WO1994009131A1 - Proteine de liaison specifique recombinee - Google Patents

Proteine de liaison specifique recombinee Download PDF

Info

Publication number
WO1994009131A1
WO1994009131A1 PCT/GB1993/002133 GB9302133W WO9409131A1 WO 1994009131 A1 WO1994009131 A1 WO 1994009131A1 GB 9302133 W GB9302133 W GB 9302133W WO 9409131 A1 WO9409131 A1 WO 9409131A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
specific binding
binding protein
domains
regions
Prior art date
Application number
PCT/GB1993/002133
Other languages
English (en)
Inventor
William Joseph Harris
Stephen Charles Emery
Gregory Paul Winter
Francis Joseph Carr
Duncan Patrick Mcgregor
Original Assignee
Scotgen Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scotgen Limited filed Critical Scotgen Limited
Priority to GB9507442A priority Critical patent/GB2286189A/en
Priority to JP6509777A priority patent/JPH08505761A/ja
Priority to AU52837/93A priority patent/AU5283793A/en
Publication of WO1994009131A1 publication Critical patent/WO1994009131A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to recombinant bispecific (heterodimeric) and/or monodimeric bivalent specific binding proteins, for example antibodies.
  • Bispecific antibodies may be described as recombinant antibodies capable of binding two different antigenic sites and thus contain antigen binding domains derived from two different sources, and which are brought into association by complementary interactive domains within the antibody molecule.
  • Bivalent antibodies of a monospecific nature may be derived from hybridomas and similarly, bispecifics by the fusion of two hybridoma lines expressing antibodies with different specificities.
  • the application of bispecifics has been limited by the difficulty in efficiently producing and purifying such molecules and additionally, the effector functions intrinsic to complete antibody molecules (such Fc receptor and complement binding) have led to undesirable interactions.
  • Dimerisation techniques which promote the formation of bivalent complexes may therefore be of great importance when one considers constructs, for example F v or Fab fragments, in which the monovalency of the product precludes polyvalent binding to the antigen, providing an avidity factor.
  • each subunit containing different V domains (each subunit containing different V domains) .
  • bispecific antibodies can be effective in cross-linking cytotoxic effector cells to target cells and stimulating the cytotoxic destruction mechanism.
  • bispecific antibodies may be utilized to associate and bring into close proximity certain molecules eg. a drug or a toxin, a radiolabelled hapten or inactivating protein to other entities, such as a particular protein or cell type, via the specific recognition and binding of the individual binding domains.
  • such "bifunctional" antibodies may also be used to develop novel immunoassays and/or diagnostic assays. Since the bispecific antibodies are capable of binding to two distinct antigens, they may be designed to bind enzymes, therapeutic agents, radiolabels or cells to a target without the need for chemical modification. Hence bispecific entities are likely to demonstrate more efficient and specific cell killing than antibodies directly conjugated to cytotoxic agents and furthermore avoid any of the adverse immune responses which may be elicited by chemically modified antibodies.
  • Bispecific antibodies are likely also to prove useful for accelerating and promoting the association/dimerization of other molecules which may have themselves signalling, effector or reporter functions when in a associated/dimeric state. Therefore, bifunctional antibodies may also have an important role as "molecular switches” as well as “cross- linkers” together with a multitude of other uses (both diagnostic or therapeutic) to which a dual binding specificity may be applicable.
  • bispecific antibodies Although the possible roles for which bispecific antibodies may be advantageous are numerous, the clinical applications and other uses for bispecific antibodies have been limited by the difficulty in efficiently producing and purifying such molecules.
  • Methods used to assemble bispecific or other dimeric antibodies include chemical cross-linking, disulphide exchange or the utilization of hybrid-hybridomas or heterotransfectomas. These methods have proved as yet unsatisfactory due to the purity of the products required for successful construction, the production of heterogeneous and ill defined products and especially in the case of Fab fragments the low affinity of the partners (Fd,v L C L ) for each other.
  • heterodimeric F(ab) 2 molecules To address these problems a recent development for the production of heterodimeric F(ab) 2 molecules has employed the C-terminal fusion of peptide sequences corresponding to the leucine zipper regions of the Fos and Jun transcription factors (Kostelny et al., J. Immunol. 148, 1547-1553, 1992) (reflO) . These sequences preferentially form heterodimers and therefore are effective in promoting bispecific formation when fused to two different Fab fragments.
  • a specific binding protein having first and second binding regions which specifically recognise and bind to target entities, said binding regions being contained at least in part on respectively first and second polypeptide chains, said chains additionally incorporating respectively first and second associating domains which are capable of binding to each other, causing the first and second polypeptide chains to combine, thereby providing a single protein incorporating the binding specificities of said first and second binding regions.
  • said first and second binding regions recognise different target entities.
  • said associating domains are derived from an antibody (eg IgA, IgD, IgE, IgG, IgM) , and much of the description which follows uses antibody domains by way of illustration. However, they could be derived from other molecules which are capable of associating, such as natural ligand/receptor combinations or binding regions of natural dimeric proteins.
  • the associating domains are derived from a human protein (ie one which has been exposed to the human immune system) .
  • Said associating domains may be two identical domains which are capable of association, even if they do not normally associate in nature.
  • said associating domains are selected from: antibody V H and V L regions, antibody C H 1 and C L regions, antibody V H .C H 1 and V L .C L regions.
  • the first and second binding regions are antibody antigen-binding domains, eg comprising V H and V L regions contained in a Fab fragment or in a single-chain Fv fragment.
  • either or both of the binding domains could be derived from just one of the V H or V L regions of an antibody, most suitably from the V H region of an antibody (ref 13) .
  • the invention also includes DNA encoding the polypeptides of such a specific binding protein; optionally contained in one or more expression vectors; host cells containing such recombinant DNA and capable of expression of the DNA to produce the polypeptides of the specific binding protein.
  • the invention also provides a process which comprises expressing the recombinant DNA in such a host cell to produce the polypeptides encoded thereby, and where necessary performing post-translation manipulation or processing of the polypeptides, to produce the specific binding protein.
  • the invention further provides a process for producing a specific binding protein as set forth above, which comprises:
  • the invention provides recombinant bispecific (heterodimeric) and/or monodimeric bivalent specific binding proteins, for example antibodies, in which the specific association of the component modules is accomplished by using the recognition and natural homo- or hetero-dimerization of additionally fused associating domains.
  • bispecifics and/or dimerics and variants thereof are also disclosed.
  • antibody and “antibody fragments” are hereinafter used synonymously. Similarly the terms “antibody” and “antibody fragments” are hereinafter used synonymously. Similarly the terms “antibody” and “antibody fragments” are hereinafter used synonymously. Similarly the terms “antibody” and “antibody fragments” are hereinafter used synonymously. Similarly the terms “antibody” and “antibody fragments” are hereinafter used synonymously. Similarly the terms “antibody” and “antibody fragments” are hereinafter used synonymously. Similarly the terms “antibody” and
  • immunoglobulin are to be treated in a likewise manner.
  • Fig 1 a general scheme for bivalent and bispecific antibody formation
  • Fig 3 an example of minimal configuration bispecific recombinant antibody formation
  • Fig 10 shows the arrangement of genes in the various vectors used for antibody fragment expression in E.coli. All coding regions were cloned downstream from a lac promotor in pUC 19. VH and VK and CH and CK are the antibody fragment variable (V) and constant (C) domains respectively, Pb denotes a Pel B leader sequence and the
  • Tag gene encodes a peptide for antibody fragment detection with a secondary antibody.
  • the Tag gene product was not used in these studies.
  • the linker and termination signal were engineered into the vectors as described in the materials and methods.
  • pS l-Fab/Pa is identical to the
  • pDMl is a derivative of pSWl-Fab/Pa.
  • Fig 11 shows denaturing SDS-PAGE of affinity purified anti-P. aeruginosa Fab (lane 2) and ScF v * (lane 3). 2-5 mg of each sample were electrophoresed through a standard denaturing 10% SDS-PAGE gel.
  • Fig 12 show the relative antigen binding capacities of affinity purified anti-P. aeruginosa Fab ( ⁇ ) ScF v * (•) and the original chimeric antibody (o) .
  • Fig 13 shows a Western blot showing the cross- reactivity of the anti-P. aeruginosa with a number of Gram- ve bacteria.
  • Fig 14 shows the different conformational forms of anti-P. aeruginosa ScF v * and Fab.
  • (a) A 7.5% non- denatruring polyacrylamide gel showing multimeric forms (I- III) of ScFv* (lanes 1-3) and a single monomeric form of Fab (lane 4) . HPLC purification of monomeric (III) , dimeric (II) and trimeric (I) forms of ScF v *.
  • Fig 15 shows a comparison of the ability of HPLC purified monomeric ScF v * ( ⁇ ) , dimeric ScF v * (Q) and the original chimeric antibody (o) to bind P. aeruginosa.
  • the advantage of the present invention for the association of the bispecific heterodimer or simple homodimeric bivalent formation, over existing techniques lies in the given nature of the fused domains utilized for this purpose.
  • One of the major disadvantages of chemical modification or the Jun/Fos type approaches concerns their potential to elicit an immune response against "foreign" chemical constituents and peptide sequences when used in human therapy.
  • the technique of using antibody domains to achieve dimerization of antibody constituents avoids this problem by using natural antibody domains which should not induce an immune response in humans especially where the antibody domains are reshaped (humanised) or derived from natural human antibodies.
  • Such dimeric antibodies ought to closely approach the immunogenic characteristics of a natural human antibody and thus should have an extended half-life in circulation compared to bispecifics prepared by other means as discussed previously.
  • the present invention relates to the development of bivalent and other dimeric antibodies especially for use in therapy or for in vivo diagnosis.
  • the successful targetting of antibody molecules to sites of disease upon repeated administrations is dependant on these antibodies provoking little or no immune reaction. Maximisation of the natural human antibody sequence content of the bispecific antibodies will prospectively enhance the perspective for long-term repeat administration of these antibodies, for example in the treatment of chronic disease. Notwithstanding this, other applications as yet undetermined or not described herein for which mono-, bi-, or multi-specific antibodies/antibody fragments (produced via the means of association described in this invention) may be applied will be also encompassed by this patent.
  • the general concept of association of specific binding chains which is applicable to the present invention may be illustrated by reference to figure 1. In this diagram, the entity has been divided into four components A, B, C and D in order to simplify discussion of the inventive process.
  • the components B and D may be nominally seen as additionally fused domains, although in certain configurations they may themselves be part(s) of the same antibody from which A and C are derived.
  • the fragments or domains may be derived from one or more sources depending again on the chosen format and foreseen application of the particular construction.
  • a further augmentation, also foreseen in this invention, is that for particular molecular configurations and destined applications it may be advantageous to introduce or use existing cysteine residues to create inter-domain disulphide bridges in order to further stabilize the constructs.
  • the reduction to produce these covalent bonds may be performed in vivo or in vitro depending on the construct and relative merits of this additional process.
  • any particular type of antibody or antibody fragment is not fundamental to the inventive concept described here.
  • any immunogobulin which provides the desired specificity may be employed.
  • An extension of the invention also foresees the use of any natural molecules (or fragments thereof) which form specific associations (such as cell surface receptors and their ligands) which have been exposed to the immune system and show little or no immunogenicity within the said system.
  • a valuable embodiment of this invention foresees the dimerization of the constituent partners via the homodimeric association of additionally fused antibody domains (or other immuno-silent molecules) .
  • Such a strategy may be used to produce dimeric antibodies.
  • This embodiment is expected to be more suited towards the dimerisation of single antibody species to form homodimeric, bivalent antibodies, since is recognised that a mix of product assemblies may arise when this technique is used for the co-expression and association of two different antibody species to form a heterodimeric, bispecific antibody.
  • the following specific description illustrates how the invention may be carried out.
