JP2010132997A - Method for controlling atmosphere in heat treating furnace - Google Patents

Method for controlling atmosphere in heat treating furnace Download PDF

Info

Publication number
JP2010132997A
JP2010132997A JP2008312089A JP2008312089A JP2010132997A JP 2010132997 A JP2010132997 A JP 2010132997A JP 2008312089 A JP2008312089 A JP 2008312089A JP 2008312089 A JP2008312089 A JP 2008312089A JP 2010132997 A JP2010132997 A JP 2010132997A
Authority
JP
Japan
Prior art keywords
furnace
value
concentration
gas
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008312089A
Other languages
Japanese (ja)
Other versions
JP5316765B2 (en
Inventor
Mitsuyuki Hiramatsu
弥幸 平松
Mitsuhiko Sato
光彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2008312089A priority Critical patent/JP5316765B2/en
Publication of JP2010132997A publication Critical patent/JP2010132997A/en
Application granted granted Critical
Publication of JP5316765B2 publication Critical patent/JP5316765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling atmosphere in a heat treating furnace by which an index value of carbon potential in furnace atmospheric gas can be highly accurately maintained at a reference value without generating hunching caused by CO<SB>2</SB>concentration. <P>SOLUTION: The method for controlling the atmosphere is provided by which the index value of the carbon potential in the furnace is controlled to the reference value by adjusting at least endothermic converted gas among the endothermic converted gas and nitrogen gas supplied into the furnace. In the method, when the CO<SB>2</SB>concentration in the furnace is decreased to a prescribed set value SV or lower, the air is fed into the furnace, and on the basis of a total control output S obtained by adding a feed-forward control output according to feeding amount of the endothermic converted gas and the N<SB>2</SB>gas into the furnace to a feed-back control output according to the deviation between the set value SV and an detected value of the CO<SB>2</SB>concentration, the feeding amount of the air is adjusted and thereby the CO<SB>2</SB>concentration is controlled using the set value SV as the target value, and thereafter, when the CO<SB>2</SB>concentration is increased to a value larger than the set value SV by the prescribed value or more, the feeding of the air is stopped to maintain the CO<SB>2</SB>concentration at the set value SV or higher. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、バッチ式の熱処理炉において、鋼材の熱処理時に炉内の雰囲気を制御する方法に関する。   The present invention relates to a method for controlling the atmosphere in a furnace during heat treatment of a steel material in a batch-type heat treatment furnace.

従来、バッチ式の熱処理炉において、鋼材の熱処理時における炉内の雰囲気ガスの組成は、浸炭等の熱処理内容に応じてカーボンポテンシャルの指標値PFで管理するのが一般的である。この指標値PFは下記の式(1)に示すように、炉内雰囲気ガス中のCO濃度(%)とCO濃度(%)の二乗との比で定まる値である。
PF=(CO)/CO……(1)
Conventionally, in a batch-type heat treatment furnace, the composition of the atmospheric gas in the furnace at the time of heat treatment of the steel material is generally managed by the index value PF of the carbon potential according to the heat treatment content such as carburization. This index value PF is a value determined by the ratio of the CO 2 concentration (%) in the furnace atmosphere gas to the square of the CO concentration (%) as shown in the following equation (1).
PF = (CO) 2 / CO 2 (1)

そして熱処理炉の操業時には、炉内の雰囲気ガス中のCO濃度とCO濃度の検出値に基づいて算出したPF値の測定値を、熱処理内容に応じて予め定めたPF値の基準値に合致させるように、炉内へ送入する吸熱形変成ガスやNガスなどのカーボンポテンシャル調整用ガスの供給量を調節する。ところが上式から明らかなように炉内のCO濃度が減少すると、指標値PFの測定値が大幅に増加して制御過敏となり、PF制御にハンチング現象を生じるという問題点がある。そこでこれを解決するものとして、CO濃度の低下時に、その低下するCO濃度に対応させて低下させた制御ゲインを用いてガス供給量の調節をおこなうことにより、PF値のハンチングを防止する方法が、特許文献1に記載されている。
特公平7−5958号公報
When the heat treatment furnace is operated, the measured value of the PF value calculated based on the CO 2 concentration in the atmospheric gas in the furnace and the detected value of the CO concentration matches the reference value of the PF value predetermined according to the heat treatment content. Thus, the supply amount of the carbon potential adjusting gas such as the endothermic metamorphic gas or N 2 gas fed into the furnace is adjusted. However, as is clear from the above equation, when the CO 2 concentration in the furnace is decreased, the measured value of the index value PF is greatly increased and the control becomes hypersensitive, which causes a hunting phenomenon in the PF control. Therefore, as a solution to this problem, when the CO 2 concentration is lowered, hunting of the PF value is prevented by adjusting the gas supply amount using the control gain that is lowered corresponding to the lowered CO 2 concentration. A method is described in US Pat.
Japanese Patent Publication No. 7-5958

