JPH04198462A - Carburizing device - Google Patents
Carburizing deviceInfo
- Publication number
- JPH04198462A JPH04198462A JP33108690A JP33108690A JPH04198462A JP H04198462 A JPH04198462 A JP H04198462A JP 33108690 A JP33108690 A JP 33108690A JP 33108690 A JP33108690 A JP 33108690A JP H04198462 A JPH04198462 A JP H04198462A
- Authority
- JP
- Japan
- Prior art keywords
- carburizing
- carbon
- carburization
- depth
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005255 carburizing Methods 0.000 title claims abstract description 104
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 92
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 89
- 238000012545 processing Methods 0.000 claims abstract description 19
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 14
- 239000010959 steel Substances 0.000 claims abstract description 14
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000012466 permeate Substances 0.000 claims description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract 1
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract 1
- 239000000047 product Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 24
- 238000009792 diffusion process Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000001273 butane Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は浸炭装置に関し、特に浸炭の終了時期を正確に
判断し浸炭時間の短縮を可能とした浸炭装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a carburizing device, and more particularly to a carburizing device that can accurately determine the end time of carburizing and shorten carburizing time.
浸炭法は、低炭素鋼等をC○を含む浸炭性雰囲気で加熱
して、鋼の表面から炭素を浸透させて鋼中に炭素を拡散
させる方法であり、浸炭性雰囲気の状態により固体浸炭
法、液体浸炭法またはガス浸炭法に分けられる。The carburizing method is a method in which low carbon steel, etc. is heated in a carburizing atmosphere containing C○ to infiltrate carbon from the surface of the steel and diffuse carbon into the steel. Depending on the state of the carburizing atmosphere, solid carburizing method , divided into liquid carburizing method or gas carburizing method.
ガス浸炭法はCH4、C2H6等の浸炭性ガスとN2な
どのキャリヤガスとの混合ガス(エンドガスまたばRX
ガスと通称され、以下RXガスと称する。)中で処理品
の浸炭を行なうものである。The gas carburizing method uses a mixed gas (end gas or RX
gas, and hereinafter referred to as RX gas. ) in which the treated product is carburized.
そのプロセスは、主として処理品表面からカーボンを多
量に浸入させる浸炭期と、カーボンを処理品内部に深く
浸透させる拡散期とからなり、通常浸炭プロセス後のス
テップとして焼入れか行われる。この浸炭プロセスにお
ける処理条件では、例えば第4図に示されるように温度
と時間とが、前記浸炭期と拡散器とについでそれぞれ規
定されている他に、浸炭プロセスを制御するためのパラ
メータとしてRXガスの浸炭能力を示すカーボンポテン
シャル(c、p、)がそれぞれの期間について設定され
ている。通常、カーボンポテンシャルは浸透期では1.
1〜1.4(浸炭炉内のC雰囲気か平衡する炭素鋼のC
%)、拡散器では0.8〜0.9(浸炭炉内のC雰囲気
が平衡する炭素鋼のC%)の範囲内で所定の値に設定さ
れている。The process mainly consists of a carburizing period in which a large amount of carbon infiltrates from the surface of the treated product, and a diffusion phase in which carbon penetrates deeply into the interior of the treated product, and quenching is usually performed as a step after the carburizing process. In the treatment conditions in this carburizing process, for example, as shown in FIG. Carbon potential (c, p,) indicating the carburizing ability of gas is set for each period. Normally, the carbon potential is 1.
1 to 1.4 (C of carbon steel in equilibrium with C atmosphere in carburizing furnace)
%), and the diffuser is set to a predetermined value within the range of 0.8 to 0.9 (C% of carbon steel in which the C atmosphere in the carburizing furnace is balanced).
〔発明が解決しようとする課題]
浸炭および焼入れ後の処理品の表面硬度と硬化深さとは
、主に処理品表面の炭素量と有効浸炭深さとで決まる。[Problems to be Solved by the Invention] The surface hardness and hardening depth of a treated product after carburizing and quenching are mainly determined by the amount of carbon on the surface of the treated product and the effective carburization depth.