  • the "Reference example” provides an illustration of the basic technology by which specific binding and associating fragments can be fused and caused to associate, while Examples 1 and 2 which follow provide specific embodiments of the invention to whose manner of execution can draw on the technology of the Reference example.
  • the concept of using dimeric association of fused domains to enable formation of a bivalent species may be simply illustrated by the following example designed for production of a bivalent homodimeric (scF v ) 2 antibody, with reference to figure 1 , in this embodiment, the components A and D are V H and V L domains respectively fused via a linker to a cognate V L and V H domain (components B and C respectively) .
  • This format for the production homodimeric bivalent antibodies has been experimentaly tested using a simple model system (see Fig. 2) in which V H and V L domains of an anti-Pseudomonas aeruginosa antibody were fused via a linker peptide.
  • Bacterial strain All vectors were transformed and expressed in the E. coli strain XL-1-Blue (supE44 hsdR17 recAl endAl gyrA46 the relAl lacF' [proAB+ lacl9 lacZ M15 TnlO (tet r )].
  • the tetacycline selectable F 1 pilus allows strict control of expression of pUC based vectors.
  • the PSV scF v * expression vector was constructed form a pSWl-VHD1.3-VKD1.3-TAGl vector derivative (pSWl-Fab/Pa) using the polymerase chain reaction (PCR) mutagenesis method of Higuchi (1989) (ref16) .
  • the linker was incorporated using a two stage procedure. Two separate amplifications were carried with the primers VHBA :5 « -AGGT(C/G) (C/A)A(G/A)CTGCAG(G/C)AGTC(T/A)GG with LINKFOR:5» -CGATGTCATCCACTTTAGATTCAGAGCCAGAGCCAGAAGATT
  • TGCCTTCTGAGGAGACGG and VKFO 5 ⁇ -GTTTGATCTCGAGCTTGGTGCC with LINKBAK:5• -GTCACCGTCTCCTCAGAAGGCAAATCTTCTGGCTCTGGCTC TGAATCTAAAGTGGATGACATCGAGCTG.
  • the PCR contained 2 units of Taq polymerase (BCL,
  • the purified products of these reactions were mixed and seven cycles of PCR were performed without primers (94'C, 1 minute; 72 * C, 1 minute) . This reaction was then maintained at 94 * C while VHBACK and VKFOR primers were added. A further 30 cycles of PCR were then performed (94 * C, 1 minute; 65 * C, 1 minute; 72'C, 1 minute).
  • the reaction products were electrophoresed through a 2% (w/v) agarose- TAW gel and the 650 bp product purified into lO ⁇ l of de- ionised water by the Prep-a-gene procedure (Bio-Rad Ltd, Hemel Hempsted, Herts., England). The product was digested with PstI and Xhol then ligasted into PstI/Xhol digested ⁇ pSWl-Fab/Pa under standard conditions to construct the pDMl vector (fig 10) .
  • the expression vectors pDMl encoding the anti-P. aeruginosa scF v * antibody fragment and pSWl-Fab/Pa encoding the equivalent Fab fragment (each with the fused light chain constant region domain for detection purposes) were assessed. Expression conditions were modified from Ward et al, (1989) (ref 13): XLl-blue transformed with one of the above vectors was grown in 5ml 2xTY cultures containing 1% glucose, lOO ⁇ g/ml ampicillin and 12.5 ⁇ g/ml tetracycline at 37 * C, overnight. Ten microlitres of overnight culture was then used to inoculate fresh medium for expression of antibody fragments.
  • Anti-P. aeruginosa scF v * and Fab fragments were purified by affinity chromatography. Five hundred millilitre cultures of bacteria producing either anti-P. aeruginosa Fab or scF v * were centrifuged at 4000 rpm for 20 minutes. The supernatant was discarded and the cell pellet sonicated for 1 minute in 10ml of PBS to release periplasmic antibody fragments. This solution was concentrated to a 1ml volume in a Centricon-10 column (Amicon, Stonehouse, Glos, England) and loaded onto an anti-human FAb affinity column (Pierce, warriner, Cheshire England) prepared according to the manufactures instructions. Seven 1ml fractions were eluted in 0.1M glycine buffer pH2.8. The fractions were dialysed overnight against PBS and analyzed by polyacrylamide gel electrophoresis.
  • Bacterial supematants and antibody fragments (FAb and scF v *) purified from cell pellets were assayed in 96 well flat bottomed polystyrene plates (Nunc, Denmark) . The plates were coated overnight at 4 * C with l ⁇ g affinity purified goat anti-human IgG Fab antibody (Sigma Chemical Co., Poole, Dorset, England) in 50 ⁇ l phosphate buffered saline (PBS) . The plates were blocked for 1 hour at 37 * C with 200 ⁇ l of 2% (w/v) BSA (fraction V, Sigma) in PBS and then washed twice with 200 ⁇ l PBS.
  • FBS phosphate buffered saline
  • the plates were then washed six times in 200 ⁇ l Tw20/PBS and the assay developed with 50 ⁇ l lmg/ml 0- phenylendiamine dilydrochloride (Sigma) and l ⁇ l/ml 30% (v/v) hydrogen peroxide (Sigma) in 0.1M citrate-phosphate buffer pH 6.0.
  • the reaction was stopped with lOO ⁇ l 0.5M citric acid and the optical density at 450nm was read using a Bio-Rad M450 plate reader.
  • Positive control anti-P pseudomonas mouse-human chimeric IgG ! antibody was provided by Scotgen Ltd, Aberdeen. This antibody was derived from the original murine patent immunoglobulin from which the Fab and scFv* variable domains were obtained.
  • This assay was performed essentially as the ELISA described above but with the following modifications.
  • P. aeruginosa were grown overnight in Luria broth, pelleted an resuspended in PBS as a volume representing half of the volume of the original culture. The cells were then heat treated at 65 * C for 10 minutes.
  • 96-well polystyrene plates were coated overnight with 50 ⁇ l of heat killed P. aeruginosa. After blocking the plates with Tw20/PBS and washing with PBS, 50 ⁇ l of bacterial supernatant, purified antibody fragments or the mouse/human chimeric anti-P. aeruginosa antibody supernatant were added to each well and incubated at 37 * C for one hour. After the plates were washed four times with PBS the assay proceeded as described in the previous section.
  • the specificity of the scF v * expressed was investigated by Western blotting.
  • P. aeruginosa, P. fluorescens, Al. xylosidans, Ac. calcoaticus and O. anthropi were electorphoresed through a standard 10% SDS polyacrylamide gel with Rainbow size markers (Amersham Int., Aylesbury, Bucks, England).
  • the gel was electorblotted at 0.8 mA/cm 2 in a Hoeffer T70 semi-dry blotter onto Immobilion-P membrane (Millipore Corp., Bedford, Mass, USA) .
  • the membranes were blocked overnight in 5% (w/v) milk powder in PBS.
  • scF v * (l ⁇ g/ml) was incubated for one hour in 0.1% (v/v) Tween 20 in PBS followed by three 10 minute washed in 1% (v/v) Tween 20 in PBS. The membrane was then incubated with a 1:5000 dilution of an anti-human kappa chain or anti-human Fab antibody conjugated to horse radish peroxidase in 5% (w/v) milk powder, 1% (v/v) Tween 20 in PBS for 30 minutes at 37 * C. scF v * binding was detected using the ECL chemiluminescent system (Amersham Int.).
  • Affinity purified Fab and scF v * were separated on a 7.5% non-denaturing polyacrylamide gel using the method of Omstein (1964) (ref 17) to determine the conformation of the molecules.
  • scF v * Forty microgram samples of scF v * were analyzed using a Zorbax GF250 size exclusion column on a Gilson HPLC comprising a model 302 pump, an 802L manometric module, a 811 dynamic mixer, a 116 UV detector and a 201 fraction collector controlled by Gilson 714 software.
  • the analysis was done using both PBS and 0.2M sodium phosphate buffer at a flow rate lml/minute. Eluate was monitored at 280nm, 01AUFS and 0.5 ml fractions were collected and analyzed by ELISA and non-denaturing polyacrylamide gel electrophoresis.
  • the bivalent component thus shows similar binding characteristics to the intact antibody while the monomeric fragment shows greatly reduced binding.
  • Dimeric and monomeric forms can be easily separated by gel filtration, offering a simple method for preparing pure dimeric antibody.
  • the scF v * dimers dissociate into monomers in non- reducing SDS gels and appear, therefore, not linked by disulphide bonds (data not shown) .
  • Our interpretation of the data is that the dimer formation of the (scF v *) 2 is due to non covalent intermolecular V H /V L domain association; the association occurring between domains of different scF v * polypeptides as indicated in figure 2.
  • the resulting dimer is bivalent and shows a binding affinity to the chimeric antibody for the P. aeruginosa antigen.
  • the present invention discloses novel bispecific antibodies in which dimerization of the constituent partners is achieved via the heterodimeric association of additionally fused natural antibody domains.
  • antibodies may consist of two different Fab or scF v antibody fragments (or any other antibody/antibody fragment combination) linked to either a V H or V L polypeptide by gene fusion.
  • the desired bispecific antibody is therefore specifically associated by the recognition and natural heterodimerization of the fused V H or V L domains.
  • the present invention also discloses methods for the production of novel bispecific antibodies.
  • the simplest format envisaged for the production of a bispecific antibody would be the association of two single chain antibodies scF v l and scF v 2. If one relates to the general scheme shown in figure 1, the domains A and C would be V H 1 and V L 2 respectively, and domains B and D; V L 1 and
  • a preferred embodiment of this invention is a bispecific antibody, formed by a C-terminal fusion of either a V H or
  • bispecific F(ab) 2 heterodimers either the V H or V L (components B and D) could be added by C- terminal fusion to the V H /C H 1 polypeptide chains of the Fab fragments (components A and C) .
  • Fab dimerization to form the bispecific antibody, should be promoted by the spontaneous and specific association of the attached V H and V L domains. See Figure 5.
  • Examples of other alternative embodiments of this invention may involve the use of other naturally occuring antibody domains which form heterogeneous (dimers such as V H .C H 1/V L .C L or C H 1/C L ) as C-terminal fusions (components B and D) which are illustrated in figure 6-9. This and other possible conformations have been alluded to previously in the text.
  • any particular type of antibody or antibody fragment is not fundamental to the inventive concept but it is clear that the specificity and affinity of the C- terminal domains chosen will greatly influence the end product(s). Any domain(s) which provides the desired dimerization and recognition specificity required may be employed. However, it is recognised that, for example, specific V H domains will associate more efficiently with certain V L domains than others (K D values for F v 's varying from 10 "4 M - 10 "7 M) (ref 18) and thus the V H /V L binding pair of a specific bifunctional should possibly be optimised to promote heterodimer formation and also to minimise homodimer formation (especially when producing bispecifics) .
  • molecules may be modified in order to improve the specificity and/or binding affinity of the molecules for each other and thus improve their dimerisation properties (ref 19) .
  • This may be achieved via engineering, eg mutation or chemical modification, of the inter-domain hydrophobic contacts, introduction of a metal (or other molecule binding site) between the domains to stabilize association, introduction of strategic cysteine residues to form disulphide bridges, etc.
  • the antibody may, in fact, be trivalent.
  • This extra antigen binding site may be useful itself. If the binding site recognizes a different type of antigen or ligand than the other sites, this property may be used for purification (ligand bound to matrix) , stability (ligand added and bound to site thereby "cross-linking" the two domains of the F v ) or as a label
  • the present invention provides an antibody with a minimum of two F v domains each comprising of structural framework with the relevant CDRs which provide the antibody with the capability to bind specific molecules such as antigens.
  • the invention may be exemplified ,but not limited, in a configuration in which the antigen recognition and binding domains (and any other affiliated sequence such as constant regions etc) are fused at the C- terminal end to "association" domains such as either a V H or V L antibody domain respectively. Association of the constituent partners is achieved via the natural heterodimerisation of the fused V H and V L antibody domains (see figs 4 and 5) .
  • a method to produce bispecific (scFv) 2 .v H /v L or F(ab) 2 .V H /v L entities (see figs, 4 and 5) or derivatives of these with either C H 1/C L or V H .C H 1/V L .C L fused domains (see figs.6-9) .
  • This method comprises the following basic scheme:
  • Example 1 The invention is illustrated but not limited by the following examples.
  • Example 1 The invention is illustrated but not limited by the following examples.
  • This example illustrates the production of a bispecific antibody from two different scFv fragments expressed in Escherichia coli.
  • Complete human V H or V L domains can be added by C-terminal gene fusion, one to either of the two constituent scF v constructs.
  • the completed genes can then be cloned into an appropriate expression vector(s) depending on whether they are to be expressed as in a two cistron system on one vector under a single promotor, expressed singularly from each carried on its own vector yet together in a co- transformed host or each individual grown in different cultures.
  • appropriate expression vector(s) may be obtained from the literature of Skerra et al., Science, 240 1038-1041, 1988 (ref 3), Ward et al., Nature, 341, 544-546, 1989 (ref 13), Bird et al., Science 242, 423-426, 1988 (ref 21), Hoogenboom et al., Nuc. Acid Res. 19, 4133-4137, 1991 (ref 23)., etc. Further changes to obtain vectors suited to the needs of bispecific production may be necessary.
  • F(ab) 2 .v H .v L fragments can be produced in E.coli by similar means and the V H /V L association technique may utilized for for other antibody fragments and other dimerization purposes (see fig 5)
  • the construction of the bispecific shown in fig.5, could be made by the same technique as was used for the F(ab) 2 .Jun.Fos. construction as described by Kostelny et al., J. Immunol. 148, 1547-1553, 1992 (ref 10). in which the one the additional dimerization domains were fused to the first few residues of the C H 2 intron such that it would be spliced to the C H 1 of the V H gene thus replacing the normal C H 2 and C H 3.
  • the V L /C L genes are expressed from a separate vector which is co-transfeeted with the V H carrying plasmid.

