WO1994004469A1 - Method and apparatus for the production of mineral wool, and mineral wool thereby produced - Google Patents

Method and apparatus for the production of mineral wool, and mineral wool thereby produced Download PDF

Info

Publication number
WO1994004469A1
WO1994004469A1 PCT/EP1992/001915 EP9201915W WO9404469A1 WO 1994004469 A1 WO1994004469 A1 WO 1994004469A1 EP 9201915 W EP9201915 W EP 9201915W WO 9404469 A1 WO9404469 A1 WO 9404469A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinner
poises
viscosity
orifices
peripheral wall
Prior art date
Application number
PCT/EP1992/001915
Other languages
French (fr)
Inventor
Jean Battigelli
Guy Berthier
Hans Furtak
Daniel Sainte-Foi
Original Assignee
Isover Saint-Gobain
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8165674&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1994004469(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to SK454-94A priority Critical patent/SK281343B6/en
Priority to CA002121573A priority patent/CA2121573C/en
Priority to PL92303200A priority patent/PL171157B1/en
Priority to US08/211,171 priority patent/US5601628A/en
Priority to JP6505802A priority patent/JP2752256B2/en
Priority to AU24344/92A priority patent/AU671804B2/en
Priority to BR9206652A priority patent/BR9206652A/en
Priority to HU9400684A priority patent/HU219013B/en
Priority to CZ94872A priority patent/CZ285472B6/en
Priority to RU9494021351A priority patent/RU2100298C1/en
Priority to KR1019940701243A priority patent/KR100188507B1/en
Priority to PCT/EP1992/001915 priority patent/WO1994004469A1/en
Application filed by Isover Saint-Gobain filed Critical Isover Saint-Gobain
Priority to NZ248379A priority patent/NZ248379A/en
Priority to IS4062A priority patent/IS4062A/en
Priority to ZA935926A priority patent/ZA935926B/en
Priority to TR00736/93A priority patent/TR28303A/en
Priority to DE69316107T priority patent/DE69316107T2/en
Priority to CN93116530A priority patent/CN1049879C/en
Priority to HRPCT/EP92/01915A priority patent/HRP931149B1/en
Priority to SI9300442A priority patent/SI9300442A/en
Priority to ES93113361T priority patent/ES2110549T3/en
Priority to EP93113361A priority patent/EP0583792B1/en
Priority to DK93113361.5T priority patent/DK0583792T3/en
Priority to AT93113361T priority patent/ATE161807T1/en
Publication of WO1994004469A1 publication Critical patent/WO1994004469A1/en
Priority to NO941300A priority patent/NO941300L/en
Priority to FI941817A priority patent/FI104321B/en
Priority to GR980400020T priority patent/GR3025850T3/el

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • C03B37/045Construction of the spinner cups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • C03B37/048Means for attenuating the spun fibres, e.g. blowers for spinner cups