従来の浸炭プロセスにおいては、浸炭前の処理品の炭素
量および浸炭後の目標とする表面炭素量と有効浸炭深さ
とから処理条件を割り出していた。その隙、処理中のカ
ーボンポテンシャルの変動および温度の変動を無視して
カーボンポテンシャル一定および温度一定と仮定し、ま
た浸炭および拡散の状態のバラツキに配慮して、これら
浸炭期および拡散器の処理時間を長めに設定していた。In the conventional carburizing process, processing conditions were determined from the carbon content of the treated product before carburizing, the target surface carbon content after carburizing, and the effective carburizing depth. It is assumed that the carbon potential and temperature are constant, ignoring the gaps, carbon potential fluctuations and temperature fluctuations during treatment, and the carburizing period and diffuser processing time are assumed to be constant. was set to a long time.
しかし、実際には温度やカーボンポテンシャルはリアル
タイムで変動しており、特にカーボンポテンシャルの実
際の変動は第5図に示されるような傾向となっている。However, in reality, the temperature and carbon potential fluctuate in real time, and in particular, the actual fluctuations in carbon potential tend to be as shown in FIG.
この第5図かられかるようにカーボンポテンシャルは浸
炭期、拡散器共に常に微小な変動を繰返しており、また
浸炭期から拡散器への過渡期には大きな変動が起こって
いる。しかし、このような大きな変動は浸炭条件設定時
に考慮されておらず、したがって浸炭後の処理品の表面
炭素量と有効深さとの実測値と目標値との間に差異が生
ずることは避りられないという問題点があった。しかも
、前述したように処理時間を長めに設定していたから、
浸炭時間の長時間化とともに、過剰に浸炭がjテわれが
ちであり、その結果として余分なコストを要することも
問題点となっていた。As can be seen from FIG. 5, the carbon potential constantly repeats small fluctuations during both the carburizing stage and the diffuser, and large fluctuations occur during the transition period from the carburizing stage to the diffuser. However, such large fluctuations are not taken into account when setting the carburizing conditions, and therefore it is inevitable that differences will occur between the actual measured values and the target values for the surface carbon content and effective depth of the treated product after carburizing. The problem was that there was no. Moreover, as mentioned above, the processing time was set to be long, so
As the carburizing time becomes longer, the carburizing tends to be carried out excessively, resulting in additional costs, which is another problem.
したがって、本発明の目的は、目標とする表面炭素量と
有効浸炭深さとを精度よく制御することにより所望の浸
炭を従来技術よりも短縮された時間で達成することがで
きる浸炭装置を提供することである。Therefore, an object of the present invention is to provide a carburizing device that can achieve desired carburizing in a shorter time than the conventional technology by accurately controlling the target surface carbon content and effective carburizing depth. It is.
前記したような目的を達成するために、本発明では浸炭
処理中の浸炭炉内の温度およびカーボンポテンシャルの
変動をモニタして、このモニタされたデータに基づいて
浸炭期および拡散器の現象をコンピュータでシミュレー
トするとともに、リアルタイムに処理品の炭素分布およ
び表面炭素量、有効浸炭深さを計算して同時に前記デー
タと対比することにより浸炭の継続または終了を判断す
ることとした。したかって、本発明装置は、鋼を、浸炭
性雰囲気にある浸炭炉中で加熱して鋼の表面から炭素を
浸透拡散させ、鋼中の炭素量を高めるようにした浸炭装
置であって、
a)浸炭炉内の温度を検知する温度センサ、b)浸炭性
雰囲気のカーボンポテンシャルを検知するカーボンセン
サおよび
−ζ 〜
C)前記温度センサによって検知された浸炭炉内の温度
とカーボンセンサによって検知されたカーボンポテンシ
ャルとに基づいて浸炭時の鋼の表面炭素量CCおよび有
効浸炭深さDCを算出し、算出された表面炭素NCCお
よび有効浸炭深さDCを、予め設定された目標表面炭素
量CAおよび目標有効浸炭深さDAとそれぞれ比較して
、
co≧CAかつDC≧DA
である場合に浸炭終了と判断する演算処理手段を具えた
ことを特徴とする浸炭装置を要旨とするものである。In order to achieve the above-mentioned object, the present invention monitors the temperature and carbon potential fluctuations in the carburizing furnace during the carburizing process, and calculates the carburizing period and diffuser phenomena by computer based on the monitored data. At the same time, the carbon distribution, surface carbon content, and effective carburizing depth of the treated product were calculated in real time and compared with the above data to determine whether carburization should continue or end. Therefore, the device of the present invention is a carburizing device that heats steel in a carburizing furnace in a carburizing atmosphere to permeate and diffuse carbon from the surface of the steel, thereby increasing the amount of carbon in the steel. ) a temperature sensor that detects the temperature inside the carburizing furnace, b) a carbon sensor that detects the carbon potential of the carburizing atmosphere, and -ζ ~ C) the temperature inside the carburizing furnace detected by the temperature sensor and the temperature detected by the carbon sensor The surface carbon content CC and effective carburizing depth DC of the steel during carburizing are calculated based on the carbon potential, and the calculated surface carbon NCC and effective carburizing depth DC are calculated based on the preset target surface carbon content CA and target. The gist of the present invention is a carburizing apparatus characterized by comprising an arithmetic processing means that compares each with an effective carburizing depth DA and determines that carburizing is completed when co≧CA and DC≧DA.