Abstract

Protéine de liaison spécifique possédant une première et une deuxième régions de liaison, par exemple des fragments Fv d'anticorps, qui reconnaissent et se lient spécifiquement à des entités cibles. Lesdites régions de liaison sont contenues respectivement, au moins en partie, sur une première et une deuxième chaînes de polypeptides. Lesdites chaînes comprennent respectivement un premier et un deuxième domaines d'association, par exemple des domaines d'anticorprs VH et VL pouvant se lier l'un à l'autre, entraînant ainsi la combinaison de la première et de la deuxièmes chaînes de polypeptides. Ceci permet d'obtenir une seule protéine incorporant les spécificités de liaison desdites première et deuxième régions de liaison. Les première et deuxième régions de liaison peuvent reconnaître différentes entités cibles, donnant ainsi une protéine de liaison bispécifique. Les domaines d'association sont de préférence dérivés d'une protéine humaine (c'est-à-dire une protéine ayant été exposée au système immunitaire humain), de sorte que la protéine présente moins de risques de déclencher le système immunitaire humain lorsqu'elle est administrée thérapeutiquement. La protéine de liaison est obtenue de manière adaptée par expression de l'ADN recombiné.
PCT/GB1993/002133 1992-10-15 1993-10-15 Proteine de liaison specifique recombinee WO1994009131A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB9507442A GB2286189A (en) 1992-10-15 1993-10-15 Recombinant specific binding protein
JP6509777A JPH08505761A (ja) 1992-10-15 1993-10-15 組換え特異的結合タンパク質
AU52837/93A AU5283793A (en) 1992-10-15 1993-10-15 Recombinant specific binding protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB929221657A GB9221657D0 (en) 1992-10-15 1992-10-15 Recombinant bispecific antibodies
GB9221657.1 1992-10-15

Publications (1)

Publication Number Publication Date
WO1994009131A1 true WO1994009131A1 (fr) 1994-04-28

Family

ID=10723495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1993/002133 WO1994009131A1 (fr) 1992-10-15 1993-10-15 Proteine de liaison specifique recombinee

Country Status (5)

Country Link
JP (1) JPH08505761A (fr)
AU (1) AU5283793A (fr)
CA (1) CA2146854A1 (fr)
GB (1) GB9221657D0 (fr)
WO (1) WO1994009131A1 (fr)