Definitions

  • the present invention concerns a method for producing mine ⁇ ral wool consisting of thermoplastic mineral materials with high melting points or high liquidus temperatures, and more precisely to such a method employing a fiberization process that comprises so-called internal centrifuging the molten mineral material.
  • the thermoplastic materials in question are more precisely basaltic materials, either natural or mo ⁇ dified basalts, or by-products of the iron and steel indu ⁇ stry, in particular blast furnace slags (scoriae).
  • the invention applies to the production of mineral wool, so-called rock wool with a wide range of use, particu ⁇ larly in the field of thermal and acoustic insulation.
  • these materials are chosen for their low costs, and on the other hand for their properties, espe- cially their good resistance against high temperatures. Their production, however, creates specific problems. These problems particularly stem from the conditions in which these materials are workable.
  • the melting temperature is the temperature to which the raw materials have to be heated to guarantee melting. Furthermore, where production is concerned, it is the tempe ⁇ rature above which the material must be kept such that it will not solidify before its transformation into fibers.
  • drop formation is not only a necessary result of external centrifuging, but depends also on the rheological characteristics of the materials in question.
  • Materials processed according to the invention ge ⁇ nerally have comparatively low viscosities, even at tempera ⁇ tures only slightly above liquidus temperature.
  • the molten mineral material, which is relatively fluid, is difficult to fiberize as the filaments have a tendency to break and to form drops or beads. In a way, the technique of external centrifuging relies on this tendency, however without elimi ⁇ nating its disadvantages.
  • One essential objective of the present invention is to pro- vide a process for producing mineral wool from a material with elevated liquidus temperature and low viscosity, for example a viscosity below 5,000 poises at liquidus tempera ⁇ ture, and mostly lower than 3,000 or even 1,000 poises at liquidus temperature, in such conditions that a mineral wool largely free of unfiberized particles may be obtained.
  • T - C with T representing the temperature in °C and with A, B and C representing constants typical for the material in question and being calculated in a manner known per se from three pairs of measurements of ⁇ and T of this material.
  • this limit to be considered will actually be in the order of 3,500 or even 3,000 poises (i.e. a value of lg ⁇ beween 3.47 and 3.54; for this reason, the temperature corresponding to lg ⁇ - 3.5 will be given in the following).
  • cooling zone the temperature of the gases in a zone extending ra- dially from the free tip of the attenuation cones for several (5 to 10) millimeters, which shall be designated as the "cooling zone";
  • the gas temperature in an intermediate zone between the two preceding ones which shall be designated as the "attenuation zone”.
  • the configuration of the gas flows generated around the spinner is such that within the attenuation zone, the ambient temperature and therefore the temperature of the material, corresponds to at least 100 poises and preferably at least 250 to 350 poises.
  • Such a temperature profile can, for example, be obtained by means of a hot, annular gaseous jet or blast which envelops the perforated spinner wall over its entire periphery and, in combination with the material contained therein, keeps it at a temperature sufficiently high to avoid devitrification, and furthermore by means of a preferably cold jet which in ⁇ tercepts the hot blast over its entire periphery and confines the action of the hot blast to the immediate envi ⁇ ronment of the perforated peripheral wall.
  • the hot gaseous blast is generated by a concentric annular burner of the fi- berizing unit, and the cold jet is emitted by a blower ar ⁇ ranged concentrically to said burner as it will be described herebelow.
  • the length of the attenua ⁇ tion cones are adjusted via the orifice diameter and/or the rotational velocity of the spinner.
  • the gas jet emitted by the blower is preferably cold, i.e. at a temperature close to the ambient temperature, or not in excess of 250°C, for example.
  • the blower contributes to the creation of a "cold" environment still at a short distance around the spinner, i.e. still in ⁇ side the zone of fiber attenuation.
  • This arrangement has the advantage that it permits to improve the ratio of the vis- cous resistance against deformation and of the surface ten ⁇ sion responsible for drop formation.
  • the relation between these forces is a function of the non-dimensional figure ⁇ V where ⁇ stands for the viscosity of the material at ⁇ the moment of its projection from the orifice, V for its velocity, and ⁇ for its surface tension.
  • this is in particular an annular burner like (the one) mentioned before, preferably with internal combustion and producing an annular gas flow with an elevat ⁇ ed temperature in the vicinity of the upper side of the spinner peripheral wall.
  • the hot gas flow is not only directed in such a way as to pass along the peripheral wall of the spinner, but such that it also envelopes part of the connecting band or "tulip" connecting the peripheral wall with the flange which is used to fasten the spinner to its support shaft (in the case of a bottomless spinner), or with the upper reinforcing collar (in the case of a spinner driven via its bottom wall), such that these parts are heat ⁇ ed, too.
  • supplementary burners may be used whose flames are directed at the "tulip" .
  • Another solution is to arrange the external burner at a greater distance from the upper side of the peripheral wall, such that the gas flow is already somewhat dilated before approaching the spinner and reaching a relevant part of the "tulip".
  • the distance should be kept so small that good precision of the impinging flow can be maintained.
  • an annular external burner mav be used, the inner channel wall of which has a lesser diameter than the outer diameter of the spinner.
  • a burner with prolonged oblique discharge lips for delimiting a flaring jet of hot gases may be provided.
  • induction heaters are provided with an annular magnet for the passage of an electrical current with a high, or preferably a medium high, frequency.
  • the annular magnet may be arranged immediately below the spinner and concentrically to it.
  • the combination of these two heating devices essentially contributes to a thermal balance of the spinner, and it must be kept in mind that efficiency of these heating devices is better the more closely they are arranged near the spinner, and that in this way, the external burner predominantly heats the upper part of the centrifuge or spinner, whereas the annular magnet in its turn predominantly heats the bot ⁇ tom part of the spinner.
  • the described dual heating system avoids technological problems.
  • the induction heater does not have a practical effect in this respect and therefore does not con ⁇ tribute to environmental heating apart from heating by ra ⁇ diation.
  • the annular external burner in- evitably must heat the environment to a considerable degree, although the secondary air sucked by the rotational movement of the spinner and the high speed of the annular gas flow in turn suppresses introduction of heat into the environment.
  • the temperature of the gas exhausted from the annu ⁇ lar external burner is preferably limited.
  • the blower has furthermore a distinct effect on fiber at ⁇ tenuation. With identical operating conditions of the exter ⁇ nal burner, increased blower pressure thus allows to in ⁇ crease fiber fineness. From another point of view, the blower allows to reduce the blast pressure of the external burner and thereby save energy at equal fineness. For in ⁇ stance, good results have been achieved with plenum pressures of the blower between 0.5 and 4 bar and preferably between 1 and 2 bar.
  • the external heating devices may not be enough to maintain the thermal equili ⁇ brium of the spinner.
  • This deficiency must be remedied by additional heating devices arranged inside the spinner.
  • This supplementary introduction of heat is preferably achieved by means of a diverging internal burner arranged concentrically to the support shaft of the spinner, the flames of which are directed at the inside of the peripheral wall.
  • the fuel/air ratio is adjusted such that the flame root is positioned in the immediate vicinity of the inner wall.
  • a certain number of protrusions serving as flame retention means are furthermore advantageously provided at the inner wall of the "tulip" .
  • the diverging internal burner contributes preferably between 3 and 15 % of the thermal in ⁇ put in ongoing, continuous operation - as far as it is not derived from the molten mineral material. This appears to be a contribution of only minor significance, but this heat in ⁇ put occurs with extraordinary precision, is arranged precisely at the required place, and is therefore extraordi ⁇ narily efficient.
  • the diverging internal burner utilized during fiberization advantageously complements a central internal burner known from prior art where, however, it is exclusively employed during the start-up phase and in principle intended to heat the bottom wall of the spinner - or of the distributing means serving as a bottom wall and usually referred to as a cup, or, more generally, the central area of the spinner.
  • the central internal burner pre-heats the cup or the bottom wall before feeding of the molten mineral material occurs.
  • the central burner preferably is an annular burner with a converging flame, arranged between the spinner support shaft and the diverging central internal burner.
  • the exter ⁇ nal heating facilities are also used. If necessary, even flame lances or similar devices may be utilized as supple ⁇ mentary heaters.
  • the diverging internal burner is, of course, also used during the critical start-up phase while the thermal input of the molten mineral material is not yet available.
  • Materials which are usable according to the invention are in particular natural basalts, but also similar compositions such as those obtained either by adding composites to a ba ⁇ salt with the purpose of influencing certain ones of its properties, or by the combination of materials, thus making it possible to reproduce the chief characteristics of ba ⁇ salts, particularly their temperature behavior and, especi- ally, the fact that melting is achieved at temperatures ge ⁇ nerally not below 1,200°C.
