sheet surface read in step S1, and the specified depth from the steel sheet surface calculated in step S12, It is determined whether the absolute value of the difference between the X and the C concentration C 'is smaller than a predetermined value e. If the absolute value of the difference between the two is smaller than the predetermined value e, the process proceeds to step S15. Otherwise, go to step S14.
  • step S14 at least one of each parameter of the atmosphere composition, the passing speed, and the carburizing temperature is changed in order to obtain the set carburizing amount set from the carburizing concentration distribution condition.
  • step S15 the set values of the concentration of the atmospheric gas component or the passing speed or the carburizing temperature obtained as a result of the above calculation are output according to the purpose of control, and the total carburized amount and the average carburized amount are output. Outputs the calculation results such as the amount and distribution of carburization from the steel sheet surface, and terminates the program.
  • the ambient gas flow amount which is the input condition is a control amount for changing the C0 2 and H 2 0 concentration in the atmosphere gas as described above, as a regulator Is considered to be included in the atmosphere gas composition in the same way as the C ⁇ + H 2 flow rate charged into the furnace.
  • passing speed LS 200 mpm
  • plate thickness D 0.75 mm
  • supply gas amount 10
  • the sooting occurrence limit obtained by taking into account the material balance at each carburizing temperature calculated by this program is shown by the solid line in Fig. 7.
  • the broken line indicates the upper limit of the dew point. Dot-and-dash lines do not take material balance into account. This shows the limit of sooting that was found.
  • the shaded area in the figure indicates the operation range in actual carburizing operation.
  • FIG. 8 shows the correlation between each carburizing condition calculated by this program, that is, the carburizing amount when each of the control amounts is changed, and the actually measured carburizing amount.
  • the calculated and actual measured values of carburization amount agree very well.
  • the setting of the carburizing speed that is, the surface reaction speed
  • the setting of the temperature dependence coefficient are correct.
  • the continuous carburizing method of the present embodiment is used. Means that a wide range of applications is possible in the region where the carburization rate follows the surface reaction rate greater than the diffusion rate.
  • a predetermined (target) carburizing amount is set in step S2 from the steel sheet specifications such as the thickness data read in step S1 as clearly shown in FIG.
  • the tolerance has been set.
  • the target carburizing temperature was set based on the material conditions of the steel sheet.
  • the CO concentration and the H 2 concentration are set as the atmosphere gas conditions for preventing sooting in the steps S3 and S4.
  • Equation 23 sets the target carburizing time and the allowable range of carburizing time fluctuation as shown in Fig. 9.
  • step S12 the target threading speed and its allowable range are set and output.
  • the carburizing time (sheet passing speed) is set in the loop of steps S10 and S11.
  • the optimum conditions are determined in consideration of the overall carburizing conditions to obtain the carburizing amount set from the sheet specifications.
  • the control can be completely automated, which previously relied on experience.
  • a predetermined (target) carburizing amount is set in step S2 from the steel sheet specifications such as the thickness data read in step S1.
  • the target carburizing temperature was set based on the material conditions of the steel sheet.
  • the carburizing time is calculated by dividing the effective carburizing furnace length by the passing speed read in step S1.
  • the atmosphere gas composition is controlled so that the CO concentration in the atmospheric gas becomes large, and the target carburizing amount becomes small. Or, if the carburizing time is long, the atmosphere gas composition is controlled so that, for example, the C ⁇ concentration in the atmosphere gas becomes small.
  • a method for controlling the composition of the atmosphere gas discharged from the carburizing furnace at the carburizing furnace temperature As, for example CO + H 2 concentration may be changed to CO flow amount and flow rate of H 2 ratio of the atmosphere gas flow rate supplied to the carburizing furnace, the concentration of C_ ⁇ 2 or H 2 0 is supplied Kiri ⁇ What is necessary is just to change the total gas gas flow rate.
  • the carburizing conditions for obtaining the carburizing amount set from the sheet specifications are set to the optimum conditions in consideration of the overall operating conditions.
  • FIG. 6 the carburizing amount per unit area is set by integrating the carburizing concentration distribution in the depth direction, and the desired carburizing concentration is obtained under the constraint conditions that satisfy the carburizing amount.
  • a carbon diffusion model formula is set based on the distribution form, an allowable range is set for the target value at each point in the depth direction, and the carburized concentration profile calculated from the carbon diffusion model formula falls within this allowable range.
  • the carburizing temperature and the carburizing time which are the parameters of the model formula, are set.
  • the carbon diffusion model equation can be obtained by setting the carburizing concentration at only one point under the conditions such as the surface reaction rate, carburizing temperature, and carburizing time. Will be set uniquely.
  • carburizing time (treatment time, se) is at t 2, t 3, CO concentration (%) of a], a 2, a 3, H 2 concentration (%) is b,, b 2, b 3 ,
  • the carburizing temperature is T (° C)
  • the correlation curve and the measured data from the distance from the metal strip surface obtained by this model formula, that is, the depth (/ m) and the carbon concentration in steel (carburizing concentration, p pm) were obtained. It is shown in Figure 11.
  • the actual measurement of the carburizing concentration was calculated by adding the specimen to hydrofluoric acid and dissolving it from its surface, and calculating the amount of solute carbon from the weight ratio of the amount of dissolved C and the amount of Fe over a predetermined dissolution time. However, it may be estimated by measuring the depth of a specific structure of the steel, which is determined (dependent) by the carburizing concentration.
  • FIG. 12 shows the results of an experiment on the effect of carburizing time in the steel diffusion model formula.
  • Carburization temperature T ° C constant in the figure, under the conditions of total carburizing quantity AC ppm-constant, CO concentration (%) of a 4, H 2 concentration (%) is b 4, carburizing time (treatment time, sec.)
  • CO concentration (%) of a 4 is b
  • H 2 concentration (%) is b
  • carburizing time (treatment time, se) is at ambient conditions t 5
  • the case of carburizing is shown by the broken line.
  • the carburizing time t 5 ⁇ 3 t 4
  • H 2 is a concentration of b 4 »b 5.
  • the carburizing reaction rate is increased (the carburizing power is increased).
  • the carburizing time should be shortened, and if the C concentration gradient between the inner layer and the surface layer is moderated by increasing the entire C concentration of the steel sheet, the carburizing reaction rate should be reduced (carburizing). It can be seen that the carburizing time should be increased by reducing the power.
  • the higher the cooling rate the more quickly the solid solution C diffuses into the interior, so that the gradient of the C concentration in the inner layer becomes steeper when only the C concentration in the surface layer increases. Conversely, the lower the cooling rate, the more solid solution C diffuses inside, so the C concentration in the surface layer is low. In addition, the C concentration gradient with the inner layer becomes gentle.
  • the strip subjected to the predetermined carburizing treatment in the carburizing zone is quenched by the first cooling zone to fix the carbon diffusion is described in detail, but in the present invention, the strip after the carburizing is heated. It is possible to control the carbon diffusion state by heating, soaking, and cooling.
  • Z or a sheet temperature control zone may be provided instead of the first cooling zone.
  • the carburizing temperature is set from the material conditions and the CO concentration and the H 2 concentration are set in advance from the sooting generation limit using the algorithm of FIG. If it carburizing time to obtain the amount of (sheet passing speed) finally modified is set an upper limit of carburizing temperature and carburizing time of carburized concentration distribution condition and scan from a coating of occurrence limit CO concentration and concentration of H 2 of
  • the carburizing time (peeling speed) and the atmosphere gas composition are finally changed to obtain the carburizing concentration distribution and the carburizing amount in the predetermined steel sheet thickness direction under the condition where the upper limit is set in advance, except for carburizing treatment
  • the carburizing time is determined based on the sheet passing speed set from the operating conditions and the carburizing temperature is set based on the material conditions, and the atmosphere gas composition is finally changed in order to obtain the specified amount of C under the condition where the carburizing temperature is set More about
  • each of the following control examples of the above-described control factors, including these, can be considered.
  • control factors are not limited to any one, and can be expanded in any case under various given conditions. ,
  • thermodynamic model equation taking into account the material balance is linearized, and the solution is converged to calculate the equilibrium state.
  • the means for calculating the equilibrium state is not limited to this. is not.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

This invention aims at providing a method of continuously carburizing a metal strip, which is capable of providing industrially optimum carburization conditions while attaining non-soot-generating atmospheric data, desired carburization concentration distribution and desired carburization rate, in a case where a strip passed through a carburization furnace is carburized continuously in a surface reaction rate-determining region in which the carbon concentration in a superficial layer of the strip has not yet reached an equilibrium level with respect to the time. The method consist of carburization concentration distribution (S7), on the basis of the carburization conditions including given specification data for the steel plate, furnace temperature and composition of the atmospheric gas, outputting the concentration of the components of the atmospheric gas, feed and discharge rates and other carburization conditions when the set carburization rate and an actual carburization rate are equal (S8-S15), and correcting the set carburization rate when a difference between the set carburization rate and an actual carburization rate is large, and correcting the strip feed rate while correcting the composition of the atmospheric gas when a difference between the predetermined carburization rate and set carburization rate is large (S9).