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739984A1 (fr) * 1995-04-26 1996-10-30 San Tumorforschungs-Gmbh Polypeptides bivalents contenants aux moins deux domaines
WO1997038102A1 (fr) * 1996-04-04 1997-10-16 Unilever Plc Proteine, polyvalente et a specificites multiples, de fixation sur un antigene
WO2001085795A1 (fr) * 2000-05-05 2001-11-15 Universität Heidelberg Anticorps de recombinaison trivalents a regions variables stabilisees par des ponts disulfure
WO2002008293A2 (fr) * 2000-07-25 2002-01-31 Immunomedics Inc. Proteine de liaison cible multivalente
WO2004041865A2 (fr) 2002-11-08 2004-05-21 Ablynx N.V. Anticorps a domaine unique stabilises
US6809185B1 (en) * 1998-01-23 2004-10-26 Vlaams Interuniversitair Instituut Voor Biotechnologie Multipurpose antibody derivatives
WO2010069331A2 (fr) 2008-12-19 2010-06-24 H. Lundbeck A/S Modulation de la famille de récepteurs à domaine vps10p pour le traitement de troubles mentaux et comportementaux
US20100233173A1 (en) * 2007-07-31 2010-09-16 Medimmune, Llc Multispecific epitope binding proteins and uses thereof
CN101842387A (zh) * 2007-09-26 2010-09-22 Ucb医药有限公司 双特异性抗体融合物
US20100256340A1 (en) * 2009-04-07 2010-10-07 Ulrich Brinkmann Trivalent, bispecific antibodies
WO2010112034A2 (fr) 2009-04-02 2010-10-07 Aarhus Universitet Compositions et méthodes pour le traitement et le diagnostic de synucléinopathies
US20100322935A1 (en) * 2009-05-27 2010-12-23 Rebecca Croasdale Tri- or Tetraspecific Antibodies
US20110008345A1 (en) * 2007-11-30 2011-01-13 Claire Ashman Antigen-binding constructs
WO2011054359A2 (fr) 2009-11-06 2011-05-12 University Of Copenhagen Méthode de détection précoce du cancer
US7973137B1 (en) * 1996-03-28 2011-07-05 Johns Hopkins University Cell compositions comprising molecular complexes that modify immune responses
US20120141478A1 (en) * 2006-06-12 2012-06-07 Cellectis S.A. Compositions and methods for delivering anti-activated ras antibodies
US20120316324A1 (en) * 2009-09-25 2012-12-13 Ucb Pharma, S.A. Disulfide Stabilised Multivalent Antibodies
US20120321626A1 (en) * 2011-05-16 2012-12-20 Fabion Pharmaceuticals, Inc. Multi-specific fab fusion proteins and methods of use
US20130060011A1 (en) * 2011-08-23 2013-03-07 Peter Bruenker Fc-free antibodies comprising two fab fragments and methods of use
US20130295121A1 (en) * 2005-04-15 2013-11-07 Macrogenics, Inc. Covalent Diabodies and Uses Thereof
US8653020B2 (en) 2008-01-25 2014-02-18 Aarhus Universitet Selective exosite inhibition of PAPP-A activity against IGFBP-4
EP2732823A1 (fr) 2008-06-25 2014-05-21 H. Lundbeck A/S Modulation de la trpV : Système de récepteur du domaine vps10p pour le traitement de la douleur
KR20140130679A (ko) * 2012-01-13 2014-11-11 율리우스-막시밀리안스 우니버지태트 뷔르츠부르크 이중 항원-유도된 이분 기능 상보성
WO2015028027A1 (fr) 2013-08-29 2015-03-05 University Of Copenhagen Anticorps anti-adam12 pour le traitement du cancer
WO2015138920A1 (fr) 2014-03-14 2015-09-17 Novartis Ag Molécules d'anticorps anti-lag-3 et leurs utilisations
WO2015142675A2 (fr) 2014-03-15 2015-09-24 Novartis Ag Traitement du cancer au moyen d'un récepteur antigénique chimérique
WO2016014530A1 (fr) 2014-07-21 2016-01-28 Novartis Ag Combinaisons de faibles doses renforçant l'immunité d'inhibiteurs de mtor et car
WO2016014553A1 (fr) 2014-07-21 2016-01-28 Novartis Ag Récepteurs d'antigènes chimères synthétisés par l'intermédiaire d'une sortase
WO2016014565A2 (fr) 2014-07-21 2016-01-28 Novartis Ag Traitement du cancer au moyen d'un récepteur d'antigène chimérique anti-bcma humanisé
EP2985294A1 (fr) * 2014-08-14 2016-02-17 Deutsches Krebsforschungszentrum Molécule d'anticorps de recombinaison et son utilisation pour l'activation des lymphocytes T restreints de cellule cible
WO2016025880A1 (fr) 2014-08-14 2016-02-18 Novartis Ag Traitement du cancer à l'aide du récepteur d'antigène chimérique gfr alpha-4
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
WO2016044605A1 (fr) 2014-09-17 2016-03-24 Beatty, Gregory Ciblage de cellules cytotoxiques avec des récepteurs chimériques pour l'immunothérapie adoptive
WO2016061142A1 (fr) 2014-10-14 2016-04-21 Novartis Ag Molécules d'anticorps de pd-l1 et leurs utilisations
WO2016090034A2 (fr) 2014-12-03 2016-06-09 Novartis Ag Méthodes de pré-conditionnement de cellules b dans une thérapie car
US9382323B2 (en) 2009-04-02 2016-07-05 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
WO2016146134A1 (fr) 2015-03-16 2016-09-22 Aarhus Universitet Anticorps dirigés contre une région extracellulaire de nbcn1
WO2016164731A2 (fr) 2015-04-08 2016-10-13 Novartis Ag Thérapies anti-cd20, thérapies anti-cd22, et polythérapies comprenant une cellule exprimant le récepteur antigénique chimérique (car) dirigé contre le cd19
WO2016172583A1 (fr) 2015-04-23 2016-10-27 Novartis Ag Traitement du cancer à l'aide de protéine récepteur antigénique chimérique et un inhibiteur de protéine kinase
WO2017019894A1 (fr) 2015-07-29 2017-02-02 Novartis Ag Polythérapies comprenant des molécules d'anticorps dirigées contre lag-3
WO2017019897A1 (fr) 2015-07-29 2017-02-02 Novartis Ag Polythérapies comprenant des molécules d'anticorps contre tim -3
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
WO2017106810A2 (fr) 2015-12-17 2017-06-22 Novartis Ag Combinaison d'un inhibiteur de c-met avec une molécule d'anticorps dirigée contre pd-1 et ses utilisations
WO2017106656A1 (fr) 2015-12-17 2017-06-22 Novartis Ag Molécules d'anticorps anti-pd-1 et leurs utilisations
US9688758B2 (en) 2012-02-10 2017-06-27 Genentech, Inc. Single-chain antibodies and other heteromultimers
WO2017125897A1 (fr) 2016-01-21 2017-07-27 Novartis Ag Molécules multispécifiques ciblant cll-1
WO2017149515A1 (fr) 2016-03-04 2017-09-08 Novartis Ag Cellules exprimant de multiples molécules de récepteur d'antigène chimère (car) et leurs utilisations
WO2017165683A1 (fr) 2016-03-23 2017-09-28 Novartis Ag Mini-corps sécrétés par des cellules et leurs usages
WO2017181119A2 (fr) 2016-04-15 2017-10-19 Novartis Ag Compositions et méthodes pour l'expression sélective d'une protéine
WO2017210617A2 (fr) 2016-06-02 2017-12-07 Porter, David, L. Régimes thérapeutiques pour cellules exprimant un récepteur antigénique chimérique (car)
WO2018013918A2 (fr) 2016-07-15 2018-01-18 Novartis Ag Traitement et prévention du syndrome de libération de cytokine à l'aide d'un récepteur d'antigène chimérique en combinaison avec un inhibiteur de kinase
US9879095B2 (en) 2010-08-24 2018-01-30 Hoffman-La Roche Inc. Bispecific antibodies comprising a disulfide stabilized-Fv fragment
WO2018023025A1 (fr) 2016-07-28 2018-02-01 Novartis Ag Polythérapies de récepteurs d'antigènes chimériques adn inhibiteurs pd -1
WO2018026819A2 (fr) 2016-08-01 2018-02-08 Novartis Ag Traitement du cancer au moyen d'un récepteur d'antigène chimérique en combinaison avec un inhibiteur d'une molécule de macrophage pro-m2
WO2018067992A1 (fr) 2016-10-07 2018-04-12 Novartis Ag Récepteurs antigéniques chimériques pour le traitement du cancer
US9982036B2 (en) 2011-02-28 2018-05-29 Hoffmann-La Roche Inc. Dual FC antigen binding proteins
US9994646B2 (en) 2009-09-16 2018-06-12 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
WO2018140725A1 (fr) 2017-01-26 2018-08-02 Novartis Ag Compositions de cd28 et procédés pour une thérapie à base de récepteur antigénique chimérique
WO2018160731A1 (fr) 2017-02-28 2018-09-07 Novartis Ag Compositions d'inhibiteur shp et utilisations pour une thérapie de récepteur d'antigène chimère
US10106612B2 (en) 2012-06-27 2018-10-23 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
US10106600B2 (en) 2010-03-26 2018-10-23 Roche Glycart Ag Bispecific antibodies
WO2018201051A1 (fr) 2017-04-28 2018-11-01 Novartis Ag Agent ciblant le bcma et polythérapie incluant un inhibiteur de gamma-sécrétase
WO2018201056A1 (fr) 2017-04-28 2018-11-01 Novartis Ag Cellules exprimant un récepteur antigénique chimérique ciblant le bcma, et polythérapie comprenant un inhibiteur de gamma sécrétase
US10138293B2 (en) 2007-12-21 2018-11-27 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
WO2018237157A1 (fr) 2017-06-22 2018-12-27 Novartis Ag Molécules d'anticorps se liant à cd73 et leurs utilisations
WO2019006007A1 (fr) 2017-06-27 2019-01-03 Novartis Ag Régimes posologiques pour anticorps anti-tim3 et leurs utilisations
WO2019018730A1 (fr) 2017-07-20 2019-01-24 Novartis Ag Régimes posologiques pour des anticorps anti-lag3 et leurs utilisations
WO2019089798A1 (fr) 2017-10-31 2019-05-09 Novartis Ag Compositions anti-car et procédés
WO2019099838A1 (fr) 2017-11-16 2019-05-23 Novartis Ag Polythérapies
US10323099B2 (en) 2013-10-11 2019-06-18 Hoffmann-La Roche Inc. Multispecific domain exchanged common variable light chain antibodies
EP3514179A1 (fr) 2014-01-24 2019-07-24 Dana-Farber Cancer Institute, Inc. Molécules d'anticorps anti-pd-1 et leurs utilisations
WO2019152660A1 (fr) 2018-01-31 2019-08-08 Novartis Ag Polythérapie utilisant un récepteur antigénique chimérique
US10407513B2 (en) 2008-09-26 2019-09-10 Ucb Biopharma Sprl Biological products
WO2019200229A1 (fr) 2018-04-13 2019-10-17 Novartis Ag Régimes posologiques pour anticorps anti-pd-l1 et utilisations associées
WO2019210153A1 (fr) 2018-04-27 2019-10-31 Novartis Ag Thérapies reposant sur des cellules car-t présentant une efficacité améliorée