  • These are also mineral composi ⁇ tions, such as blast furnace slags or all those compositions used for the production of so-called rock wool.
  • the materials in question also include compositions qualifying for the term "vitreous". These latter ones are called “hard glasses” in order to illustrate the difficulty created by their melting temperatures.
  • Fig. 1 is a schematized view comparing a centrifuging device known from prior art (longitudinal sec- tion la) with one according to the invention
  • Fig. 2 is a schematized diagrammatic view of the iso ⁇ therms showing the action of a blower according to the invention.
  • Fig. 3 is a schematized view of the isotherms showing the action of the annular external burner.
  • Figs. 4 are schematized views of the isotherms and the to 7 fiberization cones showing the process of fiber formation.
  • Figs. la and lb show fiberizing units according to prior art and the invention, respectively.
  • the fiberizing unit has been developped from an apparatus previously used for production of glass wool by internal centrifuging which has been the object of detailed descrip ⁇ tions namely in the patent specifications FR-B1-2443436 and EP-B1-91381.
  • This conventional device shown in a simplified manner in Fig. la, consists chiefly of a spinner 1 the peri ⁇ pheral wall 2 of which has a multiplicity of discharge ori- fices.
  • the peripheral wall 2 is connected to a flange 3 via a connecting band 4, referred to as a "tulip" because of its shape.
  • peripheral wall 2, tulip 4 and flange 3 are formed as a whole in one single, unitary piece.
  • Flange 3 is mounted on a supporting shaft 5 which is hollow in the shown embodiment, and through this cavity the molten mineral material is supplied.
  • the supporting shaft 5 - or even the flange 3 - furthermore supports a concentric distributing means 6, usually referred to as a "cup" or “basket".
  • the distributing cup with a peri ⁇ pheral wall which has a relatively low number of orifices with comparatively large diameters, serves as the bottom wall of the spinner and distributes the stream of molten mi- neral material by separating it into a plurality of stream ⁇ lets which are spread over the inner circumference of peri ⁇ pheral wall 2.
  • the spinner 1 is surrounded by diverse heating devices: an annular magnet 7 which particularly heats the bottom portion of the spinner 1, above all in order to compensate cooling upon contact of environmental air which is strongly cooled by the considerable quantities of air sucked by the revolu ⁇ tion of the spinner 1 and by a water cooled annular external burner 8.
  • the ends of channel walls 9 and 10 of the external burner 8 are arranged at a slight distance h from the spin ⁇ ner 1, for instance in the order of 5 mm, as shown by the sketch at the top left side of Fig. la.
  • the annular external burner 8 generates a high temperature and high velocity gas flow substantively directed in a ver ⁇ tical direction and thus passing along peripheral wall 2.
  • the gas flow on one hand serves to heat, or maintain the temperature of peripheral wall 2, and on the other hand con- tributes to attenuating the filaments of spun-off molten mineral into fibers.
  • the external burner 8 is pre ⁇ ferably surrounded by a blower ring 11 for cold air, the main objective of which is to limit radial expansion of the hot gas flow and thereby keep the formed fibers from getting into contact with the annular magnet 7.
  • a device according to the inven- tion consists of the same components, and only the diffe ⁇ rences shall be discussed in the following.
  • the most striking difference concerns the position of the external burner shown at 13, with channel walls 14 and 15, the ends of which are positioned at a distance d' above pe ⁇ ripheral wall 19 of spinner 1 as more particularly shown in the detail at the top right side of Fig. lb.
  • a distance h' in the range of 15 to 30 mm and preferably in the range of 20 to 25 mm is much better suited as such a distance still permits a high flow accuracy of the gas flow.
  • the inner channel wall 14 has a diameter which is distinctly smaller than the diameter of the top side of peripheral wall 19.
  • the external burner 13 is limited by two oblique surfaces 16 and 17 at right angles to each other.
  • the outer oblique surface 17 is only about half as long as its counterpart 16 and ends in an essentially vertical wall 18.
  • the walls 16 and 18 end at a height in the vicinity of the height of the emission channel walls of a conventional external burner.
  • annular protrusion 21 or an equivalent means serving as a sealing element, such as a revolving seal can be provided here to be arranged, for instance, at half the height of the tulip, with this position determining the length of the tulip 20 heated by the annular gas flow.
  • a blower 24 has been added to the external bur ⁇ ner 13.
  • the distance d' (measured by comparison with the central emission axes of the external burner and of the blower as shown in the detail drawing) is very small and for example in the order of 10 to 15 mm.
  • the purpose of this blower is shown in more detail by Fig. 2.
  • This figure ac ⁇ tually shows the external spinner wall 19 in a simplified form, the external burner 13 in a form modified according to the invention, and the blower 24.
  • the isotherms for 1,300°C and for three blower plenum pressure values (0.3-1 and 1.6 bar) for the same dynamic pressure of the burner of 350 mm H 2 0 have been plotted in the vicinity of the peripheral wall. Increasing the blower pressure causes the isotherms to move closer towards the spinner wall 19.
  • blower emits jets which are not perfectly vertical but slightly in ⁇ clined towards the bottom of the spinner.
  • the main conse- quence is that the effect of the annular external burner is concentrated on the upper side of the peripheral wall, while the cooling effect on the lower side of the wall is. weak. This cooling effect, however, can easily be compensated by heating with the annular magnet.
  • the blower Apart from confining the gases emitted by the annular exter ⁇ nal burner, the blower has a direct effect on the attenua ⁇ tion of the filaments projected by the spinner. Fiber fine- ness can be maintained by reducing the blast pressure of the hot gases and by compensating this reduction with increased pressure of the cold blower gases. As regards the bead con ⁇ tent, a considerable reduction can be seen when the pressure of the blower is raised.
  • FIG. la Another comparison between Figs. la and lb shows one more essential difference in that a second internal burner 25 has been provided which is positioned concentrically around the central inner annular burner, now shown at 26 and, as usually, serving to heat the cup, now shown at 27.
  • the in ⁇ ternal burner 25 is an annular burner with diverging flames which are directed at the inner surfaces of the peripheral wall 19 and of the tulip 20.
  • the arrangement of flames is preferably optimized by protrusions 27 on the inside of tulip 20 which serve as flame retention means.
  • the cup 27 has a relatively thick bottom wall 28 which for instance is formed of a ceramic plate or heat resistant concrete in order to avoid rapid erosion by the molten mineral material.
  • this thick bottom wall serves as a heat insulation and thereby prevents cool ⁇ ing of the inside of the bottom wall due to gas or air flow induced underneath the spinner by its rotation.
  • the measured values correspond to values at equilibrium, measured after at least 15 minutes of feeding the material, with spinner and cup pre-heated by means of all of the available heating devices (with the ex ⁇ ception of the diverging internal burner in the first test).
  • the spinners used for these tests are made of a nickel-based
  • ODS alloy of the austenitic type with 30% chromium a melt- ing temperature of 1,380°C, a tearing resistance of 130 MPa at 1,150°C, a creep resistance equalling 70 or 55 MPa after 1,000 hours at 1,150°C and 1,250°C, respectively, and a duc ⁇ tility of 5% at 1,250°C.
  • the plenum pressure of the external burner 13 is given in millimeters H 2 0.
  • the flow rates of the burners are in standardized cubic meters per hour.
  • the value of F/5g corresponds to the Micronaire.
  • the Micronaire is a standard method for characterizing the fineness of fibers. For instance, so-called light insulating products of glass wool for which the main criterion is thermal resistance (rolled products with a density lower than 40 kg/m 3 ), are often based on fibers with a Micronaire 3 whereas heavier products for which a considerable mechanical resistance is desired are based on fibers with a Micronaire 4.
  • Figs. 4 to 7 show the configuration of the fiberization cones and the positions of the isotherms for 800-1,000- 1,300-1,400-1500 and 1,550°C at blower plenum pressures of 0.3 (Figs. 4 and 5) and 1.6 bar (Figs. 6 and 7), and two temperatures of the "melt" stream, one configuration cor ⁇ responding to "cold melt” (Figs. 5 and 7), and the other configuration to "hot melt” (Figs. 4 and 6).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Paper (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Mineral material, particularly of the basalt type, is fiberized by internal centrifuging in a spinner (1') having a peripheral wall (19) with a multiplicity of orifices through which the melt may emanate into the environment where a hot gas blast attenuates the melt cones emanating from the orifices to fibers. As such mineral material has a high melting point or liquidus temperature, and low viscosity at the liquidus temperature, a high proportion of unfiberized particles is likely to be produced. However, the production of mineral wool with good fiber fineness and largely free of unfiberized particles surprisingly is possible if the cone lengths and the configuration of the gas flows generated around the spinner are such that the majority of the filament forming cones emanating from the spinner orifices intersect the isotherm corresponding to a viscosity of 100 poises, or otherwise reach into a zone cooled down to a temperature corresponding to a viscosity of more than 100 poises. In practice, such a configuration of the gas flows is produced by an outer annular blower (24) complementing the external annular burner (13) which produces jets of cool air so as to bring low-temperature isotherms in close vicinity of the peripheral wall (19) of the spinner (1') where the tips of the cones reach into such cool zone so as to increase the viscosity at the tip of the cones to avoid breakage of the filament to be attenuated.