Description

明細書  Specification
金属帯の連続浸炭方法 技術分野  Method of continuous carburizing of metal strip
本発明は、 金属帯を連続ガス浸炭する場合の連続浸炭方法に関するものであり、 例えば極低炭素鋼からなるストリップを焼鈍炉内から浸炭炉内に通板して連続的 にガス浸炭する場合に、 当該ストリップ表層部の炭素濃度がストリップと雰囲気 ガスとの間における平衡濃度に達する以前の表面反応律速域で、 浸炭処理以外の 操業条件によって設定された通板速度で通板されるストリップを所望する浸炭量 で浸炭することを目的としたり、 所望する鋼中浸炭濃度分布を得ることを目的と したりするために、 ス一ティングが発生しない雰囲気諸元としての雰囲気ガス組 成, 組成ガス濃度, 炉内温度, 金属帯温度, 通板速度等を制御するのに適するも のである。 背景技術  The present invention relates to a continuous carburizing method for continuous gas carburizing of a metal strip.For example, the present invention relates to a method for continuously carburizing a strip made of ultra-low carbon steel from an annealing furnace through a carburizing furnace. However, it is desired that the strip be passed at a passing speed set by operating conditions other than the carburizing treatment in a surface reaction rate-controlling region before the carbon concentration of the surface portion of the strip reaches the equilibrium concentration between the strip and the atmosphere gas. Atmosphere gas composition and composition gas concentration as an atmosphere specification where sting does not occur in order to achieve carburization with the amount of carburizing that occurs and to obtain the desired carburizing concentration distribution in steel. It is suitable for controlling furnace temperature, metal zone temperature, and passing speed. Background art
例えば自動車産業のような金属二次加工産業界では、 加工対象金属板に対して より高い加工性と強度との両立が要求されている。 具体的に前記自動車産業界で は、 昨今問題化されている地球環境問題から低燃費化を追求するために車体を軽 量化する必要から、 従来の深絞り性を維持した上でより強度の高い鋼板が要求さ れ  For example, in the metal secondary processing industry such as the automobile industry, there is a demand for higher workability and higher strength for the metal sheet to be processed. Specifically, in the automotive industry, since it is necessary to reduce the weight of the vehicle body in order to pursue low fuel consumption due to global environmental issues that have recently become a problem, higher strength is maintained while maintaining the conventional deep drawability. Steel sheet is required
このような金属板の評価指標としては、 例えば延性, 深絞り性, 時効性, 強度, 二次加工脆性, 焼付硬化性, スポッ ト溶接性等が考えられる。 そこで、 前記の深 絞り性を特に重要視して、 この深絞り性をランクフォード値 (以下 r値:金属板 幅歪み Z板厚歪み) で評価した場合、 鋼中の炭素 (以下 Cと記す) 量を低減する ことが最も有利であることは公知であり、 加えてこの低炭素化により延性 (Elon gation: E 1 ) や常温遅時効性 (Aging Index : A Iが低い程良い) も向上する。 ところが、 一方で鋼中の C量が低下するに従ってその他の評価指標は大方につい て劣化する。 例えば、 析出物が減少して組織強度が低下するために引張強度 (Te nsi le Strength: T S ) が低下し、 粒界強度が低下するために二次加工脆性が劣 化し、 固溶 C量が低下するために焼付硬化性が劣化する。 また、 鋼中 C量 5 O p p m以下では、 溶接による加熱で粒成長速度が促進されて熱影響部 (Heat Af f ec ted Zone: H A Z ) の粗粒化によってスポッ ト溶接性が劣化する。 As evaluation indexes for such metal sheets, for example, ductility, deep drawability, aging, strength, secondary work brittleness, bake hardenability, spot weldability, and the like can be considered. In view of this, the deep drawability is particularly important, and when this deep drawability is evaluated by a Rankford value (hereinafter, r value: metal plate width distortion Z plate thickness distortion), carbon in steel (hereinafter, referred to as C) is evaluated. It is known that it is most advantageous to reduce the amount. In addition, the low carbon content improves the ductility (Elongation: E 1) and the normal temperature aging property (Aging Index: the lower the AI, the better). . However, on the other hand, as the amount of C in steel decreases, other evaluation indices deteriorate to a large extent. For example, the tensile strength (TS) is reduced due to reduced precipitates and reduced structural strength, and the secondary processing brittleness is poor due to reduced grain boundary strength. The bake hardenability deteriorates because the amount of solid solution C decreases. When the C content in steel is 5 O ppm or less, the grain growth rate is accelerated by heating by welding, and the spot weldability deteriorates due to coarsening of the heat-affected zone (HAZ).
そこで、 第 1図に示すように極低炭素鋼からなる金属帯を連続焼鈍処理によつ て再結晶焼鈍することにより前記延性, 深絞り性, 常温遅時効性を得ながら、 こ れに続レ、て、 連続浸) 処理によつて表層部に固溶 Cを存在させることにより前記 引張強度, 二次加工脆性, B H性, スポッ ト溶接性を向上するために、 本出願人 は第 2図に示すような特開平 4 _ 8 8 1 2 6号公報に記載される連続焼鈍浸炭設 備を開発した。  Therefore, as shown in Fig. 1, a metal strip made of ultra-low carbon steel is recrystallized and annealed by continuous annealing to obtain the above-mentioned ductility, deep drawability, and room-temperature delayed aging. In order to improve the tensile strength, secondary work brittleness, BH property, and spot weldability by making solid solution C exist in the surface layer by the continuous immersion treatment, the present applicant As shown in the figure, we have developed a continuous annealing carburizing facility described in Japanese Patent Application Laid-Open No. 4-88816.
この連続焼鈍浸炭設備によれば、 予熱帯 1から加熱帯 2又は均熱帯 3で金属帯 (ストリップ A ) に対して所定の再結晶焼鈍を行った後、 浸炭帯 4内の金属帯温 度, 雰囲気諸元, 搬送速度 (在炉時間) 及び冷却条件を制御して浸炭処理を行う ことにより、 金属帯の材質仕様を満足させながら表層浸炭深さと濃度分布を所望 の値 (形態) とした金属帯を連続的に製造することを可能とする。  According to this continuous annealing and carburizing equipment, after performing a predetermined recrystallization annealing on the metal zone (strip A) from the pre-tropical zone 1 to the heating zone 2 or the soaking zone 3, the metal zone temperature in the carburizing zone 4 Carburizing is performed by controlling the atmosphere specifications, transfer speed (furnace time) and cooling conditions so that the surface carburized depth and concentration distribution can be set to desired values (form) while satisfying the material specifications of the metal strip. Enables continuous production of strips.
一方で、 このような金属帯表層部の浸炭深さと浸炭濃度の分布 (形態を制御する 方法として特公昭 5 4— 3 1 9 7 6号公報に記載されるものがある。 この浸炭深 さ及び浸炭濃度の制御方法は、 浸炭期には浸炭ガスを所定の流量で噴出導入して 金属帯表層部に炭素を浸透させ、 この浸炭期に続く拡散期には浸炭ガスを排気し た十分な減圧下で、 金属帯表層部に浸透した炭素を拡散させ、 これらの浸炭期と 拡散期の時間を制御することによつて浸炭深さと浸炭濃度とからなる浸炭濃度分 布形態をコントロールするようにしたものである。 この浸炭深さ及び浸炭濃度の 制御方法によれば、 特に薄い浸炭層 (浸炭肌) を必要とするガスジエツ ト浸炭で 発生し易い、 不均一浸炭を防止することが可能である。 On the other hand, there is such a distribution of the carburized depth and the carburizing concentration of the metal strip surface layer portion (those described in Japanese Patent Publication 5 4 3 1 9 7 6 discloses a method of controlling the form. The carburized depth and The method of controlling the carburizing concentration is as follows: During the carburizing period, a carburizing gas is spouted out at a predetermined flow rate to infiltrate the carbon into the surface of the metal band, and during the diffusion period following the carburizing period, the carburizing gas is exhausted and depressurized sufficiently Under the condition, the carbon permeated into the surface of the metal belt is diffused, and by controlling the carburizing period and the diffusion period, the carburizing concentration distribution form consisting of the carburizing depth and the carburizing concentration is controlled. According to the method for controlling the carburizing depth and the carburizing concentration, it is possible to prevent uneven carburization, which is likely to occur particularly in gas jet carburizing requiring a thin carburized layer (carburized skin).
ところで、 このような連続焼鈍浸炭設備の諸条件を設定する実際にあたり、 以 下に述べる問題が判明した。  By the way, in actually setting the conditions of such continuous annealing carburizing equipment, the following problems were found.
( 1 ) 浸炭速度については葉らの報告 (葉 煦雲, 山 志郎ら : 日本金属学会 誌 49(1985) 7, 529 ) によって、 第 3図に示すように金属表層部の C量がある程度 高く且つ浸炭時間が長い場合、 浸炭の速度は表層部の C濃度が、 当該ストリップ と雰囲気ガスとの間の平衡濃度に達した後、 Cが金属組織内に拡散していく速度 に比例するため、 通常、 時間の平方根に比例することになり、 この時間浸炭利得 域を拡散律速域と称するが、 一方、 前記のように金属表層部の C量が極めて低く 且つ浸炭時間が極めて短い場合は、 該表層部の C濃度が平衡濃度に達しないため、 浸炭の速度は金属表層部と炭素とが直接的に反応する速度に比例することになり、 この時間浸炭利得域を表面反応律速域と称することが知られている。 (1) Regarding the carburizing rate, according to a report by Habara et al. (Yasukun, Yamashiro et al .: Journal of the Japan Institute of Metals 49 (1985) 7, 529), as shown in Fig. 3, the C content in the metal surface layer was somewhat high. If the carburizing time is long, the carburizing speed is the speed at which C diffuses into the metal structure after the C concentration in the surface layer reaches the equilibrium concentration between the strip and the atmospheric gas. Therefore, the time carburization gain region is generally called a diffusion-controlled region.On the other hand, as described above, the C content of the metal surface layer is extremely low and the carburization time is extremely short. If the carbon concentration is short, the C concentration in the surface layer does not reach the equilibrium concentration, so the carburizing speed is proportional to the direct reaction between the metal surface layer and carbon. It is known to be called a rate-limiting region.
そこで、 例えば前記の耐二次加工脆性の向上を対象とする金属に要求される仕 様から (特開平 3— 1 9 9 3 4 4号公報など) 当該金属帯の浸炭条件を求めると、 浸炭濃度も浸炭深さも極めて小さいため、 この場合には表面反応律速域での浸炭 処理を行う必要があり、 金属帯表層部が雰囲気ガスの持つ浸炭力と常に平衡状態 にあると考える、 所謂従来の C O Z C 0 2 等の管理によるカーボンポテンシャル ( Cポテンシャル) 制御では、 金属帯への浸炭量を制御できないことが判明した。Therefore, for example, the carburizing condition of the metal band is obtained from the specifications required for the metal intended to improve the secondary work brittleness resistance (Japanese Patent Application Laid-Open No. H3-193934). Since the concentration and carburizing depth are extremely small, in this case, it is necessary to perform carburizing treatment in the surface reaction rate-controlling region, and it is considered that the metal layer surface layer is always in equilibrium with the carburizing force of the atmospheric gas. in COZC 0 carbon potential (C potential) due to management of 2 control, were found not to control the carburization of the metal strip.
( 2 ) また一般に、 浸炭条件における雰囲気ガス組成は化学平衡により求めるこ とができるが、 従来の解法では考え得る気相系の反応を全て列挙し、 これら個々 の反応の平衡関係から、 非線形の連立方程式を解くことによってガスの組成を得 ていた。 しかし、 気相系の反応式からは正確なすす発生 (スーテ,イング) の限界 を求めることが極めて困難である。 (2) In general, the atmosphere gas composition under carburizing conditions can be obtained by chemical equilibrium.However, conventional solutions can list all possible gas-phase reactions, and from the equilibrium relationship between these individual reactions, a non-linear The gas composition was obtained by solving the simultaneous equations. However, it is extremely difficult to determine the exact limit of soot generation (sooting, inging) from the reaction equation of the gas phase system.
( 3 ) 更に、 前述した表面反応速度については先の葉らの報告があるが、 この報 告では C Oガスのみにおける浸炭速度について論じられているだけで、 これをそ のまま、 複雑な組成からなる連続浸炭操業の実際に展開することはできない。 ところで前記第 2図のような連続焼鈍浸炭設備では加熱帯 2及び Z又は均熱帯 3で金属帯に対して所定の焼鈍処理を行い, 浸炭帯 4で所定の浸炭処理を行い、 各冷却帯 5, 6で所定の冷却処理を行う必要があるから、 夫々の熱処理帯では例 えば炉温を制御するなどにより所定の金属帯の温度 (以下、 板温とも記す) 制御 を行う必要がある。 これらの各熱処理帯を構成する各炉では主として伝熱によつ て板温制御を行っているが、 同時に各炉の能力計算によって炉内温度 (以下、 炉 温とも記す) 自体の上下限値も存在する。 例えば、 力 IJ熱帯の加熱炉ゃ均熱帯の均 熱炉では、 炉の能力から炉温の上限値が設定され、 ラジアン卜チューブ, 炉壁, ハースロール等の間の伝熟 f系数を考慮したヒートバランスから板温の上下限値を 満足するストリップの在炉時間 (即ち、 加熱時間又は均熱時間である) が設定さ れ、 この在炉時間を満足するための通板速度が設定されることになる。 また、 各 冷却帯の冷却炉では、 前記伝熱係数に冷却ガスジ ッ トの伝熱係数等が採用され る。 (3) Furthermore, there is a report from the above-mentioned leaf reaction rate on the above-mentioned surface reaction rate, but this report only discusses the carburization rate in CO gas only. In fact, a continuous carburizing operation cannot be deployed. Meanwhile, in the continuous annealing carburizing equipment as shown in Fig. 2, a predetermined annealing treatment is performed on the metal zone in the heating zones 2 and Z or the soaking zone 3, a predetermined carburizing process is performed in the carburizing zone 4, and each cooling zone 5 Therefore, in each heat treatment zone, it is necessary to control the temperature of a predetermined metal zone (hereinafter, also referred to as sheet temperature) by controlling the furnace temperature, for example. In each furnace constituting each heat treatment zone, the plate temperature is controlled mainly by heat transfer, but at the same time, the upper and lower limits of the in-furnace temperature (hereinafter also referred to as furnace temperature) itself are calculated by calculating the capacity of each furnace. Also exists. For example, in the IJ Tropical heating furnace and the Tropical soaking furnace, the upper limit of the furnace temperature is set based on the capacity of the furnace, and the aging factor between the radiant tube, furnace wall, hearth roll, etc. is taken into account. The in-furnace time (that is, heating time or soaking time) of the strip that satisfies the upper and lower limits of the sheet temperature from the heat balance is set. Then, the passing speed to satisfy the furnace time is set. Further, in the cooling furnace of each cooling zone, the heat transfer coefficient of the cooling gas jet or the like is used as the heat transfer coefficient.
一方、 このような連続焼鈍浸炭設備では, 例えばコイルの継ぎ目等の非定常部 位で操業条件を変更するなどの様々な操業条件が混在しており、 これらを満足す るために最も応答速度の速い通板速度を制御することも多い。 しかしながら、 前 記連続焼鈍浸炭の板温制御を含む様々な操業条件から設定された通板速度に対し て、 浸炭炉内の浸炭諸条件を設定する具体的な手段は未だ提案されておらず、 特 に通板速度が設定されている条件下で、 前記のような鋼板に要求される仕様諸元 を満足するための浸炭量を達成する浸炭炉内の物性や温度を制御する手段が早急 に望まれている。  On the other hand, in such continuous annealing carburizing equipment, various operating conditions such as changing operating conditions at unsteady parts such as coil joints are mixed. In many cases, a high threading speed is controlled. However, no specific means has been proposed yet for setting the carburizing conditions in the carburizing furnace for the strip speed set from various operating conditions including the above-mentioned continuous annealing carburizing sheet temperature control. In particular, under the conditions where the threading speed is set, the means for controlling the physical properties and temperature in the carburizing furnace that achieves the carburizing amount to satisfy the specifications required for the steel sheet as described above are urgently required. Is desired.
こうした通板速度の制約を除外するためには、 各熱処理帯間にルーパを介装す ることが考えられるが、 元来、 非常に大きな設置スペースを必要とする連続焼鈍 設備やこれに連続浸炭設備を付加した連続焼鈍浸炭設備に、 これも大きな設置ス ペースを必要とするル一パを設置することは、 現実問題に照らして実用化するこ とが困難である。  In order to remove such a restriction on the passing speed, it is conceivable to insert a looper between the heat treatment zones. However, continuous annealing equipment that requires a very large installation space and continuous carburizing Installing a looper, which also requires a large installation space, in a continuous annealing carburizing system with additional equipment is difficult to put into practical use in light of the actual problem.
また、 前記浸炭薄鋼板の仕様諸元は更に微細な条件を要求される傾向にあり、 そのような仕様諸元を満足するためには金属帯表層部の浸炭濃度分布形態、 即ち 該表層部の浸炭濃度の深さ方向へのプロファイルまでも管理制御する必要が生じ てきた。 例えば、 車両や電気機器に使用される鋼板では多くの場合、 プレス加工 後に焼付塗装を行うため、 プレス加工時には前記延性 E 1や深絞り性 r値を発揮 して成形性が高く、 焼付塗装時に前記焼付硬化性 B Hを発揮して強度が向上する といった特性が必要となる。 同時にこれらの鋼板ではプレス加工時まではその成 形性を維持できる常温遅時効性 (低 A I ) も要求される。 従って、 これらの鋼板 は深絞り性を有する常温遅時効性高焼付硬化型鋼板 (低 A I -高 B H性鋼板) で ある必要が生じる。 こうした鋼板を極低炭素鋼の連続焼鈍浸炭によって得る場合 に必要となる鋼中浸炭濃度のプロファイル、 即ち分布状態を検討すると、 鋼板の 厚さ方向内層部の炭素濃度は前記極低炭素鋼並に低いまま、 表層部の炭素濃度を 大きく高めて最適な C濃度勾配を形成するようにしなければならない。 しかしな がら、 前記特公昭 5 4 - 3 1 9 7 6号公報に記載される浸炭深さ及び浸炭濃度の 分布形態の制御方法では、 こうした浸炭濃度プロフアイルは考慮されておらず、 この制御方法をそのまま浸炭濃度分布の制御に展開することはできない。 発明の開示 Further, the specifications of the carburized thin steel sheet tend to require more detailed conditions, and in order to satisfy such specifications, the distribution of the carburizing concentration of the surface layer of the metal strip, that is, It has become necessary to control and control even the profile of the carburizing concentration in the depth direction. For example, in the case of steel sheets used in vehicles and electrical equipment, baking coating is often performed after pressing, so that during press processing, the ductility E1 and deep drawability r value are exhibited and the formability is high, and during baking coating, It is necessary to have such properties that the bake hardenability BH is exhibited to improve the strength. At the same time, these steel sheets are also required to have normal-temperature delayed aging (low AI) that can maintain their formability until press working. Therefore, it is necessary for these steel sheets to be low-aging, high-bake-hardening steel sheets (low AI-high BH steel sheets) with deep drawability. When examining the profile of the carburizing concentration in steel, which is necessary when such a steel sheet is obtained by continuous annealing and carburizing of ultra-low carbon steel, that is, the distribution state, the carbon concentration in the inner layer in the thickness direction of the steel sheet is similar to that of the ultra-low carbon steel. While still low, the carbon concentration at the surface must be greatly increased to create an optimal C concentration gradient. But However, in the control method of the carburized depth and the distribution form of the carburized concentration described in Japanese Patent Publication No. 54-319796, such a carburized concentration profile is not considered, and this control method is used as it is. It cannot be applied to the control of carburizing concentration distribution. Disclosure of the invention
本発明は斯かる諸問題に鑑みて開発されたものであり、 特に浸炭処理以外の操 業条件から通板速度が規制され、 この通板速度で行われる浸炭処理が前記表面反 応律速域で行われる場合にあっても, スーティングを防止しながら、 金属帯への 所望する浸炭量, 浸炭濃度分布を得ることのできる制御方法を提供することを目 的とするものである。  The present invention has been developed in view of such problems, and in particular, the sheet passing speed is regulated by operating conditions other than the carburizing process, and the carburizing process performed at the sheet passing speed is performed in the surface reaction controlled speed range. It is an object of the present invention to provide a control method capable of obtaining a desired carburizing amount and a carburizing concentration distribution in a metal strip while preventing sooting even when the carburizing is performed.
本件発明者等は前記諸問題について鋭意検討を重ねた結果、 以下の知見に基づ いて本発明を開発した。 即ち、 浸炭炉内で遊離 Cという形態で発生するスーティ ングの問題では、 浸炭炉内の生成系の各成分量は変化しても, 各元素レベルで考 えれば夫々の総量は一定となる。 そして、 等温, 等圧の系の場合、 自然に起こる 変化では当該浸炭炉内のギプスの自由エネルギーは減少し、 浸炭炉内の雰图気ガ スと金属帯との間の平衡状態において系のギプス自由エネルギーは最小値となる。 従って、 このギプス自由エネルギーが最小となる雰囲気ガス組成を求めれば, 炉 内雰囲気の平衡状態を求めることができるので、 遊離 C (すす) の発生方向への 反応を低減或いは抑止することができる。 しかしながら、 金属帯表層部における 反応によって金属帯が雰囲気ガス中から持出す元素に対して原系が持込む元素成 分が一定であるという物質収支の制約条件を加えなければ、 連続浸炭の実際にお ける真の平衡状態, 即ち真のスーティング発生限界を算出することはできないこ とに着目した。 従って、 この物質収支の実際を考慮する際には、 雰囲気ガス組成 だけでなく、 雰囲気ガス供給,排出流量、 金属帯の通板速度、 炉内温度、 板厚、 板幅などを考慮しなければならなレ、。  As a result of intensive studies on the above problems, the present inventors have developed the present invention based on the following findings. In other words, regarding the problem of sooting that occurs in the form of free C in a carburizing furnace, the total amount of each component in the carburizing furnace is constant, even if the amount of each component changes in the carburizing furnace, when considered at the elemental level. In the case of an isothermal and isobaric system, the free energy of the cast in the carburizing furnace is reduced by a change that occurs naturally, and the system is in an equilibrium state between the atmosphere gas and the metal band in the carburizing furnace. The cast free energy is at a minimum. Therefore, if the atmosphere gas composition that minimizes the cast free energy is determined, the equilibrium state of the furnace atmosphere can be determined, and the reaction in the direction in which free C (soot) is generated can be reduced or suppressed. However, unless there is a material balance constraint that the elementary elements brought into the source system be constant with respect to the elements brought out of the atmosphere gas by the reaction in the surface zone of the metal strip, the actual case of continuous carburization We focused on the fact that it was not possible to calculate the true equilibrium state, that is, the true sooting generation limit. Therefore, when considering the actual situation of this material balance, it is necessary to consider not only the composition of the atmosphere gas, but also the supply and discharge flow rate of the atmosphere gas, the passing speed of the metal strip, the furnace temperature, the sheet thickness, the sheet width, etc. Nanare.