WO2019226658A1 (fr) 2018-05-21 2019-11-28 Compass Therapeutics Llc Compositions multispécifiques de liaison à l'antigène et procédés d'utilisation
WO2019227003A1 (fr) 2018-05-25 2019-11-28 Novartis Ag Polythérapie comprenant des thérapies par récepteur antigénique chimérique (car)
WO2019226617A1 (fr) 2018-05-21 2019-11-28 Compass Therapeutics Llc Compositions et procédés pour améliorer la destruction de cellules cibles par des lymphocytes nk
WO2019232244A2 (fr) 2018-05-31 2019-12-05 Novartis Ag Molécules d'anticorps anti-cd73 et leurs utilisations
WO2019241426A1 (fr) 2018-06-13 2019-12-19 Novartis Ag Récepteurs d'antigènes chimériques bcma et leurs utilisations
WO2019246293A2 (fr) 2018-06-19 2019-12-26 Atarga, Llc Molécules d'anticorps se liant au composant du complément 5 et leurs utilisations
WO2020012337A1 (fr) 2018-07-10 2020-01-16 Novartis Ag Dérivés de 3-(5-amino-1-oxoisoindoline-2-yl)pipéridine-2,6-dione et leur utilisation dans le traitement de maladies dépendant des doigts de zinc 2 de la famille ikaros (ikzf2)
WO2020021465A1 (fr) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Procédé de traitement de tumeurs neuroendocrines
US10611825B2 (en) 2011-02-28 2020-04-07 Hoffmann La-Roche Inc. Monovalent antigen binding proteins
US10633457B2 (en) 2014-12-03 2020-04-28 Hoffmann-La Roche Inc. Multispecific antibodies
EP3660042A1 (fr) 2014-07-31 2020-06-03 Novartis AG Lymphocytes t contenant des récepteurs d'antigènes chimériques optimisés par sous-ensemble
US10688119B2 (en) 2015-03-20 2020-06-23 Aarhus Universitet Inhibitors of PCSK9 for treatment of lipoprotein metabolism disorders
WO2020128972A1 (fr) 2018-12-20 2020-06-25 Novartis Ag Schéma posologique et combinaison pharmaceutique comprenant des dérivés de 3-(1-oxoisoindoline-2-yl) pipéridine-2,6-dione
WO2020128898A1 (fr) 2018-12-20 2020-06-25 Novartis Ag Combinaisons pharmaceutiques
WO2020165868A1 (fr) 2019-02-15 2020-08-20 Perkinelmer Cellular Technologies Germany Gmbh Pré-balayage d'objectif de microscope à faible puissance et balayage d'objectif de microscope à haute puissance dans une direction x, y et z pour imager des objets tels que des cellules à l'aide d'un microscope
WO2020165833A1 (fr) 2019-02-15 2020-08-20 Novartis Ag Dérivés de 3-(1-oxo-5-(pipéridin-4-yl)isoindolin-2-yl)pipéridine-2,6-dione et leurs utilisations
WO2020165834A1 (fr) 2019-02-15 2020-08-20 Novartis Ag Dérivés de 3-(1-oxoisoindoline-2-yl)pipéridine-2,6-dione substitués et leurs utilisations
WO2020172553A1 (fr) 2019-02-22 2020-08-27 Novartis Ag Polythérapies à base de récepteurs d'antigènes chimériques egfrviii et d'inhibiteurs de pd -1
EP3712171A1 (fr) 2014-08-19 2020-09-23 Novartis AG Traitement du cancer à l'aide d'un récepteur d'antigène chimérique cd123
WO2020205523A1 (fr) 2019-03-29 2020-10-08 Atarga, Llc Anticorps anti-fgf23
EP3722316A1 (fr) 2014-07-21 2020-10-14 Novartis AG Traitement du cancer à l'aide d'un récepteur d'antigène chimérique cd33
US10870701B2 (en) 2016-03-15 2020-12-22 Generon (Shanghai) Corporation Ltd. Multispecific fab fusion proteins and use thereof
US20210107976A1 (en) * 2017-04-26 2021-04-15 Eureka Therapeutics, Inc. Cells expressing chimeric activating receptors and chimeric stimulating receptors and uses thereof
WO2021079188A1 (fr) 2019-10-21 2021-04-29 Novartis Ag Polythérapies comprenant du vénétoclax et des inhibiteurs de tim-3
WO2021079195A1 (fr) 2019-10-21 2021-04-29 Novartis Ag Inhibiteurs de tim-3 et leurs utilisations
WO2021108661A2 (fr) 2019-11-26 2021-06-03 Novartis Ag Récepteurs antigéniques chimériques et leurs utilisations
WO2021123996A1 (fr) 2019-12-20 2021-06-24 Novartis Ag Utilisations d'anticorps anti-tgf-bêtas et inhibiteurs de point de contrôle pour le traitement des maladies prolifératives
US11046769B2 (en) 2018-11-13 2021-06-29 Compass Therapeutics Llc Multispecific binding constructs against checkpoint molecules and uses thereof
WO2021144657A1 (fr) 2020-01-17 2021-07-22 Novartis Ag Polythérapies comprenant un inhibiteur tim-3 et un agent d'hypométhylation à utiliser dans le traitement du syndrome myélodysplasique ou de la leucémie myélomonocytaire chronique
WO2021146636A1 (fr) 2020-01-17 2021-07-22 Becton, Dickinson And Company Procédés et compositions pour sécrétomique unicellulaire
WO2021173995A2 (fr) 2020-02-27 2021-09-02 Novartis Ag Procédés de production de cellules exprimant un récepteur antigénique chimérique
US11173177B2 (en) 2016-09-20 2021-11-16 Aarhus Universitet Compounds for treatment of lipoprotein metabolism disorders
WO2021260528A1 (fr) 2020-06-23 2021-12-30 Novartis Ag Schéma posologique comprenant des dérivés de 3-(1-oxoisoindoline-2-yl) pipéridine-2,6-dione
WO2022013787A1 (fr) 2020-07-16 2022-01-20 Novartis Ag Anticorps anti-bêtacelluline, fragments de ceux-ci et molécules de liaison multi-spécifiques
WO2022026592A2 (fr) 2020-07-28 2022-02-03 Celltas Bio, Inc. Molécules d'anticorps contre le coronavirus et leurs utilisations
WO2022029573A1 (fr) 2020-08-03 2022-02-10 Novartis Ag Dérivés de 3-(1-oxoisoindolin-2-yl)pipéridine-2,6-dione substitués par hétéroaryle et leurs utilisations
WO2022043558A1 (fr) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Méthode de traitement de cancers exprimant le psma
WO2022043557A1 (fr) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Méthode de traitement de cancers exprimant le psma
WO2022097065A2 (fr) 2020-11-06 2022-05-12 Novartis Ag Variants fc d'anticorps
WO2022104061A1 (fr) 2020-11-13 2022-05-19 Novartis Ag Polythérapies avec des cellules exprimant un récepteur antigénique chimérique (car)
US11345760B2 (en) 2014-06-25 2022-05-31 UCB Biopharma SRL Multispecific antibody constructs
WO2022162569A1 (fr) 2021-01-29 2022-08-04 Novartis Ag Régimes posologiques d'anticorps anti-cd73 et anti-entpd2 et leurs utilisations
US11421022B2 (en) 2012-06-27 2022-08-23 Hoffmann-La Roche Inc. Method for making antibody Fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
WO2022215011A1 (fr) 2021-04-07 2022-10-13 Novartis Ag UTILISATIONS D'ANTICORPS ANTI-TGFβ ET D'AUTRES AGENTS THÉRAPEUTIQUES POUR LE TRAITEMENT DE MALADIES PROLIFÉRATIVES
WO2022243846A1 (fr) 2021-05-18 2022-11-24 Novartis Ag Polythérapies
WO2023044483A2 (fr) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions et procédés pour le traitement du cancer positif her2
US11618790B2 (en) 2010-12-23 2023-04-04 Hoffmann-La Roche Inc. Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
US11639397B2 (en) 2011-08-23 2023-05-02 Roche Glycart Ag Bispecific antibodies specific for T-cell activating antigens and a tumor antigen and methods of use
WO2023092004A1 (fr) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions et méthodes pour le traitement de troubles liés à tau
US11718679B2 (en) 2017-10-31 2023-08-08 Compass Therapeutics Llc CD137 antibodies and PD-1 antagonists and uses thereof
WO2023150778A1 (fr) 2022-02-07 2023-08-10 Visterra, Inc. Molécules d'anticorps anti-idiotype et leurs utilisations
US11752207B2 (en) 2017-07-11 2023-09-12 Compass Therapeutics Llc Agonist antibodies that bind human CD137 and uses thereof
WO2023220695A2 (fr) 2022-05-13 2023-11-16 Voyager Therapeutics, Inc. Compositions et procédés pour le traitement du cancer her2 positif
US11851497B2 (en) 2017-11-20 2023-12-26 Compass Therapeutics Llc CD137 antibodies and tumor antigen-targeting antibodies and uses thereof
WO2024030976A2 (fr) 2022-08-03 2024-02-08 Voyager Therapeutics, Inc. Compositions et procédés permettant le franchissement de la barrière hémato-encéphalique
EP4324518A2 (fr) 2014-01-31 2024-02-21 Novartis AG Molécules d'anticorps anti-tim-3 et leurs utilisations
US11970538B2 (en) 2021-05-20 2024-04-30 Compass Therapeutics Llc Multispecific binding constructs against checkpoint molecules and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002285A1 (fr) * 1981-12-21 1983-07-07 Boston Biomed Res Inst Determinants d'anticorps bispecifiques
EP0453082A1 (fr) * 1990-03-09 1991-10-23 Hybritech Incorporated Composés trifonctionnels similaires à des anticorps comme agent diagnostique et thérapeutique combiné
WO1991019739A1 (fr) * 1990-06-11 1991-12-26 Celltech Limited Proteines polyvalentes de liaison d'antigenes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002285A1 (fr) * 1981-12-21 1983-07-07 Boston Biomed Res Inst Determinants d'anticorps bispecifiques
EP0453082A1 (fr) * 1990-03-09 1991-10-23 Hybritech Incorporated Composés trifonctionnels similaires à des anticorps comme agent diagnostique et thérapeutique combiné
WO1991019739A1 (fr) * 1990-06-11 1991-12-26 Celltech Limited Proteines polyvalentes de liaison d'antigenes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CARTER, P. ET AL.;: "High level Esherichia Coli expression and production of a bivalent humanized antibody fragment", BIOTECHNOLOGY, vol. 10, February 1992 (1992-02-01), NEW YORK US, pages 163 - 167 *
PACK, PETER ETAL.;: "Miniantibodies : use of amphipatic Helices to produce functional, flexibly linked Dimeric Fv fragments with high avidity in Esherichia Coli", BIOCHEMISTRY., vol. 31, no. 6, 18 February 1988 (1988-02-18), EASTON, PA US, pages 1579 - 1584 *
TRAUNECKER, A. ET AL.;: "Bispecific single chain molecules (janusins) target cytotoxic lymphocytes on HIV infected cells.", EMBO JOURNAL., vol. 10, no. 12, December 1991 (1991-12-01), EYNSHAM, OXFORD GB, pages 3655 - 3659 *