Description

Method and Apparatus for the Production of Mineral Wool, and Mineral Wool Thereby Produced
The present invention concerns a method for producing mine¬ ral wool consisting of thermoplastic mineral materials with high melting points or high liquidus temperatures, and more precisely to such a method employing a fiberization process that comprises so-called internal centrifuging the molten mineral material. The thermoplastic materials in question are more precisely basaltic materials, either natural or mo¬ dified basalts, or by-products of the iron and steel indu¬ stry, in particular blast furnace slags (scoriae). In general, the invention applies to the production of mineral wool, so-called rock wool with a wide range of use, particu¬ larly in the field of thermal and acoustic insulation.
On the one hand, these materials are chosen for their low costs, and on the other hand for their properties, espe- cially their good resistance against high temperatures. Their production, however, creates specific problems. These problems particularly stem from the conditions in which these materials are workable.
Their high melting temperatures present a difficulty in itself. The melting temperature is the temperature to which the raw materials have to be heated to guarantee melting. Furthermore, where production is concerned, it is the tempe¬ rature above which the material must be kept such that it will not solidify before its transformation into fibers.
Another particularity discerning these materials from the glasses mostly used for glass wool production is that, as a rule, they are highly fluid at temperatures in close proxi- mity of their liquidus temperatures. Also due to the required high temperatures, the devices get¬ ting into contact with the materials to be fiberized are subject to very intensive corrosion. Operational lifetime of these devices presents a problem even with conventional glasses. The problem becomes even more critical with high liquidus materials.
In the past, the above-mentioned difficulties meant that only certain fiberizing techniques could be applied with the materials in question. There are essentially two kinds of techniques: those employing centrifuging or spinning off the molten mineral material, and those where the material is fed through a stationary nozzle and attenuated into fibers by gas flows often accelerated to supersonic speeds (blast drawing method).
For techniques applying a fixed nozzle, it is necessary to utilize a nozzle which is able to resist the attack of the molten mineral material. Traditionally, these are platinum nozzles able to withstand these attacks even at such high temperatures. Production capacity of each nozzle, however, is limited. In addition, the use of such attenuating gas flows generates comparatively high energy costs.
Techniques employing centrifuging or spinning off allow con¬ siderable production quantities per unit. Those are techniques summarized under the generic term "external cen¬ trifuging", in order to indicate that the molten mineral ma¬ terial remains outside the spinner. The molten mineral ate- rial is either applied to the front surface of a disk or to the peripheral surface of a cylindrical rotor, or a plura¬ lity thereof. An advantage of these techniques is the sim¬ plicity of the parts of the device entering into contact with the molten mineral material. With respect to this rela- tive simplicity, the parts in question and in particular the spinner rims are relatively cheap and therefore can be exchanged within relatively short time spans. The proportion of such material costs of total production costs remains re¬ latively low. The fact that these device parts are subject to intensive wear upon contact with the molten mineral mate- rial does therefore not turn out to be an obstacle.
The main disadvantage of mineral wool production by external centrifuging lies in the fact that the properties of the final product are inferior to those of glass wool which is mainly produced by so-called "internal centrifuging".
In external centrifuging, the material flows onto the spin¬ ning wheels and is flung off them as a multiplicity of drop¬ lets. The fiber apparently forms once it is flung off, bet- ween the surface of the spinner and the droplet drawing the fiber after it. It is obvious that with such a fiberizing mechanism, a considerable portion of the spun-off materials remains in the form of unfiberized particles. Their propor¬ tion for particle sizes in excess of 100 μm can be as high as 40 weight percent of the material charged into the pro¬ cess. Although several methods are available for separating the unfiberized particles, the finished mineral wool is never entirely free of such particles which at best are of no use, and very much of a nuisance for particular applica- tions.
It should be pointed out that drop formation is not only a necessary result of external centrifuging, but depends also on the rheological characteristics of the materials in question. Materials processed according to the invention ge¬ nerally have comparatively low viscosities, even at tempera¬ tures only slightly above liquidus temperature. The molten mineral material, which is relatively fluid, is difficult to fiberize as the filaments have a tendency to break and to form drops or beads. In a way, the technique of external centrifuging relies on this tendency, however without elimi¬ nating its disadvantages.
One essential objective of the present invention is to pro- vide a process for producing mineral wool from a material with elevated liquidus temperature and low viscosity, for example a viscosity below 5,000 poises at liquidus tempera¬ ture, and mostly lower than 3,000 or even 1,000 poises at liquidus temperature, in such conditions that a mineral wool largely free of unfiberized particles may be obtained.
By way of the invention, it is shown that it is possible to produce mineral wool of such a material with an elevated li¬ quidus temperature, in particular with a liquidus of above 1,200°C, by spinning the molten mineral material off a spin¬ ner with a large number of small-diameter orifices in its peripheral wall, with the spinner temperature during ongoing operation being kept below the temperature at which the ma¬ terial may clog the orifices due to crystallization, and with a gaseous environment being created around the spinner such that the majority of the tips of the cones emanating from the spinner orifices, whose lengths are capable of being varied independently from each other, intersect the isotherm of the gas flow corresponding to a viscosity of 100 poises or preferably 250 to 300 poises, or otherwise reach into a zone cooled down to a temperature corresponding to a viscosity of more than 100 poises or preferably 250 to 300 poises.
In order to fiberize a material, it is definitely necessary that it will not crystallize inside the spinner, and that it has a viscosity permitting attenuation into fibers. It is commonly known that above 80,000 poises, viscosity becomes a virtually insurmountable obstacle for attenuation of the fibers, at least under industrial conditions, but with the materials considered in the scope of the invention, this value of 80,000 poises cannot be made use of in practice as the material very suddenly passes from a much lower visco¬ sity to an indefinite value of viscosity. In such cases, the upper limit for viscosity is the value corresponding to the lowest temperature at which the viscosity μ of the material still behaves according to the so-called Vogel-Fulcher-Tam- mann equation
B lg μ = A +
T - C with T representing the temperature in °C and with A, B and C representing constants typical for the material in question and being calculated in a manner known per se from three pairs of measurements of μ and T of this material. In most cases, this limit to be considered will actually be in the order of 3,500 or even 3,000 poises (i.e. a value of lg μ beween 3.47 and 3.54; for this reason, the temperature corresponding to lg μ - 3.5 will be given in the following).
On the other hand, the material must not be too fluid at the moment of attenuation into fibers. Below a value of 100 poises (lg μ = 2), and sometimes even experimentally below 200-320/350 poises (lg μ = 2.3 to lg μ = 2.5), the molten mineral material will form droplets which are present inside the product in the form of beads. In practical work with the present invention, bead rates lower than 10% (wt.) have been observed for viscosities in the order of 100 poises, and bead rates lower than 5% (wt.) for viscosities in excess of 320/350 poises. It must be pointed out that this limit of 100 poises is relatively high and characteristic for the in¬ vention; with external centrifuging, the material is worked at viscosities as low as several tens of poises and, as men¬ tioned above, with very important amounts of beads formed.
The problem of the resolution of the material into droplets and the limit of 100/350 poises resulting therefrom does not only concern the moment in which the material passes through the orifices of the spinner, but is to be observed during the whole duration of the attenuation into fibers occurring outside of the spinner. From there it results that the spin¬ ner should not be placed into an environment too warm so as to unduly lower the viscosity of the material.
Here, four temperature zones through which the material pas¬ ses may be considered:
- the temperature of the spinner wall which is the same as the temperature of the material inside the orifices;
the temperature of the gases in a zone with a thick- ness of several millimeters in the immediate vici¬ nity of the disk-shaped spinner, which shall be de¬ signated as the boundary layer around the spinner;
the temperature of the gases in a zone extending ra- dially from the free tip of the attenuation cones for several (5 to 10) millimeters, which shall be designated as the "cooling zone";
the gas temperature in an intermediate zone between the two preceding ones, which shall be designated as the "attenuation zone".
According to the invention, the configuration of the gas flows generated around the spinner is such that within the attenuation zone, the ambient temperature and therefore the temperature of the material, corresponds to at least 100 poises and preferably at least 250 to 350 poises.
Such a temperature profile can, for example, be obtained by means of a hot, annular gaseous jet or blast which envelops the perforated spinner wall over its entire periphery and, in combination with the material contained therein, keeps it at a temperature sufficiently high to avoid devitrification, and furthermore by means of a preferably cold jet which in¬ tercepts the hot blast over its entire periphery and confines the action of the hot blast to the immediate envi¬ ronment of the perforated peripheral wall. The hot gaseous blast is generated by a concentric annular burner of the fi- berizing unit, and the cold jet is emitted by a blower ar¬ ranged concentrically to said burner as it will be described herebelow.
Due to the unprecise position of the borders of the attenua¬ tion zone as inherent consequence of the mixing of the blast and the jet with different temperatures, it is preferred to be able to separately influence the length of the attenua¬ tion cones independently of each other, in order that they, or at least a majority of them, may be situated inside said attenuation zone as defined by the gas jets over their entire length. According to the invention, these lengths of the cones are adjusted via the orifice diameter and/or the rotational velocity of the spinner.
The gas jet emitted by the blower is preferably cold, i.e. at a temperature close to the ambient temperature, or not in excess of 250°C, for example. Under these circumstances, the blower contributes to the creation of a "cold" environment still at a short distance around the spinner, i.e. still in¬ side the zone of fiber attenuation. This arrangement has the advantage that it permits to improve the ratio of the vis- cous resistance against deformation and of the surface ten¬ sion responsible for drop formation. The relation between these forces is a function of the non-dimensional figure μ V where μ stands for the viscosity of the material at σ the moment of its projection from the orifice, V for its velocity, and σ for its surface tension. By increasing the product μV, thanks to the cold blower which influences the viscosity and also the velocity by the velocity of the emit¬ ted cold jet, the tendency to form drops and the resulting beads is reduced.
In order to maintain the equilibrium value of the spinner at a value sufficient to avoid devitrification, it is necessary to heat it even though the molten mineral material already constitutes a very considerable heat source. For this pur¬ pose, various heating devices are preferably used in combi¬ nation.
Outside the spinner, this is in particular an annular burner like (the one) mentioned before, preferably with internal combustion and producing an annular gas flow with an elevat¬ ed temperature in the vicinity of the upper side of the spinner peripheral wall. Preferably, the hot gas flow is not only directed in such a way as to pass along the peripheral wall of the spinner, but such that it also envelopes part of the connecting band or "tulip" connecting the peripheral wall with the flange which is used to fasten the spinner to its support shaft (in the case of a bottomless spinner), or with the upper reinforcing collar (in the case of a spinner driven via its bottom wall), such that these parts are heat¬ ed, too.
For this purpose, supplementary burners may be used whose flames are directed at the "tulip" . Another solution is to arrange the external burner at a greater distance from the upper side of the peripheral wall, such that the gas flow is already somewhat dilated before approaching the spinner and reaching a relevant part of the "tulip". Here, however, the distance should be kept so small that good precision of the impinging flow can be maintained. According to a third vari¬ ant of the invention, an annular external burner mav be used, the inner channel wall of which has a lesser diameter than the outer diameter of the spinner. In this case, for example, a burner with prolonged oblique discharge lips for delimiting a flaring jet of hot gases may be provided.
Again on the outer side of the spinner, preferably induction heaters are provided with an annular magnet for the passage of an electrical current with a high, or preferably a medium high, frequency. As known per se, the annular magnet may be arranged immediately below the spinner and concentrically to it. The combination of these two heating devices essentially contributes to a thermal balance of the spinner, and it must be kept in mind that efficiency of these heating devices is better the more closely they are arranged near the spinner, and that in this way, the external burner predominantly heats the upper part of the centrifuge or spinner, whereas the annular magnet in its turn predominantly heats the bot¬ tom part of the spinner. As it was found that it is very difficult to heat the upper side of the peripheral wall without heating all the other nearby metal parts which in particular are enveloped by the hot gas flow, the described dual heating system avoids technological problems.
One further essential difference between these heating devices is their effect on the gas temperature in the vici¬ nity of the spinner. The induction heater does not have a practical effect in this respect and therefore does not con¬ tribute to environmental heating apart from heating by ra¬ diation. The annular external burner, on the other hand, in- evitably must heat the environment to a considerable degree, although the secondary air sucked by the rotational movement of the spinner and the high speed of the annular gas flow in turn suppresses introduction of heat into the environment. For optimum fiber quality, in particular under the aspect of the mechanical resistance, it is however not advantageous if the fibers are exposed to an excessively hot environment i - mediately after emanation from the spinner. Under these aspects, the temperature of the gas exhausted from the annu¬ lar external burner is preferably limited.