浸炭装置の浸炭炉内にRXガス等を導入し加熱して浸炭
性雰囲気に保ち、浸炭炉内に置かれた処理品の浸炭を行
なう。浸炭炉内のカーボンポテンシャルはカーボンセン
サによって測定され、また温度は温度センサによって測
定されてそれぞれの測定値が時々刻々演算処理手段に送
られる。RX gas or the like is introduced into the carburizing furnace of the carburizing apparatus and heated to maintain a carburizing atmosphere, and the processed product placed in the carburizing furnace is carburized. The carbon potential in the carburizing furnace is measured by a carbon sensor, and the temperature is measured by a temperature sensor, and each measured value is sent to the arithmetic processing means from time to time.
浸炭の進行とともに、処理品の表面から浸入し6一
たカーボンが内部に浸透拡散していくが、浸炭性雰囲気
のカーボンポテンシャルが大きいほど多量のカーボンが
浸入して処理品の表面の炭素量が増大し、温度が高いほ
ど浸透拡散の速度が大きくなって処理品の内部深くまで
浸炭が進達する。演算処理手段では、経時、前記各セン
サから送られてくるカーボンポテンシャルおよび温度の
測定値から処理品の炭素分布を演算し、算出された表面
炭素量CCおよび有効浸炭深さDCを目標とする表面炭
素量CAおよび有効浸炭深さDAと比較する。As carburization progresses, carbon infiltrates from the surface of the treated product and diffuses into the interior, but the greater the carbon potential of the carburizing atmosphere, the more carbon infiltrates and the amount of carbon on the surface of the treated product decreases. As the temperature increases, the rate of penetration and diffusion increases, and carburization progresses deep into the interior of the treated product. The arithmetic processing means calculates the carbon distribution of the treated product from the measured values of carbon potential and temperature sent from each of the sensors over time, and sets the target surface carbon content CC and effective carburization depth DC. Compare with carbon content CA and effective carburizing depth DA.
そして、co<CAまたはDC <DAである場合は浸
炭を継続し、co≧CAかつDC≧DAとなった時点で
浸炭は目標どおり達成されたものと判断し、浸炭を終了
する。これにより浸炭拡散に過度の時間を費やすことを
抑止している。If co<CA or DC<DA, carburizing is continued, and when co≧CA and DC≧DA, it is determined that the carburizing has been achieved as intended, and the carburizing is terminated. This prevents excessive time from being spent on carburization and diffusion.
本発明に係る浸炭装置によれば、カーボンセンサおよび
温度センサを付設してそれらの測定値に基づいて、経時
、処理品の炭素分布を算出することによって浸炭の進行
状態を適確に把握することができる。すなわち、カーボ
ンポテンシャルおよび温度の変動によって浸炭の進行に
変化が生しても、その変化に対応した炭素分布の推移が
演算処理によって得られる。逆に、浸炭の進行状態を見
ながらカーボンポテンシャルまたは温度をコント・ロー
ルすることにより浸炭後の炭素分布を目的に応じた任意
の形態に誘導することも可能となる。According to the carburizing apparatus according to the present invention, the progress state of carburization can be accurately grasped by attaching a carbon sensor and a temperature sensor and calculating the carbon distribution of the processed product over time based on the measured values thereof. I can do it. That is, even if the progress of carburization changes due to fluctuations in carbon potential and temperature, a transition in carbon distribution corresponding to the change can be obtained by calculation processing. Conversely, by controlling the carbon potential or temperature while monitoring the progress of carburization, it is also possible to induce the carbon distribution after carburization into an arbitrary form depending on the purpose.