Cited By (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739984A1 (fr) * 1995-04-26 1996-10-30 San Tumorforschungs-Gmbh Polypeptides bivalents contenants aux moins deux domaines
US7973137B1 (en) * 1996-03-28 2011-07-05 Johns Hopkins University Cell compositions comprising molecular complexes that modify immune responses
WO1997038102A1 (fr) * 1996-04-04 1997-10-16 Unilever Plc Proteine, polyvalente et a specificites multiples, de fixation sur un antigene
US6239259B1 (en) 1996-04-04 2001-05-29 Unilever Patent Holdings B.V. Multivalent and multispecific antigen-binding protein
US6809185B1 (en) * 1998-01-23 2004-10-26 Vlaams Interuniversitair Instituut Voor Biotechnologie Multipurpose antibody derivatives
WO2001085795A1 (fr) * 2000-05-05 2001-11-15 Universität Heidelberg Anticorps de recombinaison trivalents a regions variables stabilisees par des ponts disulfure
WO2002008293A2 (fr) * 2000-07-25 2002-01-31 Immunomedics Inc. Proteine de liaison cible multivalente
WO2002008293A3 (fr) * 2000-07-25 2003-01-23 Immunomedics Inc Proteine de liaison cible multivalente
EP2336179A1 (fr) 2002-11-08 2011-06-22 Ablynx N.V. Anticorps a domaine unique stabilises
EP2316852A1 (fr) 2002-11-08 2011-05-04 Ablynx N.V. Anticorps à domaine unique stabilisés
WO2004041865A2 (fr) 2002-11-08 2004-05-21 Ablynx N.V. Anticorps a domaine unique stabilises
US20130295121A1 (en) * 2005-04-15 2013-11-07 Macrogenics, Inc. Covalent Diabodies and Uses Thereof
US9889197B2 (en) * 2005-04-15 2018-02-13 Macrogenics, Inc. Covalently-associated diabody complexes that possess charged coil domains and that are capable of enhanced binding to serum albumin
US20120141478A1 (en) * 2006-06-12 2012-06-07 Cellectis S.A. Compositions and methods for delivering anti-activated ras antibodies
US20100233173A1 (en) * 2007-07-31 2010-09-16 Medimmune, Llc Multispecific epitope binding proteins and uses thereof
US9309327B2 (en) 2007-09-26 2016-04-12 Ucb Pharma S.A. Dual specificity antibody fusions
US9828438B2 (en) 2007-09-26 2017-11-28 Ucb Pharma S.A. Dual specificity antibody fusions
US8629246B2 (en) 2007-09-26 2014-01-14 Ucb Pharma S.A. Dual specificity antibody fusions
US10100130B2 (en) 2007-09-26 2018-10-16 Ucb Biopharma Sprl Dual specificity antibody fusions
US20100239582A1 (en) * 2007-09-26 2010-09-23 Ucb Pharma S.A. Dual Specificity Antibody Fusions
CN104004088B (zh) * 2007-09-26 2017-11-07 Ucb医药有限公司 双特异性抗体融合物
US11427650B2 (en) 2007-09-26 2022-08-30 UCB Biopharma SRL Dual specificity antibody fusions
CN104004088A (zh) * 2007-09-26 2014-08-27 Ucb医药有限公司 双特异性抗体融合物
CN101842387A (zh) * 2007-09-26 2010-09-22 Ucb医药有限公司 双特异性抗体融合物
US20110008345A1 (en) * 2007-11-30 2011-01-13 Claire Ashman Antigen-binding constructs
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US10138293B2 (en) 2007-12-21 2018-11-27 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US10927163B2 (en) 2007-12-21 2021-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US8653020B2 (en) 2008-01-25 2014-02-18 Aarhus Universitet Selective exosite inhibition of PAPP-A activity against IGFBP-4
EP2732823A1 (fr) 2008-06-25 2014-05-21 H. Lundbeck A/S Modulation de la trpV : Système de récepteur du domaine vps10p pour le traitement de la douleur
US10407513B2 (en) 2008-09-26 2019-09-10 Ucb Biopharma Sprl Biological products
EP3165537A1 (fr) 2008-12-19 2017-05-10 H. Lundbeck A/S Modulation de la famille de récepteurs à domaine vps10 pour le traitement de troubles mentaux et du comportement
WO2010069331A2 (fr) 2008-12-19 2010-06-24 H. Lundbeck A/S Modulation de la famille de récepteurs à domaine vps10p pour le traitement de troubles mentaux et comportementaux
US9382323B2 (en) 2009-04-02 2016-07-05 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
WO2010112034A2 (fr) 2009-04-02 2010-10-07 Aarhus Universitet Compositions et méthodes pour le traitement et le diagnostic de synucléinopathies
US20100256340A1 (en) * 2009-04-07 2010-10-07 Ulrich Brinkmann Trivalent, bispecific antibodies
KR101456326B1 (ko) * 2009-04-07 2014-11-12 로슈 글리카트 아게 3가, 이중특이적 항체
US9890204B2 (en) 2009-04-07 2018-02-13 Hoffmann-La Roche Inc. Trivalent, bispecific antibodies
US8796424B2 (en) * 2009-05-27 2014-08-05 Hoffmann-La Roche Inc. Tri- or tetraspecific antibodies
US20100322935A1 (en) * 2009-05-27 2010-12-23 Rebecca Croasdale Tri- or Tetraspecific Antibodies
US10640555B2 (en) 2009-06-16 2020-05-05 Hoffmann-La Roche Inc. Bispecific antigen binding proteins
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US11673945B2 (en) 2009-06-16 2023-06-13 Hoffmann-La Roche Inc. Bispecific antigen binding proteins
US9994646B2 (en) 2009-09-16 2018-06-12 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
US20120316324A1 (en) * 2009-09-25 2012-12-13 Ucb Pharma, S.A. Disulfide Stabilised Multivalent Antibodies
WO2011054359A2 (fr) 2009-11-06 2011-05-12 University Of Copenhagen Méthode de détection précoce du cancer
US10106600B2 (en) 2010-03-26 2018-10-23 Roche Glycart Ag Bispecific antibodies
US9879095B2 (en) 2010-08-24 2018-01-30 Hoffman-La Roche Inc. Bispecific antibodies comprising a disulfide stabilized-Fv fragment
US11618790B2 (en) 2010-12-23 2023-04-04 Hoffmann-La Roche Inc. Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
US9982036B2 (en) 2011-02-28 2018-05-29 Hoffmann-La Roche Inc. Dual FC antigen binding proteins
US10611825B2 (en) 2011-02-28 2020-04-07 Hoffmann La-Roche Inc. Monovalent antigen binding proteins
US10793621B2 (en) 2011-02-28 2020-10-06 Hoffmann-La Roche Inc. Nucleic acid encoding dual Fc antigen binding proteins
US20120321626A1 (en) * 2011-05-16 2012-12-20 Fabion Pharmaceuticals, Inc. Multi-specific fab fusion proteins and methods of use
CN107936121A (zh) * 2011-05-16 2018-04-20 健能隆医药技术(上海)有限公司 多特异性fab融合蛋白及其使用方法
CN107936121B (zh) * 2011-05-16 2022-01-14 埃泰美德(香港)有限公司 多特异性fab融合蛋白及其使用方法
US11013800B2 (en) 2011-05-16 2021-05-25 Evive Biotech Ltd. Multi-specific Fab fusion proteins comprising a CD3-binding Fab fragment with N-terminal fusion to binding domains and methods of use
CN107903325A (zh) * 2011-05-16 2018-04-13 健能隆医药技术(上海)有限公司 多特异性fab融合蛋白及其使用方法
CN107903325B (zh) * 2011-05-16 2021-10-29 埃泰美德(香港)有限公司 多特异性fab融合蛋白及其使用方法
US8846042B2 (en) * 2011-05-16 2014-09-30 Fabion Pharmaceuticals, Inc. Multi-specific FAB fusion proteins and methods of use
CN103842383A (zh) * 2011-05-16 2014-06-04 法比翁医药有限公司 多特异性fab融合蛋白及其使用方法
US11639397B2 (en) 2011-08-23 2023-05-02 Roche Glycart Ag Bispecific antibodies specific for T-cell activating antigens and a tumor antigen and methods of use
US20130060011A1 (en) * 2011-08-23 2013-03-07 Peter Bruenker Fc-free antibodies comprising two fab fragments and methods of use
KR20140130679A (ko) * 2012-01-13 2014-11-11 율리우스-막시밀리안스 우니버지태트 뷔르츠부르크 이중 항원-유도된 이분 기능 상보성
US20150079093A1 (en) * 2012-01-13 2015-03-19 Julus-Maximilians-Universität Würzburg Dual antigen-induced bipartite functional complementation
CN108034006A (zh) * 2012-01-13 2018-05-15 乌利班-马克西姆利安大学 双抗原诱导的双功能互补作用
EP2802607B1 (fr) 2012-01-13 2017-10-04 Julius-Maximilians-Universität Würzburg Complémentation fonctionnelle bipartite induite par double antigène
US11427644B2 (en) 2012-01-13 2022-08-30 Julius-Maxmillians-Universitat Wurzburg Dual antigen-induced bipartite functional complementation
KR102100817B1 (ko) * 2012-01-13 2020-04-17 율리우스-막시밀리안스 우니버지태트 뷔르츠부르크 이중 항원-유도된 이분 기능 상보성
US9688758B2 (en) 2012-02-10 2017-06-27 Genentech, Inc. Single-chain antibodies and other heteromultimers
US11421022B2 (en) 2012-06-27 2022-08-23 Hoffmann-La Roche Inc. Method for making antibody Fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
US11407836B2 (en) 2012-06-27 2022-08-09 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
US10106612B2 (en) 2012-06-27 2018-10-23 Hoffmann-La Roche Inc. Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
WO2015028027A1 (fr) 2013-08-29 2015-03-05 University Of Copenhagen Anticorps anti-adam12 pour le traitement du cancer
US10323099B2 (en) 2013-10-11 2019-06-18 Hoffmann-La Roche Inc. Multispecific domain exchanged common variable light chain antibodies
EP3514179A1 (fr) 2014-01-24 2019-07-24 Dana-Farber Cancer Institute, Inc. Molécules d'anticorps anti-pd-1 et leurs utilisations
EP4324518A2 (fr) 2014-01-31 2024-02-21 Novartis AG Molécules d'anticorps anti-tim-3 et leurs utilisations
WO2015138920A1 (fr) 2014-03-14 2015-09-17 Novartis Ag Molécules d'anticorps anti-lag-3 et leurs utilisations
EP3660050A1 (fr) 2014-03-14 2020-06-03 Novartis AG Molécules d'anticorps anti-lag-3 et leurs utilisations
WO2015142675A2 (fr) 2014-03-15 2015-09-24 Novartis Ag Traitement du cancer au moyen d'un récepteur antigénique chimérique
US11345760B2 (en) 2014-06-25 2022-05-31 UCB Biopharma SRL Multispecific antibody constructs
WO2016014553A1 (fr) 2014-07-21 2016-01-28 Novartis Ag Récepteurs d'antigènes chimères synthétisés par l'intermédiaire d'une sortase
EP3722316A1 (fr) 2014-07-21 2020-10-14 Novartis AG Traitement du cancer à l'aide d'un récepteur d'antigène chimérique cd33
WO2016014565A2 (fr) 2014-07-21 2016-01-28 Novartis Ag Traitement du cancer au moyen d'un récepteur d'antigène chimérique anti-bcma humanisé
WO2016014530A1 (fr) 2014-07-21 2016-01-28 Novartis Ag Combinaisons de faibles doses renforçant l'immunité d'inhibiteurs de mtor et car
EP4205749A1 (fr) 2014-07-31 2023-07-05 Novartis AG Cellules contenant un récepteur d'antigène chimérique optimisé en sous-ensemble
EP3660042A1 (fr) 2014-07-31 2020-06-03 Novartis AG Lymphocytes t contenant des récepteurs d'antigènes chimériques optimisés par sous-ensemble
WO2016025880A1 (fr) 2014-08-14 2016-02-18 Novartis Ag Traitement du cancer à l'aide du récepteur d'antigène chimérique gfr alpha-4
WO2016023909A1 (fr) * 2014-08-14 2016-02-18 Deutsches Krebsforschungszentrum, Stiftung Des Öffentlichen Rechts Molécule d'anticorps recombinant et son utilisation pour l'activation de lymphocytes t restreints à une cellule cible
EP2985294A1 (fr) * 2014-08-14 2016-02-17 Deutsches Krebsforschungszentrum Molécule d'anticorps de recombinaison et son utilisation pour l'activation des lymphocytes T restreints de cellule cible
EP3712171A1 (fr) 2014-08-19 2020-09-23 Novartis AG Traitement du cancer à l'aide d'un récepteur d'antigène chimérique cd123
EP3967709A1 (fr) 2014-09-17 2022-03-16 Novartis AG Ciblage de cellules cytotoxiques avec récepteurs chimériques pour immunothérapie adoptive
WO2016044605A1 (fr) 2014-09-17 2016-03-24 Beatty, Gregory Ciblage de cellules cytotoxiques avec des récepteurs chimériques pour l'immunothérapie adoptive
EP4245376A2 (fr) 2014-10-14 2023-09-20 Novartis AG Molécules d'anticorps de pd-l1 et leurs utilisations
WO2016061142A1 (fr) 2014-10-14 2016-04-21 Novartis Ag Molécules d'anticorps de pd-l1 et leurs utilisations
WO2016090034A2 (fr) 2014-12-03 2016-06-09 Novartis Ag Méthodes de pré-conditionnement de cellules b dans une thérapie car
US10633457B2 (en) 2014-12-03 2020-04-28 Hoffmann-La Roche Inc. Multispecific antibodies
WO2016146134A1 (fr) 2015-03-16 2016-09-22 Aarhus Universitet Anticorps dirigés contre une région extracellulaire de nbcn1
EP3973958A2 (fr) 2015-03-20 2022-03-30 Aarhus Universitet Inhibiteurs de pcsk9 pour le traitement de troubles du métabolisme des lipoprotéines
US10688119B2 (en) 2015-03-20 2020-06-23 Aarhus Universitet Inhibitors of PCSK9 for treatment of lipoprotein metabolism disorders