The blower has furthermore a distinct effect on fiber at¬ tenuation. With identical operating conditions of the exter¬ nal burner, increased blower pressure thus allows to in¬ crease fiber fineness. From another point of view, the blower allows to reduce the blast pressure of the external burner and thereby save energy at equal fineness. For in¬ stance, good results have been achieved with plenum pressures of the blower between 0.5 and 4 bar and preferably between 1 and 2 bar.
Even in view of such improvement, the external heating devices may not be enough to maintain the thermal equili¬ brium of the spinner. This deficiency must be remedied by additional heating devices arranged inside the spinner. This supplementary introduction of heat is preferably achieved by means of a diverging internal burner arranged concentrically to the support shaft of the spinner, the flames of which are directed at the inside of the peripheral wall. Preferably, the fuel/air ratio is adjusted such that the flame root is positioned in the immediate vicinity of the inner wall. A certain number of protrusions serving as flame retention means are furthermore advantageously provided at the inner wall of the "tulip" . The diverging internal burner contributes preferably between 3 and 15 % of the thermal in¬ put in ongoing, continuous operation - as far as it is not derived from the molten mineral material. This appears to be a contribution of only minor significance, but this heat in¬ put occurs with extraordinary precision, is arranged precisely at the required place, and is therefore extraordi¬ narily efficient. The diverging internal burner utilized during fiberization advantageously complements a central internal burner known from prior art where, however, it is exclusively employed during the start-up phase and in principle intended to heat the bottom wall of the spinner - or of the distributing means serving as a bottom wall and usually referred to as a cup, or, more generally, the central area of the spinner. The central internal burner pre-heats the cup or the bottom wall before feeding of the molten mineral material occurs. According to the invention, the central burner preferably is an annular burner with a converging flame, arranged between the spinner support shaft and the diverging central internal burner.
During the start-up phase, it is understood that the exter¬ nal heating facilities are also used. If necessary, even flame lances or similar devices may be utilized as supple¬ mentary heaters. The diverging internal burner is, of course, also used during the critical start-up phase while the thermal input of the molten mineral material is not yet available.
Materials which are usable according to the invention are in particular natural basalts, but also similar compositions such as those obtained either by adding composites to a ba¬ salt with the purpose of influencing certain ones of its properties, or by the combination of materials, thus making it possible to reproduce the chief characteristics of ba¬ salts, particularly their temperature behavior and, especi- ally, the fact that melting is achieved at temperatures ge¬ nerally not below 1,200°C. These are also mineral composi¬ tions, such as blast furnace slags or all those compositions used for the production of so-called rock wool. The materials in question also include compositions qualifying for the term "vitreous". These latter ones are called "hard glasses" in order to illustrate the difficulty created by their melting temperatures.
Further advantageous details and features of the invention will be apparent from the following description in conjunc¬ tion with the drawings.
Fig. 1 is a schematized view comparing a centrifuging device known from prior art (longitudinal sec- tion la) with one according to the invention
(longitudinal section lb);
Fig. 2 is a schematized diagrammatic view of the iso¬ therms showing the action of a blower according to the invention.
Fig. 3 is a schematized view of the isotherms showing the action of the annular external burner; and
Figs. 4 are schematized views of the isotherms and the to 7 fiberization cones showing the process of fiber formation.
The invention is illustrated by means of Figs. la and lb which show fiberizing units according to prior art and the invention, respectively.
The fiberizing unit has been developped from an apparatus previously used for production of glass wool by internal centrifuging which has been the object of detailed descrip¬ tions namely in the patent specifications FR-B1-2443436 and EP-B1-91381. This conventional device, shown in a simplified manner in Fig. la, consists chiefly of a spinner 1 the peri¬ pheral wall 2 of which has a multiplicity of discharge ori- fices. The peripheral wall 2 is connected to a flange 3 via a connecting band 4, referred to as a "tulip" because of its shape. As illustrated by the drawing, peripheral wall 2, tulip 4 and flange 3 are formed as a whole in one single, unitary piece.
Flange 3 is mounted on a supporting shaft 5 which is hollow in the shown embodiment, and through this cavity the molten mineral material is supplied.
The supporting shaft 5 - or even the flange 3 - furthermore supports a concentric distributing means 6, usually referred to as a "cup" or "basket". The distributing cup with a peri¬ pheral wall which has a relatively low number of orifices with comparatively large diameters, serves as the bottom wall of the spinner and distributes the stream of molten mi- neral material by separating it into a plurality of stream¬ lets which are spread over the inner circumference of peri¬ pheral wall 2.
The spinner 1 is surrounded by diverse heating devices: an annular magnet 7 which particularly heats the bottom portion of the spinner 1, above all in order to compensate cooling upon contact of environmental air which is strongly cooled by the considerable quantities of air sucked by the revolu¬ tion of the spinner 1 and by a water cooled annular external burner 8. The ends of channel walls 9 and 10 of the external burner 8 are arranged at a slight distance h from the spin¬ ner 1, for instance in the order of 5 mm, as shown by the sketch at the top left side of Fig. la.
The annular external burner 8 generates a high temperature and high velocity gas flow substantively directed in a ver¬ tical direction and thus passing along peripheral wall 2. The gas flow on one hand serves to heat, or maintain the temperature of peripheral wall 2, and on the other hand con- tributes to attenuating the filaments of spun-off molten mineral into fibers. As represented in the drawing, the external burner 8 is pre¬ ferably surrounded by a blower ring 11 for cold air, the main objective of which is to limit radial expansion of the hot gas flow and thereby keep the formed fibers from getting into contact with the annular magnet 7.
These external heaters of spinner 1 are complemented in its inside by an internal annular burner 12 which is positioned inside the supporting shaft 5 and utilized merely during the start-up phase of the fiberization unit for pre-heating the cup 6.
As illustrated by Fig. lb, a device according to the inven- tion consists of the same components, and only the diffe¬ rences shall be discussed in the following.
The most striking difference concerns the position of the external burner shown at 13, with channel walls 14 and 15, the ends of which are positioned at a distance d' above pe¬ ripheral wall 19 of spinner 1 as more particularly shown in the detail at the top right side of Fig. lb. For example, a distance h' in the range of 15 to 30 mm and preferably in the range of 20 to 25 mm is much better suited as such a distance still permits a high flow accuracy of the gas flow. Furthermore, the inner channel wall 14 has a diameter which is distinctly smaller than the diameter of the top side of peripheral wall 19. In order to guide the gas flow upon emission, the external burner 13 is limited by two oblique surfaces 16 and 17 at right angles to each other. In order to limit the problems with radial expansion of the hot gas from external burner 13, the outer oblique surface 17 is only about half as long as its counterpart 16 and ends in an essentially vertical wall 18. The walls 16 and 18 end at a height in the vicinity of the height of the emission channel walls of a conventional external burner. With such an arrangement of external burner 13, not only the peripheral wall 19 of the spinner 1', but also the tulip, now shown at 20, is being heated. The gas flow, however, should not rise along the tulip and heat the supporting shaft. In order to avoid this, an annular protrusion 21 or an equivalent means serving as a sealing element, such as a revolving seal, can be provided here to be arranged, for instance, at half the height of the tulip, with this position determining the length of the tulip 20 heated by the annular gas flow.
In addition, a blower 24 has been added to the external bur¬ ner 13. The distance d' (measured by comparison with the central emission axes of the external burner and of the blower as shown in the detail drawing) is very small and for example in the order of 10 to 15 mm. The purpose of this blower is shown in more detail by Fig. 2. This figure ac¬ tually shows the external spinner wall 19 in a simplified form, the external burner 13 in a form modified according to the invention, and the blower 24. The isotherms for 1,300°C and for three blower plenum pressure values (0.3-1 and 1.6 bar) for the same dynamic pressure of the burner of 350 mm H20 have been plotted in the vicinity of the peripheral wall. Increasing the blower pressure causes the isotherms to move closer towards the spinner wall 19.
On the other hand, increasing the burner pressure causes all the isotherms of the spinner peripheral wall to shift very clearly as shown in Fig. 3, where the burner pressure has been modified from 250, 350 to 450 mm H20 for a blower plenum pressure of 0.3 bar.
In Figs. 2 and 3 , it can furthermore be seen that the blower emits jets which are not perfectly vertical but slightly in¬ clined towards the bottom of the spinner. The main conse- quence is that the effect of the annular external burner is concentrated on the upper side of the peripheral wall, while the cooling effect on the lower side of the wall is. weak. This cooling effect, however, can easily be compensated by heating with the annular magnet.
Apart from confining the gases emitted by the annular exter¬ nal burner, the blower has a direct effect on the attenua¬ tion of the filaments projected by the spinner. Fiber fine- ness can be maintained by reducing the blast pressure of the hot gases and by compensating this reduction with increased pressure of the cold blower gases. As regards the bead con¬ tent, a considerable reduction can be seen when the pressure of the blower is raised.
Another comparison between Figs. la and lb shows one more essential difference in that a second internal burner 25 has been provided which is positioned concentrically around the central inner annular burner, now shown at 26 and, as usually, serving to heat the cup, now shown at 27. The in¬ ternal burner 25 is an annular burner with diverging flames which are directed at the inner surfaces of the peripheral wall 19 and of the tulip 20. The arrangement of flames is preferably optimized by protrusions 27 on the inside of tulip 20 which serve as flame retention means.
On the other hand, the cup 27 has a relatively thick bottom wall 28 which for instance is formed of a ceramic plate or heat resistant concrete in order to avoid rapid erosion by the molten mineral material. In addition, this thick bottom wall serves as a heat insulation and thereby prevents cool¬ ing of the inside of the bottom wall due to gas or air flow induced underneath the spinner by its rotation. Experiments were conducted with a material to be fiberized corresponding to the following composition (in weight per¬ cent) :
Figure imgf000019_0001
This composition behaves according to the following law of Vogel-Fulcher-Tamman :
1, μ - -2*542 + 4769-86
T-355.71
The characteristics of the apparatus and the operational conditions are summarized in the table at the end of this description.
It must be kept in mind that the measured values correspond to values at equilibrium, measured after at least 15 minutes of feeding the material, with spinner and cup pre-heated by means of all of the available heating devices (with the ex¬ ception of the diverging internal burner in the first test).
The spinners used for these tests are made of a nickel-based
ODS alloy of the austenitic type with 30% chromium, a melt- ing temperature of 1,380°C, a tearing resistance of 130 MPa at 1,150°C, a creep resistance equalling 70 or 55 MPa after 1,000 hours at 1,150°C and 1,250°C, respectively, and a duc¬ tility of 5% at 1,250°C.
In the table, the plenum pressure of the external burner 13 is given in millimeters H20. The flow rates of the burners (IB standing for internal burner) are in standardized cubic meters per hour.
As regards the quality of the produced fibers, the value of F/5g corresponds to the Micronaire. The Micronaire is a standard method for characterizing the fineness of fibers. For instance, so-called light insulating products of glass wool for which the main criterion is thermal resistance (rolled products with a density lower than 40 kg/m3), are often based on fibers with a Micronaire 3 whereas heavier products for which a considerable mechanical resistance is desired are based on fibers with a Micronaire 4.
The best results were achieved with a spinner temperature in the vicinity of 1,260-1,270°C (for this composition, the viscosity lies between 350 and 1,000 poises between 1,300°C and 1,216°C); this is consequently well inside the range of fiberization.
It was also possible to establish that the best results are achieved by balancing the different sources of heat input, in particular by proceeding with a relatively large gas flow rate for the internal burner (but anyway at hardly the tenth part of the flow rate for the external burner) and a power supplied to the annular magnet which was similarly large, and a rather high pressure for the blower.
In order to better understand the phenomenon of bead forma¬ tion, various modifications of glass temperature and blower plenum pressure were carried out independently of each other, and the isotherms of the gas flows and the fiber for- mation cones of each configuration were plotted for a number of exemplary rows of orifices.
The table hereafter gives the experimental conditions and the characteristics of the obtained fibers.
Figs. 4 to 7 show the configuration of the fiberization cones and the positions of the isotherms for 800-1,000- 1,300-1,400-1500 and 1,550°C at blower plenum pressures of 0.3 (Figs. 4 and 5) and 1.6 bar (Figs. 6 and 7), and two temperatures of the "melt" stream, one configuration cor¬ responding to "cold melt" (Figs. 5 and 7), and the other configuration to "hot melt" (Figs. 4 and 6).
When examining the contents of unfiberized particles for these different configurations, one notices that each time numerous cones of the upper rows are completely enveloped by gas flow with temperatures in excess of the isothermic line corresponding to 100 poises (1,400°C), a considerable number of beads is produced.
The drawings, especially Figs. 2 through 7 thereof, are self-explanatory with respect to the constructional and functional details shown there. Therefore, special reference is made to the drawings as regards supplementary information about details of the arrangement of burner 13 and blower 24 and of the configuration of the cones and the temperature distribution in the surrounding gas. That figures 2 through 7 show the position of the peripheral wall 19 of spinner 1' in "warm" state of the spinner, respectively of its position at ambient temperature as shown in phantom lines in figures 2 - 7.
The use of the principles of the present invention is of particular advantage when in conjunction with the subject matter of the parallel patent application "Method for 4/04469
20
Producing Mineral Wool, and Mineral Wool Produced Thereby" filed for the same applicant company or assignee, respect¬ ively, on even date, the full contents thereof being herewith incorporated herein by reference.
4
21
TABLE
Figure imgf000023_0001