また、浸炭の絹:続および終了を適確に判断できるから
、従来のように浸炭時間を長めに設定する必要がなく、
浸炭の過剰な進行を防止することもてきる。その結果、
浸炭のコストも必要最小限とすることができ、製品の性
状の均一化および生産性の向上が達成できる。In addition, since the continuation and completion of carburizing can be accurately determined, there is no need to set a long carburizing time as in the past.
It can also prevent excessive carburization. the result,
The cost of carburizing can also be minimized, and product properties can be made uniform and productivity can be improved.
次に、本発明の一実施例につき図面を参照しつつ説明す
る。Next, one embodiment of the present invention will be described with reference to the drawings.
本発明の浸炭装置は、第1図に示されるように浸炭が行
われる浸炭炉11および浸炭を制御する制御部12を持
っている。低炭素鋼等の処理品13ば処理トレー14に
搭載されて浸炭炉11に運び込まれる。As shown in FIG. 1, the carburizing apparatus of the present invention has a carburizing furnace 11 in which carburizing is performed and a control section 12 that controls carburizing. Processed products 13 such as low carbon steel are loaded onto a processing tray 14 and transported to a carburizing furnace 11.
そして、浸炭炉11内には、COを含むRXガスが導入
されるとともにヒートニレメン1〜15によって加熱さ
れて浸炭性雰囲気に保持されるようになっている。さら
に、この浸炭性雰囲気は、カーボンポテンシャルを高め
るブタン等のカーボンエンリッチガスおよびカーボンポ
テンシャルを下げるための空気が適宜導入されることに
よりカーボンポテンシャルの調整が行われる。Then, an RX gas containing CO is introduced into the carburizing furnace 11 and is heated by the heating elements 1 to 15 to maintain a carburizing atmosphere. Furthermore, the carbon potential is adjusted by appropriately introducing into this carburizing atmosphere a carbon enriched gas such as butane which increases the carbon potential, and air which lowers the carbon potential.
制all 部12はカーボンセンサ16、温度センサ1
7および中央処理装置CPU18が主体となっている。The control unit 12 includes a carbon sensor 16 and a temperature sensor 1.
7 and a central processing unit CPU18.
これらカーボンセンサ16および温度センサ17はそれ
ぞれ浸炭炉11内のカーボンポテンシャルおよび温度を
連続的に測定して、その測定値を信号として中央処理装
置CPU18に送る。中央処理装置CPU18では送り
込まれた測定データから処理品の炭素拡散現象、すなわ
ち炭素分布を一定時間ごとに演算する。この炭素分布は
鋼中の炭素の拡散移動を考慮したFickの第2法則と
して知られている拡散方程式(0式)を解析することに
よって求められる。These carbon sensor 16 and temperature sensor 17 continuously measure the carbon potential and temperature within carburizing furnace 11, respectively, and send the measured values as signals to central processing unit CPU18. The central processing unit CPU 18 calculates the carbon diffusion phenomenon of the processed product, that is, the carbon distribution, at regular intervals from the sent measurement data. This carbon distribution is obtained by analyzing a diffusion equation (formula 0) known as Fick's second law, which takes into account the diffusion and movement of carbon in steel.
C:カーホンの濃度
D:拡散係数
X:温度勾配の方向
この解析方法としては、有限要素法、差分法等があり、
内部点有限差分法の場合は下記式■によって解析を行な
う。C: Concentration of carphone D: Diffusion coefficient X: Direction of temperature gradient Analysis methods include the finite element method, the difference method, etc.
In the case of the interior point finite difference method, analysis is performed using the following formula (■).