EP4056588A1 (fr) 2015-04-08 2022-09-14 Novartis AG Thérapies cd20, thérapies cd22 et thérapies combinées avec une cellule exprimant un récepteur d'antigène chimérique cd19 (car)
WO2016164731A2 (fr) 2015-04-08 2016-10-13 Novartis Ag Thérapies anti-cd20, thérapies anti-cd22, et polythérapies comprenant une cellule exprimant le récepteur antigénique chimérique (car) dirigé contre le cd19
WO2016172583A1 (fr) 2015-04-23 2016-10-27 Novartis Ag Traitement du cancer à l'aide de protéine récepteur antigénique chimérique et un inhibiteur de protéine kinase
WO2017019894A1 (fr) 2015-07-29 2017-02-02 Novartis Ag Polythérapies comprenant des molécules d'anticorps dirigées contre lag-3
WO2017019897A1 (fr) 2015-07-29 2017-02-02 Novartis Ag Polythérapies comprenant des molécules d'anticorps contre tim -3
EP3964528A1 (fr) 2015-07-29 2022-03-09 Novartis AG Polythérapies comprenant des molécules d'anticorps dirigées contre lag-3
EP3878465A1 (fr) 2015-07-29 2021-09-15 Novartis AG Polythérapies comprenant des molécules d'anticorps tim-3
WO2017106810A2 (fr) 2015-12-17 2017-06-22 Novartis Ag Combinaison d'un inhibiteur de c-met avec une molécule d'anticorps dirigée contre pd-1 et ses utilisations
WO2017106656A1 (fr) 2015-12-17 2017-06-22 Novartis Ag Molécules d'anticorps anti-pd-1 et leurs utilisations
WO2017125897A1 (fr) 2016-01-21 2017-07-27 Novartis Ag Molécules multispécifiques ciblant cll-1
EP3851457A1 (fr) 2016-01-21 2021-07-21 Novartis AG Molécules multispécifiques ciblant cll-1
WO2017149515A1 (fr) 2016-03-04 2017-09-08 Novartis Ag Cellules exprimant de multiples molécules de récepteur d'antigène chimère (car) et leurs utilisations
US10870701B2 (en) 2016-03-15 2020-12-22 Generon (Shanghai) Corporation Ltd. Multispecific fab fusion proteins and use thereof
WO2017165683A1 (fr) 2016-03-23 2017-09-28 Novartis Ag Mini-corps sécrétés par des cellules et leurs usages
EP4219721A2 (fr) 2016-04-15 2023-08-02 Novartis AG Compositions et procédés pour l'expression sélective de protéines
WO2017181119A2 (fr) 2016-04-15 2017-10-19 Novartis Ag Compositions et méthodes pour l'expression sélective d'une protéine
WO2017210617A2 (fr) 2016-06-02 2017-12-07 Porter, David, L. Régimes thérapeutiques pour cellules exprimant un récepteur antigénique chimérique (car)
WO2018013918A2 (fr) 2016-07-15 2018-01-18 Novartis Ag Traitement et prévention du syndrome de libération de cytokine à l'aide d'un récepteur d'antigène chimérique en combinaison avec un inhibiteur de kinase
WO2018023025A1 (fr) 2016-07-28 2018-02-01 Novartis Ag Polythérapies de récepteurs d'antigènes chimériques adn inhibiteurs pd -1
WO2018026819A2 (fr) 2016-08-01 2018-02-08 Novartis Ag Traitement du cancer au moyen d'un récepteur d'antigène chimérique en combinaison avec un inhibiteur d'une molécule de macrophage pro-m2
US11173177B2 (en) 2016-09-20 2021-11-16 Aarhus Universitet Compounds for treatment of lipoprotein metabolism disorders
WO2018067992A1 (fr) 2016-10-07 2018-04-12 Novartis Ag Récepteurs antigéniques chimériques pour le traitement du cancer
EP4043485A1 (fr) 2017-01-26 2022-08-17 Novartis AG Compositions de cd28 et procédés pour une thérapie à base de récepteur antigénique chimérique
WO2018140725A1 (fr) 2017-01-26 2018-08-02 Novartis Ag Compositions de cd28 et procédés pour une thérapie à base de récepteur antigénique chimérique
WO2018160731A1 (fr) 2017-02-28 2018-09-07 Novartis Ag Compositions d'inhibiteur shp et utilisations pour une thérapie de récepteur d'antigène chimère
US20210107976A1 (en) * 2017-04-26 2021-04-15 Eureka Therapeutics, Inc. Cells expressing chimeric activating receptors and chimeric stimulating receptors and uses thereof
US11613573B2 (en) 2017-04-26 2023-03-28 Eureka Therapeutics, Inc. Chimeric antibody/T-cell receptor constructs and uses thereof
US11965021B2 (en) * 2017-04-26 2024-04-23 Eureka Therapeutics, Inc. Cells expressing chimeric activating receptors and chimeric stimulating receptors and uses thereof
WO2018201051A1 (fr) 2017-04-28 2018-11-01 Novartis Ag Agent ciblant le bcma et polythérapie incluant un inhibiteur de gamma-sécrétase
WO2018201056A1 (fr) 2017-04-28 2018-11-01 Novartis Ag Cellules exprimant un récepteur antigénique chimérique ciblant le bcma, et polythérapie comprenant un inhibiteur de gamma sécrétase
WO2018237157A1 (fr) 2017-06-22 2018-12-27 Novartis Ag Molécules d'anticorps se liant à cd73 et leurs utilisations
WO2019006007A1 (fr) 2017-06-27 2019-01-03 Novartis Ag Régimes posologiques pour anticorps anti-tim3 et leurs utilisations
US11752207B2 (en) 2017-07-11 2023-09-12 Compass Therapeutics Llc Agonist antibodies that bind human CD137 and uses thereof
WO2019018730A1 (fr) 2017-07-20 2019-01-24 Novartis Ag Régimes posologiques pour des anticorps anti-lag3 et leurs utilisations
WO2019089798A1 (fr) 2017-10-31 2019-05-09 Novartis Ag Compositions anti-car et procédés
US11718679B2 (en) 2017-10-31 2023-08-08 Compass Therapeutics Llc CD137 antibodies and PD-1 antagonists and uses thereof
WO2019099838A1 (fr) 2017-11-16 2019-05-23 Novartis Ag Polythérapies
US11851497B2 (en) 2017-11-20 2023-12-26 Compass Therapeutics Llc CD137 antibodies and tumor antigen-targeting antibodies and uses thereof
WO2019152660A1 (fr) 2018-01-31 2019-08-08 Novartis Ag Polythérapie utilisant un récepteur antigénique chimérique
WO2019200229A1 (fr) 2018-04-13 2019-10-17 Novartis Ag Régimes posologiques pour anticorps anti-pd-l1 et utilisations associées
WO2019210153A1 (fr) 2018-04-27 2019-10-31 Novartis Ag Thérapies reposant sur des cellules car-t présentant une efficacité améliorée
WO2019226658A1 (fr) 2018-05-21 2019-11-28 Compass Therapeutics Llc Compositions multispécifiques de liaison à l'antigène et procédés d'utilisation
WO2019226617A1 (fr) 2018-05-21 2019-11-28 Compass Therapeutics Llc Compositions et procédés pour améliorer la destruction de cellules cibles par des lymphocytes nk
WO2019227003A1 (fr) 2018-05-25 2019-11-28 Novartis Ag Polythérapie comprenant des thérapies par récepteur antigénique chimérique (car)
WO2019232244A2 (fr) 2018-05-31 2019-12-05 Novartis Ag Molécules d'anticorps anti-cd73 et leurs utilisations
WO2019241426A1 (fr) 2018-06-13 2019-12-19 Novartis Ag Récepteurs d'antigènes chimériques bcma et leurs utilisations
WO2019246293A2 (fr) 2018-06-19 2019-12-26 Atarga, Llc Molécules d'anticorps se liant au composant du complément 5 et leurs utilisations
WO2020012337A1 (fr) 2018-07-10 2020-01-16 Novartis Ag Dérivés de 3-(5-amino-1-oxoisoindoline-2-yl)pipéridine-2,6-dione et leur utilisation dans le traitement de maladies dépendant des doigts de zinc 2 de la famille ikaros (ikzf2)
WO2020021465A1 (fr) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Procédé de traitement de tumeurs neuroendocrines
US11046769B2 (en) 2018-11-13 2021-06-29 Compass Therapeutics Llc Multispecific binding constructs against checkpoint molecules and uses thereof
WO2020128972A1 (fr) 2018-12-20 2020-06-25 Novartis Ag Schéma posologique et combinaison pharmaceutique comprenant des dérivés de 3-(1-oxoisoindoline-2-yl) pipéridine-2,6-dione
WO2020128898A1 (fr) 2018-12-20 2020-06-25 Novartis Ag Combinaisons pharmaceutiques
WO2020165834A1 (fr) 2019-02-15 2020-08-20 Novartis Ag Dérivés de 3-(1-oxoisoindoline-2-yl)pipéridine-2,6-dione substitués et leurs utilisations
WO2020165833A1 (fr) 2019-02-15 2020-08-20 Novartis Ag Dérivés de 3-(1-oxo-5-(pipéridin-4-yl)isoindolin-2-yl)pipéridine-2,6-dione et leurs utilisations
WO2020165868A1 (fr) 2019-02-15 2020-08-20 Perkinelmer Cellular Technologies Germany Gmbh Pré-balayage d'objectif de microscope à faible puissance et balayage d'objectif de microscope à haute puissance dans une direction x, y et z pour imager des objets tels que des cellules à l'aide d'un microscope
WO2020172553A1 (fr) 2019-02-22 2020-08-27 Novartis Ag Polythérapies à base de récepteurs d'antigènes chimériques egfrviii et d'inhibiteurs de pd -1
WO2020205523A1 (fr) 2019-03-29 2020-10-08 Atarga, Llc Anticorps anti-fgf23
WO2021079195A1 (fr) 2019-10-21 2021-04-29 Novartis Ag Inhibiteurs de tim-3 et leurs utilisations
WO2021079188A1 (fr) 2019-10-21 2021-04-29 Novartis Ag Polythérapies comprenant du vénétoclax et des inhibiteurs de tim-3
WO2021108661A2 (fr) 2019-11-26 2021-06-03 Novartis Ag Récepteurs antigéniques chimériques et leurs utilisations
WO2021123996A1 (fr) 2019-12-20 2021-06-24 Novartis Ag Utilisations d'anticorps anti-tgf-bêtas et inhibiteurs de point de contrôle pour le traitement des maladies prolifératives
WO2021123902A1 (fr) 2019-12-20 2021-06-24 Novartis Ag Combinaison d'anticorps anti-tim-3 mbg453 et d'anticorps anti-tgf-bêta nis793, avec ou sans décitabine ou l'anticorps anti pd-1 spartalizumab, pour le traitement de la myélofibrose et du syndrome myélodysplasique
WO2021144657A1 (fr) 2020-01-17 2021-07-22 Novartis Ag Polythérapies comprenant un inhibiteur tim-3 et un agent d'hypométhylation à utiliser dans le traitement du syndrome myélodysplasique ou de la leucémie myélomonocytaire chronique
WO2021146636A1 (fr) 2020-01-17 2021-07-22 Becton, Dickinson And Company Procédés et compositions pour sécrétomique unicellulaire
WO2021173995A2 (fr) 2020-02-27 2021-09-02 Novartis Ag Procédés de production de cellules exprimant un récepteur antigénique chimérique
WO2021260528A1 (fr) 2020-06-23 2021-12-30 Novartis Ag Schéma posologique comprenant des dérivés de 3-(1-oxoisoindoline-2-yl) pipéridine-2,6-dione
WO2022013787A1 (fr) 2020-07-16 2022-01-20 Novartis Ag Anticorps anti-bêtacelluline, fragments de ceux-ci et molécules de liaison multi-spécifiques
WO2022026592A2 (fr) 2020-07-28 2022-02-03 Celltas Bio, Inc. Molécules d'anticorps contre le coronavirus et leurs utilisations
WO2022029573A1 (fr) 2020-08-03 2022-02-10 Novartis Ag Dérivés de 3-(1-oxoisoindolin-2-yl)pipéridine-2,6-dione substitués par hétéroaryle et leurs utilisations
WO2022043557A1 (fr) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Méthode de traitement de cancers exprimant le psma
WO2022043558A1 (fr) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Méthode de traitement de cancers exprimant le psma
WO2022097065A2 (fr) 2020-11-06 2022-05-12 Novartis Ag Variants fc d'anticorps
WO2022104061A1 (fr) 2020-11-13 2022-05-19 Novartis Ag Polythérapies avec des cellules exprimant un récepteur antigénique chimérique (car)
WO2022162569A1 (fr) 2021-01-29 2022-08-04 Novartis Ag Régimes posologiques d'anticorps anti-cd73 et anti-entpd2 et leurs utilisations
WO2022215011A1 (fr) 2021-04-07 2022-10-13 Novartis Ag UTILISATIONS D'ANTICORPS ANTI-TGFβ ET D'AUTRES AGENTS THÉRAPEUTIQUES POUR LE TRAITEMENT DE MALADIES PROLIFÉRATIVES
WO2022243846A1 (fr) 2021-05-18 2022-11-24 Novartis Ag Polythérapies
US11970538B2 (en) 2021-05-20 2024-04-30 Compass Therapeutics Llc Multispecific binding constructs against checkpoint molecules and uses thereof
WO2023044483A2 (fr) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions et procédés pour le traitement du cancer positif her2
WO2023092004A1 (fr) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions et méthodes pour le traitement de troubles liés à tau
WO2023150778A1 (fr) 2022-02-07 2023-08-10 Visterra, Inc. Molécules d'anticorps anti-idiotype et leurs utilisations
WO2023220695A2 (fr) 2022-05-13 2023-11-16 Voyager Therapeutics, Inc. Compositions et procédés pour le traitement du cancer her2 positif
WO2024030976A2 (fr) 2022-08-03 2024-02-08 Voyager Therapeutics, Inc. Compositions et procédés permettant le franchissement de la barrière hémato-encéphalique