しかし上記特許文献1に記載の制御方法によっても、炉内のCO濃度が僅少値(たとえば0.2%)に減少した場合は、PF値の測定値の大幅な変動は十分回避することができず、この結果生じるハンチングに加えて、CO濃度検出器(CO分析計)の検出精度にも限界があることからPF値の演算精度も不正確となり、所望の熱処理状態の鋼材が得られないという問題点を有するものであった。 However, even with the control method described in Patent Document 1, if the CO 2 concentration in the furnace is reduced to a slight value (for example, 0.2%), it is possible to sufficiently avoid a large fluctuation in the measured value of the PF value. In addition to the resulting hunting, there is a limit to the detection accuracy of the CO 2 concentration detector (CO 2 analyzer), so the calculation accuracy of the PF value becomes inaccurate, and a steel material in the desired heat treatment state is obtained. It had the problem that it was not possible.

この発明は上記の点にかんがみてなされたもので、炉内雰囲気ガスのカーボンポテンシャルの指標値を、CO濃度に起因するハンチングを生ずることなく精度よく基準値に維持することができる熱処理炉の雰囲気制御方法を提供することを目的とする。 The present invention has been made in view of the above points, and is a heat treatment furnace capable of accurately maintaining the index value of the carbon potential of the atmosphere gas in the furnace at a reference value without causing hunting due to CO 2 concentration. An object is to provide an atmosphere control method.

上記目的を達成するためにこの発明の熱処理炉の雰囲気制御方法は、熱処理炉内のカーボンポテンシャルの指標値を、炉内に供給する吸熱形変成ガスと窒素ガスのうちの少なくとも吸熱形変成ガス量を調節することにより基準値に制御する熱処理炉の雰囲気制御方法において、炉内のCO濃度が所定の設定値以下に低下したときに炉内へ空気を送入し、前記設定値とCO濃度の検出値の偏差に応じたフィードバック制御出力に、前記吸熱形変成ガスとNガスの炉内への送入量に応じたフィードフォワード制御出力を加えた総制御出力に基づいて、前記空気の送入量を調節することによりCO濃度を前記設定値を目標値として制御し、その後CO濃度が前記設定値より所定値以上大となったとき前記空気の送入を停止することにより、CO濃度を前記設定値以上に維持することを特徴とする。 In order to achieve the above object, an atmosphere control method for a heat treatment furnace according to the present invention provides an index value of a carbon potential in a heat treatment furnace, wherein at least an endothermic type modified gas amount of an endothermic type transformed gas and nitrogen gas supplied into the furnace. In the atmosphere control method of the heat treatment furnace that controls to a reference value by adjusting the air, when the CO 2 concentration in the furnace falls below a predetermined set value, air is fed into the furnace, and the set value and the CO 2 Based on a total control output obtained by adding a feedforward control output corresponding to the amount of feed of the endothermic modified gas and N 2 gas into the furnace to a feedback control output corresponding to the deviation of the detected concentration value, the air the feed of CO 2 concentration by controlling the setting value as a target value by adjusting the Iriryou, that thereafter the CO 2 concentration to stop the delivery of the air when it becomes larger than a predetermined value than the set value Ri, and maintains the CO 2 concentration than the set value.