一−−−−−−−−−−−−−−−−−−=−■c’j
+at :H’lえ□□ユ1.お。、お、工。。おC’
j : Bji?Il t+4:おi:t6i要
素、)。9AVj ・i要素の体積
Cjl ・i要素の隣接要素jの時刻16.おけ
るC%Sfj ・j要素とj要素の接触面積D
・鋼中Cの拡散係数(浸炭拡散温度における)l−
・i要素とj要素の距離
j
C,P、 、表面カーボンポテンシャルR・表面の物
質移動抵抗
このような演算によって得られた処理品の炭素分布は例
えば第2図に示されるような曲線を描く。1−−−−−−−−−−−−−−−−−−=−■c'j
+at:H'le□□yu1. oh. , Oh, engineering. . C'
j: Bji? Il t+4:oi:t6i element,). 9AVj ・Volume Cjl of i element ・Time of adjacent element j of i element 16. C%Sfj ・Contact area D between j element and j element
・Diffusion coefficient of C in steel (at carburizing diffusion temperature) l-
・Distance between i element and j element j C, P, , surface carbon potential R ・Surface mass transfer resistance The carbon distribution of the treated product obtained by such calculations draws a curve as shown in Figure 2, for example. .
この図におけるA点は処理品の表面炭素量を示す。Point A in this figure indicates the amount of surface carbon of the treated product.
また、浸炭による所期の効果を発揮しうる最小限の炭素
量(図面に示す例では0.4%)にある距離を有効浸炭
深さとし、図中B点で示す。Further, the distance at the minimum amount of carbon (0.4% in the example shown in the drawing) that can exhibit the desired effect of carburization is defined as the effective carburization depth, and is indicated by point B in the drawing.
中央処理装置CPU18には予め目標とする表面炭素量
および有効浸炭深さが入力されている。The target surface carbon content and effective carburizing depth are input into the central processing unit CPU 18 in advance.
浸炭進行後、カーボンポテンシャルならびに温度の測定
データから前述のようにして実際の表面炭素量および有
効浸炭深さが求められると、中央処理装置CPU18で
はさらにこれら表面炭素量および有効浸炭深さと予め人
力された各目標値とを比較する。そして、実際値が目標
値と一致するかまたは実際値が目標値を上回わった時点
で、浸炭終了と判断する。この判断に基づいて直ちに処
理I・レーの搬送信号が浸炭炉に送られて処理品は次プ
ロセスである焼入プロセスへ移行させるものである。After the carburization progresses, when the actual surface carbon content and effective carburization depth are determined from the carbon potential and temperature measurement data as described above, the central processing unit CPU 18 further manually calculates the surface carbon content and effective carburization depth in advance. Compare each target value. Then, when the actual value matches the target value or the actual value exceeds the target value, it is determined that carburization is completed. Based on this judgment, a processing I-ray transport signal is immediately sent to the carburizing furnace, and the processed product is transferred to the next process, the quenching process.
次に、制御部12の動作について第3図に示されるフロ
ーチャート図に基づいて説明する。Next, the operation of the control section 12 will be explained based on the flowchart shown in FIG.
まず、ステップ31において、浸炭を行なう処理品の浸
炭前の初期炭素量CC(%)、浸炭後の目標とする表面
炭素量CA(%)および有効浸炭深さDA(mm)が入
力される。ついで、浸炭の開始信号が送られて浸炭が開
始する。浸炭の開始と同時にステップ32においてタイ
マを始動し、測定間隔Δtが入力される。続いて、ステ
ップ33において時間t+ΔLの経過を判断し、時間も
+Δもの経過後はステップ34に進む。ステップ34に
おいては、前もってカーボンセンサ16および温度セン
サ17からそれぞれ送り込まれるカーボンポテンシャル
C,P、および温度の測定データ、ならびに予め入力さ
れた浸炭前の初期炭素NCoに基づいて拡散プログラム
が実行される。このプログラムにおいては、前記式■、
■の演算を行なって処理品の浸炭後の表面炭素量CC(
%)および有効浸炭深さD 、 (mm )の計算値を
得る。ステップ35ではこの表面炭素量CCと予め入力
された目標とする表面炭素量CAとを比較し、CC≧C
Aならばステップ36に進み、CC <CAならばステ
ップ33に戻って浸炭を継続する。ステップ36てばス
テップ35と同様に、ステップ34で得られた有効浸炭
深さり。と予め入力された目標とする有効浸炭深さDA
とを比較してり。≧DAならばステップ37に進み、D
、〈DAならばステップ33に戻って浸炭を継続する。First, in step 31, the initial carbon content CC (%) before carburizing, the target surface carbon content CA (%) after carburizing, and the effective carburizing depth DA (mm) of the product to be carburized are input. Then, a carburizing start signal is sent to start carburizing. Simultaneously with the start of carburizing, a timer is started in step 32 and the measurement interval Δt is input. Subsequently, in step 33, it is determined whether the time t+ΔL has elapsed, and after the time has also elapsed, the process proceeds to step 34. In step 34, a diffusion program is executed based on the carbon potentials C, P and temperature measurement data sent in advance from the carbon sensor 16 and temperature sensor 17, respectively, and the initial carbon NCo before carburization inputted in advance. In this program, the above formula ■,
Calculate the amount of surface carbon after carburization of the treated product CC (
%) and the effective carburization depth D, (mm). In step 35, this surface carbon amount CC is compared with the target surface carbon amount CA input in advance, and CC≧C
If A, the process proceeds to step 36, and if CC<CA, the process returns to step 33 to continue carburizing. Step 36: Similar to step 35, the effective carburizing depth obtained in step 34 is determined. and the target effective carburizing depth DA entered in advance.