Claims

4/0446922Patent Claims
1. A method for producing mineral wool of a material which is highly fluid at an elevated liquidus tempe- rature, in particular above 1,200°C, with a visco¬ sity of less than 5,000 poises at liquidus tempera¬ ture, with the molten mineral material being fed into a spinner the peripheral wall of which com¬ prises a multiplicity of orifices with small diame- ters wherethrough said molten mineral material is centrifuged to form filaments which are subjected to a supplementary attenuating effect of a gas flow flowing along, and heating, said peripheral wall of said spinner and generated by a concentric annular exterior burner arranged concentrically to the spin¬ ner, wherein cone lengths and the configuration of the gas flows generated around the spinner are such that the majority of the filament forming cones ema¬ nating from the spinner orifices intersect the iso- therm corresponding to a viscosity of 100 poises, or otherwise reach into a zone cooled down to a tempe¬ rature corresponding to a viscosity of more than 100 poises.
2. The method of claim 1, wherein the configuration of the gas flows generated around the spinner is such that the majority of the filament forming cones ema¬ nating from the spinner orifices intersect the iso¬ therm corresponding to a viscosity of 250 - 300 poises, or otherwise reach into a zone cooled down to a temperature corresponding to a viscosity of more than 250 - 300 poises.
3. The method of claim 1 or 2, wherein the lengths of the cones are adjusted by variation of the diameter of the orifices for the discharge of the molten mi- neral material and/or the rotational velocity of the spinner.
4. The method of any one of claims 1 to 3, wherein the viscosity of the molten mineral material inside the spinner orifices is in excess of 100 poises and pre¬ ferably in excess of 350 poises.
5. The method of any one of claims 1 to 4, wherein the annular external burner is complemented by a blower emitting an air flow with a temperature lower than 250°C.
6. The method of claim 5, wherein the effect of the blower is adjusted by its plenum pressure which is selected in the range between 0.5 and 4 bar, and preferably in the range between 1 and 2 bar.
7. A device for fiberization by means of internal cen- trifuging, with a spinner the peripheral wall of which comprises a multiplicity of orifices with a small diameter wherethrough the molten material is centrifuged to form filaments which are subjected to the supplementary attenuating effect of a gas flow flowing along, and heating, said peripheral wall of said spinner and generated by a concentric annular external burner arranged concentrically to said spinner, characterized by an annular external blower (24) complementing said annular external burner (13).
8. The device of claim 7, wherein said annular external burner (13) is arranged at a distance (h' ) in the order of 15 to 20 mm from the upper side of said pe- ripheral wall (19) of said spinner (1'). 24
9. The device of claim 8, wherein said annular external burner (13) comprises a radially inner and pre¬ ferably also a radially outer discharge channel wall (14) with a diameter smaller than the diameter of the upper side of said peripheral wall (19) of said spinner (1' ) .
10. The device of any one of claims 7 to 9, wherein said annular external burner (13) comprises discharge channel walls (14, 15) for the hot gas flow pro¬ longed by oblique walls (16, 17) delimiting a flar¬ ing discharge flow of the hot gases.
11. A mineral wool mat as obtained by the method of any one of claims 1 to 6.
PCT/EP1992/001915 1992-08-20 1992-08-20 Method and apparatus for the production of mineral wool, and mineral wool thereby produced WO1994004469A1 (en)