そこで、 本発明の金属帯の連続浸炭方法では、 炭素、 酸素、 窒素又は炭素、 酸 素、 水素、 窒素を含み且つスーティングが発生しない浸炭雰囲気諸元を制御する にあたって、 前記浸炭炉内の連続浸炭の実際における各元素レベルの物質収支を 考慮して、 炉内雰囲気全体のギプス自由エネルギーが最小となる状態を求めるこ とにより炉内雰囲気の平衡状態を求めるようにした熟力学モデル式に基づいて、 雰囲気ガス組成及び Z又は炉内温度を算出することにより、 炉内の前記各元素レ ベルの物質収支を考慮しないで、 単に供給されたガス組成流量と炉内温度とから 得た平衡状態からこれらを算出した場合に比して、 スーティングの発生を防止し ながら雰囲気組成のポテンシャルを高めることが可能となる。 つまり、 雰囲気ガ ス中の C O濃度を高めて通板速度を上げるといった実際の操業能力を向上するこ とができる。 なお、 前記雰囲気諸元の条件として、 炉内温度が 7 0 0〜9 5 0 °C- 一酸化炭素濃度が 0 %く C O濃度≤ 2 2 %、 水素濃度が 0 %≤H 2 濃度≤ 3 0 % といった工業的連続浸炭操業の実際に則した条件を設定した。 なお、 前記雰囲気 ガス組成中の窒素は、 当該雰囲気ガスの濃度を希釈するための不活性気体と考え られることから、 アルゴン A r等の類似する不活性気体を用いてもよい。 Therefore, in the method for continuously carburizing a metal strip according to the present invention, in controlling the carburizing atmosphere parameters containing carbon, oxygen, nitrogen or carbon, oxygen, hydrogen, and nitrogen and generating no sooting, Considering the material balance of each element level in the actual case of carburizing, it is necessary to find the state in which the cast free energy of the entire furnace atmosphere is minimized. By calculating the atmosphere gas composition and Z or the furnace temperature based on the matured dynamics model formula that obtains the equilibrium state of the furnace atmosphere by the above, the material balance of each element level in the furnace is not considered This makes it possible to increase the potential of the atmosphere composition while preventing the occurrence of sooting, as compared with a case where these are calculated simply from the equilibrium state obtained from the supplied gas composition flow rate and the furnace temperature. In other words, it is possible to improve the actual operation capacity, such as increasing the CO passing rate in the atmospheric gas to increase the sheet passing speed. As the atmosphere specifications of conditions, the temperature in the furnace 7 0 0~9 5 0 ° C- concentration of carbon monoxide rather 0% CO concentration ≤ 2 2%, hydrogen concentration 0% ≤H 2 concentration ≤ 3 The actual conditions of industrial continuous carburizing operation, such as 0%, were set. Since nitrogen in the atmosphere gas composition is considered to be an inert gas for diluting the concentration of the atmosphere gas, a similar inert gas such as argon Ar may be used.
また、 前述のように金属表層部の炭素濃度が金属帯と雰囲気ガスとの間の平衡 濃度以下の表面反応律速域で、 金属帯への浸炭量を制御するためには、 まず当該 速度域における浸炭量, 即ち表面反応速度を得、 この反応速度を時間積分すれば よいことに着目した。 この時間、 即ち浸炭時間は通扳速度によって決定される。 そして、 この表面反応速度を研究するうちに, 金属帯と雰囲気ガスとの表面反応 で考えられる浸炭反応の式と脱酸素反応の式とに包含されるガスの組成を制御す ることにより、 反応速度を制御できることを見出した。 そしてこのガス組成に最 も有効となるのは一酸化炭素と水素であり、 特に高温下で雰囲気ガスの供給/排 出流量の小さい場合には組成量は少ないが二酸化炭素及び H 2 0も、 浸炭反応を 阻害するといつた意味で影響があることを見出し、 更にこれらの組成は, その分 圧が前記表面反応速度の制御因子であることを実験により証明した。 また、 物質 反応の温度に対する依存度を考慮し、 表面反応速度の係数に, 金属帯温度という 制御因子を介在させることとした。 Also, as described above, in order to control the amount of carburization into the metal band in the surface reaction rate-determining region where the carbon concentration in the metal surface layer is equal to or less than the equilibrium concentration between the metal band and the atmospheric gas, We obtained the amount of carburization, that is, the surface reaction rate, and focused on the fact that this reaction rate should be integrated over time. This time, ie, the carburizing time, is determined by the passing speed. In the course of studying this surface reaction rate, the reaction was controlled by controlling the gas composition included in the carburization reaction formula and the deoxygenation reaction formula considered in the surface reaction between the metal strip and the atmospheric gas. I found that I could control the speed. And this for the most effective in gas composition are carbon monoxide and hydrogen, is also carbon dioxide and H 2 0 is small composition amount when the supply / emissions small flow rate of the atmospheric gas in particular at a high temperature, It was found that inhibiting carburization reaction had an effect in some way, and it was experimentally proved that the partial pressure of these compositions was a controlling factor of the surface reaction rate. In addition, taking into account the dependence of the material reaction on the temperature, a control factor called metal zone temperature was interposed in the coefficient of the surface reaction rate.
そこで、 本発明の金属帯の連続浸炭方法では、 前記浸炭速度が金属帯表層部か ら内部への拡散速度よりも大きい表面反応速度に従う浸炭条件域で、 例えば前記 浸炭炉内の金属温度に関する,予測式から浸炭の表面反応速度に係る温度依存係数 を算出し、 この温度依存係数と, 前記一酸化炭素分圧又は一酸化炭素分圧及び水 素分圧に関する予測式とから浸炭の表面反応速度を算出し、 この表面反応速度か ら前記浸炭時間に関する予測式に基づいて金属帯への浸炭量を算出することがで きるので、 逆に浸炭後の鋼板に要求される仕様諸元から金属帯への浸炭量を設定 し、 前記各予測式に介在される制御量をパラメータとして, 実際の連続浸炭に応 じてこれらのパラメ一夕を適宜に設定することにより、 最も効率のよい浸炭条件 の下に前記鋼板の仕様諸元を満足する金属帯への浸炭量を得ることができる。 ま た、 特に高温下で雰囲気ガスの供給 ·排出流量が小さい場合にあっては、 浸炭反 応を阻害するといつた影響を考慮する意味で, 例えば前記表面反応速度の予測式 に二酸化炭素分圧及び H 2 0分圧を制御量, 即ちパラメータとして加えることに より、 C 02 , H 2 0が存在する浸炭条件下での金属帯への浸炭量を正確に制御 することが可能となる。 Therefore, in the method for continuous carburization of a metal strip according to the present invention, in the carburization condition range in which the carburization rate follows a surface reaction rate greater than the diffusion rate from the surface layer of the metal strip to the inside, for example, regarding the metal temperature in the carburizing furnace, The temperature dependence coefficient relating to the surface reaction rate of carburization is calculated from the prediction formula, and the surface reaction rate of carburization is calculated from the temperature dependence coefficient and the prediction formula relating to the carbon monoxide partial pressure or the carbon monoxide partial pressure and the hydrogen partial pressure. And calculate the surface reaction rate The carburizing amount in the metal strip can be calculated based on the prediction formula relating to the carburizing time from the above, and conversely, the carburizing amount in the metal strip is set from the specifications required for the steel sheet after carburizing, and By setting the parameters appropriately according to the actual continuous carburization using the control variables interposed in each prediction formula as parameters, the specifications of the steel sheet can be adjusted under the most efficient carburizing conditions. A satisfactory amount of carburization into the metal strip can be obtained. In addition, especially when the supply and discharge flow rates of the atmospheric gas are small at high temperatures, the effect of inhibiting the carburizing reaction should be taken into account. and H 2 0 partial pressure control amount, i.e., more be added as a parameter, C 0 2, H 2 0 it is possible to accurately control the carburizing amount to metallic band at carburizing conditions present.
なお、 前記雰囲気ガス組成中の C 02 及び H 2 〇の濃度は、 当該雰囲気ガスの 投入流量を増加することにより低減することができ、 また雰囲気ガスの投人流量 を減少することにより増大することができる。 Incidentally, C 0 2 and H 2 〇 concentration of the ambient gas in the composition may be reduced by increasing the introduced flow of the ambient gas, also increased by reducing the projection's flow rate of the atmospheric gas be able to.
ところで、 前記表面反応速度を時間積分する際には実際の浸炭時間を用いる。 この浸炭時間は, 単純計算で, 浸炭時間 =在炉時間 =有効浸炭炉長 Z通板速度で 表される。 従って、 前述のように浸炭処理以外の操業条件によって通板速度が規 制されている場合には、 逆にこの通板速度から設定される浸炭時間が固定されて いるものとして捉え、 その他の制御因子を制御することで所望する浸炭量を制御 することが可能であることを確認した。 そして浸炭処理の実際にはこれらの浸炭 時間と通板速度との相関関係に、 浸炭炉内の雰囲気ガス組成と金属帯の温度を考 慮すればよい。 この場合に、 規制される通板速度が或る範囲をもっているときに は、 更に制御の正確性を追求して前記浸炭時間を前記予測式のパラメータを加え ることも可能である。  When the surface reaction rate is integrated over time, the actual carburizing time is used. This carburizing time is simply calculated as: carburizing time = furnace duration = effective carburizing furnace length Z passing speed. Therefore, as described above, when the sheet passing speed is regulated by operating conditions other than carburizing treatment, the carburizing time set from the sheet passing speed is regarded as being fixed, and other control is performed. It was confirmed that the desired amount of carburization can be controlled by controlling the factors. In the actual carburizing process, the correlation between the carburizing time and the passing speed may be determined by considering the composition of the atmosphere gas in the carburizing furnace and the temperature of the metal strip. In this case, when the regulated threading speed has a certain range, it is also possible to add the parameter of the prediction formula to the carburizing time in pursuit of further control accuracy.
ここで、 本発明の金属帯の連続浸炭方法では、 例えば必要な浸炭量制御を行う ために、 熱処理と浸炭とを同時に行う場合や熱処理の後に幾らか温度を下げて浸 炭を行う場合のように、 板温制御と浸炭制御との場が同じ場合も異なる場合も、 例えば通板速度の時系列的な考慮により同様な制御を可能とする。  Here, in the continuous carburizing method of the metal strip of the present invention, for example, in order to perform necessary carburization control, heat treatment and carburization are performed simultaneously, or carburization is performed at a somewhat lower temperature after heat treatment. In addition, even when the field of the sheet temperature control and the case of the carburizing control are the same or different, the same control can be performed by, for example, considering the sheet passing speed in a time series.
一方、 金属帯表層部の所定深さの浸炭濃度は、 浸炭時間 (拡散時間を含む) と 浸炭温度とをパラメ一夕とする、 所謂フィック (Fick) の法則に基づく炭素拡散 モデル式で得られるのではないかという点に着目し、 これを実験により証明した ( 従って、 本発明の金属帯の連続浸炭方法では、 所望される浸炭濃度分布をこの炭 素拡散モデル式に当てはめることで各深さ位置の浸炭濃度を得るための浸炭時間 と金属帯温度を設定することができる。 また、 前述した低 A I—高 B H鋼板等で は所望とする浸炭濃度分布形態は、 金属帯の表面に近いほど、 即ち表層部の浅い 部分ほど浸炭濃度が高く、 金属帯の表面から遠いほど、 即ち表層部から深い部分 ほど浸炭濃度が低いが、 前記浸炭薄鋼板に要求される仕様諸元から金属帯の浸炭 濃度分布条件を設定すると、 金属帯表面から 1 0〜2 5 0 mの深さの浸炭濃度 分布を制御すればよいことが判明した。 一方で、 この浸炭濃度分布を深さ方向に 積分することで浸炭量も設定される。 更に、 この浸炭濃度分布形態に冷却工程で の脱炭の影響がある場合には, 深さ凡そ 1 0〜5 0 / mに浸炭濃度の最大値が存 在し、 以下深さが増すに従って浸炭濃度は小さくなる。 これらより、 本発明の金 属帯の連続浸炭方法では、 総浸炭量が一定の場合には前記炭素拡散モデル式に基 づいて、 浸炭濃度分布形態のピーク点を捉える意味で前記深さ 1 0〜5 0 mの 範囲で一点の浸炭濃度を設定することで当該炭素拡散モデル式が確定し、 総浸炭 量が異なる場合でも、 その他の一点以上の浸炭濃度を前記深さ 1 0〜2 5 0 m の範囲内で設定することで、 前記炭素拡散モデル式が確定するから、 例えばこの 浸炭濃度分布形態を満足する深さ方向の各点の浸炭濃度が例えば目標値の所定許 容範囲内になる浸炭濃度分布状態を算出して当該炭素拡散モデル式のパラメ一夕 となる金属帯温度, 雰囲気ガス組成及び浸炭時間を設定することができる。 また、 仮に、 総浸炭量が設定されていない場合でも、 この炭素拡散モデル式によって得 られる浸炭濃度分布を深さ方向に積分することで、 浸炭量を設定することも可能 となる。 更に、 本発明の金属帯の連続浸炭方法では、 ここに前記表面反応律速域 の表面反応速度を適用することも勿論可能である。 On the other hand, the carburizing concentration at a predetermined depth in the surface layer of the metal strip is determined by the carbon diffusion based on the so-called Fick's law, where the carburizing time (including the diffusion time) and the carburizing temperature are all parameters. By paying attention to the fact that it can be obtained by a model formula, this was proved by experiments. ( Accordingly, in the method for continuous carburization of a metal strip of the present invention, a desired carburizing concentration distribution is applied to this carbon diffusion model formula. In this way, it is possible to set the carburizing time and the metal zone temperature to obtain the carburizing concentration at each depth position. The closer the surface is, that is, the shallower the surface layer, the higher the carburizing concentration, and the farther from the surface of the metal strip, that is, the deeper the surface layer, the lower the carburizing concentration. From the results, it was found that setting the carburizing concentration distribution condition of the metal strip could control the carburizing concentration distribution at a depth of 10 to 250 m from the surface of the metal strip. By integrating in the direction In addition, when the carburization concentration distribution is affected by decarburization in the cooling process, the maximum carburization concentration exists at a depth of approximately 10 to 50 / m. Accordingly, the carburizing concentration becomes smaller as the depth increases.Accordingly, according to the continuous metal carburizing method of the present invention, when the total carburizing amount is constant, the carburizing concentration distribution form is based on the carbon diffusion model formula. By setting the carburizing concentration at one point in the range of the depth 10 to 50 m in the sense of capturing the peak point of the above, the carbon diffusion model formula is determined, and even when the total carburizing amount is different, other one or more points By setting the carburizing concentration within the range of 10 to 250 m in the depth, the carbon diffusion model equation is determined.For example, the carburizing concentration at each point in the depth direction satisfying the carburizing concentration distribution form Calculates the carburizing concentration distribution state that falls within the predetermined allowable range of the target value, for example. It is possible to set the metal zone temperature, the atmosphere gas composition, and the carburizing time, which are the parameters of the carbon diffusion model formula, and even if the total carburizing amount is not set, this carbon diffusion model formula can be used. By integrating the obtained carburizing concentration distribution in the depth direction, it is possible to set the carburizing amount.Moreover, in the method for continuous carburizing of a metal strip according to the present invention, the surface reaction rate in the above-mentioned surface reaction-limiting region is determined. Of course, it is also possible to apply.
更に、 本発明の金属帯の連続浸炭方法では、 浸炭工程で金属帯表層部に存在す る固溶 Cは未だ拡散若しくは脱炭可能な状態であり、 この浸炭後の金属帯温度、 例えば鋼板の冷却速度を制御することによって固溶 Cの拡散及び脱炭を制御して、 所望する浸炭濃度分布状態に固溶 Cを固定化することを可能とする。 図面の簡単な説明 Furthermore, in the method for continuously carburizing a metal strip according to the present invention, the solid solution C existing in the surface layer of the metal strip in the carburizing step is still in a state where it can be diffused or decarburized. By controlling the cooling rate, it is possible to control the diffusion and decarburization of the solute C to fix the solute C to a desired carburized concentration distribution state. BRIEF DESCRIPTION OF THE FIGURES
添付する図面中、 第 1図は、 連続焼鈍浸炭設備で行われる熱処理工程の概念説 明図、 第 2図は、 本発明の金属帯の連続浸炭方法を用いた浸炭制御の対象となる 連続焼鈍浸炭設備の一例を示す概略構成図、 第 3図は、 金属帯表層部の炭素濃度 が平衡濃度に達した後の拡散律速域と該平衡濃度に達する以前の表面反応律速域 との説明図、 第 4図は、 第 2図の連続焼鈍浸炭設備で行われる全体的なライン制 御のロジックを構築するアルゴリズムのフローチャート、 第 5図は、 本発明の金 属帯の連続浸炭方法において、 表面反応速度の温度依存係数を算出するために浸 炭温度を変化させて得られたデータの温度係数相関図、 第 6図は、 本発明の金属 帯の連続浸炭方法を用いて浸炭制御を行うロジックの一実施例を構築するァルゴ リズムのフローチャート、 第 7図は、 本発明の金属帯の連続浸炭方法により得ら れたス一ティング発生限界と炉内の物質収支を考慮しないで得たス一ティング発 生限界とを比較した C O— H 2 特性図、 第 8図は、 第 6図の実施例のァルゴリズ ムによって得られた浸炭量の計算値と実測値との相関関係図、 第 9図は、 第 6図 の実施例のアルゴリズムによって目標とする浸炭量を得るために算出された浸炭 諸条件の説明図、 第 1 0図は、 第 6図の実施例のアルゴリズムによって通板速度 が設定された条件下で目標とする浸炭量を得るために算出された浸炭諸条件の説 明図、 第 1 1図は、 本発明の金属帯の連続浸炭方法を用いて、 炭素拡散モデル式 に従って得られた浸炭濃度分布と実測浸炭濃度分布との相関の一例を示す説明図、 第 1 2図は、 第 6図の実施例のアルゴリズムによって雰囲気ガス組成濃度及び浸 炭時間を制御した場合に得られる浸炭濃度分布の一例を示す説明図、 第 1 3図は、 第 6図の実施例のアルゴリズムによって浸炭後の冷却速度を制御した場合に得ら れる浸炭濃度分布の一例を示す説明図、 第 1 4図は、 本発明の実施例で使用され る雰囲気組成モデル式に従って算出された浸炭炉における発生ガス組成結果とそ の実測結果を示す説明図である。 発明を実施するための最良の形態 In the accompanying drawings, Fig. 1 is a conceptual illustration of the heat treatment process performed in the continuous annealing carburizing equipment, and Fig. 2 is a continuous annealing subject to carburizing control using the continuous strip carburizing method of the present invention. FIG. 3 is a schematic diagram showing an example of a carburizing facility, and FIG. 3 is an explanatory diagram of a diffusion-limited region after the carbon concentration in the surface layer of the metal band reaches the equilibrium concentration and a surface reaction-limited region before the carbon concentration reaches the equilibrium concentration. FIG. 4 is a flowchart of an algorithm for constructing the overall line control logic performed in the continuous annealing carburizing equipment of FIG. 2, and FIG. 5 is a surface reaction in the continuous metal carburizing method of the present invention. Temperature coefficient correlation diagram of the data obtained by changing the carburizing temperature to calculate the temperature dependence coefficient of speed.Fig. 6 shows the logic for performing carburizing control using the continuous strip carburizing method of the present invention. Algorithmic algorithm to build one embodiment FIG. 7 is a graph showing CO--comparing the sting occurrence limit obtained by the continuous carburizing method of the metal strip of the present invention with the sting occurrence limit obtained without considering the material balance in the furnace. H 2 characteristic diagram, FIG. 8 is a correlation diagram between an observed value and a calculated value obtained carburizing quantity by Arugorizu arm of the six-view embodiment, FIG. 9, the algorithm of the embodiment of FIG. 6 FIG. 10 is an explanatory diagram of various carburizing conditions calculated to obtain a target carburizing amount according to an embodiment of the present invention. FIG. 10 shows a target carburizing amount under a condition in which a threading speed is set by the algorithm of the embodiment of FIG. Fig. 11 is an explanatory diagram of the carburizing conditions calculated to obtain the carburized concentration distribution and the measured carburized concentration distribution obtained according to the carbon diffusion model equation using the continuous carburizing method of the metal strip of the present invention. Fig. 12 is an explanatory diagram showing an example of the correlation with Fig. 13 is an explanatory diagram showing an example of the carburizing concentration distribution obtained when the atmosphere gas composition concentration and the carburizing time are controlled by the algorithm of Fig. 13. Fig. 13 controls the cooling rate after carburizing by the algorithm of the embodiment of Fig. 6. FIG. 14 is an explanatory diagram showing an example of a carburizing concentration distribution obtained in the case of performing the above-described process. FIG. 9 is an explanatory diagram showing a result. BEST MODE FOR CARRYING OUT THE INVENTION
第 2図は本発明の金属帯の連続浸炭方法を実施化した極低炭素鋼からなるスト リップの連続焼鈍浸炭設備の一例を示すものである。 同図において極低炭素鋼ストリップ Aは、 前記した第 1図に示す板温制御の経 緯 ·履歴を満足するように、 コイル巻戻し機, 溶接機, 洗浄機等を有する図示し ない入側設備、 予熱帯 1、 加熱帯 2、 均熱帯 3、 浸炭帯 4、 第 1冷却帯 5、 第 2 冷却帯 6、 剪断機, 巻取り機等の図示しない出側設備の順に通板される。 FIG. 2 shows an example of a continuous annealing and carburizing facility for a strip made of ultra-low carbon steel in which the method for continuously carburizing a metal strip according to the present invention has been implemented. In this figure, the ultra-low carbon steel strip A is provided with a coil unwinder, a welding machine, a washing machine, etc. so as to satisfy the history and history of the sheet temperature control shown in FIG. The equipment, pre-tropical zone 1, heating zone 2, isotropical zone 3, carburizing zone 4, first cooling zone 5, second cooling zone 6, shearing equipment, winder, and other unshown equipment are passed through in this order.
前記加熱帯 2は、 入側設備から連続的に通板されて予熱帯 1で予熱されたスト リップ Aを再結晶温度以上まで加熱するものであり、 具体的には炉内温度が 8 5 0〜 1 0 0 0 °Cでストリップ Aの温度が 7 0 0〜 9 5 0 °Cになるように当該スト リップを加熱する。 そして加熱されたストリップ Aは前記均熱帯 3で必要な時間, 再結晶温度以上に保持されることにより、 深絞り性に有利な { 1 , 1 , 1 } 集合 組織を発達させることができる。  The heating zone 2 is for heating the strip A, which is continuously passed from the inlet side equipment and is preheated in the pre-tropical zone 1, to a temperature higher than the recrystallization temperature. The strip A is heated so that the temperature of the strip A becomes 700 to 950 ° C at ~ 100 ° C. Then, the heated strip A is maintained at a temperature higher than the recrystallization temperature for a necessary time in the soaking zone 3, whereby the {1, 1, 1} texture advantageous for deep drawing can be developed.