I'm comparing it with. If ≧DA, proceed to step 37,
, <DA, the process returns to step 33 to continue carburizing.
このようにしてCC≧CAかつり。≧D、の場合に浸炭
終了と判断され、ステップ37において次プロセス、す
なわち焼入工程への移行信号が処理トレー14に送られ
る。焼入によって処理品の浸炭された領域が硬化して、
表面が硬く内部は粘り強い性質を保持した鋼材が得られ
る。In this way, CC≧CA. If ≧D, it is determined that carburizing is completed, and a transition signal to the next process, that is, a quenching process, is sent to the processing tray 14 in step 37. Quenching hardens the carburized area of the treated product,
A steel material with a hard surface and a tenacious interior can be obtained.
第1図は本発明の一実施例を示すプロ・ンク図、第2図
は処理品の浸炭後の炭素分布を示すグラフ、第3図は浸
炭の制御を説明するためのフローチャート図、第4図は
浸炭プロセスにおける温度条件を説明するだめのグラフ
、第5図は浸炭プロセスにおけるカーボンポテンシャル
の変動を説明するためのグラフである。
11・・・浸炭炉
12・・・制御部
13・・・処理品
14・・・処理トレー
15・・・ヒートエレメント
16・・・カーボンセンサ
17・・・温度センサ
18・・・中央処理装置Fig. 1 is a diagram showing one embodiment of the present invention, Fig. 2 is a graph showing the carbon distribution after carburizing the treated product, Fig. 3 is a flowchart for explaining carburization control, Fig. 4 The figure is a graph for explaining the temperature conditions in the carburizing process, and FIG. 5 is a graph for explaining the fluctuation of carbon potential in the carburizing process. 11...Carburizing furnace 12...Control unit 13...Processed product 14...Processing tray 15...Heat element 16...Carbon sensor 17...Temperature sensor 18...Central processing unit
Claims (1)
から炭素を浸透拡散させ、鋼中の炭素量を高めるように
した浸炭装置であって、 a)浸炭炉内の温度を検知する温度センサ、b)浸炭性
雰囲気のカーボンポテンシャルを検知するカーボンセン
サおよび c)前記温度センサによって検知された浸炭炉内の温度
とカーボンセンサによって検知されたカーボンポテンシ
ャルとに基づいて浸炭時の鋼の表面炭素量C_Cおよび
有効浸炭深さD_Cを算出し、算出された表面炭素量C
_Cおよび有効浸炭深さD_Cを、予め設定された目標
表面炭素量C_Aおよび目標有効浸炭深さD_Aとそれ
ぞれ比較して、 C_C≧C_AかつD_C≧D_A である場合に浸炭終了と判断する演算処理手段を具えた
ことを特徴とする浸炭装置。[Scope of Claims] A carburizing device that heats steel in a carburizing furnace in a carburizing atmosphere to permeate and diffuse carbon from the surface of the steel to increase the amount of carbon in the steel, comprising: a) carburizing; a) a temperature sensor that detects the temperature inside the furnace; b) a carbon sensor that detects the carbon potential of the carburizing atmosphere; and c) based on the temperature inside the carburizing furnace detected by the temperature sensor and the carbon potential detected by the carbon sensor. Calculate the surface carbon amount C_C and effective carburizing depth D_C of the steel during carburizing, and calculate the calculated surface carbon amount C
_C and effective carburizing depth D_C are compared with a preset target surface carbon amount C_A and target effective carburizing depth D_A, respectively, and when C_C≧C_A and D_C≧D_A, a calculation processing means determines that carburization is completed. A carburizing device characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33108690A JPH04198462A (en) | 1990-11-28 | 1990-11-28 | Carburizing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33108690A JPH04198462A (en) | 1990-11-28 | 1990-11-28 | Carburizing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04198462A true JPH04198462A (en) | 1992-07-17 |
Family
ID=18239697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33108690A Pending JPH04198462A (en) | 1990-11-28 | 1990-11-28 | Carburizing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04198462A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994009175A1 (en) * | 1992-10-15 | 1994-04-28 | Kawasaki Steel Corporation | Method of continuously carburizing metal strip |