このように構成することにより、先ず炉内のCO濃度が所定の設定値以下に低下したときに炉内へ送入される空気中の酸素により、炉内のCOガスを酸化させてCOガスを生成させ、CO濃度の設定値以下への低下を阻止できる。そしてCO濃度のフィードバック制御に加えて、吸熱形変成ガスとNガスの炉内への送入量に応じたフィードフォワード制御により空気の送入量を調節することにより、CO濃度は精度よく設定値に維持され、これに加えてCO濃度の設定値をCO濃度検出器の検出精度に応じた範囲で選定することができるので、PF値の演算精度も正確となり、カーボンポテンシャルの指標値をハンチングを生じることなく精度よく基準値に維持することができるのである。またCO濃度が設定値より所定値以上大となったときは、炉内への空気の送入を停止することにより、過剰な空気の送入による吸熱形変成ガスやNガスなどの不要な送入量制御を回避することができるのである。 With this configuration, the first by oxygen in the air CO 2 concentration in the furnace is fed into the furnace when drops below a predetermined set value, to oxidize the CO gas in the furnace CO 2 Gas can be generated, and the CO 2 concentration can be prevented from decreasing below the set value. And in addition to the feedback control of the CO 2 concentration, by adjusting the feeding of air Iriryou by the feed-forward control in accordance with the input amount fed into the furnace of the endothermic type converted gas and N 2 gas, CO 2 concentration accurately well is maintained at the set value, since the set value of CO 2 concentration in addition to can be selected in the range corresponding to the detection accuracy of the CO 2 concentration detector, also becomes correct operation accuracy of the PF value, the carbon potential The index value can be accurately maintained at the reference value without causing hunting. When the CO 2 concentration exceeds the set value by a predetermined value or more, by stopping the air supply to the furnace, no endothermic gas or N 2 gas due to excessive air supply is required. Therefore, it is possible to avoid the inflow control.

以上説明したようにこの発明によれば、炉内雰囲気ガスのカーボンポテンシャルの指標値を、CO濃度に起因するハンチングを生ずることなく精度よく基準値に維持することができ、所望の熱処理状態の鋼材を得ることができる。 As described above, according to the present invention, the index value of the carbon potential of the furnace atmosphere gas can be accurately maintained at the reference value without causing hunting due to the CO 2 concentration, and the desired heat treatment state can be maintained. Steel material can be obtained.

以下図1および図2に示す一例により、この発明の実施の形態を説明する。図1において1はバッチ式の熱処理炉で、周知の炉内加熱手段をそなえ鋼材からなる被処理物Wを、所定の炉内雰囲気ガス中で熱処理するものであり、その炉体に接続されたガス送入管2には、吸熱形変成ガス供給管3,Nガス供給管4,5、および空気供給管6が接続され、上記炉体に接続されたガス送出管7には排気ダンパ8が接続されている。 Hereinafter, an embodiment of the present invention will be described with reference to an example shown in FIGS. In FIG. 1, reference numeral 1 denotes a batch type heat treatment furnace, which has a well-known furnace heating means and heats a workpiece W made of steel in a predetermined furnace atmosphere gas, and is connected to the furnace body. The gas feed pipe 2 is connected with an endothermic modified gas supply pipe 3, an N 2 gas supply pipe 4, 5 and an air supply pipe 6, and an exhaust damper 8 is connected to the gas delivery pipe 7 connected to the furnace body. Is connected.

ガス供給管5は炉内パージや炉圧保持のために一定量QのNガスを、開閉弁10を経て炉内へ供給するものである。これに対して吸熱形変成ガス供給管3には流量調節弁11が、Nガス供給管4には流量調節弁12が、それぞれ設けてある。 The N 2 gas supply pipe 5 supplies a constant amount Q 0 of N 2 gas into the furnace through the on-off valve 10 for purging the furnace and maintaining the furnace pressure. On the other hand, the endothermic modified gas supply pipe 3 is provided with a flow rate adjustment valve 11, and the N 2 gas supply pipe 4 is provided with a flow rate adjustment valve 12.