Also Published As

Publication number Publication date
GB9221657D0 (en) 1992-11-25
CA2146854A1 (fr) 1994-04-28
JPH08505761A (ja) 1996-06-25
AU5283793A (en) 1994-05-09

Similar Documents

Publication Publication Date Title
WO1994009131A1 (fr) Proteine de liaison specifique recombinee
Plückthun Antibodies from Escherichia coli
McGregor et al. Spontaneous assembly of bivalent single chain antibody fragments in Escherichia coli
Muyldermans Single domain camel antibodies: current status
Whitlow et al. Single-chain Fv proteins and their fusion proteins
Kriangkum et al. Bispecific and bifunctional single chain recombinant antibodies
Bird et al. Single chain antibody variable regions
Roque et al. Antibodies and genetically engineered related molecules: production and purification
Müller et al. The first constant domain (CH1 and CL) of an antibody used as heterodimerization domain for bispecific miniantibodies
CN107207592B (zh) 结构域交换的抗体
Kipriyanov et al. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures
Shalaby et al. Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene.
Kortt et al. Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting
Hudson et al. High avidity scFv multimers; diabodies and triabodies
US6342587B1 (en) A33 antigen specific immunoglobulin products and uses thereof
Muëller et al. A dimeric bispecific miniantibody combines two specificities with avidity
CN110382529B (zh) 工程化的异源二聚体蛋白质
US20040220388A1 (en) Novel heterodimeric fusion proteins
AU680685B2 (en) Retargeting antibodies
Plückthun Antibody engineering
US11623963B2 (en) Cysteine engineered antigen-binding molecules
WO1995008577A1 (fr) Reciblage d'anticorps
Amaro et al. Isolation and characterization of a human antibody fragment specific for Ts1 toxin from Tityus serrulatus scorpion
CN116457374A (zh) 经修饰的可溶性t细胞受体
US20230114801A1 (en) MINIATURE GUIDANCE AND NAVIGATION CONTROL (miniGNC) ANTIBODY-LIKE PROTEINS AND METHODS OF MAKING AND USING THEREOF

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU LV MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1994 313029

Country of ref document: US

Date of ref document: 19941128

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2146854

Country of ref document: CA

Ref document number: 1993923002

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993923002

Country of ref document: EP

122 Ep: pct application non-entry in european phase
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642