Priority Applications (27)

Application Number Priority Date Filing Date Title
AU24344/92A AU671804B2 (en) 1992-08-20 1992-08-20 Method and apparatus for the production of mineral wool, and mineral wool thereby produced
HU9400684A HU219013B (en) 1992-08-20 1992-08-20 Method and apparatus for the production of mineral wool
PL92303200A PL171157B1 (en) 1992-08-20 1992-08-20 Method of and apparatus for making mineral wool and mineral wool obtained thereby
US08/211,171 US5601628A (en) 1992-08-20 1992-08-20 Method for the production of mineral wool
JP6505802A JP2752256B2 (en) 1992-08-20 1992-08-20 Method and apparatus for producing mineral wool, and mineral wool produced thereby
SK454-94A SK281343B6 (en) 1992-08-20 1992-08-20 Method and apparatus for the production of mineral wool
BR9206652A BR9206652A (en) 1992-08-20 1992-08-20 Method and apparatus for the production of mineral there and mineral there produced by the same
CA002121573A CA2121573C (en) 1992-08-20 1992-08-20 Method and apparatus for the production of mineral wool, and mineral wool thereby produced
CZ94872A CZ285472B6 (en) 1992-08-20 1992-08-20 Process and apparatus for producing mineral wool
RU9494021351A RU2100298C1 (en) 1992-08-20 1992-08-20 Method of manufacturing mineral wool and apparatus for forming fibers by way of internal centrifugation
KR1019940701243A KR100188507B1 (en) 1992-08-20 1992-08-20 Method and apparatus for manufacturing mineral wool, and mineral wool produced thereby
PCT/EP1992/001915 WO1994004469A1 (en) 1992-08-20 1992-08-20 Method and apparatus for the production of mineral wool, and mineral wool thereby produced
NZ248379A NZ248379A (en) 1992-08-20 1993-08-11 Producing mineral wool using centrifugal spinner with supplementary hot gas flow
IS4062A IS4062A (en) 1992-08-20 1993-08-12 Method and equipment for the production of mineral wool as well as mineral wool produced by said method and equipment
ZA935926A ZA935926B (en) 1992-08-20 1993-08-13 Method and apparatus for the production of mineral wool and mineral wool thereby produced.
TR00736/93A TR28303A (en) 1992-08-20 1993-08-19 The method and device of producing mineral cotton and mineral cotton produced in this way.
AT93113361T ATE161807T1 (en) 1992-08-20 1993-08-20 METHOD AND DEVICE FOR PRODUCING MINERAL WOOL AND MINERAL WOOL PRODUCED THEREFROM
ES93113361T ES2110549T3 (en) 1992-08-20 1993-08-20 METHOD AND APPARATUS FOR THE PRODUCTION OF MINERAL WOOL AND MINERAL WOOL PRODUCED BY THOSE.
CN93116530A CN1049879C (en) 1992-08-20 1993-08-20 Method and apparatus for the production of mineral wool, and mineral wool thereby produced
HRPCT/EP92/01915A HRP931149B1 (en) 1992-08-20 1993-08-20 Method and apparatus for the production of mineral wool and mineral wool thereby produced
SI9300442A SI9300442A (en) 1992-08-20 1993-08-20 Method and apparatus for the production of mineral wool, and mineral wool thereby produced
DE69316107T DE69316107T2 (en) 1992-08-20 1993-08-20 Method and device for producing mineral wool and mineral wool made therefrom
EP93113361A EP0583792B1 (en) 1992-08-20 1993-08-20 Method and apparatus for the production of mineral wool, and mineral wool thereby produced
DK93113361.5T DK0583792T3 (en) 1992-08-20 1993-08-20 Method and apparatus for making mineral wool and mineral wool made thereby
NO941300A NO941300L (en) 1992-08-20 1994-04-11 Mineral wool and methods and apparatus for making them
FI941817A FI104321B (en) 1992-08-20 1994-04-20 Process for the production of mineral wool and mineral wool produced therewith
GR980400020T GR3025850T3 (en) 1992-08-20 1998-01-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1992/001915 WO1994004469A1 (en) 1992-08-20 1992-08-20 Method and apparatus for the production of mineral wool, and mineral wool thereby produced

Publications (1)

Publication Number Publication Date
WO1994004469A1 true WO1994004469A1 (en) 1994-03-03

Family

ID=8165674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/001915 WO1994004469A1 (en) 1992-08-20 1992-08-20 Method and apparatus for the production of mineral wool, and mineral wool thereby produced

Country Status (27)

Country Link
US (1) US5601628A (en)
EP (1) EP0583792B1 (en)
JP (1) JP2752256B2 (en)
KR (1) KR100188507B1 (en)
CN (1) CN1049879C (en)
AT (1) ATE161807T1 (en)
AU (1) AU671804B2 (en)
BR (1) BR9206652A (en)
CA (1) CA2121573C (en)
CZ (1) CZ285472B6 (en)
DE (1) DE69316107T2 (en)
DK (1) DK0583792T3 (en)
ES (1) ES2110549T3 (en)
FI (1) FI104321B (en)
GR (1) GR3025850T3 (en)
HR (1) HRP931149B1 (en)
HU (1) HU219013B (en)
IS (1) IS4062A (en)
NO (1) NO941300L (en)
NZ (1) NZ248379A (en)
PL (1) PL171157B1 (en)
RU (1) RU2100298C1 (en)
SI (1) SI9300442A (en)
SK (1) SK281343B6 (en)
TR (1) TR28303A (en)
WO (1) WO1994004469A1 (en)
ZA (1) ZA935926B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015532A1 (en) * 1995-10-27 1997-05-01 Isover Saint-Gobain Method and apparatus for producing mineral wool