炉内雰囲気制御時には、CO分析計13により測定した炉内のCO濃度(%)とCO分析計14により測定した炉内のCO濃度(%)の各測定信号を受けて、炉内PF演算・指示調節計15は前記式(1)に示すカーボンポテンシャルの指標値(PF)を算出し、熱処理炉1内の炉内温度や被処理物Wの熱処理内容・工程に応じて予め選定してあるカーボンポテンシャルの指標値の基準値(図2に示すPF設定パターン)に、上記算出した実測PF値を追従させるように、各流量調節弁開度制御用の制御出力MVを発し、この制御出力は調節弁出力換算器16,17によりそれぞれ吸熱形変成ガス調節弁開度制御出力MVおよびNガス調節弁開度制御出力MVとして、流量調節弁11,12にそれぞれ入力され、これら両流量調節弁を介して熱処理炉1内に供給される吸熱形変成ガスおよびNガスの流量を制御することにより、炉内雰囲気のPF制御がおこなわれる。 During furnace atmosphere control, it receives the measurement signal of the CO concentration in the furnace measurement (%) and CO 2 concentration in the furnace as measured by CO 2 analyzer 14 (%) by CO analyzer 13, the furnace PF The calculation / instruction controller 15 calculates the index value (PF) of the carbon potential shown in the above formula (1) and selects it in advance according to the furnace temperature in the heat treatment furnace 1 and the heat treatment contents / process of the workpiece W. The control output MV 0 for controlling each flow rate control valve opening is generated so that the calculated actual PF value follows the reference value of the index value of the carbon potential (PF setting pattern shown in FIG. 2). The control outputs are input to the flow rate control valves 11 and 12 by the control valve output converters 16 and 17 as the endothermic modified gas control valve opening control output MV 1 and the N 2 gas control valve opening control output MV 2 , respectively. Both of these By controlling the flow rate of the endothermic type converted gas and N 2 gas is supplied into the heat treatment furnace 1 via a regulating valve, PF control of furnace atmosphere is performed.

一方、図示しない送風機等の空気供給源に接続された空気供給管6の途中には、空気流量調節弁21を設けてあり、この空気流量調節弁21の開度を、CO制御期間決定要素22と、フィードバック制御用のCO指示調節計23と、フィードフォワード量演算器24とからなるCO制御手段20によって調節することにより、炉内のCO濃度を設定値SV(たとえば0.5%)以上に維持する。 On the other hand, an air flow rate adjusting valve 21 is provided in the middle of the air supply pipe 6 connected to an air supply source such as a blower (not shown), and the opening degree of the air flow rate adjusting valve 21 is determined as a CO 2 control period determining factor. 22, the CO 2 indicating controller 23 for feedback control, and the CO 2 control means 20 including the feedforward amount calculator 24, thereby adjusting the CO 2 concentration in the furnace to a set value SV (for example, 0.5 %) Or more.

以下その制御動作を、図1および図2により説明すると、熱処理炉1における被処理物Wの熱処理時に、前記の炉内PF演算・指示調節計15による流量調節弁11,12の開度制御により炉内のPF値を図2に示すPF設定パターン(基準値)に制御するPF制御期間内において、炉内のCO濃度が図2における「COの挙動」曲線に従って変動する場合、CO分析計14による炉内のCO濃度の検出値が、所定の設定値SV(たとえば0.5%)以下に低下したとき、この設定値SVを比較値として内蔵するCO制御期間決定要素22は、CO制御開始指令を、CO指示調節計23およびフィードフォワード量演算器24の出力部に接続した開閉器25に、それぞれ出力する。 The control operation will be described below with reference to FIGS. 1 and 2. When the workpiece W is heat-treated in the heat treatment furnace 1, the opening control of the flow rate control valves 11 and 12 by the in-furnace PF calculation / instruction controller 15 is performed. in the PF control period for controlling the PF value of the furnace PF setting pattern (reference value) shown in FIG. 2, when the CO 2 concentration in the furnace vary according to the "behavior of CO 2" curve in Figure 2, CO 2 When the detected value of the CO 2 concentration in the furnace by the analyzer 14 falls below a predetermined set value SV (for example, 0.5%), the CO 2 control period determining element 22 that incorporates this set value SV as a comparison value. Outputs a CO 2 control start command to the switch 25 connected to the output unit of the CO 2 indicating controller 23 and the feedforward amount calculator 24, respectively.