US6074493A (en) * | 1994-06-15 | 2000-06-13 | Kawasaki Steel Corporation | Method of continuously carburizing metal strip |
JP2007077437A (en) * | 2005-09-13 | 2007-03-29 | Toyota Central Res & Dev Lab Inc | Simulation method |
JP2008208403A (en) * | 2007-02-23 | 2008-09-11 | Daido Steel Co Ltd | Method for determining vacuum carburization condition by simulation |
JP2010132997A (en) * | 2008-12-08 | 2010-06-17 | Daido Steel Co Ltd | Method for controlling atmosphere in heat treating furnace |
-
1990
- 1990-11-28 JP JP33108690A patent/JPH04198462A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994009175A1 (en) * | 1992-10-15 | 1994-04-28 | Kawasaki Steel Corporation | Method of continuously carburizing metal strip |
US6074493A (en) * | 1994-06-15 | 2000-06-13 | Kawasaki Steel Corporation | Method of continuously carburizing metal strip |
JP2007077437A (en) * | 2005-09-13 | 2007-03-29 | Toyota Central Res & Dev Lab Inc | Simulation method |
JP2008208403A (en) * | 2007-02-23 | 2008-09-11 | Daido Steel Co Ltd | Method for determining vacuum carburization condition by simulation |
JP2010132997A (en) * | 2008-12-08 | 2010-06-17 | Daido Steel Co Ltd | Method for controlling atmosphere in heat treating furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006265606A (en) | High frequency induction heat-treatment method, high frequency induction heat-treatment facility and high frequency induction heat-treating article | |
JPH03215657A (en) | Method and device for carbulizing | |
JPH04198462A (en) | Carburizing device | |
EP1808499B1 (en) | High-frequency heat treatment apparatus, high-frequency heat treatment process, and high-frequency heat treated article | |
JP3038992B2 (en) | Control method of carburizing furnace | |
JP2670134B2 (en) | Atmosphere gas control method in vertical continuous bright annealing furnace for stainless steel strip | |
DE59607427D1 (en) | METHOD FOR THE DECOLARIZATION OF STEEL MELT | |
JP5429500B2 (en) | Quality control method and apparatus for vacuum carburizing, and vacuum carburizing furnace | |
JPH04107256A (en) | Carburizing furnace | |
JP2562256B2 (en) | Control method of the amount of iron-based oxides in the decarbonated layer of grain-oriented electrical steel | |
JP2736772B2 (en) | Austempering heat treatment method and apparatus by thermal analysis | |
JP2985643B2 (en) | Method of estimating carbon concentration in molten steel using RH type vacuum chamber | |
JP2572788B2 (en) | Control method of heat treatment atmosphere | |
JP2003035530A (en) | Board thickness measuring method, board thickness measuring device, and board thickness controlling method of hot-rolled steel sheet | |
JP2543512B2 (en) | Control method of heat treatment atmosphere | |
JP3415997B2 (en) | Guidance method for vacuum decarburization treatment of melting | |
US2980415A (en) | Apparatus for controlling case hardening action | |
US20090071954A1 (en) | Induction Tempering Method, Induction Tempering Apparatus, and Induction Tempered Product | |
JPS6411691B2 (en) | ||
JPH03188257A (en) | Method of carburizing work composed of steel material | |
JPH0233785B2 (en) | ||
US20170292170A1 (en) | Controlling and optimising furnace atmospheres for stainless steel heat treatment | |
JP4715617B2 (en) | Abnormality detection method, abnormality detection system, and abnormality detection device for detecting abnormality of vacuum degassing device | |
JPS61266524A (en) | Method for controlling cooling of steel product | |
JP3293674B2 (en) | Control method of end point carbon concentration in RH degassing process |