この加熱帯 2及び均熱帯 3内を, ハース口一ルを介して上下に昇降しながら通 板されるストリップ Aの通板路の近傍には多数のラジアントチューブが配設され ており、 このラジアン卜チューブに供給される燃料ガスを燃焼させて炉内温度 (炉温) を制御する。 この燃料ガスの供給流量の設定は、 後述する図示ざれない ホストコンピュータにより、 ラジアントチューブ, ストリップ, ハースロール等 の間の伝熱係数を考慮したヒートバランスから炉内温度の上限値が設定され、 所 望する再結晶温度の上下限値を満足するプロセスモデル計算や、 コイル同士の継 ぎ目での通板速度の最適時系列を算出する最適ルート計算や、 ハースロールのヒ 一トクラウンを予測計算して最大通板速度を算出するサーマルクラゥン計算等に 基づいて、 各熱処理帯内の在炉時間 (加熱時間, 均熱時間) を達成する通板速度 と共に設定される。 ここで本実施例では、 前記ラジアントチューブへの燃料ガス の供給流量の設定は、 通板されて炉から熱量を運び出すストリップへの加熱量に 排ガス損失熱及び炉体放散熱等を加えた炉内の熱収支から求まる炉の要求 (必 要) 熱量と同等であり、 図示されないホストコンピュータにより後述するライン 全体の制御アルゴリズ厶に則って行うことも可能とした。  A number of radiant tubes are arranged near the passing path of strip A, which passes through the heating zone 2 and the solitary zone 3 while moving up and down through the Haas mouth. The temperature inside the furnace (furnace temperature) is controlled by burning the fuel gas supplied to the flat tube. The setting of the supply flow rate of the fuel gas is performed by a host computer (not shown), which will be described later, sets an upper limit value of the furnace temperature based on a heat balance in consideration of a heat transfer coefficient between the radiant tube, the strip, the hearth roll, and the like. Process model calculation that satisfies the upper and lower limits of the desired recrystallization temperature, optimal route calculation that calculates the optimal time series of the passing speed at the joint between coils, and prediction calculation of the heart crown roll It is set together with the passing speed that achieves the in-furnace time (heating time, soaking time) in each heat treatment zone, based on thermal-crown calculations that calculate the maximum passing speed. Here, in the present embodiment, the supply flow rate of the fuel gas to the radiant tube is set in the furnace by adding the exhaust gas loss heat, the furnace body heat dissipation, etc. to the amount of heat to the strip that passes through and carries the heat from the furnace. The furnace requirement obtained from the heat balance (required) is the same as the calorific value, and it can be performed by a host computer (not shown) in accordance with the control algorithm for the entire line described later.
前記浸炭帯 4は、 ストリップ A表面の極薄い部分 (表層部) に固溶炭素 (C ) が存在する浸炭相を形成するために、 該浸炭帯 4内の浸炭炉は図示されないホス トコンピュータにより金属帯温度は 7 0 0〜9 5 0 °Cに制御され、 またストリッ プが 7 0 0 °C以上、 好ましくは再結晶温度以下となるようにして、 浸炭炉内を 1 0〜1 2 0秒で通過するように通板速度が制御される。 この制御は、 浸炭量 (浸 炭反応速度 X浸炭時間) をストリップの通板方向に対して一定とし、 材質上のバ ラツキを抑止するために行われる。 ちなみに前記炉温制御は、 ストリップ温度が 7 0 0で未満であると金属帯表面における浸炭反応速度が低下して熱処理生産性 が低下し、 また炉内温度が 9 5 0 °Cを越えると変態点を越えて材質が劣化すると いった問題を回避し、 浸炭条件を満足するために行われる。 また、 既知のように ス一ティング、 即ち鋼板の表面に遊離炭素 [ C ] が付着すると、 化成処理性の劣 化等、 品質低下及び後工程の弊害要因となる。 同時に炉内の反応が所定の方向、 例えば浸炭反応方向に促進した結果、 露点が上昇すると浸炭反応が阻害されたり、 ストリップ表面に酸化が生じてテンパーカラーの原因となったりするため、 炉內 物性及び炉内温度は後述する浸炭条件設定アルゴリズムに基づいて重要に管理さ れている。 The carburizing zone 4 is formed by a host computer (not shown) in which the carburizing furnace in the carburizing zone 4 is formed by forming a carburized phase in which solute carbon (C) is present in an extremely thin portion (surface layer) of the surface of the strip A. The temperature of the metal zone is controlled at 700 to 950 ° C, and the strip is kept at a temperature of 700 ° C or more, preferably a recrystallization temperature or less. The passing speed is controlled so as to pass in 0 to 120 seconds. This control is performed in order to keep the carburizing amount (carburizing reaction speed x carburizing time) constant in the strip passing direction and to suppress variations in the material. Incidentally, in the furnace temperature control, if the strip temperature is less than 700, the carburizing reaction rate on the metal strip surface is reduced and the heat treatment productivity is reduced, and if the temperature in the furnace exceeds 950 ° C, transformation occurs. This is done to avoid the problem of material deterioration beyond the point and satisfy carburizing conditions. Further, as is known, if free carbon [C] adheres to the surface of the steel sheet, that is, deterioration of the chemical conversion treatment and the like, and quality deterioration and adverse effects in the post-process are caused. At the same time, the reaction in the furnace accelerates in a predetermined direction, for example, in the direction of the carburizing reaction. As a result, if the dew point rises, the carburizing reaction is hindered, and oxidation occurs on the strip surface, causing a temper color. And the furnace temperature is controlled critically based on the carburizing condition setting algorithm described later.
この浸炭炉内に供給される浸炭ガスの組成及び供給 ·排出流量は、 前記ホスト コンピュー夕が、 後述する炉内の物質収支を考慮して炉内の自由エネルギーを最 小とする熱力学 (雰囲気組成) モデル式に基づいて算出した、 諸条件に従って制 御されている。 この浸炭ガスの組成及び供給 ·排出流量は前記ス一ティングを防 止すると共に、 前記露点上昇を抑制して浸炭反応速度の低下やテンパーカラーを 防止するように制御される。 勿論、 次いで説明するストリップに形成される浸炭 層の浸炭濃度分布, 浸炭深さ等のストリップの仕様諸元を最優先し、 更に前記通 板速度, 炉内温度に鑑みて前記浸炭ガスの組成及び供給 ·排出流量を算出するこ とは言うまでもない。  The composition and supply / discharge flow rate of the carburizing gas supplied into the carburizing furnace are determined by the host computer based on thermodynamics (atmosphere) that minimizes the free energy in the furnace in consideration of the material balance in the furnace described later. (Composition) Controlled according to various conditions calculated based on the model formula. The composition and supply and discharge flow rates of the carburizing gas are controlled so as to prevent the sting and to suppress the rise in the dew point to prevent the carburizing reaction speed from lowering and the temper collar. Of course, the specification of the strip, such as the carburized concentration distribution and the carburized depth of the carburized layer formed on the strip to be described later, is given top priority, and the composition of the carburized gas and the It goes without saying that supply and discharge flow rates are calculated.
そして、 この浸炭炉内の物性, 炉温, 金属帯温度, 通板速度即ち浸炭時間, 雰 囲気ガス組成は、 連続浸炭の実際における制御対象物理量 (制御量) と見なされ、 前記ホストコンピュータにより、 ストリップに形成されるべき要求される浸炭層 の浸炭濃度分布, 浸炭深さ等の仕様諸元から、 例えば必要な浸炭量を設定し、 後 述する予め設定したこれら制御量に関する各種の基礎式を適宜取捨選択して、 当 該浸炭量を実現するための各制御量を算出し、 その他の設備の能力やプロセスを も考慮して、 それらの制御量を設定するようにしてある。  The physical properties in the carburizing furnace, the furnace temperature, the metal zone temperature, the passing speed, ie, the carburizing time, and the atmosphere gas composition are regarded as the physical quantities to be controlled (control quantities) in the actual case of continuous carburizing. From the specifications such as the required carburized concentration distribution of the carburized layer to be formed on the strip, the carburized depth, etc., for example, the necessary carburized amount is set, and various basic formulas for these control amounts, which are set in advance, will be described later. Each control amount for realizing the carburization amount is calculated by appropriately selecting the control amount, and the control amounts are set in consideration of the capacity and process of other equipment.
ちなみに浸炭炉内のストリップはハースロール 1 0を介して炉内を昇降しなが ら通板されているが、 これらのハースロール 1 0はその回転性及びロールクラウ ンを所定状態に保持するために、 例えば軸受近傍等が冷却されている。 また、 口By the way, the strip in the carburizing furnace goes up and down the furnace through the hearth rolls 10. These hearth rolls 10 are cooled, for example, in the vicinity of bearings, in order to maintain their rotation and roll crown in a predetermined state. Also mouth
—ル自体の強度及び耐磨耗性を維持するためにハースロールにはクロム C r合金 が使用されている。 ところが、 前記浸炭雰囲気ガスがハースロール近傍まで及ぶ と冷却されてスーティングが進行するため、 ハースロールに Cが付着した後、 ハ ースロール内部に Cが拡散する。 このようになると前記 C rと Cが結合して C r 炭化物が析出し、 これによりハースロールに用いられている耐熱合金の結晶粒が 破壊され或いは膨張し、 一方で固溶 C rが減少するため、 ハースロールが脆化、 酸化されることにより孔状の腐食が進行する。 このようにハースロールを浸炭雰 囲気ガス中に曝すと、 本件発明者等の実験によれば 2年以内でハースロールを交 換しなければならないことが判明している。 そこで本実施例では、 ハースロール 室を非接触のシール装置 1 1によって浸炭雰囲気から分離してハースロールの劣 化を防止するようにし、 また該ハース口ール室内を前記ハースロールの劣化が進 行しない程度の微弱浸炭状態とすることによって、 分離されたハースロール室内 をストリップが通過する間に浸炭された表層部から Cが放散する、 所謂脱炭を防 止することに成功した。 なお、 ストリップがハースロール室を通過する時間が極 めて短く、 当該時間に係る鋼板表層部からの脱炭が問題とならない場合には、 前 記ハースロール室内を非浸炭雰囲気としてもよい。 —The chrome Cr alloy is used for the hearth roll to maintain the strength and wear resistance of the roll itself. However, when the carburizing atmosphere gas reaches the vicinity of the hearth roll, cooling is performed and sooting proceeds, so that carbon adheres to the hearth roll and then diffuses into the hearth roll. When this occurs, the Cr and C are combined to precipitate Cr carbide, thereby breaking or expanding the crystal grains of the heat-resistant alloy used for the hearth roll, while reducing the solid solution Cr. As a result, the hearth roll is embrittled and oxidized, so that pore-shaped corrosion proceeds. When the hearth roll is exposed to the carburizing atmosphere gas as described above, experiments by the present inventors have revealed that the hearth roll must be replaced within two years. Therefore, in this embodiment, the hearth roll chamber is separated from the carburizing atmosphere by a non-contact sealing device 11 to prevent the hearth roll from deteriorating, and the hearth roll is deteriorated in the hearth roll chamber. By making the carburizing state weak enough to prevent carburization, we succeeded in preventing so-called decarburization, in which C diffuses from the carburized surface layer while the strip passes through the separated hearth roll chamber. If the time for the strip to pass through the hearth roll chamber is extremely short and decarburization from the surface layer of the steel sheet during the time is not a problem, the hearth roll chamber may be set to a non-carburized atmosphere.
前記シール装置 1 1はここではその構造を詳述しないが、 例えばハースロール 室と浸炭雰囲気室との間に介装されたシール層を 3層構造とし、 このうちハース ロール室側のシール層には前記弱浸炭雰囲気ガスを噴出し、 浸炭雰囲気室側のシ ール層には前記浸炭雰囲気ガスを噴出し、 中間のシール層からは排気を行うよう にし、 更に各雰囲気ガスの噴射方向及び噴射流量を制御して各雰囲気ガスの流れ が前記中間のシール層側に向かうようにすると共に、 ストリップの通板に伴う板 面気流によって発生する循環流をシール層のうちストリップの幅方向端面に形成 された排出口から排気する構成とした。  Although the structure of the sealing device 11 is not described in detail here, for example, the sealing layer provided between the hearth roll chamber and the carburizing atmosphere chamber has a three-layer structure. Ejects the above-mentioned weakly carburizing atmosphere gas, ejects the above-mentioned carburizing atmosphere gas to the seal layer on the carburizing atmosphere chamber side, and exhausts gas from the intermediate seal layer. The flow rate of each atmosphere gas is controlled so as to flow toward the intermediate seal layer by controlling the flow rate, and a circulating flow generated by a plate surface airflow accompanying the passing of the strip is formed on an end face in the width direction of the strip in the seal layer. The exhaust port is configured to exhaust air.
この浸炭帯 4から送出されたストリップ Aは前記第 1冷却帯 5に通板される。 この第 1冷却帯 5では、 前記浸炭帯 4で浸炭された固溶 Cをストリップの表層部 のうち表面の極薄い範囲にのみ固定するため、 浸炭後のストリップを、 鋼板温度 力 6 0 0 °C以下、 好ましくは 5 0 0〜 4 0 0 °C程度になるまで 5 °C/sec.以上の 冷却速度で急冷する。 この第 1冷却帯 5内ではこの冷却条件が達成できるように、 前記ホストコンピュータにより冷却帯内を搬送されるストリップに対して冷却ガ スジェッ トから吹付けられる冷却ガス流量, 流速及び冷却ロール温度, 巻付け角 等が制御される。 The strip A sent from the carburized zone 4 is passed through the first cooling zone 5. In the first cooling zone 5, since the solid solution C carburized in the carburizing zone 4 is fixed only in a very thin area on the surface of the surface layer of the strip, the strip after carburizing is heated to a steel sheet temperature. Cool rapidly at a cooling rate of 5 ° C / sec. Or more until the force becomes 600 ° C or less, preferably about 500 ° C to 400 ° C. In the first cooling zone 5, the cooling gas flow rate, the flow rate and the cooling roll temperature, which are blown from the cooling gas jet to the strip conveyed in the cooling zone by the host computer, so that the cooling condition can be achieved. The winding angle is controlled.
前記第 1冷却帯 5から送出されたストリップ Aは次いで第 2冷却帯 6に通板さ れる。 この第 2冷却帯 6では鋼板温度が 2 5 0〜2 0 0 °C程度までガス冷却が行 われる。 このようにして最終的には表層部の固溶 Cの量及び形態が制御された極 低炭素プレス成形用冷延鋼板を得ることができる。  The strip A sent from the first cooling zone 5 is then passed through the second cooling zone 6. In the second cooling zone 6, gas cooling is performed to a steel sheet temperature of about 250 to 200 ° C. In this way, it is possible to finally obtain a cold rolled steel sheet for ultra-low carbon press forming in which the amount and form of solid solution C in the surface layer are controlled.
次に、 本実施例の連続焼鈍浸炭設備において、 前記ホストコンピュータによつ て行われるトータルな連続焼鈍浸炭制御の構成概念について説明する。 なお、 理 解を容易化するために、 これ以後、 浸炭反応に係る金属帯の温度を浸炭温度とも 記すが、 その実質的な制御因子が炉内温度であることは前述の内容から明らかで あろう。  Next, in the continuous annealing and carburizing equipment of the present embodiment, a configuration concept of total continuous annealing and carburizing control performed by the host computer will be described. In order to facilitate understanding, hereinafter, the temperature of the metal zone involved in the carburizing reaction is also referred to as the carburizing temperature, but it is clear from the above description that the substantial control factor is the furnace temperature. Would.
まず、 前述したように浸炭帯における浸炭制御では、 鋼板中の浸炭濃度分布が 要求される場合を含めて、 当該鋼板への浸炭量は目標材質を得るための与条件と して与えられる。 例えば浸炭濃度分布が要求される場合は、 その分布を深さ方向 に積分することで浸炭量が設定される。 そして、 材質条件から浸炭温度の上限は 再結晶温度以下に設定される。 一方、 前記浸炭炉の最大処理能力を得るためには 浸炭量 =浸炭反応速度 X浸炭時間の原理に基づいて浸炭反応速度を大きくする必 要があり、 この必要から浸炭反応速度に関与する浸炭温度は高いほどよく、 これ は後述するス一ティングの発生を防止して C O濃度上限を高くすることにも繫が る。  First, as described above, in carburizing control in a carburizing zone, the amount of carburizing in the steel sheet is given as a condition for obtaining the target material, including the case where the carburizing concentration distribution in the steel sheet is required. For example, when a carburizing concentration distribution is required, the carburizing amount is set by integrating the distribution in the depth direction. The upper limit of the carburizing temperature is set to be lower than the recrystallization temperature due to the material conditions. On the other hand, in order to obtain the maximum treatment capacity of the carburizing furnace, it is necessary to increase the carburizing reaction speed based on the principle of carburizing amount = carburizing reaction speed x carburizing time. The higher the value, the better. This also helps to prevent the occurrence of stinging described later and raises the CO concentration upper limit.
本実施例では前記ス一ティングの発生限界を物質収支を考慮した熱力学 (雰囲 気組成) モデル式により得ることができるが、 単にスーティングの発生しない範 囲からという条件だけでは、 雰囲気組成に関与する C〇濃度及び H.2 濃度を設定 するとことが困難である。 そのため、 本発明では前記浸炭反応速度を阻害しない 関係式を予め設定し、 例えば前記スーティングの発生しない雰囲気組成モデル式 によって得られた C O濃度を基準として、 この関係式を用いて H 2 濃度を算出す る。 具体的には、 In the present embodiment, the occurrence limit of the above-mentioned sooting can be obtained by a thermodynamic (atmosphere composition) model formula in consideration of the material balance. it is difficult to set a result that the C_〇 concentration and H. 2 concentration involved in. Therefore, the present invention previously sets the carburizing reaction rate equation which does not inhibit the, for example, based on the CO concentrations obtained by the generated not atmosphere composition model formula of the soot, and H 2 concentration using the equation Calculate You. In particular,
H 2 濃度 = a x ( C O濃度) H 2 concentration = ax (CO concentration)
但し、  However,
a : 0≤ a < 5の範囲の定数  a: constant in the range 0≤a <5
で表される。 この定数 aは、 具体的には後述する表面反応速度の基礎式で、 反応 を阻害する C 0 2 と H 2 0の生成濃度を最小に抑える値に設定され、 通常は 0 . 5〜1 . 0の範囲で設定することが多い。 即ち、 この関係式を満足するときに、 表面反応速度式に基づく浸炭反応速度は最大となる。 It is represented by The constant a is specifically in fundamental equations of the surface reaction rate, which will be described later, it is set to a value to suppress the generation concentration of C 0 2 and H 2 0 to inhibit the reaction to a minimum, usually from 0.5 to 1. It is often set in the range of 0. That is, when this relational expression is satisfied, the carburizing reaction rate based on the surface reaction rate equation becomes the maximum.
また、 本実施例では前記設定された表面反応速度に基づいて所望される浸炭濃 度分布を達成するための浸炭時間が設定される。 即ち、 表層部の C濃度だけを高 めて内層部の C濃度との勾配を急峻にする場合には、 浸炭反応速度を大きくして (浸炭力を高めて) 浸炭時間を短くすればよい。 逆に、 鋼板の C濃度全体を高め て内層部と表層部との C濃度勾配を緩やかにする場合には、 浸炭反応速度を小さ くして (浸炭力を低めて) 浸炭時間を長くすればよい。 これらの浸炭反応速度と 浸炭時間の制御は、 前述した浸炭量一定の制約条件を満足する。  In this embodiment, the carburizing time for achieving a desired carburizing concentration distribution is set based on the set surface reaction rate. That is, when increasing only the C concentration in the surface layer to steepen the gradient with the C concentration in the inner layer, the carburizing reaction speed may be increased (the carburizing force is increased) to shorten the carburizing time. Conversely, when increasing the entire C concentration of the steel sheet to make the C concentration gradient between the inner layer and the surface layer gentler, the carburizing reaction rate should be reduced (the carburizing power is reduced) and the carburizing time should be increased. . The control of the carburizing reaction rate and the carburizing time satisfies the above-mentioned constraint condition of constant carburizing amount.
一方、 前 0ι加熱帯や均熱帯等の項でもふれたように浸炭帯以外の各板温制御帯 でも夫々の炉の能力計算やプロセス計算によって最適な通板速度が設定される。 これらの各板温制御帯の最大通板速度と前記浸炭帯の最大通板速度を考慮した場 合、 ストリップが一連に通板される連続焼鈍浸炭設備では、 いずれの通板速度が 設備全体の通板速度を律速するかを判断しなければならない。 この場合には、 鋼 板のあらゆる仕様諸元を考慮しなければならず、 しかもその仕様諸元は絶対条件 として与えられる。  On the other hand, as mentioned in the previous section on the heating zone and the tropical zone, the optimum strip speed is set in each plate temperature control zone other than the carburizing zone by calculating the capacity and process of each furnace. In consideration of the maximum stripping speed of each of these strip temperature control zones and the maximum stripping speed of the carburized zone, in continuous annealing carburizing equipment where strips are stripped in series, any stripping speed is equal to the entire equipment. It is necessary to judge whether the speed of the passing plate is limited. In this case, all specifications of the steel plate must be considered, and the specifications are given as absolute conditions.
以上から、 前記浸炭帯で得られる最大通板速度が、 前記各板温制御帯で得られ る各最大通板速度の最小値よりも大きい場合には、 各扳温制御帯の最大通板速度 の最小値をラィン通扳速度として設定し、 この通板速度で前記浸炭量を満足する 浸炭炉の雰囲気条件を再度設定し直す必要がある。 なお、 この場合は浸炭時間が 長くなるから、 前記浸炭量一定の制約条件下では浸炭反応速度を低下させる方向、 即ち雰囲気ガス中の C O濃度, H 2 濃度を低下させる方向に設定し直すことにな り、 必然的に前記スーティングを発生しない条件を満足することになる。 逆に前記各板温制御帯で得られる各最大通板速度の最小値が、 前記浸炭帯で得 られる最大通板速度以上である場合には、 浸炭帯の最大通板速度をライン通板速 度として設定し、 この通板速度で各板温制御帯の板温を満足するために炉温ゃ燃 料供給量を板温制御量として設定し直す必要がある。 From the above, when the maximum threading speed obtained in the carburized zone is larger than the minimum value of each maximum threading speed obtained in each of the sheet temperature control zones, the maximum threading speed of each of the temperature control zones is obtained. Must be set as the line passing speed, and the atmospheric conditions of the carburizing furnace that satisfies the carburizing amount at this passing speed need to be set again. In this case, since the carburizing time becomes longer, it is necessary to reset the direction to decrease the carburizing reaction rate, that is, to reduce the CO concentration and the H 2 concentration in the atmosphere gas under the above-mentioned constraint condition of the constant amount of carburizing. In other words, the condition that does not cause sooting is necessarily satisfied. Conversely, if the minimum value of the maximum threading speed obtained in each of the sheet temperature control zones is equal to or greater than the maximum threading speed obtained in the carburized zone, the maximum threading speed of the carburized zone is set to the line threading speed. In order to satisfy the sheet temperature of each sheet temperature control zone at this sheet passing speed, it is necessary to reset the furnace temperature / fuel supply amount as the sheet temperature control amount.
これらの制御概念を具体化したのが前記ホストコンピュ一夕で行われる第 4図 に示すアルゴリズムである。  These control concepts are embodied in the algorithm shown in FIG. 4 performed by the host computer.
この演算処理では、 まずステップ S 2 0で浸炭帯, 各板温制御帯において、 設 備能力の上限を制約条件として、 各種鋼板の加熱、 浸炭及び冷却仕様を満足する 通板速度の最大値を設定する。 具体的には、 例えば前記加熱帯 2、 均熱帯 3にお いては、 伝熱理論を基礎とした数式モデルに基づいて、 前記ラジアントチューブ、 炉壁、 ストリップ、 ハースロール等の間の伝熱を考慮したヒ一卜バランスから、 プロセスモデル式を設定し、 このプロセスモデル式に基づいて、 設備上設定が可 能な炉温及び燃料ガス供給流量又は電気加熱装置の容量の範囲内で且つ目標板温 を満足できる通板速度の最大値 (以下、 最大通板速度と記す) を算出する。  In this calculation processing, first, in step S20, in the carburizing zone and each sheet temperature control zone, the maximum value of the passing speed that satisfies the heating, carburizing, and cooling specifications of various steel sheets is set using the upper limit of the installation capacity as a constraint. Set. Specifically, for example, in the heating zone 2 and the isotropy 3, the heat transfer between the radiant tube, the furnace wall, the strip, the hearth roll, and the like is performed based on a mathematical model based on the heat transfer theory. Based on the heat balance considered, a process model formula is set. Based on this process model formula, the target plate is set within the range of the furnace temperature and fuel gas supply flow rate or the capacity of the electric heating device that can be set on the equipment. Calculate the maximum value of the passing speed that satisfies the temperature (hereinafter referred to as the maximum passing speed).