CO指示調節計23は、上記設定値SVと、CO分析計14によるCO濃度の検出値の偏差に応じたフィードバック制御出力Sb を出力する。一方、フィードフォワード量演算器24においては、前記流量調節弁11に入力される吸熱形変成ガス調節弁開度制御出力MVを受けて流量換算要素26により吸熱形変成ガス流量値Q(工業単位)に換算し、同じく流量調節弁12に入力されるNガス調節弁開度制御出力MVを受けて流量換算要素27によりNガス流量値Qに換算し、これら両流量値と定流量Nガス供給用のNガス供給管5のNガス定流量値Qを加算して得られる総送気ガス量Qt の変化量ΔQ、およびシミュレーション等により予め選定したFFゲインKf に基づいて、FF出力換算およびゲイン要素28により、所定の頻度(たとえば1秒毎)で下記の式(2)によりフィードフォワード制御出力Sfを算出・出力し、これを上記フィードバック制御出力Sb に加算して得られる総制御出力Sにより、空気流量調節弁21の開度調節がおこなわれる。
Sf=Kf ×ΔQ/(Q+Q+Q)+Sfn−1
=Kf ×(Qt−Qtn−1)/(Q+Q+Q)+Sfn−1 ……(2)
但し
Sf=今回のFF制御出力量 Sfn−1=前回のFF制御出力量
Qt=今回の総送気ガス量 Qtn−1=前回の総送気ガス量
=流量調節弁11の開度最大時(MV=100%時)の吸熱形変成ガス流量
=流量調節弁12の開度最大時(MV=100%時)のNガス流量
CO 2 instruction adjusting meter 23 outputs and the set value SV, the feedback control output Sb corresponding to the deviation of the detected value of CO 2 concentration by the CO 2 analyzer 14. On the other hand, in the feedforward quantity calculator 24, endothermic type converted gas flow rate value Q 1 (industrial by flow rate conversion element 26 receives the endothermic type converted gas control valve position control output MV 1 input to the flow rate adjusting valve 11 The N 2 gas control valve opening control output MV 2 that is also input to the flow rate control valve 12 and converted to the N 2 gas flow rate value Q 2 by the flow rate conversion element 27. The amount of change ΔQ of the total gas supply amount Qt obtained by adding the N 2 gas constant flow rate value Q 0 of the N 2 gas supply pipe 5 for supplying the constant flow rate N 2 gas, and the FF gain Kf selected in advance by simulation or the like Based on the above, the feedforward control output Sf n is calculated and output by the following equation (2) at a predetermined frequency (for example, every second) by the FF output conversion and gain element 28, and this is fed to the feed The opening degree of the air flow rate adjustment valve 21 is adjusted by the total control output S obtained by adding to the back control output Sb.
Sf n = Kf × ΔQ / (Q R + Q N + Q 0 ) + Sf n−1
= Kf × (Qt n -Qt n -1) / (Q R + Q N + Q 0) + Sf n-1 ...... (2)
Sf n = current FF control output amount Sf n-1 = previous FF control output amount Qt n = current total air supply gas amount Qt n-1 = previous total air supply gas amount Q R = flow rate control valve 11 Endothermic modified gas flow rate at the time of maximum opening (MV 1 = 100%) Q N = N 2 gas flow rate at the time of maximum opening of the flow control valve 12 (MV 2 = 100%)

上記の空気供給管6による熱処理炉1内への空気の送入により,炉内のCOガスが酸化されてCOガスが生成され、CO濃度の設定値SV以下への低下が阻止される。そしてCO制御手段20によるフィードバック制御と、空気の送入量との相関関係が強い吸熱形変成ガスとNガスの炉内への送入量に応じたフィードフォワード制御によって、空気の送入量を調節することにより、炉内のCO濃度は図2に示すように精度よくSV値に維持され、CO濃度が僅少値となってPF値が大幅に変動するのが回避され、さらに設定値SVをCO分析計14の検出精度上の許容範囲内で選定することにより、PF値の演算精度も正確となる。これによって、CO濃度に起因するハンチングを生じることなく、炉内のPF値を精度よく基準値に維持することができ、所望の熱処理状態の被処理物Wを得ることができるのである。 By sending air into the heat treatment furnace 1 through the air supply pipe 6, the CO gas in the furnace is oxidized and CO 2 gas is generated, and the CO 2 concentration is prevented from lowering below the set value SV. . Then, the feedback control by the CO 2 control means 20 and the feed-in control according to the feed amount of the endothermic modified gas and N 2 gas having a strong correlation between the feed amount of air and the feed amount of air into the furnace. By adjusting the amount, the CO 2 concentration in the furnace is accurately maintained at the SV value as shown in FIG. 2, and it is avoided that the CO 2 concentration becomes a small value and the PF value fluctuates greatly. By selecting the set value SV within an allowable range on the detection accuracy of the CO 2 analyzer 14, the calculation accuracy of the PF value becomes accurate. As a result, the PF value in the furnace can be accurately maintained at the reference value without causing hunting due to the CO 2 concentration, and the workpiece W in a desired heat treatment state can be obtained.