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9604264D0 (en) * 1996-02-29 1996-05-01 Rockwool Int Man-made vitreous fibres
DE10239418B4 (en) * 2002-08-28 2006-04-13 Sebastian Woltz Device for heating spinner disks for glass fibers
CN1325408C (en) * 2003-07-24 2007-07-11 深圳俄金碳材料科技有限公司 Induction heating method and device for ore fusion
EP1522531A1 (en) 2003-10-06 2005-04-13 Saint-Gobain Isover G+H Ag Fire door and insert therefor
BRPI0414848B1 (en) * 2003-10-06 2015-12-01 Saint Gobain Isover fire protection door and insert
US20070253993A1 (en) * 2003-10-06 2007-11-01 Ina Bruer Climate, respectively ventilation channel
EP1522640A1 (en) 2003-10-06 2005-04-13 Saint-Gobain Isover G+H Ag MIneral fibre insulation element for ship building
PL1680561T3 (en) * 2003-10-06 2013-02-28 Saint Gobain Isover Insulating element consisting of mineral fibres for the construction of ships
EP1522641A1 (en) 2003-10-06 2005-04-13 Saint-Gobain Isover G+H Ag Composite heat insulation system and insulation element, in particular insulation panel therefor
PL1678386T5 (en) * 2003-10-06 2021-08-16 Saint-Gobain Isover Insulating material consisting of a web of mineral fibres for wedging between beams
DE10349170A1 (en) * 2003-10-22 2005-05-19 Saint-Gobain Isover G+H Ag Steam brake with a shield against electromagnetic fields
US8806900B2 (en) * 2005-04-04 2014-08-19 Reforcetech As Ceramic bushing/s consisting local heating/s integrated in apparatus for manufacturing mineral/basalt fibers
US8104311B2 (en) * 2006-05-09 2012-01-31 Johns Manville Rotary fiberization process for making glass fibers, an insulation mat, and pipe insulation
WO2008022014A2 (en) * 2006-08-10 2008-02-21 Research Sciences, Llc Multimember extended range compressible seal
GB0623770D0 (en) * 2006-11-28 2007-01-10 Morgan Crucible Co Inorganic fibre compositions
FR2954307B1 (en) * 2009-12-22 2011-12-09 Saint Gobain Isover FIBER CENTRIFUGER, DEVICE AND METHOD FOR FORMING MINERAL FIBERS
CN102515499B (en) * 2011-12-21 2015-06-10 云南文山斗南锰业股份有限公司 Mineral wool, its manufacture method and its preparation system
FR2993265B1 (en) * 2012-07-16 2014-11-21 Saint Gobain Isover DEVICE FOR FORMING MINERAL FIBERS
CN104370453A (en) * 2013-08-12 2015-02-25 苏州宏久航空防热材料科技有限公司 Glass fiber filament drawing device
CN104628251B (en) * 2013-11-13 2018-01-02 南京航空航天大学 A kind of ultra-fine centrifugally glass-wool wire-drawing frame of low beating degree and drawing process
WO2016076802A1 (en) * 2014-11-13 2016-05-19 Izoteh D.O.O. Method and device for mineral melt stream manipulation
WO2016135759A1 (en) * 2015-02-26 2016-09-01 FINCANTIERI S.p.A Separation structure between two cabins with double wall and air gap, in particular between passenger cabins
PL414330A1 (en) 2015-10-09 2017-04-10 Flis Stanisław Przedsiębiorstwo Budowlano-Montażowe Flisbud Method for producing basalt powder, basalt fibre and other shaped products
US9771294B1 (en) * 2016-04-21 2017-09-26 Americas Basalt Technology, Llc Basalt fibers produced from high temperature melt
CN105669021B (en) * 2016-04-25 2018-08-28 北京财方富圆新科贸有限公司 A kind of super glass wool centrifuge and its method for producing super glass wool
WO2017192559A1 (en) * 2016-05-03 2017-11-09 D'amico Iii Joseph V Apparatus and method of moving fluid in a rotating cylinder
CN114775076B (en) * 2022-04-24 2023-08-22 安徽迪惠新材料科技有限公司 Drawing process of high-performance bio-based fiber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB895540A (en) * 1959-11-20 1962-05-02 Owens Corning Fiberglass Corp Improved apparatus for forming fibres from fiberizable material
CH400445A (en) * 1960-01-07 1965-10-15 Owens Corning Fiberglass Corp Process for the production of threads and device for carrying out the process
US3928009A (en) * 1972-03-02 1975-12-23 Walter Merton Perry Rotary forming unit for fine mineral fibers
EP0091381B1 (en) * 1982-04-06 1987-01-14 Isover Saint-Gobain Manufacture of fibres by centrifuging and blowing
FR2443436B1 (en) * 1978-12-08 1989-10-20 Saint Gobain GLASS FIBRATION PROCESS, IMPLEMENTATION DEVICE AND FIBER PRODUCTS
EP0484211A1 (en) * 1990-10-29 1992-05-06 Isover Saint-Gobain Method and apparatus for making fibres by centrifuging and application of certain glasses for drawing fibres
EP0525816A1 (en) * 1991-08-02 1993-02-03 Isover Saint-Gobain Method and apparatus for manufacturing mineral wool, and mineral wool produced thereby

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3012281A (en) * 1955-02-25 1961-12-12 Owens Corning Fiberglass Corp Method of forming fibers
US2931062A (en) * 1957-10-03 1960-04-05 Owens Corning Fiberglass Corp Rotor construction for fiber forming apparatus
US3233992A (en) * 1959-05-01 1966-02-08 Gustin Bacon Mfg Co Apparatus for production of fine glass fibers
US3059454A (en) * 1960-09-19 1962-10-23 Owens Corning Fiberglass Corp Apparatus for centrifuging fibers
FR1382917A (en) * 1963-02-27 1964-12-24 Saint Gobain Improvements in the manufacture of fibers, especially glass fibers
US3785791A (en) * 1972-03-02 1974-01-15 W Perry Forming unit for fine mineral fibers
US4046539A (en) * 1974-05-28 1977-09-06 Owens-Corning Fiberglas Corporation Method and apparatus for producing glass fibers
US4392879A (en) * 1981-09-23 1983-07-12 Owens-Corning Fiberglas Corporation Method of forming glass fibers while monitoring a process condition in a spinner
AU668878B2 (en) * 1992-08-20 1996-05-23 Isover Saint-Gobain Method for producing mineral wool, and mineral wool produced thereby

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB895540A (en) * 1959-11-20 1962-05-02 Owens Corning Fiberglass Corp Improved apparatus for forming fibres from fiberizable material
CH400445A (en) * 1960-01-07 1965-10-15 Owens Corning Fiberglass Corp Process for the production of threads and device for carrying out the process
US3928009A (en) * 1972-03-02 1975-12-23 Walter Merton Perry Rotary forming unit for fine mineral fibers
FR2443436B1 (en) * 1978-12-08 1989-10-20 Saint Gobain GLASS FIBRATION PROCESS, IMPLEMENTATION DEVICE AND FIBER PRODUCTS
EP0091381B1 (en) * 1982-04-06 1987-01-14 Isover Saint-Gobain Manufacture of fibres by centrifuging and blowing
EP0484211A1 (en) * 1990-10-29 1992-05-06 Isover Saint-Gobain Method and apparatus for making fibres by centrifuging and application of certain glasses for drawing fibres
EP0525816A1 (en) * 1991-08-02 1993-02-03 Isover Saint-Gobain Method and apparatus for manufacturing mineral wool, and mineral wool produced thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015532A1 (en) * 1995-10-27 1997-05-01 Isover Saint-Gobain Method and apparatus for producing mineral wool
AU716197B2 (en) * 1995-10-27 2000-02-24 Isover Saint-Gobain Method and apparatus for producing mineral wool
CN1092156C (en) * 1995-10-27 2002-10-09 伊索弗·圣-戈班 Method and apparatus for producing mineral wool

Also Published As

Publication number Publication date
CN1049879C (en) 2000-03-01
FI941817A0 (en) 1994-04-20
ES2110549T3 (en) 1998-02-16
GR3025850T3 (en) 1998-04-30
JPH07503697A (en) 1995-04-20
FI104321B1 (en) 1999-12-31
HRP931149A2 (en) 1996-04-30
HUT73566A (en) 1996-08-28
DK0583792T3 (en) 1998-03-16
JP2752256B2 (en) 1998-05-18
DE69316107T2 (en) 1998-09-03
CA2121573C (en) 1999-10-26
RU2100298C1 (en) 1997-12-27
PL171157B1 (en) 1997-03-28
SI9300442A (en) 1994-03-31
CZ285472B6 (en) 1999-08-11
ZA935926B (en) 1994-11-03
SK45494A3 (en) 1994-09-07
ATE161807T1 (en) 1998-01-15
AU671804B2 (en) 1996-09-12
NZ248379A (en) 1995-12-21
HU219013B (en) 2001-01-29
EP0583792A1 (en) 1994-02-23
EP0583792B1 (en) 1998-01-07
KR100188507B1 (en) 1999-06-01
TR28303A (en) 1996-04-09
CZ87294A3 (en) 1995-02-15
SK281343B6 (en) 2001-02-12
US5601628A (en) 1997-02-11
IS4062A (en) 1994-02-21
HU9400684D0 (en) 1994-07-28
FI104321B (en) 1999-12-31
HRP931149B1 (en) 1999-08-31
FI941817A (en) 1994-04-20
DE69316107D1 (en) 1998-02-12
CA2121573A1 (en) 1994-03-03
CN1087610A (en) 1994-06-08
NO941300D0 (en) 1994-04-11
NO941300L (en) 1994-04-11
BR9206652A (en) 1995-10-24
AU2434492A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
WO1994004469A1 (en) Method and apparatus for the production of mineral wool, and mineral wool thereby produced
AU664852B2 (en) Method and apparatus for manufacturing mineral wool, and mineral wool produced thereby
US5554324A (en) Method for producing mineral wool
US4058386A (en) Method and apparatus for eliminating external hot gas attenuation in the rotary fiberization of glass
AU716197B2 (en) Method and apparatus for producing mineral wool
US3019477A (en) High output radiant heater for a glass fiber forming apparatus
EP0355187B1 (en) Production of micro glass fibers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CS FI HU JP KP KR LK MG MN MW NO PL RO RU SD UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG

WWE Wipo information: entry into national phase

Ref document number: PV1994-872

Country of ref document: CZ

EX32 Extension under rule 32 effected after completion of technical preparation for international publication

Free format text: BY

WWE Wipo information: entry into national phase

Ref document number: 2121573

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 45494

Country of ref document: SK

Ref document number: 941817

Country of ref document: FI

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08211171

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: PV1994-872

Country of ref document: CZ

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: PV1994-872

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 941817

Country of ref document: FI