一方、 浸炭帯 4においては、 後段に詳述する熱力学を基礎とした数式モデルに 基づいて、 浸炭炉内の物質収支を考慮した浸炭炉内の雰囲気ガス組成モデルを設 定し、 この雰囲気ガス組成モデルと浸炭反応速度式からス一ティングを発生しな い雰囲気ガス組成 (具体的には C O ) の上限値以下で且つ目標浸炭量を満足する 最大通板速度を算出する。  On the other hand, in carburizing zone 4, based on a mathematical model based on thermodynamics, which will be described in detail later, an atmosphere gas composition model in the carburizing furnace was set in consideration of the material balance in the carburizing furnace. From the composition model and the carburizing reaction rate equation, calculate the maximum passing speed that is less than or equal to the upper limit of the atmosphere gas composition (specifically, CO 2) that does not cause sting and that satisfies the target carburizing amount.
また、 冷却帯 5、 6においては、 冷却ガスジェッ トによる冷却ガスとストリツ プの伝熱を考慮したモデル式に基づいて、 冷却ガス供給能力の範囲内で且つ目標 冷却速度及び/又は目標冷却終了温度を満足する最大通板速度を算出する。  In the cooling zones 5 and 6, based on the model formula considering the heat transfer between the cooling gas and the strip by the cooling gas jet, within the range of the cooling gas supply capacity and the target cooling rate and / or the target cooling end temperature. The maximum passing speed that satisfies is calculated.
なお、 前記冷却帯 5、 6において、 冷却方式として、 ガスジヱッ ト方式以外の 冷却ロール方式やミスト冷却方式を用いた場合には、 これらの冷却装置で使用す る媒体とストリップとの伝熱を考慮したモデル式を用いて同様の計算を行えばよ い。  In the cooling zones 5 and 6, when a cooling roll system other than the gas jet system or a mist cooling system is used as the cooling system, heat transfer between the medium and the strip used in these cooling devices is taken into consideration. The same calculation may be performed using the model formula obtained.
以上のようにして、 算出された浸炭帯を含む各熱処理帯の最大通板速度を比較 して、 その最小値をライン全体の最大通板速度として設定する。  As described above, the calculated maximum passing speeds of the heat treatment zones including the carburized zone are compared, and the minimum value is set as the maximum passing speed of the entire line.
次にステップ S 2 1に移行して、 前記ステップ S 2 0で設定したライン全体の 最大通板速度を用いて、 浸炭帯を含む各熱 理帯の夫々において、 鋼板の加熱、 浸炭及び冷却仕様を満足する制御量の設定値を求める。 Next, the process proceeds to step S21, and the entire line set in step S20 is set. Using the maximum stripping speed, determine the set value of the controlled variable that satisfies the heating, carburizing and cooling specifications of the steel sheet in each of the thermomechanical zones including the carburized zone.
具体的には例えば、 前記加熱帯 2、 均熱帯 3においてはステップ S 2 0で述べ た伝熱モデルを用いて、 目標板温を満足する炉温を設定する。 この炉温は、 フィ 一ドバック制御により燃料ガス供給流量又は電気加熱装置の負荷を制御してもよ いし、 前述したプロセスモデル計算に基づき、 鋼板のコイルの継ぎ目等の板温変 動を最小とする燃料ガス供給流量又は電気加熱装置の負荷の最適時系列を最適ル 一ト計算により算出して、 これに基づいてフィ一ドフォヮ一ド制御を行ってもよ い。  Specifically, for example, in the heating zone 2 and the isotropy 3, the furnace temperature that satisfies the target plate temperature is set using the heat transfer model described in step S20. This furnace temperature may control the fuel gas supply flow rate or the load of the electric heating device by feedback control, and minimize the sheet temperature fluctuation at the seam of the coil of the steel sheet based on the process model calculation described above. The optimum time series of the fuel gas supply flow rate or the load of the electric heating device to be calculated may be calculated by the optimum route calculation, and the feed-forward control may be performed based on the calculated time series.
一方、 浸炭帯 4においては、 目標値が浸炭量のみの場合と、 浸炭量と共に鋼板 厚さ方向への C濃度分布形態の目標値が指定される場合がある。 目標浸炭量のみ が指定されている場合には、 前記ステップ S 2 0で述べた雰囲気ガス組成モデル と鋼板表面の浸炭反応速度式とを用いて目標浸炭量を満足する雰囲気ガス組成を 算出する。 それに対して、 目標浸炭量と共に鋼板厚さ方向への C濃度分布形態の 目標値が措定されている場合には、 雰囲気ガス組成モデルと鋼板表面の浸炭反応 速度式と共に、 浸炭時間だけでなく冷却期間も考慮した鋼中拡散モデルを用いて、 通板速度を前記ステップ S 2 0で設定したライン全体の最大通板速度以下の範囲 で、 目標とする鋼板厚さ方向への C濃度分布形態が設定可能な通板速度に再設定 すると共に、 目標浸炭量を満足する雰囲気ガス組成を算出する。 なお、 ここで再 設定された通板速度は、 本ステップ以降におけるライン全体の通板速度として設 定する。 また、 本実施例では、 鋼板厚さ方向への C濃度分布形態が目標値を満た すための通板速度設定のロジックを本ステップ S 2 1で説明したが、 設定した通 板速度がその他の要因で設定変更されるのを防止するために、 鋼板厚さ方向への C濃度分布を満たす通板速度設定は後述するステップ S 2 3で実施することが望 ましく、 実施例ではこのステップ S 2 3で実施している。  On the other hand, in the case of carburizing zone 4, the target value is only the carburizing amount, or the target value of the C concentration distribution in the steel sheet thickness direction is specified together with the carburizing amount. If only the target carburization amount is specified, the atmosphere gas composition that satisfies the target carburization amount is calculated using the atmosphere gas composition model described in step S20 and the carburization reaction rate equation on the steel sheet surface. On the other hand, if the target value of the C concentration distribution in the thickness direction of the steel sheet is specified along with the target carburization amount, not only the carburization time but also the cooling time, together with the atmosphere gas composition model and the carburization reaction rate equation on the steel sheet surface. Using a diffusion model in steel that also considers the period, the C concentration distribution pattern in the target steel sheet thickness direction can be adjusted within the range where the threading speed is equal to or less than the maximum threading speed of the entire line set in step S20. At the same time as resetting to the set sheeting speed, calculate the atmosphere gas composition that satisfies the target carburizing amount. The threading speed reset here is set as the threading speed of the entire line after this step. Also, in this embodiment, the logic for setting the passing speed so that the C concentration distribution form in the thickness direction of the steel sheet satisfies the target value has been described in step S21. In order to prevent the setting from being changed due to factors, it is desirable to set the passing speed that satisfies the C concentration distribution in the thickness direction of the steel sheet in step S23 described later. 23.
冷却帯 5、 6においては、 前記ステップ S 2 0で述べた伝熱モデルを用いて、 y標冷却速度や目標冷却終了温度を満足するように冷却ガスジェッ トの風速をフ アンの回転数等により設定する。  In the cooling zones 5 and 6, using the heat transfer model described in step S20, the wind speed of the cooling gas jet is adjusted by the fan speed so as to satisfy the target cooling speed and the target cooling end temperature. Set.
次にステップ S 2 2に移行して、 浸炭帯を含む各熱処理帯のハ一スロールのヒ 一トクラウンを板温モデルとロール室の熱バランスモデルとにより予測計算し、 ロールクラウンがストリップの蛇行発生限界内ゃバックリングの発生限界内にな るような最大通板速度を算出する, 所謂サーマルクラウン計算を行う。 なお、 こ こで算出された最大通板速度が前記ステップ S 2 1までのステップで設定された ライン全体の最大通板速度よりも大きい場合には次のステップ S 2 3に移行する c 一方、 ここで算出された最大通板速度が前記ステップ S 2 1までのステップで設 定されたライン全体の最大通板速度よりも小さい場合には、 本サ一マルクラウン 計算で求めた最大通板速度をライン全体の通板速度に再設定し、 前記ステップ S 2 1に移行する。 Next, proceeding to step S22, the heat roll of each heat treatment zone including the carburized zone is removed. The maximum crowning speed is calculated by predicting the crown by using the sheet temperature model and the heat balance model of the roll chamber, and calculating the maximum sheet passing speed so that the roll crown is within the meandering limit of the strip ス ト リ ッ プ the limit of buckling. Perform crown calculation. If the maximum threading speed calculated here is higher than the maximum threading speed of the entire line set in the steps up to step S21, the process proceeds to the next step S23. If the maximum threading speed calculated here is smaller than the maximum threading speed of the entire line set in the steps up to step S21, the maximum threading speed obtained by this thermal crown calculation Is reset to the threading speed of the entire line, and the flow shifts to step S21.
前記ステップ S 2 3では、 コイルの継ぎ目溶接の実施やコイル検査等の操業上 の理由やその他の理由 (主としてトラブル) によって、 目標とする通板速度が予 め指定されている場合に、 その指定された通板速度が前記ステップ S 2 0〜S 2 2で設定されるライン全体の最大通板速度以下であることをチエツクした後に、 ライン全体の通板速度を指定ざれた通板速度に設定する。  In step S23, if the target threading speed has been specified in advance for operational reasons such as coil seam welding and coil inspection, and for other reasons (mainly trouble), the designation is made. After checking that the set passing speed is equal to or less than the maximum passing speed of the entire line set in steps S20 to S22, the passing speed of the entire line is set to the designated passing speed. I do.
次にステップ S 2 4に移行して、 最終的に設定されたライン全体の通板速度に 対して、 浸炭帯を含む各熱処理帯の夫々において鋼板の加熱、 浸炭及び冷却仕様 を満足する制御量を算 ¾し、 設定する。 本ステップでの計算内容は前記ステップ S 2 1 と同様であるが、 鋼板厚さ方向への C濃度分布形態に基づく通板速度の設 定計算は行わない。  Next, proceeding to step S24, the control amount satisfying the heating, carburizing and cooling specifications of the steel sheet in each heat treatment zone including the carburizing zone with respect to the finally set threading speed of the entire line. Calculate and set. The content of the calculation in this step is the same as that in step S21, but the setting calculation of the sheet passing speed based on the C concentration distribution in the thickness direction of the steel sheet is not performed.
なお、 本ロジックの説明において、 浸炭帯 4において、 目標扳温を満足するた めの板温制御の記述を省略したが、 当該浸炭帯 4の板温制御は、 ロジックの説明 の中で述べた加熱帯 2、 均熱帯 3における板温制御と同じ内容であると考えれば よい。  In the explanation of the logic, the description of the sheet temperature control for satisfying the target temperature in the carburized zone 4 is omitted, but the sheet temperature control of the carburized zone 4 is described in the explanation of the logic. It can be considered that it is the same content as the plate temperature control in the heating zone 2 and the average tropical zone 3.
次に前記浸炭帯で行われる浸炭雰囲気制御について説明する。  Next, carburizing atmosphere control performed in the carburizing zone will be described.
まず、 前述した低 A I一高 B H鋼板のようなプレス成形性に富み且つ強度を有 する鋼板を得るために要求されるストリップの仕様諸元に基づいて、 本実施例に おける浸炭処理条件が従来の浸炭処理条件に比してどのようなレベルにあるの力、、 そしてその浸炭処理条件を満足するために必要な項目について説明する。  First, based on the specifications of the strip required to obtain a steel sheet with high press formability and strength, such as the low AI / high BH steel sheet described above, the carburizing conditions in this example were The level of the power compared to the carburizing conditions and the items required to satisfy the carburizing conditions will be described.
従来の浸炭技術は、 歯車, シャフ ト, ベアリング等の所謂調質鋼からなる不連 続物の耐磨耗性, 耐衝撃性向上等のために表面硬化を目的として行われる。 その ため、 素材中の C量は 0 . 0 5 %以上で要求される浸炭量は 0 . 1 %以上、 浸炭 深さは 0 . 5〜し 5 m m以上であり、 従って浸炭所要時間は 1〜5時間にも及 ぶ。 このような条件下では鋼板表層部の C濃度が時間に対して平衡濃度に達して いるから、 前記第 3図に示すように浸炭速度は鋼中への拡散速度に従う鋼中拡散 律速域であり、 その浸炭速度は時間の平方根に比例する。 この浸炭速度域では、 鋼板表層部の鋼中平衡 C濃度が、 所定の値となるように鋼中拡散速度が表面反応 速度と等しくなるように雰囲気ガスのカーボンポテンシャル ( Cポテンシャル) を制御する必要があり、 実際の操業管理指標としては C〇Z C〇2 の管理が重要 になる。 Conventional carburizing technology involves the use of so-called tempered steel such as gears, shafts and bearings. This is performed for the purpose of surface hardening to improve the wear resistance and impact resistance of the sequel. Therefore, the C content in the material is 0.05% or more, the required carburization amount is 0.1% or more, and the carburization depth is 0.5 to 5 mm or more, so the carburizing time is 1 to It can last up to 5 hours. Under these conditions, the C concentration in the surface layer of the steel sheet reaches an equilibrium concentration with respect to time.Therefore, as shown in Fig. 3, the carburization rate is a diffusion-limited region in steel that follows the diffusion rate into steel. However, its carburizing rate is proportional to the square root of time. In this carburizing speed range, it is necessary to control the carbon potential (C potential) of the atmospheric gas so that the diffusion rate in the steel is equal to the surface reaction rate so that the equilibrium C concentration in the steel at the surface layer of the steel sheet becomes a predetermined value. There are, management C_〇_ZC_〇 2 is important as an actual operation management indicators.
一方、 本実施例のようなストリップの連続浸炭においては、 該ストリップが前 記極低炭素鋼からなる連続物であり、 このストリップの表面特性を改善すること 及び鋼板そのものの材質の向上を目的として行われる。 そのため、 例えば前記の 耐ニ次加工脆性の向上を対象とする金属に要求される仕様 (特開平 3— 1 9 9 3 4 4号公報など) から当該金属帯の浸炭条件を求めると、 本実施例では素材中の C量は 2 0 p p mで要求される浸炭量は 2 0 0 p p m以下、 浸炭深さは 5 0〜 2 0 0 mであり、 しかも通板速度に左右される浸炭時間は 1 2 0秒以下になる。 このような条件下では鋼板表層部の C濃度が時間に対して平衡濃度に達しないか ら、 前出した葉らの報告にあるように、 第 3図に示すように浸炭速度は鋼表面の 反応速度に従う表面反応律速域であり、 該浸炭速度は時間そのものに比例する。 この表面反応律速域では浸炭量, 浸炭深さ共に非平衡状態であるから、 実際の操 業管理指標として従来のように単に鋼中表層部の平衡 C濃度となるように Cポテ ンシャル制御によって C〇/ C〇2 を管理するだけでなく、 炉内における多数の 制御量を考慮して、 要求される鋼板の仕様諸元から決定される浸炭量を得るよう に、 浸炭条件を設定する必要がある。 On the other hand, in the continuous carburizing of the strip as in the present embodiment, the strip is a continuous body made of the ultra-low carbon steel described above, and the purpose is to improve the surface characteristics of the strip and to improve the material of the steel sheet itself. Done. Therefore, for example, if the carburizing conditions of the metal strip are determined from the specifications (for example, Japanese Patent Application Laid-Open No. 3-193934) required for the metal intended to improve the secondary work brittleness resistance, In the example, the C content in the material is 20 ppm, the required carburizing amount is 200 ppm or less, the carburizing depth is 50 to 200 m, and the carburizing time depends on the passing speed is 1 20 seconds or less. Under these conditions, the C concentration in the surface layer of the steel sheet does not reach the equilibrium concentration with respect to time, so as shown in the report of the leaves mentioned above, the carburization rate was reduced as shown in Fig. 3. This is a surface reaction rate-determining region according to the reaction rate, and the carburizing rate is proportional to time itself. Since the carburization amount and carburization depth are in non-equilibrium state in this surface reaction rate-determining region, the actual operation management index is simply C potential control by C potential control so that the equilibrium C concentration in the surface layer in the steel is obtained. 〇 / C_〇 not only manage 2, taking into account the number of controlled variables in the furnace, so as to obtain a carburized amount determined from the required steel specifications specifications, is necessary to set the carburizing condition is there.
また、 実際の連続焼鈍浸炭操業では、 例えば前記第 4図に示すアルゴリズムの ように浸炭帯以外のヒートセクシヨンで行われる板温制御の実際から通扳速度が 設定される場合を始めとして、 種々の操業条件から最も応答速度の速い通板速度 を制御することが多々ある。 そこで、 本発明の連続浸炭方法では、 浸炭処理以外 の連続焼鈍浸炭操業条件から通板速度が規制された場合に、 当該通板速度の下に、 要求される鋼板の仕様諸元から金属帯表層部の浸炭量を満足する浸炭条件とを設 疋する。 In the actual continuous annealing and carburizing operation, there are various cases including the case where the passing speed is set from the actual sheet temperature control performed in the heat section other than the carburizing zone as in the algorithm shown in FIG. In many cases, the speed at which the response speed is the fastest is controlled based on the operating conditions. Therefore, in the continuous carburizing method of the present invention, except for the carburizing treatment, If the stripping speed is regulated by the continuous annealing and carburizing operation conditions, the carburizing condition that satisfies the carburizing amount of the metal belt surface layer from the required specifications of the steel sheet is set under the stripping speed. I do.
ここで、 本実施例におレ、て浸炭量を制御するために前記ホストコンピュータで 処理されるアルゴリズ厶に則り、 そのロジックを構築する基本的な原理について 説明する。  Here, in this embodiment, the basic principle of constructing the logic based on the algorithm processed by the host computer to control the carburizing amount will be described.
まず、 前記表面反応律速域におレ、て雰囲気ガスの組成を制御するにあたっては 前述のようにスーティングの発生を防止すると共に露点上昇を抑制する必要があ るが、 これらの状態発生メカニズムについて以下のように推論する。  First, in controlling the composition of the atmosphere gas in the surface reaction rate-limiting region, it is necessary to prevent the occurrence of sooting and to suppress the dew point rise as described above. Infer as follows.
一般に、 浸炭条件における雰囲気ガス組成は化学平衡により求めることができ る。 従来の解法では考え得る反応を全て列挙し、 これらの反応の平衡関係から、 非線形の連立方程式を解くことによってガスの組成を得ている。 しかし、 気相系 の反応式だけからは正確なすす発生 (スーティング) の限界を求めることが極め て困難である。  Generally, the atmosphere gas composition under carburizing conditions can be determined by chemical equilibrium. In the conventional solution, all possible reactions are listed, and the gas composition is obtained from the equilibrium relation of these reactions by solving a system of nonlinear equations. However, it is extremely difficult to find the exact limit of soot generation (sooting) from the gas-phase reaction equation alone.
そこで本実施例では以下のようにして熱力学 (雰囲気組成) モデル式を考え、 スーティング発生を防止する雰囲気ガス組成を求めた。  Therefore, in the present embodiment, a thermodynamic (atmosphere composition) model formula was considered as follows, and an atmosphere gas composition for preventing occurrence of sooting was obtained.
等温, 等圧の系の場合、 自然に起こる変化ではギプス自由エネルギーが減少し、 平衡状態において系のギプス自由エネルギーは最小値をとる。 従って、 雰囲気ガ スの平衡状態を求めるためには、 生成系の各成分ガス濃度を変数として得られる 全系のギプス自由エネルギーを目的関数とし、 これを原系が持込む元素成分が一 定であるという物質収支の制約条件下、 具体的には炉内に供給される雰囲気ガス 組成及び供給量と浸炭によって金属帯に炉内から持出される C量が一定という制 約条件下で最小値となるように各成分ガス濃度を求めればよい。 この成分ガス濃 度が与えられた炉温, 炉圧における雰囲気ガスの平衡組成となり、 スーティング In the case of an isothermal, isobaric system, the cast free energy decreases in a change that occurs naturally, and the cast free energy of the system takes a minimum value in an equilibrium state. Therefore, in order to determine the equilibrium state of the atmosphere gas, the objective function is the cast free energy of the whole system obtained using the concentration of each component gas in the production system as a variable, and the elemental components brought into the original system are constant. Under the constraint of the material balance, specifically, under the condition that the composition and amount of atmospheric gas supplied into the furnace and the amount of C taken out of the furnace into the metal zone by carburization are constant, the minimum value is reached. What is necessary is just to obtain the concentration of each component gas. This component gas concentration becomes the equilibrium composition of the atmosphere gas at the given furnace temperature and furnace pressure.
C量は以下に述べる口ジック中で凝縮種の一つとして表される。 C content is expressed as one of the condensed species in the mouthpiece described below.
雰囲気ガスの組成を算出するにあたり、 二つの仮定を設定する。 その一つは、 気体は理想気体とすること。 もう一つは、 遊離 Cに代表される凝縮相は気体と混 合できないとすることである。 この仮定の下にガス種と凝縮種との全自由エネル ギー F (X) は、 i番目のガス種の自由エネルギー f g i , h番目の凝縮種の自由 エネルギー: f e h に対して下記 1式で与えられる。 In calculating the composition of the atmospheric gas, two assumptions are made. One is that the gas should be an ideal gas. Another is that the condensed phase represented by free C cannot be mixed with gas. Under this assumption, the total free energy F (X) of the gas species and the condensed species is the free energy f g i of the i-th gas species and the free energy of the h-th condensed species. Energy: It is given by the following equation with respect to f e h .
F(X) =∑ i g i +∑ f c h (1) i * 1 h- 1 但し、 F (X) = ∑ i g i + ∑ f c h (1) i * 1 h-1
n : ガス種の数, ρ :凝縮種の数  n: number of gas species, ρ: number of condensed species
を示す。 Is shown.
ここで、 前記ガス生成物に関する i番目のガス種の自由エネルギー f s i は、 i番目のガス種のモルエネルギー Cs i に対して当該ガス種のモル数が x e i と して下記 2式〜 4式で与えられる。 Here, the free energy f s i of the i-th gas species with respect to the gas product is represented by the following 2 with the number of moles of the gas species being x e i with respect to the molar energy C s i of the i-th gas species. Equations 4 to 4 are given.
f g i =xg ; (Cs i + 1 n (xK i /X) ) (2)f g i = x g ; (C s i + 1 n (x K i / X)) (2)
Cg i = (F/ (R · T) i + 1 n P (3) C g i = (F / (RT) i + 1 n P (3)
X =∑ x i (4) i 1 一方、 凝縮生成物については、 前記仮定の下に圧力及び混合の影響は除かれる ので、 h番目の凝縮種の自由エネルギー f e h は、 h番目の凝縮種のモルエネル ギー Ce h に対して当該凝縮種のモル数が xe h として下記 5式, 6式で与えらX = ∑ xi (4) i 1 On the other hand, for condensed products, the effects of pressure and mixing are excluded under the above assumption, so the free energy f e h of the h-th condensed species is The molar number of the condensed species is given by the following equations (5) and (6) as x e h for the molar energy C e h of
4 Lる o 4 L o
f h ~ 1ι · h
Figure imgf000022_0001
fh ~ 1ιh
Figure imgf000022_0001
Cc h 二 (F/ (R · T) ) c h (6) なお、 前記 3式, 6式中の (FZ (R · T) ) は下記 7式で定義される。
Figure imgf000022_0002
C ch h (F / (R · T)) c h (6) In the above formulas (3) and (6), (FZ (R · T)) is defined by the following formula (7).
Figure imgf000022_0002