その後、CO分析計14により検出されるCO濃度がSV値より上昇して、図2に示すように設定値SVより所定値α(たとえば0.2%)以上大となったときは、CO制御手段20によるCO濃度制御を終了して空気供給管6による炉内への空気の送入を停止する。これによって過剰な空気の送入による吸熱形変成ガスやNガスなどの不要な送入量制御が回避される。 Then, CO 2 concentration detected by the CO 2 analyzer 14 is raised from the SV value, when it becomes a predetermined value alpha (e.g. 0.2%) or more larger than the set value SV as shown in Figure 2, CO 2 controller to exit the CO 2 concentration control by 20 to stop the delivery of air into the furnace by the air supply pipe 6. This avoids unnecessary control of the amount of incoming heat, such as the endothermic modified gas or N 2 gas, due to excessive air supply.

この発明は上記の例に限定されるものではなく、たとえば上記のCO制御期間内に、炉内雰囲気のPF制御が終了する場合は、その終了時点でCO制御も終了して空気の送入を停止するものとする。また上記の例は、PF制御時に吸熱形変成ガスとNガスの両方のガスの流量制御をおこなうものであるが、Nガスは定流量送入として吸熱形変成ガスの流量のみを制御することによりPF制御をおこなう熱処理炉の雰囲気制御方法にも、この発明は適用できるものである。 The present invention is not limited to the above example. For example, when the PF control of the furnace atmosphere is completed within the above-described CO 2 control period, the CO 2 control is also terminated at the end of the PF control and the air supply is performed. The entrance shall be stopped. The above example controls the flow rate of both the endothermic modified gas and N 2 gas during PF control. N 2 gas controls only the flow rate of the endothermic modified gas as a constant flow rate. The present invention can also be applied to an atmosphere control method for a heat treatment furnace that performs PF control.

この発明の実施の形態の一例を示す熱処理炉の制御系統図である。It is a control system diagram of a heat treatment furnace showing an example of an embodiment of the present invention. 図1の熱処理炉による熱処理過程における時間の経過と炉内のCO濃度およびカーボンポテンシャルの指標値PFとの関係を示す線図である。FIG. 2 is a diagram showing the relationship between the elapse of time in the heat treatment process by the heat treatment furnace of FIG.

符号の説明Explanation of symbols

1…熱処理炉、3…吸熱形変成ガス供給管、4…Nガス供給管、5…Nガス供給管、6…空気供給管、11…流量調節弁、12…流量調節弁、13…CO分析計、14…CO分析計、15…炉内PF演算・指示調節計、20…CO制御手段、21…空気流量調節弁、22…CO制御期間決定要素、23…CO指示調節計、24…フィードフォワード量演算器、W…被処理物。 1 ... heat treatment furnace 3 ... endothermic type converted gas supply pipe, 4 ... N 2 gas feed pipe, 5 ... N 2 gas feed pipe, 6 ... air supply pipe, 11 ... flow control valve, 12 ... flow control valve, 13 ... CO analyzer, 14 ... CO 2 analyzer, 15 ... In-furnace PF calculation / indication controller, 20 ... CO 2 control means, 21 ... Air flow control valve, 22 ... CO 2 control period determining element, 23 ... CO 2 indication Controller, 24 ... feed forward amount calculator, W ... processed object.

Claims (1)

熱処理炉内のカーボンポテンシャルの指標値を、炉内に供給する吸熱形変成ガスと窒素ガスのうちの少なくとも吸熱形変成ガス量を調節することにより基準値に制御する熱処理炉の雰囲気制御方法において、
炉内のCO濃度が所定の設定値以下に低下したときに炉内へ空気を送入し、
前記設定値とCO濃度の検出値の偏差に応じたフィードバック制御出力に、前記吸熱形変成ガスとNガスの炉内への送入量に応じたフィードフォワード制御出力を加えた総制御出力に基づいて、前記空気の送入量を調節することによりCO濃度を前記設定値を目標値として制御し、
その後CO濃度が前記設定値より所定値以上大となったとき前記空気の送入を停止することにより、CO濃度を前記設定値以上に維持することを特徴とする熱処理炉の雰囲気制御方法。
In the atmosphere control method of the heat treatment furnace, the index value of the carbon potential in the heat treatment furnace is controlled to a reference value by adjusting at least the amount of the endothermic modification gas and nitrogen gas supplied into the furnace.
When the CO 2 concentration in the furnace falls below a predetermined set value, air is sent into the furnace,
Total control output obtained by adding a feedforward control output corresponding to the amount of the endothermic modified gas and N 2 gas fed into the furnace to a feedback control output corresponding to a deviation between the set value and a detected value of the CO 2 concentration Based on the control, the CO 2 concentration is controlled with the set value as a target value by adjusting the amount of air fed,
Thereafter, when the CO 2 concentration becomes larger than the set value by a predetermined value or more, the atmosphere control method for the heat treatment furnace is characterized in that the CO 2 concentration is maintained at the set value or more by stopping the air supply. .
JP2008312089A 2008-12-08 2008-12-08 Heat treatment furnace atmosphere control method Active JP5316765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312089A JP5316765B2 (en) 2008-12-08 2008-12-08 Heat treatment furnace atmosphere control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312089A JP5316765B2 (en) 2008-12-08 2008-12-08 Heat treatment furnace atmosphere control method