+ ΔΗ° f, 298. i /RT (7) 次にこの系における物質収支を考慮する。 生成系の各成分量は変化しても、 各 元素、 即ち雰囲気ガス成分中の炭素 C, 水素 H, 窒素 N, 酸素〇の原子単位で見 れば夫々の総量は一定となる。 この物質収支式は下記 8式で表される。 + ΔΗ ° f, 298. I / RT (7) Next consider the material balance in the system. Even if the amount of each component of the production system changes, the total amount of each element, that is, carbon C, hydrogen H, nitrogen N, and oxygen 中 in the atmospheric gas component is constant in terms of atomic units. This material balance equation is expressed by the following eight equations.
n p ,  n p,
∑ i - ]ae ϋ · χκ i + h∑ -ac hj D j ∑ i-] a e ϋ · χ κ i + h∑ -a c h j D j
1 - xc h = (8) 但し、 1-x c h = (8) where
j = 1 , 2, , m a 8 : i番目のガス種の分子に含まれる j番目の元素の原子数 j = 1, 2,, m a 8 : Number of atoms of j-th element contained in molecule of i-th gas species
a c : i番目の凝縮種の分子に含まれる j番 5の元素の原子数 a c : Number of atoms of element j number 5 contained in the molecule of the ith condensed species
b j :系に存在する j番目の元素の量  b j: amount of j-th element in the system
m:系に存在する元素種の数  m: Number of elemental species present in the system
を示す。 Is shown.
ここで本実施例では、 前記ホストコンピュータ内に記憶させたプログラムによ り、 前記 8式及び前記 1式から線形化した雰囲気組成モデル式を設定し、 この雰 囲気組成モデル式から得られる解を収束して最適解を得ることとした。  Here, in the present embodiment, an atmosphere composition model equation linearized from Equations 8 and 1 is set by a program stored in the host computer, and a solution obtained from this atmosphere composition model equation is set. We decided to converge and obtain the optimal solution.
この雰囲気組成モデ 式に従って、 浸炭炉における発生ガス組成を算出してみ た。 その算出結果と実測結果を第 1 4図に示す。  The gas composition in the carburizing furnace was calculated according to this atmosphere composition model formula. Fig. 14 shows the calculation results and the actual measurement results.
同第 1 4図からも明らかなように浸炭炉内のガス組成は当該算出結果は実測値 によく一致している。  As is clear from Fig. 14, the calculated results of the gas composition in the carburizing furnace are in good agreement with the measured values.
次に実際の連続浸炭における雰囲気ガス組成の必要条件について考慮するにあ たり、 炉内の Cバランスを下記 9式, 1 0式で与えた。 なお、 1 0式は鋼板の仕 様諸元と表面反応速度によつて算出される関数である。  Next, in considering the necessary conditions of the atmosphere gas composition in actual continuous carburizing, the C balance in the furnace was given by the following equations (9) and (10). Equation 10 is a function calculated based on the specifications of the steel sheet and the surface reaction rate.
WE , =WS c +Wg 。 (9)W E , = W S c + W g . (9)
Ws c ξ (V, t, w, L S ) (10) 但し、 W s c ξ (V, t, w, LS) (10)
1 炉内に入る雰囲気ガス中の C質量  1 C mass in atmospheric gas entering the furnace
Ws c ストリップに持去られる C質量 W s c C mass removed to strip
Ws o 炉内から出る雰囲気ガス中の C質量 W s o C mass in atmospheric gas from furnace
V:表面反応速度, t :浸炭時間, w:板幅  V: Surface reaction rate, t: Carburizing time, w: Sheet width
を示す。 Is shown.
このようにして、 浸炭炉内の連続浸炭の実際における物質収支を考慮した熱力 学 (雰囲気組成) モデル式に基づいて前記雰囲気諸元を算出することにより、 確 実にスーティングの発生を防止しながら、 炉内の物質収支を考慮しないで求めた 雰囲気諸元に比して雰囲気組成の浸炭力を高めることが可能となる。 従って、 例 えば雰囲気ガス中の C O濃度を高めて通板速度を上げるといった実際の操業能力 を向上することができる。 次に、 本実施例の主幹部を構成する浸炭量制御の原理について説明する。 雰囲気ガスに COを用いた場合の表面反応は下記 1 1〜 1 3式のように考えら ォ" I o In this way, by calculating the above-mentioned atmosphere parameters based on the thermodynamic (atmosphere composition) model formula in consideration of the material balance in the actual case of continuous carburization in the carburizing furnace, it is possible to reliably prevent sooting from occurring. However, the carburizing power of the atmosphere composition can be increased as compared with the atmosphere specifications obtained without considering the material balance in the furnace. Therefore, for example, it is possible to improve the actual operation capability such as increasing the CO concentration in the atmosphere gas to increase the sheet passing speed. Next, the principle of carburizing amount control constituting the main part of the present embodiment will be described. The surface reaction when CO is used as the atmospheric gas can be thought of as the following formulas 11 to 13.
CO^ [C] +0 (11) CO ^ [C] +0 (11)
C0 + 0→C02 (12)C0 + 0 → C0 2 (12)
F e + [C] →F e - C (鋼中拡散) (13) 前述した葉らによれば鋼板表層部の C濃度が極めて低く且つ浸炭時間が極めて 短い場合には浸炭条件が平衡状態に達せず、 そのため 1 3式の反応速度は 1 2式 の吸着酸素の脱離反応よりも速いために、 この反応が律速反応であると仮定し、 この表面反応律速域における表面反応速度 Vを下記 1 4式で表した。 F e + [C] → F e-C (diffusion in steel) (13) According to the above-mentioned leaves, if the C concentration in the surface layer of the steel sheet is extremely low and the carburizing time is extremely short, the carburizing conditions will be in equilibrium. Since the reaction rate of Equation 13 is faster than the desorption reaction of adsorbed oxygen of Equation 12, it is assumed that this reaction is a rate-limiting reaction. It was expressed by 14 formulas.
V=k ■ PCO (PCO/ (PC0+ (a c/K))) (14) 但し、  V = k ■ PCO (PCO / (PC0 + (a c / K))) (14)
k :反応速度定数, PC0: COガス分圧, a c :炭素活量, K :平衡定数 を示す。  k: reaction rate constant, PC0: partial pressure of CO gas, ac: carbon activity, K: equilibrium constant.
しかしながら、 前記 1 4式には H2 の影響が考慮されていない。 H2 に関する 反応式としては、 前記 1 2式で表される反応式に対して下記 1 5式で表される反 応が考えられる。 However, the effect of H 2 is not taken into account in the above equation (14). The reaction equation for H 2, reaction is considered to be represented by the following 1 Equation 5 to the reaction formula represented by 1 2 formula.
C〇 + H2 + 2〇→C〇2 +H2 〇 (15) また、 生成した C02 に対して下記 1 6式で表される反応等が考えられる。C_〇 + H 2 + 2_Rei → C_〇 2 + H 2 〇 (15) Further, the reaction represented by the following 1 6 expression is considered with respect to the generated C0 2.
H2 +C02 ^H2 0 + C〇 (16) これらの反応式に基づき, H2 は浸炭反応を促進する効果があることから、 本 実施例では基本的な表面反応速度 Vを下記 1 7式で表した。 H 2 + C 0 2 ^ H 2 0 + C〇 (16) Based on these reaction equations, H 2 has the effect of accelerating the carburization reaction. It was expressed by seven equations.
V = k】 - f , (PCO, ΡΗ2, θ0 ) (17) 但し、 V = k]-f, (PCO, ΡΗ 2 , θ 0 ) (17)
0。 :吸着酸素の被覆率  0. : Adsorption oxygen coverage
を示す。 Is shown.
なお、 浸炭によって発生する C〇2 や H2 〇の雰囲気ガス中の濃度が高い場合 (例えば C0ZC02 ≤ 5 0) には、 下記 1 8式や 1 9式で表される反応によつ て浸炭反応が阻害される。 C + C〇2 ^2 CO (18)Note that if the concentration of C_〇 2 or H 2 〇 in the atmospheric gas generated by the carburizing high (e.g. C0ZC0 2 ≤ 5 0), Te cowpea the reaction represented by 1 8 expression or 1 9 formula below Carburizing reaction is inhibited. C + C〇 2 ^ 2 CO (18)
C ; H2 0 C〇 + H2 (19) 従って本実施例では、 これらの浸炭反応の阻害因子を考慮して表面反応速度 V を下記 20式又は 2 1式によって表すこととした。 C; H 2 0 C〇 + H 2 (19) Therefore, in the present embodiment, the surface reaction rate V is expressed by the following equation (20) or (21) in consideration of these carburizing reaction inhibitory factors.
V = k , · f , (PCO, PH2, 6>o ) x α · f a (PC0, PC02 ) V = k, · f, (PCO, PH 2 , 6> o) x α · fa (PC0, PC0 2 )
··…'… (20) ··… '… (20)
V = k, · f , (PCO, PH2, 6>o ) -k2 - f 2 (PC02 , PH20 ) V = k, · f, ( PCO, PH 2, 6> o) -k 2 - f 2 (PC0 2, PH 2 0)
(21) 但し、 前記  (21) However,
定数、 k , , k 2 :反応速度定数 Constant, k,, k 2 : reaction rate constant
を示し、 反応速度定数 , k2 は下記 22式で設定することができる。 And the reaction rate constant, k 2 , can be set by the following equation (22).
ki · exp ( - E i RT) (22) 但し、  ki · exp (-E i RT) (22) where
A :頻度因子, E; :活性化エネルギー, R:気体定数, T:絶対温度 を示す。 なお、 頻度因子 Ai , 活性化エネルギー Ei , 気体定数 Rはいずれも定 数であるため、 反応速度定数 k, , k2 は種々の絶対温度 Tの条件下における実 験値から算出した。 第 5図に実験によって得られた反応速度定数 k, を示す。 なお、 本実施例において CO濃度だけを考慮すればよい場合、 例えば雰囲気の 供給ガス流量が多い場合には、 前記 1 4式を表面反応速度式として使用してもよ い。 A: frequency factor, E;: activation energy, R: gas constant, T: absolute temperature. Since frequency factor Ai, activation energy Ei, any gas constant R is a constant number, the reaction rate constant k,, k 2 was calculated from experimental values under the condition of various absolute temperature T. Figure 5 shows the reaction rate constant k, obtained by the experiment. In the present embodiment, when only the CO concentration needs to be considered, for example, when the supply gas flow rate in the atmosphere is large, the above equation (14) may be used as the surface reaction rate equation.
次に本実施例で、 所望される浸炭濃度分布を得るためにモデル式化された固溶 炭素の鋼中拡散について説明する。 鋼中への Cの拡散状態はフィックの法則に基 づいて下記 23式に示す炭素拡散モデル式で表される。  Next, in this example, the diffusion of solute carbon in steel modeled to obtain a desired carburizing concentration distribution will be described. The diffusion state of C into steel is expressed by the following carbon diffusion model equation based on Fick's law, as shown in Equation 23 below.
dC/d t =D · d2 C/dX2 (23) 但し、 dC / dt = D · d 2 C / dX 2 (23) where
C :鋼中の C濃度, t :時間, D :拡散係数, X :拡散距離  C: C concentration in steel, t: time, D: diffusion coefficient, X: diffusion distance
を示す。 Is shown.
前記拡散係数 Dは下記 24式で表されるァレニウスの式によっても設定される 力 \ 本実施例では実測データにより近似的に表示することとした。 D = exp ( a · T + b ) (24) 但し、 The diffusion coefficient D is also set by the Arrhenius equation represented by the following equation (24). In this example, the diffusion coefficient D is approximately displayed by actual measurement data. D = exp (aT + b) (24) where
T:浸炭温度, a :比例係数, b :定数  T: carburizing temperature, a: proportional coefficient, b: constant
を示 Shows
従って、 前記 1 7式又は 2 1式又は 2 2式及び 2 3式により鋼板への浸炭量を 算出することができる。 このことは浸炭量一定の条件では所望される浸炭濃度分 布の一点の浸炭濃度を設定すれば前記炭素拡散モデル式が設定され、 浸炭量が異 なる場合でも浸炭濃度分布の二点以上の浸炭濃度を設定すれば前記炭素拡散モデ ル式は設^されることを意味する。 また、 前述のように浸炭処理以外の操業条件 から通板速度が規制されている場合には、 前記 2 3式中の浸炭時間 tは通板速度 L s で有効浸炭炉長 Lを除した値に決定されているから、 前記 2 3式を浸炭時間 で時間積分する際に、 この計算値を使用する。 Therefore, the amount of carburizing to the steel sheet can be calculated by the above-mentioned formula (17), formula (21), formula (22) and formula (23). This means that if the carburizing concentration is set at one point of the desired carburizing concentration distribution under the condition of constant carburizing amount, the above-mentioned carbon diffusion model equation is set, and even when the carburizing amount is different, the carburizing concentration distribution at two or more points is different. If the concentration is set, it means that the carbon diffusion model formula is set. In addition, when the stripping speed is regulated from operating conditions other than carburizing as described above, the carburizing time t in the above equation 23 is the value obtained by dividing the effective carburizing furnace length L by the stripping speed L s. Therefore, this calculated value is used when time-integrating the above equation (23) with the carburizing time.
以上の演算を前記ホストコンピュータに予め記憶されたプログラムにより順次 行って、 浸炭後の鋼板の仕様諸元、 即ち本実施例では所望される浸炭濃度 布か ら与えられるストリップへの浸炭量と、 雰囲気ガス中の C減少量から算出される ストリップへの浸炭量とがー致する、 浸炭条件を設定するためのアルゴリズムを 第 6図のフローチヤ一卜に示す。  The above calculation is sequentially performed by a program stored in the host computer in advance, and the specifications of the carburized steel sheet, that is, in this embodiment, the desired carburized concentration, the carburized amount of the strip given from the cloth, and the atmosphere The algorithm for setting the carburizing conditions, which matches the amount of carburizing on the strip calculated from the amount of C reduction in the gas, is shown in the flowchart of FIG.
まずステップ S 1では、 浸炭後の鋼板仕様諸元として与えられる条件設定から、 雰囲気ガスの組成, 投入ガスの流量, 浸炭温度及び通板速度, 鋼板諸元並びに鋼 板の浸炭濃度分布から鋼板表面より指定深さ X , の C濃度 C , 等の条件を読込む。 また、 ここでは例えば通板速度を L Sとし、 追って行われるフローで修正される ノヽ。ラメータとする。  First, in step S1, the condition of the steel sheet after carburizing is set, the composition of the atmosphere gas, the flow rate of the input gas, the carburizing temperature and passing speed, the steel sheet specifications and the carburizing concentration distribution of the steel sheet are used to determine the surface of the steel sheet. The conditions such as the C concentration C, at the specified depth X, are read. Also, here, for example, the threading speed is set to L S, and it is corrected in a flow that is performed later. Parameter.
次にステップ S 2に移行して、 前記鋼板諸元及び鋼板仕様から鋼板への設定浸 炭量 A Cを設定し、 浸炭炉からストリップによって持出される, 単位時間当たり の C量を算出する。  Next, the process proceeds to step S2, where the set carburizing amount A C for the steel sheet is set based on the steel sheet specification and the steel sheet specification, and the C amount per unit time taken out of the carburizing furnace by the strip is calculated.
次にステップ S 3に移行して、 前記ステップ S 1で読込んだ雰囲気ガスの組成 から前記雰囲気組成モデル式を設定する。  Next, the process proceeds to step S3, where the atmosphere composition model formula is set from the composition of the atmosphere gas read in step S1.
次にステップ S に移行して、 前記ステップ S 3で設定した雰囲気組成モデル 式に従って、 前記浸炭炉からストリップにより持出される C量を考慮した雰囲気 ガスの各成分濃度を算出する。 Next, proceeding to step S, the atmosphere in consideration of the C amount taken out of the carburizing furnace by the strip according to the atmosphere composition model formula set in step S3. Calculate the concentration of each component of the gas.
次にステップ S 5に移行して、 前記 1 7式に基づいて鋼板の表面反応速度を算 出 t) o  Next, proceeding to step S5, the surface reaction rate of the steel sheet is calculated based on the equation (17) .t) o
次にステップ S 6に移行して、 前記 2 3式に基づいて鋼中への浸炭速度を算出 し、 鋼中への C拡散量を算出する。  Next, the process proceeds to step S6, in which the carburization rate in the steel is calculated based on the above equation 23, and the amount of C diffusion into the steel is calculated.
次に当該浸炭処理時間が経過した場合にはステップ S 7に移行して、 前記のス テツプ S 5又はステップ S 6で算出された単位時間及び単位面積当たりの表面反 応速度又は鋼中への拡散 C量を処理時間及び鋼板総表面積で積分して鋼板への浸 炭量 A C ' を算出する。  Next, when the carburizing time has elapsed, the process proceeds to step S7, and the surface reaction rate per unit time and unit area calculated in step S5 or step S6 described above or the rate of reaction into steel is calculated. The amount of diffusion C is integrated with the processing time and the total surface area of the steel sheet to calculate the amount of carburization AC 'to the steel sheet.
次にステツプ S 8に移行して、 前記設定浸炭量 Δ Cと上記計算結果の浸炭量 Δ C との差の絶対値が所定値 aより小さいか否かを判定し、 両者の差の絶対値が 所定値 aより小さい場合にはステップ S 1 0に移行し、 そうでない場合にはステ ップ S 9に移行する。  Next, proceeding to step S8, it is determined whether or not the absolute value of the difference between the set carburizing amount ΔC and the calculated carburizing amount ΔC is smaller than a predetermined value a, and the absolute value of the difference between the two is determined. If is smaller than the predetermined value a, the process shifts to step S10. Otherwise, the process shifts to step S9.
前記ステップ S 9では、 前記浸炭量に基づいて設定浸炭量を下記 2 5式に基づ いて補正し、 前記ステップ S 3に移行する。  In step S9, the set carburizing amount is corrected based on the carburizing amount based on the following equation 25, and the process proceeds to step S3.
A C = A C + ( A C 一 A C ) x b (25) 但し、  A C = A C + (A C-A C) x b (25) where
b :定数  b: Constant
を示す。 従って、 浸炭戸からストリップにより持出される総 C量と浸炭した総 C 量とが等しくなれば、 即ち浸炭炉内の物質収支が満足あれれば、 ステップ S 1 0 に移行する。 Is shown. Therefore, if the total C amount taken out of the carburizing door by the strip is equal to the total C amount carburized, that is, if the material balance in the carburizing furnace is satisfied, the process proceeds to step S10.
前記ステップ S 1 0では、 前記目標浸炭量△( 。 と設定浸炭量 A Cとの差の絶 対値が所定値 dより小さいか否かを判定し、 両者の差の絶対値が所定値 dより小 さい場合にはステップ S 1 2に移行し、 そうでない場合にはステップ S 1 1に移 行する。  In step S10, it is determined whether the absolute value of the difference between the target carburization amount △ (. And the set carburization amount AC is smaller than a predetermined value d, and the absolute value of the difference between the two is greater than the predetermined value d. If smaller, the process proceeds to step S12. Otherwise, the process proceeds to step S11.
前記ステップ S 1 1では、 前記浸炭濃度分布条件から設定される設定浸炭量を 得るために雰囲気ガス流量, 雰囲気組成, 通板速度, 浸炭温度の各パラメータの 何れか一つ以上を変更して、 前記ステップ S 2に移行する。 ここで、 例えば前記 所定浸炭量 Δ C。 と設定浸炭量 Δ Cとの格差を補正するように通板速度 L Sを補 正する場合には、 例えば下記 2 6式に基づいて当該補正される通板速度 L Sを算 出すればよい。 In step S11, at least one of the parameters of the atmosphere gas flow rate, the atmosphere composition, the passing speed, and the carburization temperature is changed in order to obtain the set carburization amount set from the carburization concentration distribution condition. The process moves to step S2. Here, for example, the predetermined carburizing amount ΔC. And LS to compensate for the difference between To correct this, the corrected threading speed LS may be calculated based on, for example, the following equation (26).
LS = LS + (AC—△( 。 ) x d' (26) 但し、  LS = LS + (AC— △ (.) X d '(26) where
d" :定数  d ": constant
を示す。 Is shown.
前記ステップ S 1 2では、 前記ステップ S 6で設定された鋼中拡散モデルに従 つて鋼板表面より指定深さ X, の C濃度 C' ,を算出する。  In the step S12, the C concentration C 'at the designated depth X, from the steel sheet surface, is calculated according to the diffusion model in steel set in the step S6.
次にステップ S 1 3に移行して、 前記ステップ S 1で読込んだ鋼板表面より指 定深さ X, の設定 C濃度 C, と、 前記ステップ S 1 2で算出した鋼板表面より指 定深さ X, の C濃度 C' ,との差の絶対値が所定値 eより小さいか否かを判定し、 両者の差の絶対値が所定値 eより小さい場合にはステップ S 1 5に移行し、 そう でない場合にはステップ S 1 4に移行する。  Next, proceeding to step S13, the setting C concentration C of the specified depth X, from the steel sheet surface read in step S1, and the specified depth from the steel sheet surface calculated in step S12, It is determined whether the absolute value of the difference between the X and the C concentration C 'is smaller than a predetermined value e.If the absolute value of the difference between the two is smaller than the predetermined value e, the process proceeds to step S15. Otherwise, go to step S14.
前記ステップ S 1 4では、 前記浸炭濃度分布条件から設定される設定浸炭量を 得るために雰囲気組成, 通板速度, 浸炭温度の各パラメータの何れか一つ以上を 変更して、 前記ステップ S 2に移行する。  In the step S14, at least one of each parameter of the atmosphere composition, the passing speed, and the carburizing temperature is changed in order to obtain the set carburizing amount set from the carburizing concentration distribution condition. Move to
前記ステップ S 1 5では、 上記演算の結果得られた雰囲気ガス成分の濃度、 又 は通板速度又は浸炭温度の各設定値を制御の目的に応じて出力すると共に、 全浸 炭量, 平均浸炭量, 鋼板表面からの浸炭分布等の演算結果を出力してプログラム を終了する。  In step S15, the set values of the concentration of the atmospheric gas component or the passing speed or the carburizing temperature obtained as a result of the above calculation are output according to the purpose of control, and the total carburized amount and the average carburized amount are output. Outputs the calculation results such as the amount and distribution of carburization from the steel sheet surface, and terminates the program.
なお、 第 6図のフローチャートにおいて、 入力条件となっている雰囲気ガス流 量は、 前述したように雰囲気ガス中の C02 及び H2 0濃度を変更するための制 御量であり、 制御因子としては炉内に投入する C〇 + H2 流量と同様に雰囲気ガ ス組成に含めて考えている。 In the flowchart of FIG. 6, the ambient gas flow amount which is the input condition is a control amount for changing the C0 2 and H 2 0 concentration in the atmosphere gas as described above, as a regulator Is considered to be included in the atmosphere gas composition in the same way as the C〇 + H 2 flow rate charged into the furnace.
本プログラムを用いて、 工業的連続浸炭操業における通板条件が通板速度 LS = 2 0 0 mpm, 板厚 D = 0. 75mm, 板幅 W二 1 4 0 0 mm, 供給ガス量 = 1 0 0 ONm3 /h r時において、 このプログラムによって算出された各浸炭温 度における物質収支を考慮して求めたスーティングの発生限界を第 7図に実線で 示す。 同図において破線は露点上限を示す。 また一点鎖線は物質収支を考慮しな いで求めたスーティングの発生限界を示す。 そして同図において斜線を施した部 分が実浸炭操業における操業範囲を表す。 Using this program, the passing conditions in the industrial continuous carburizing operation are as follows: passing speed LS = 200 mpm, plate thickness D = 0.75 mm, plate width W2 140 0 mm, supply gas amount = 10 At 0 ONm 3 / hr, the sooting occurrence limit obtained by taking into account the material balance at each carburizing temperature calculated by this program is shown by the solid line in Fig. 7. In the figure, the broken line indicates the upper limit of the dew point. Dot-and-dash lines do not take material balance into account. This shows the limit of sooting that was found. The shaded area in the figure indicates the operation range in actual carburizing operation.
同図から明らかなように物質収支を考慮して求めたス一ティングの発生限界で は、 物質収支を考慮しないで求めたスーティングの発生限界に比して C O濃度も H 2 濃度も高くなる。 即ち、 その分だけ浸炭速度も向上する。 一方、 浸炭温度が 高くなるほどスーティングの発生限界に伴う C O濃度も H 2 濃度も高くなる。 こ のことは全体的な浸炭操業効率が温度にも依存することを意味するから、 逆に通 板速度を速くする場合には材質の許す範囲で炉内温度を高くする等の操業の余裕 度が増すことになり、 連続浸炭の実際における諸条件の設定範囲がより広がるこ とになる。 勿論、 炉内の物質収支を考慮しないで求めたスーティングの発生限界 に沿って操業範囲を設定してもスーティングは発生しないが、 その分だけ操業の 余裕度は減少し、 諸条件の設定範囲は狭くなる。 The occurrence limit of the scan one coating obtained by considering the mass balance As is apparent from the drawing, CO concentration concentration of H 2 becomes higher than the occurrence limit of sooting determined without considering material balance . That is, the carburizing speed is improved accordingly. On the other hand, the higher the carburizing temperature, the higher the CO and H 2 concentrations associated with the sooting limit. This means that the overall carburizing operation efficiency also depends on the temperature, and conversely, when increasing the stripping speed, allowance for operation such as raising the furnace temperature as much as the material allows. Therefore, the setting range of various conditions in the actual case of continuous carburizing will be expanded. Of course, sooting does not occur even if the operating range is set along the sooting limit determined without considering the material balance in the furnace, but the operating margin is reduced by that much, and various conditions are set. The range narrows.