Publications (2)

Publication Number Publication Date
JP2010132997A true JP2010132997A (en) 2010-06-17
JP5316765B2 JP5316765B2 (en) 2013-10-16

Family

ID=42344546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312089A Active JP5316765B2 (en) 2008-12-08 2008-12-08 Heat treatment furnace atmosphere control method

Country Status (1)

Country Link
JP (1) JP5316765B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443281B1 (en) 2010-10-27 2014-09-23 바오샨 아이론 앤 스틸 유한공사 Method and device for controlling furnace temperature of burning heating furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177362A (en) * 1983-03-29 1984-10-08 Daido Steel Co Ltd Controlling method of carburizing atmosphere
JPH04198462A (en) * 1990-11-28 1992-07-17 Komatsu Ltd Carburizing device
JPH06192814A (en) * 1992-12-24 1994-07-12 Kawasaki Steel Corp Continuous carburization method for metallic band

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177362A (en) * 1983-03-29 1984-10-08 Daido Steel Co Ltd Controlling method of carburizing atmosphere
JPH04198462A (en) * 1990-11-28 1992-07-17 Komatsu Ltd Carburizing device
JPH06192814A (en) * 1992-12-24 1994-07-12 Kawasaki Steel Corp Continuous carburization method for metallic band

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443281B1 (en) 2010-10-27 2014-09-23 바오샨 아이론 앤 스틸 유한공사 Method and device for controlling furnace temperature of burning heating furnace

Also Published As

Publication number Publication date
JP5316765B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
RU2553783C2 (en) Method and device of pressure control in continuous annealing furnace
JP4821102B2 (en) Desalination control device and desalination control method
JP5316765B2 (en) Heat treatment furnace atmosphere control method
JP5314946B2 (en) Heating furnace controller
CN113195756B (en) Steel strip annealing furnace with humidity control device
JP2010255056A (en) Method of controlling furnace atmosphere in heat treatment furnace
JPH0280511A (en) Method for controlling dew point of atmospheric gas in furnace
JP2017082275A (en) Nitriding treatment apparatus and nitriding treatment method
US6955730B2 (en) Method for enhancing the metallurigcal quality of products treated in a furnace
JPH07180904A (en) Hot water-supplying apparatus
JP5742311B2 (en) Method and apparatus for preventing warpage of rolled material in hot rolling line
JP2001021141A (en) Combustion control method of heating furnace and combustion control device
JP2619044B2 (en) Temperature control device
JP5001659B2 (en) Dissolved oxygen control device
JP2808736B2 (en) Water heater control device
JPH0791590B2 (en) Velocity changing method in plate temperature control of continuous annealing furnace
JP2011042878A (en) Method and device for heat treatment
JP4129224B2 (en) Combustion control method for combustion chamber of waste melting treatment equipment
JPH075958B2 (en) Atmosphere control method for heat treatment furnace
JP2009235463A (en) Apparatus and method for continuously heating metal strip
JP2005076986A (en) Method for controlling atmosphere of heat treatment furnace
SU1564473A1 (en) System for automatic regulation of power-technological boiler unit
CN118127290A (en) Atmosphere heat treatment furnace
JP2005076109A (en) Method of atmosphere control in heat-treating furnace
CN116857983A (en) Feedforward control method and system for improving control precision of heating furnace

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R150 Certificate of patent or registration of utility model

Ref document number: 5316765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150