また、 このプログラムによって算出された各浸炭条件、 即ち前記各制御量を変 化させた場合の浸炭量と、 実測された浸炭量との相関を第 8図に示す。 同図から 明らかなように、 浸炭量の計算値と実測値とは非常によく一致している。 このこ とは、 前記浸炭速度, 即ち表面反応速度の設定と、 その温度依存係数の設定が正 しいことを意味しており、 表面反応速度の設定が正しい限り、 本実施例の連続浸 炭方法は浸炭速度が拡散速度よりも大きい表面反応速度に従う領域での幅広い応 用が可能であることを意味する。  FIG. 8 shows the correlation between each carburizing condition calculated by this program, that is, the carburizing amount when each of the control amounts is changed, and the actually measured carburizing amount. As is evident from the figure, the calculated and actual measured values of carburization amount agree very well. This means that the setting of the carburizing speed, that is, the surface reaction speed, and the setting of the temperature dependence coefficient are correct. As long as the setting of the surface reaction speed is correct, the continuous carburizing method of the present embodiment is used. Means that a wide range of applications is possible in the region where the carburization rate follows the surface reaction rate greater than the diffusion rate.
更に本プログラムによって算出される浸炭量制御のための制御量の具体的演算 例を第 9図に基づいて説明する。  Further, a specific calculation example of the control amount for carburizing amount control calculated by this program will be described with reference to FIG.
ここで例えば、 ステップ S 1で読込まれた板厚諸元等の鋼板諸元から, 第 9図 に明示するように前記ステップ S 2で所定 (目標) 浸炭量が設定され、 同時に全 板厚に対する許容範囲が設定された。 また、 前記ステップ S 1では鋼板の材質条 件より目標浸炭温度が設定された。  Here, for example, a predetermined (target) carburizing amount is set in step S2 from the steel sheet specifications such as the thickness data read in step S1 as clearly shown in FIG. The tolerance has been set. In step S1, the target carburizing temperature was set based on the material conditions of the steel sheet.
従って、 前記ステップ S 3及びステップ S 4でスーティングを防止する雰囲気 ガス条件として C O濃度, H 2 濃度が設定される。 Accordingly, the CO concentration and the H 2 concentration are set as the atmosphere gas conditions for preventing sooting in the steps S3 and S4.
この雰囲気ガス成分濃度の制御精度が実機において土 0 . 3 9 であるとすると、 前記前記ステップ S 3〜ステップ S 1 1のフローにおいて演算される前記 1 7式 〜2 3式によって第 9図に明示するように、 目標浸炭時間が設定され、 同時に浸 炭時間変動の許容範囲が設定される。 Assuming that the control accuracy of the concentration of the atmosphere gas component is 0.39 in the actual machine, the above equation (17) calculated in the flow of steps S3 to S11 is used. Equation 23 sets the target carburizing time and the allowable range of carburizing time fluctuation as shown in Fig. 9.
次に、 浸炭帯炉長に対して、 通板速度は、  Next, for the carburizing zone furnace length, the passing speed is
通板速度 =浸炭帯炉長 Z浸炭時間  Passing speed = carburizing zone furnace length Z carburizing time
で表されるから、 ステップ S 1 2では目標通板速度及びその許容範囲が設定され て出力される。 In step S12, the target threading speed and its allowable range are set and output.
このように浸炭量及び雰囲気ガス組成が設定された時点で前記ステップ S 1 0 , S 1 1のループでは浸炭時間 (通板速度) が設定される。  When the carburizing amount and the atmosphere gas composition are set as described above, the carburizing time (sheet passing speed) is set in the loop of steps S10 and S11.
以上のように本実施例では、 浸炭速度が表面反応速度に律速される領域で、 板 諸元から設定される浸炭量を得るための浸炭諸条件を全体的な操業条件に鑑みな がら最適条件に設定することができ、 従来、 経験に頼っていたこれらの制御を完 全に自動化することが可能となった。  As described above, in the present embodiment, in the region where the carburizing rate is determined by the surface reaction rate, the optimum conditions are determined in consideration of the overall carburizing conditions to obtain the carburizing amount set from the sheet specifications. The control can be completely automated, which previously relied on experience.
更に、 浸炭処理以外の操業条件から通板速度が規制された場合、 本プログラム によって算出される浸炭量制御のための制御量の具体的演算例を第 1 0図に基づ いて説明する。  Further, a specific calculation example of the control amount for carburizing amount control calculated by this program when the sheet passing speed is restricted by operating conditions other than the carburizing process will be described with reference to FIG.
ここで例えば、 ステップ S 1で読込まれた板厚諸元等の鋼板諸元から、 前記ス テツプ S 2で所定 (目標) 浸炭量が設定される。 また、 前記ステップ S 1では鋼 板の材質条件より目標浸炭温度が設定された。 更に、 前記ステップ S 1で読込ま れた通板速度で、 前記有効浸炭炉長を除して浸炭時間が算出される。  Here, for example, a predetermined (target) carburizing amount is set in step S2 from the steel sheet specifications such as the thickness data read in step S1. In step S1, the target carburizing temperature was set based on the material conditions of the steel sheet. Further, the carburizing time is calculated by dividing the effective carburizing furnace length by the passing speed read in step S1.
次いで、 前記ステップ S 3及びステップ S 4でスーティングを防止する雰囲気 ガス条件として C O濃度, H 2 濃度の上限が設定される。 Then, CO concentration, the upper limit of the concentration of H 2 is set as the atmospheric gas condition to prevent sooting in the step S 3 and step S 4.
これに対して前記ステップ S 3〜S 9のフローにおいて表面反応速度式, 鋼中 拡散モデル式が設定され、 これらの式から前記目標浸炭量を達成するのに必要な C O濃度, H 2 濃度, C 02 濃度, H 2 0濃度が設定される。 Surface reaction rate equation in the flow of the step S 3~S 9 contrast, in steel diffusion model formula are set, CO concentration, H 2 concentration required to achieve the target carburizing quantity from these equations, C 0 2 concentration, H 2 0 concentration is set.
従って、 第 1 0図に示すように目標浸炭量が大きくなるか若しくは浸炭時間が 短くなれば、 例えば雰囲気ガス中の C O濃度が大きくなるように雰囲気ガス組成 を制御し、 目標浸炭量が小さくなるか若しくは浸炭時間が長くなれば、 例えば雰 囲気ガス中の C〇濃度が小さくなるように雰囲気ガス組成を制御する。  Therefore, if the target carburizing amount is large or the carburizing time is short as shown in Fig. 10, the atmosphere gas composition is controlled so that the CO concentration in the atmospheric gas becomes large, and the target carburizing amount becomes small. Or, if the carburizing time is long, the atmosphere gas composition is controlled so that, for example, the C〇 concentration in the atmosphere gas becomes small.
なお、 浸炭炉温において浸炭炉から排出される雰囲気ガス組成を制御する方法 としては、 例えば C O + H 2 濃度は浸炭炉に供給する雰囲気ガス流量中の C O流 量や H 2 流量の比率を変化させればよく、 C〇2 や H 2 0の濃度は供給する雰囲 気ガスの総流量を変化させればよい。 A method for controlling the composition of the atmosphere gas discharged from the carburizing furnace at the carburizing furnace temperature As, for example CO + H 2 concentration may be changed to CO flow amount and flow rate of H 2 ratio of the atmosphere gas flow rate supplied to the carburizing furnace, the concentration of C_〇 2 or H 2 0 is supplied Kiri囲What is necessary is just to change the total gas gas flow rate.
以上のように本実施例では、 通板速度が予め規制された場合にも、 板諸元から 設定される浸炭量を得るための浸炭諸条件を全体的な操業条件に鑑みながら最適 条件に設定することができ、 従来, 経験に頼っていたこれらの制御を完全に自動 化することが可能となった。  As described above, in the present embodiment, even when the threading speed is regulated in advance, the carburizing conditions for obtaining the carburizing amount set from the sheet specifications are set to the optimum conditions in consideration of the overall operating conditions. These controls, which previously depended on experience, can now be fully automated.
次に、 前記浸炭薄鋼板に所望される浸炭濃度分布を前記フィックの法則に基づ く炭素拡散モデル式によって算出した演算例を第 1 1図〜第 1 3図に基づいて説 明する。 前記第 6図のアルゴリズムによればこの浸炭濃度分布を深さ方向に積分 することによつて単位面積当たりの浸炭量が設定され、 この浸炭量を満足する制 約条件下で、 所望する浸炭濃度分布の形態から炭素拡散モデル式を設定し、 深さ 方向各点の目標値に対して許容範囲を設定して、 当該炭素拡散モデル式から算出 される浸炭濃度プロフアイルがこの許容範囲内に納まるように、 該モデル式のパ ラメ一夕である浸炭温度と浸炭時間とを設定する。  Next, a description will be given of a calculation example in which a desired carburizing concentration distribution of the carburized thin steel sheet is calculated by a carbon diffusion model formula based on the Fick's law with reference to FIGS. 11 to 13. FIG. According to the algorithm of FIG. 6, the carburizing amount per unit area is set by integrating the carburizing concentration distribution in the depth direction, and the desired carburizing concentration is obtained under the constraint conditions that satisfy the carburizing amount. A carbon diffusion model formula is set based on the distribution form, an allowable range is set for the target value at each point in the depth direction, and the carburized concentration profile calculated from the carbon diffusion model formula falls within this allowable range. Thus, the carburizing temperature and the carburizing time, which are the parameters of the model formula, are set.
ところで、 第 1 1図に示す浸炭濃度分布形態では金属帯表面からの深さ凡そ 1 0〜5 0 mで浸炭濃度のピークがあり、 それより深い深さ 2 5 0〃mまでの範 囲では徐々に浸炭濃度は減少する。 これは本来的に浸炭濃度が最も高い表層部の 表面直近部位では、 前記シール部や冷却の仮定において脱炭が進行してしまうた めである。 そこでこの浸炭濃度分布の形態と前記炭素拡散モデル式とを合致させ るためには、 前記表面からの深さ 1 0〜2 5 0 mの範囲の浸炭濃度分布の形態 で 2点以上の浸炭濃度を設定すればよく、 好ましくは前記浸炭濃度のピーク点を 捉えるために深さ 1 0〜5 0〃mの範囲で一点、 1 0 0〜2 5 0〃mの範囲で一 点以上の浸炭濃度を設定することが望まれる。 ところが前述のように浸炭量が一 定の場合には、 表面反応速度や浸炭温度, 浸炭時間等の諸条件が設定されている 条件下で、 浸炭濃度を一点だけ設定すれば前記炭素拡散モデル式は一意的に設定 されることになる。  By the way, in the case of carburizing concentration distribution shown in Fig. 11, there is a peak of carburizing concentration at a depth of about 10 to 50 m from the surface of the metal strip, and at a deeper depth up to a depth of 250 m, Gradually the carburizing concentration decreases. This is because decarburization proceeds in the vicinity of the surface of the surface layer where the carburizing concentration is inherently the highest, assuming the above-mentioned seal and cooling. Therefore, in order to match the form of the carburizing concentration distribution with the above-mentioned carbon diffusion model formula, the carburizing concentration at two or more points in the form of the carburizing concentration distribution at a depth of 10 to 250 m from the surface is determined. Preferably, to capture the peak point of the carburizing concentration, one point in the range of 10 to 50〃m in depth, and one or more points in the range of 100 to 250〃m It is desired to set However, when the carburizing amount is constant as described above, the carbon diffusion model equation can be obtained by setting the carburizing concentration at only one point under the conditions such as the surface reaction rate, carburizing temperature, and carburizing time. Will be set uniquely.
ここで、 浸炭時間 (処理時間, se ) が , t 2 , t 3 で, C O濃度 (%) が a】 , a 2 , a 3 、 H 2 濃度 (%) が b , , b 2 , b 3 、 浸炭温度が T (°C) 一定の浸炭条件下において、 このモデル式によって得られる金属帯表面からの距 離、 即ち深さ ( /m) と鋼中炭素濃度 (浸炭濃度, p pm) との相関曲線及び実 測値データを第 1 1図に示す。 但し、 前記浸炭時間 t , = t 2 ≠ t 3 であり、 C 0濃度 a , =a3 ≠ a2 であり、 H2 濃度 b】 =b2 =b3 である。 同第 1 1図 において浸炭濃度の実測はフッ酸に試片を入れてその表面から溶解させ、 所定の 溶解時間で溶解した C量と F e量との重量比から固溶炭素量を算出したが、 浸炭 濃度によって決まる (依存する) 鋼の特定組織の深さを測定することにより推定 してもよい。 Here, carburizing time (treatment time, se) is at t 2, t 3, CO concentration (%) of a], a 2, a 3, H 2 concentration (%) is b,, b 2, b 3 , The carburizing temperature is T (° C) Under constant carburizing conditions, the correlation curve and the measured data from the distance from the metal strip surface obtained by this model formula, that is, the depth (/ m) and the carbon concentration in steel (carburizing concentration, p pm) were obtained. It is shown in Figure 11. However, the carburizing time t, = t 2 ≠ t 3, the C 0 concentration a, = a 3 ≠ a 2 , and the H 2 concentration b] = b 2 = b 3 . In Fig. 11, the actual measurement of the carburizing concentration was calculated by adding the specimen to hydrofluoric acid and dissolving it from its surface, and calculating the amount of solute carbon from the weight ratio of the amount of dissolved C and the amount of Fe over a predetermined dissolution time. However, it may be estimated by measuring the depth of a specific structure of the steel, which is determined (dependent) by the carburizing concentration.
次に、 前記鋼中拡散モデル式における浸炭時間の影響を実験した結果を第 1 2 図に示す。 同図では浸炭温度 T°C一定、 総浸炭量 AC ppm—定の条件下で、 CO 濃度 (%) が a4 、 H2 濃度 (%) が b4 、 浸炭時間 (処理時間, sec.) が t 4 の雰囲気条件で浸炭を行った場合を実線で、 CO濃度 (%) が a 5 、 H2 濃度 (%) が b5 、 浸炭時間 (処理時間, se ) が t 5 の雰囲気条件で浸炭を行った 場合を破線で示す。 但し、 浸炭時間 t 5 ^ 3 t 4 , CO濃度 a 4 > a5 , H2 濃 度 b4 »b5 である。 前述のように CO濃度及び H2 濃度が高いほど浸炭反応速 度が大きく、 浸炭時間が長いほど内層部への浸炭量が大きくなる。 従って同図か ら明らかなように、 本実施例では、 表層部の C濃度だけを高めて内層部の C濃度 との勾配を急峻にする場合には、 浸炭反応速度を大きく して (浸炭力を高めて) 浸炭時間を短くすればよく、 逆に、 鋼板の C濃度全体を高めて内層部と表層部と の C濃度勾配を緩やかにする場合には、 浸炭反応速度を小さくして (浸炭力を低 めて) 浸炭時間を長くすればよいことが分かる。 Next, FIG. 12 shows the results of an experiment on the effect of carburizing time in the steel diffusion model formula. Carburization temperature T ° C constant in the figure, under the conditions of total carburizing quantity AC ppm-constant, CO concentration (%) of a 4, H 2 concentration (%) is b 4, carburizing time (treatment time, sec.) There the case of performing the carburization at atmospheric conditions t 4 in solid lines, CO concentration (%) of a 5, H 2 concentration (%) is b 5, carburizing time (treatment time, se) is at ambient conditions t 5 The case of carburizing is shown by the broken line. However, the carburizing time t 5 ^ 3 t 4, CO concentration a 4> a 5, H 2 is a concentration of b 4 »b 5. As described above, the higher the CO and H 2 concentrations, the higher the carburizing reaction speed, and the longer the carburizing time, the larger the amount of carburization into the inner layer. Therefore, as is clear from the figure, in the present embodiment, when only the C concentration in the surface layer is increased and the gradient with the C concentration in the inner layer is made steep, the carburization reaction rate is increased (the carburizing power is increased). In other words, if the carburizing time should be shortened, and if the C concentration gradient between the inner layer and the surface layer is moderated by increasing the entire C concentration of the steel sheet, the carburizing reaction rate should be reduced (carburizing). It can be seen that the carburizing time should be increased by reducing the power.
次に、 浸炭工程後の板温制御、 具体的には冷却速度の制御によって浸炭濃度分 布を制御する実施例について第 1 3図を用いて説明する。 同図では浸炭温度 T°C 一定, 浸炭時間 tse 一定, 〇0濃度36 %—定, H2 濃度 be %—定の条件下 で、 冷却速度 ΔΤ, °C/se で冷却した場合を実線で, 冷却速度 ΔΤ2 °C/sec. で冷却した場合を破線で示し、 冷却速度 ΔΤ, <ΔΤ2 である。 同図から明らか なように冷却速度が大きいほど固溶 Cの内部への拡散を速やかに抑止するため、 表層部の C濃度だけが高くなつて内層部の C濃度との勾配が急峻になる。 逆に冷 却速度が小さいほど固溶 Cは内部に拡散してしまうので、 表層部の C濃度は低く 且つ内層部との C濃度勾配は緩やかになる。 Next, an embodiment in which the carburizing concentration distribution is controlled by controlling the sheet temperature after the carburizing step, specifically, by controlling the cooling rate will be described with reference to FIG. Carburization temperature T ° C constant in the figure, carburizing time tse constant, Rei_0 concentration of 3 6% - constant, H 2 concentration b e% - at constant conditions, cooling rate .DELTA..tau, the case where the cooling in ° C / se a solid line indicates the case where the cooling at a cooling rate ΔΤ 2 ° C / sec. with a broken line, cooling rate .DELTA..tau, a <.DELTA..tau 2. As is clear from the figure, the higher the cooling rate, the more quickly the solid solution C diffuses into the interior, so that the gradient of the C concentration in the inner layer becomes steeper when only the C concentration in the surface layer increases. Conversely, the lower the cooling rate, the more solid solution C diffuses inside, so the C concentration in the surface layer is low. In addition, the C concentration gradient with the inner layer becomes gentle.
なお、 本実施例では浸炭帯で所定の浸炭処理を成されたストリップが第 1冷却 帯によって急冷されて炭素拡散が固定化される場合について詳述したが、 本発明 では浸炭後のストリップを加熱, 均熱, 冷却して炭素拡散状態を操作することが 可能であり、 そのために第 1冷却帯に代えて Z又は加えて板温制御帯を設けても よい。  In this embodiment, the case where the strip subjected to the predetermined carburizing treatment in the carburizing zone is quenched by the first cooling zone to fix the carbon diffusion is described in detail, but in the present invention, the strip after the carburizing is heated. It is possible to control the carbon diffusion state by heating, soaking, and cooling. For this purpose, Z or a sheet temperature control zone may be provided instead of the first cooling zone.
また、 本実施例では前記第 6図のアルゴリズムを用いて、 材質条件から浸炭温 度が設定され且つスーティングの発生限界から C O濃度並びに H 2 濃度が予め設 定された条件下で所定の C量を得るために浸炭時間 (通板速度) を最終的に変更 する場合、 浸炭濃度分布条件から浸炭温度及び浸炭時間の上限が設定され且つス 一ティングの発生限界から C O濃度並びに H 2 濃度の上限が予め設定された条件 下で所定の鋼板厚さ方向への浸炭濃度分布及び浸炭量を得るために浸炭時間 (通 板速度) と雰囲気ガス組成とを最終的に変更する場合、 浸炭処理以外の操業条件 から設定された通板速度に基づいて浸炭時間が決定され且つ材質条件から浸炭温 度が設定された条件下で所定の C量を得るために雰囲気ガス組成を最終的に変更 する場合について詳述したが、 これらを含めて前記各制御因子の制御例としては 下記の夫々も考えられる。 In the present embodiment, the carburizing temperature is set from the material conditions and the CO concentration and the H 2 concentration are set in advance from the sooting generation limit using the algorithm of FIG. If it carburizing time to obtain the amount of (sheet passing speed) finally modified is set an upper limit of carburizing temperature and carburizing time of carburized concentration distribution condition and scan from a coating of occurrence limit CO concentration and concentration of H 2 of When the carburizing time (peeling speed) and the atmosphere gas composition are finally changed to obtain the carburizing concentration distribution and the carburizing amount in the predetermined steel sheet thickness direction under the condition where the upper limit is set in advance, except for carburizing treatment When the carburizing time is determined based on the sheet passing speed set from the operating conditions and the carburizing temperature is set based on the material conditions, and the atmosphere gas composition is finally changed in order to obtain the specified amount of C under the condition where the carburizing temperature is set More about As described above, each of the following control examples of the above-described control factors, including these, can be considered.
1 ) 雰囲気組成が一定のとき、 浸炭温度, 浸炭時間を個別に又は同時に変化さ せ  1) When the atmosphere composition is constant, change the carburizing temperature and carburizing time individually or simultaneously.
2 ) 浸炭温度が一定のとき、 雰囲気組成のうち C O分圧又は H 2 分圧又は C〇 + H 2 分圧, 浸炭時間を個別に又は同時に変化させる。 2) When the carburizing temperature is constant, change the CO partial pressure or H 2 partial pressure or C〇 + H 2 partial pressure and carburizing time of the atmosphere composition individually or simultaneously.
3 ) 浸炭時間が一定のとき、 雰囲気組成のうち C O分圧又は H 2 分圧又は C O + H 2 分圧, 浸炭温度を個別に又は同時に変化させる。 3) When the carburizing time is constant, change the CO or H 2 partial pressure or CO + H 2 partial pressure and the carburizing temperature of the atmosphere composition individually or simultaneously.
4 ) 全ての制御因子を同時に又は個別に変化させる。  4) Change all control factors simultaneously or individually.
これらの制御因子の取捨選択方法はいずれかに限定されるものではなく、 種々 の与えられた条件下でいずれの場合にも全て展開可 である。 ,  The method of selecting these control factors is not limited to any one, and can be expanded in any case under various given conditions. ,
また、 本実施例では表面反応において C O, H 2 , C 02 及び H 2 0の影響の みを考慮して表面反応速度を算出する場合について詳述したが、 前述したように その他の雰囲気ガス組成、 例えば重炭化水素の影響を考慮して表面反応速度を算 出するようにしてもよい。 Further, in the surface reaction, in this embodiment CO, H 2, C 0 2 and has been described in detail for the case where considering only the effect of H 2 0 calculates the surface reaction rate, other ambient gas, as described above Calculate the surface reaction rate taking into account the composition, e.g., the effects of heavy hydrocarbons It may be issued.
また、 本実施例では物質収支を考慮した熱力学モデル式を線形化し、 その解を 収束することによって平衡状態を算出することとしたが、 この平衡状態の算出手 段はこれに限定されるものではない。  In this embodiment, the thermodynamic model equation taking into account the material balance is linearized, and the solution is converged to calculate the equilibrium state. However, the means for calculating the equilibrium state is not limited to this. is not.
また、 本実施例では特に前記表面反応律速域において極低炭素鋼からなるスト リップを連続焼鈍 ·浸炭する場合についてのみ詳述したが、 それ以外の浸炭反応 律速域においても、 また浸炭のみを必要とする場合においても、 或いはその他の 金属帯についても展開可能である。  Further, in this embodiment, particularly, only the case where the strip made of ultra-low carbon steel is continuously annealed and carburized in the above-mentioned surface reaction rate-determining region is described in detail. However, the present invention can be applied to other metal strips.

Claims

請求の範囲 The scope of the claims
1 . 金属帯を連続的に浸炭炉に通板して浸炭するに際して、 浸炭炉内に供給さ れる浸炭ガスと、 金属帯に固定されて持出される炭素との、 浸炭炉内における物 質収支に基づいて、 スーティングが生じない雰囲気ガス組成又は炉内温度に当該 浸炭炉内の雰囲気ガス組成又は炉内温度を制御することを特徴とする金属帯の連 続浸炭方法。  1. When the metal strip is continuously passed through a carburizing furnace for carburizing, the material balance in the carburizing furnace between the carburizing gas supplied into the carburizing furnace and the carbon fixed and taken out of the metal strip. A method for continuously carburizing a metal strip, comprising controlling the atmosphere gas composition or the furnace temperature in the carburizing furnace to the atmosphere gas composition or the furnace temperature at which sooting does not occur based on the method.
2 . 金属帯表層部の炭素濃度が、 当該金属帯と雰囲気ガスとの間で平衡する濃 度以下の領域で前記雰囲気ガス組成又は炉内温度若しくはそれら双方を制御する ことを特徴とする請求項 1に記載の金属帯の連続浸炭方法。  2. The atmosphere gas composition and / or the furnace temperature are controlled in a region where the carbon concentration in the surface portion of the metal band is equal to or less than the concentration at which the metal band and the atmosphere gas equilibrate. 2. The method for continuous carburization of a metal strip according to 1.
3 . 浸炭炉内に通板される金属帯を連続的に浸炭する場合に、 少なくとも炭素、 酸素、 窒素又は炭素、 酸素、 水素、 窒素の元素を含み且つスーティングが生じな い雰囲気ガス組成又は炉内温度を制御するにあたって、 前記浸炭炉内の各元素の 物質収支に基づいて、 炉内雰囲気全体のギプス自由エネルギーが最小となる状態 を求めることにより当該炉内雰囲気の平衡状態を求めるようにした熱力学モデル 式に基づいて、 前記雰囲気ガス組成又は炉内温度の制御量を算出することを特徴 とする金属帯の連続浸炭方法。  3. When continuously carburizing a metal strip passed through a carburizing furnace, an atmosphere gas composition containing at least carbon, oxygen, nitrogen or an element of carbon, oxygen, hydrogen, nitrogen and sooting does not occur. In controlling the furnace temperature, the equilibrium state of the furnace atmosphere is determined by obtaining a state in which the cast free energy of the entire furnace atmosphere is minimized based on the material balance of each element in the carburizing furnace. A method for continuously carburizing a metal strip, wherein the control amount of the composition of the atmosphere gas or the temperature in the furnace is calculated based on the obtained thermodynamic model equation.
4 . 前記雰囲気ガス組成及び炉内温度の条件として、 炉内温度が 7 0 0〜 9 5 0で、 一酸化炭素濃度が 0 % < C O濃度≤ 2 2 %、 水素濃度が 0 %≤H 2 濃度≤ 3 0 の条件が適用されることを特徴とする請求項 3に記載の金属帯の連続浸炭 方法。 4. As a condition of the atmospheric gas composition and the furnace temperature, the furnace temperature within 7 0 0-9 5 0, the carbon monoxide concentration is 0% <CO concentration ≤ 2 2%, hydrogen concentration 0% ≤H 2 4. The method for continuous carburization of a metal strip according to claim 3, wherein a condition of a concentration ≤ 30 is applied.
5 . 金属帯を浸炭炉内に通板して連続的にガス浸炭するに際して、 金属帯温度、 雰囲気ガス組成及び浸炭時間を制御量として用い、 これらの制御量を制御して浸 炭時の金属帯表層部の炭素濃度が金属帯と雰囲気ガスとの間における平衡濃度以 下で、 且つ該表層部の浸炭速度が表層部から内部への拡散速度よりも大きい反応 領域で浸炭処理を行うことを特徴とする金属帯の連続浸炭方法。  5. When the metal strip is passed through the carburizing furnace and continuously carburized, the temperature of the metal strip, the composition of the atmosphere gas and the carburizing time are used as control variables, and these control variables are controlled to control the metal during carburization. Carburizing treatment should be performed in a reaction region in which the carbon concentration in the surface layer is equal to or less than the equilibrium concentration between the metal band and the atmospheric gas, and the carburization rate of the surface layer is higher than the diffusion rate from the surface layer to the inside. Characterized by continuous carburizing of metal strips.
6 . 前記各制御量を制御するにあたって、 金属帯温度と一酸化炭素分圧、 或い は金属帯温度と一酸化炭素分圧及び水素分圧をパラメ一夕とする浸炭反応速度予 測式と、 浸炭時間によって決まる浸炭量の予測式とを予め設定し、 これらの予測 式の何れか又は組み合わせに基づいて各制御量を設定することを特徴とする請求 項 5に記載の金属帯の連続浸炭方法。 6. In controlling each of the above control variables, a carburization reaction rate prediction equation in which the metal zone temperature and the carbon monoxide partial pressure, or the metal zone temperature, the carbon monoxide partial pressure, and the hydrogen partial pressure are all set in parallel, A prediction formula for the carburizing amount determined by the carburizing time is set in advance, and each control amount is set based on any or a combination of these prediction formulas. Item 6. A method for continuously carburizing a metal strip according to Item 5.
7 . 前記予測式中の制御量に、 二酸化炭素分圧及び 又は H 2 ◦分圧を加えて 浸炭量を制御することを特徴とする請求項 6に記載の金属帯の連続浸炭方法。7. The method for continuous carburizing of a metal strip according to claim 6, wherein the carburizing amount is controlled by adding a partial pressure of carbon dioxide and / or a partial pressure of H 2 ◦ to the control amount in the prediction formula.
8 . 金属帯を浸炭炉内に通板して連続的にガス浸炭するに際して、 金属帯温度 及び 又は雰囲気ガス組成を制御量として用い、 浸炭処理以外の操業条件によつ て規制された通板速度から決まる浸炭時間に対して、 目標とする浸炭量を得るた めに予め設定された予測式に基づいて、 雰囲気ガス組成及び Z又は金属帯温度の 制御量を設定することを特徴とする請求項 6又は 7に記載の金属帯の連続浸炭方 8. When a metal strip is passed through a carburizing furnace for continuous gas carburization, the temperature and / or atmosphere gas composition of the metal strip is used as a control amount, and the strip is regulated by operating conditions other than carburizing. The control amount of the atmosphere gas composition and the Z or metal zone temperature is set based on a prediction formula set in advance to obtain a target carburizing amount for the carburizing time determined by the speed. Continuous carburizing method for metal strips described in 6 or 7
9 . 請求項 8に記載される金属帯の連続浸炭方法において、 規制された通板速 度の範囲内で、 浸炭時間をパラメ一夕として加えることを特徴とする金属帯の連 続浸炭方法。 9. The continuous carburizing method of a metal strip according to claim 8, wherein the carburizing time is added as a parameter within a range of a regulated threading speed.
1 0 . 金属帯を浸炭炉内に通板して連続的にガス浸炭するに際して、 金属帯温度、 雰囲気ガス組成及び浸炭時間を制御量として用い、 所望する板厚方向の浸炭濃度 分布形態に対して、 予め設定されたフィックの法則に基づく金属帯扳厚方向の炭 素拡散モデル式に基づいて前記各制御量を設定することを特徴とする金属帯の連 続浸炭方法。  10. When the metal strip is passed through a carburizing furnace for continuous gas carburization, the metal strip temperature, the atmosphere gas composition and the carburizing time are used as control variables to control the desired carburizing concentration distribution in the thickness direction. A method for continuously carburizing the metal strip, wherein the control amounts are set based on a metal strip-thickness carbon diffusion model formula based on Fick's law set in advance.
1 1 . 請求項 1 0に記載される金属帯の連続浸炭方法において、 金属帯温度と一 酸化炭素分圧と浸炭時間、 或いは金属帯温度と一酸化炭素分圧及び水素分圧と浸 炭時間とをパラメータとして用いることを特徴とする金属帯の連続浸炭方法。 11. The method for continuously carburizing a metal strip according to claim 10, wherein the temperature of the metal strip and the partial pressure of carbon monoxide and the carburizing time, or the temperature of the metal strip and the partial pressure of carbon monoxide and the hydrogen partial pressure and the carburizing time. And a method for continuously carburizing a metal strip, wherein
1 2 . 前記制御量に、 二酸化炭素分圧及び H 2 0分圧をパラメ一夕として加える ことを特徴とする請求項 1 1に記載の金属帯の連続浸炭方法。 12. The method for continuously carburizing a metal strip according to claim 11, wherein a partial pressure of carbon dioxide and a partial pressure of H 20 are added to the control amount as parameters.
1 3 . 前記浸炭濃度分布形態は、 金属帯表層部の深さ 1 0〜2 5 0 mの範囲の 1点以上の浸炭濃度又は浸炭濃度によって決まる金属の組織形態を目標に設定す ることを特徴とする請求項 1 0乃至 1 2に記載の金属帯の連続浸炭方法。  13. The carburizing concentration distribution form is to set the target carburizing concentration at one or more points in the range of 10 to 250 m depth of the metal layer surface or the metal structure form determined by the carburizing concentration. 13. The method for continuous carburizing of a metal strip according to claim 10, wherein the metal strip is carburized.
1 4 . 前記ガス浸炭の後に金属帯の板厚方向の浸炭濃度分布形態を制御する金属 帯の温度制御を行うことを特徴とする請求項 1 0乃至 1 3に記載の金属帯の連続 浸炭方法。  14. The method for continuously carburizing a metal strip according to any one of claims 10 to 13, wherein after the gas carburizing, the temperature of the metal strip is controlled to control the distribution of carburizing concentration in the thickness direction of the metal strip. .
PCT/JP1993/001486 1992-10-15 1993-10-15 Method of continuously carburizing metal strip WO1994009175A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP93922640A EP0626467B1 (en) 1992-10-15 1993-10-15 Method of continuously carburizing steel strip
DE69310897T DE69310897T2 (en) 1992-10-15 1993-10-15 METHOD FOR CONTINUOUSLY CARBONING A STEEL TAPE
KR1019940702014A KR100266037B1 (en) 1992-10-15 1993-10-15 Method of continuously carburizing metal strip
JP6509838A JP2944755B2 (en) 1992-10-15 1993-10-15 Continuous carburizing of metal strip

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP27730592 1992-10-15
JP4/277305 1992-10-15
JP28752492 1992-10-26
JP4/287524 1992-10-26
JP4/287523 1992-10-26
JP28752392 1992-10-26
JP4/344472 1992-12-24
JP34447292 1992-12-24

Publications (1)

Publication Number Publication Date
WO1994009175A1 true WO1994009175A1 (en) 1994-04-28

Family

ID=27479120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001486 WO1994009175A1 (en) 1992-10-15 1993-10-15 Method of continuously carburizing metal strip

Country Status (5)

Country Link
EP (1) EP0626467B1 (en)
KR (1) KR100266037B1 (en)
CA (1) CA2125785A1 (en)
DE (1) DE69310897T2 (en)
WO (1) WO1994009175A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998258B1 (en) 1999-10-29 2006-02-14 Basf Aktiengesellschaft L-pantolactone-hydrolase and a method for producing D-pantolactone
KR102094791B1 (en) * 2018-12-20 2020-03-30 (주)비전테크놀러지 Shield core of Sterling angle sensor for vehicle and method of manufacturing the same
WO2024090229A1 (en) * 2022-10-27 2024-05-02 山陽特殊製鋼株式会社 Carbon concentration distribution analysis method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT404029B (en) * 1996-09-16 1998-07-27 Ald Aichelin Ges M B H LOW-PRESSURE REARING PLANT
BE1011178A3 (en) * 1997-05-27 1999-06-01 Metallurigiques Ct Voor Resear Method of making continuous strip steel stamping having improved surface properties.
DE10325795B4 (en) * 2003-06-05 2005-07-28 Thyssenkrupp Stahl Ag Method for producing carburized steel strips
DE102005030433B3 (en) * 2005-06-30 2006-12-07 Ab Skf Carburizing an iron material, especially steel, comprises performing carburization on the basis of a calculated carbon diffusion coefficient
KR101166919B1 (en) * 2010-02-08 2012-07-23 한국생산기술연구원 Real time monitoring method for carburizing depth
DE102010039941B4 (en) * 2010-08-30 2012-05-16 Aktiebolaget Skf Process for carburizing an iron material
RU2723397C1 (en) * 2020-02-13 2020-06-11 Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" Cementing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144469A (en) * 1982-02-22 1983-08-27 Aisin Seiki Co Ltd Program control apparatus of carburization furnace
JPH01176065A (en) * 1987-12-28 1989-07-12 Tokyo Netsushiyori Kogyo Kk Gas carburizing heat treatment
JPH04198462A (en) * 1990-11-28 1992-07-17 Komatsu Ltd Carburizing device
JPH04202648A (en) * 1990-11-30 1992-07-23 Kawasaki Steel Corp Supplying method for carbonizable atmospheric gas in continuous carburization furnace
JPH04202650A (en) * 1990-11-30 1992-07-23 Kawasaki Steel Corp Continuous annealing furnace

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1934145B2 (en) * 1969-07-05 1973-12-13 Hartmann & Braun Ag, 6000 Frankfurt Process for obtaining a display and control signal for the carbon material potential in the gas carburization of steel
DE1942281B2 (en) * 1969-08-20 1973-12-13 Hartmann & Braun Ag, 6000 Frankfurt Process for obtaining a display and control signal for the carbon material potential in the gas carburization of steel
DE2152440C3 (en) * 1971-10-21 1979-04-12 Brown, Boveri & Cie Ag, 6800 Mannheim Process and arrangement for soot-free carburizing of steel
DE2152439C3 (en) * 1971-10-21 1978-04-27 Brown, Boveri & Cie Ag, 6800 Mannheim Process and device for preventing the formation of soot in carburizing rooms
US3950192A (en) * 1974-10-30 1976-04-13 Monsanto Company Continuous carburizing method
DE2835444C2 (en) * 1978-08-12 1985-08-01 Ruhrgas Ag, 4300 Essen Process for obtaining a display and control signal for the carbon level in the gas carburization of iron parts
DE3139622C2 (en) * 1981-10-06 1989-12-14 Joachim Dr.-Ing. 7250 Leonberg Wünning Process for gas carburizing of steel and device for its implementation
US4950334A (en) * 1986-08-12 1990-08-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Gas carburizing method and apparatus
JPH04107256A (en) * 1990-08-28 1992-04-08 Nippon Seiko Kk Carburizing furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144469A (en) * 1982-02-22 1983-08-27 Aisin Seiki Co Ltd Program control apparatus of carburization furnace
JPH01176065A (en) * 1987-12-28 1989-07-12 Tokyo Netsushiyori Kogyo Kk Gas carburizing heat treatment
JPH04198462A (en) * 1990-11-28 1992-07-17 Komatsu Ltd Carburizing device
JPH04202648A (en) * 1990-11-30 1992-07-23 Kawasaki Steel Corp Supplying method for carbonizable atmospheric gas in continuous carburization furnace
JPH04202650A (en) * 1990-11-30 1992-07-23 Kawasaki Steel Corp Continuous annealing furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0626467A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998258B1 (en) 1999-10-29 2006-02-14 Basf Aktiengesellschaft L-pantolactone-hydrolase and a method for producing D-pantolactone
KR102094791B1 (en) * 2018-12-20 2020-03-30 (주)비전테크놀러지 Shield core of Sterling angle sensor for vehicle and method of manufacturing the same
WO2024090229A1 (en) * 2022-10-27 2024-05-02 山陽特殊製鋼株式会社 Carbon concentration distribution analysis method

Also Published As

Publication number Publication date
DE69310897T2 (en) 1998-01-08
EP0626467A4 (en) 1995-03-01
EP0626467B1 (en) 1997-05-21
EP0626467A1 (en) 1994-11-30
KR100266037B1 (en) 2000-09-15
DE69310897D1 (en) 1997-06-26
CA2125785A1 (en) 1994-04-28

Similar Documents

Publication Publication Date Title
EP0946763A1 (en) High strength deep drawing steel developed by reaction with ammonia
WO2022054500A1 (en) System for predicting material characteristic value, and method for producing metal sheet
WO1994009175A1 (en) Method of continuously carburizing metal strip
JP2017526818A (en) Manufacturing method of high strength billet
KR102283932B1 (en) Dynamic adjustment method for the production of thermally treated steel sheet
JP7258619B2 (en) Steel plate continuous annealing equipment and method for manufacturing annealed steel plate
JP2944755B2 (en) Continuous carburizing of metal strip
JP4904887B2 (en) Method for adjusting bake hardenability of ultra-low carbon steel containing Nb
JP3028995B2 (en) Method for continuous carburization of metal strip and sheet temperature control
JP2938292B2 (en) Continuous carburizing of metal strip
US6074493A (en) Method of continuously carburizing metal strip
RU2727385C1 (en) Dynamic adjustment method for making heat-treated sheet steel
US11414736B2 (en) Production method of hot-dip galvanized steel sheet
JPH06192815A (en) Continuous carburization equipment for metallic strip
JP2983398B2 (en) Continuous annealing and continuous carburizing of metal strip
WO2024070278A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
WO2024070279A1 (en) Continuous annealing facility, continuous annealing method, method for producing cold-rolled steel sheet, and method for producing plated steel sheet
JPH05202425A (en) Carburizing and nitriding treatment equipment in continuous annealing furnace
WO2024180826A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
JPH08158038A (en) Continuous plasma treating device of metallic strip
JP7218224B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP3095913B2 (en) Continuous annealing method for metal strip
JPH10130742A (en) Heat treatment of metastable austenitic stainless steel strip
JPH04202650A (en) Continuous annealing furnace
JP2018159134A (en) Method of suppressing surface flaw on steel sheet and continuous annealing furnace

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2125785

Country of ref document: CA

Ref document number: 1019940702014

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1994 244991

Country of ref document: US

Date of ref document: 19940615

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1993922640

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993922640

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1996 638868

Country of ref document: US

Date of ref document: 19960429

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1993922640

Country of ref document: EP