WO1994004310A1 - Clamp method for preventing deformation of workpiece - Google Patents

Clamp method for preventing deformation of workpiece Download PDF

Info

Publication number
WO1994004310A1
WO1994004310A1 PCT/JP1993/001146 JP9301146W WO9404310A1 WO 1994004310 A1 WO1994004310 A1 WO 1994004310A1 JP 9301146 W JP9301146 W JP 9301146W WO 9404310 A1 WO9404310 A1 WO 9404310A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
clamping
workpiece
displacement
work
Prior art date
Application number
PCT/JP1993/001146
Other languages
French (fr)
Japanese (ja)
Inventor
Hisao Ishii
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1994004310A1 publication Critical patent/WO1994004310A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/16Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine controlled in conjunction with the operation of the tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49127Variable clamping force as function of movement, force on workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49128Determine maximum clamping force as function of allowable displacement workpiece

Definitions

  • the present invention relates to a clamping method for preventing a workpiece to be machined from being excessively deformed in a machine tool. More specifically, the present invention relates to an NC machine tool, which is capable of reducing the amount of deformation of a workpiece generated when a hollow, small, or thin-walled flexible workpiece is clamped on a work table by a clamping device. , Automatically detected before starting NC machining for each machining area, and the maximum allowable clamping force of the clamping device is determined for each machining area within the range where this deformation does not exceed the allowable value. By automatically changing the clamper of the clamp device according to the processing area according to the above determination, a method for preventing deformation of the workpiece to be processed that enables high-precision automatic machining with workpiece deformation within an allowable range About. Background art
  • a clamp device for fixing and supporting a work is provided on a work table.
  • the work may be deformed by the clamping force of the clamp device.
  • NC machine tools perform automatic machining of workpieces according to NC programs stored in advance. Therefore, if the workpiece is deformed during clamping, there will be a gap between the machining area specified by the coordinate values in the NC program and the machining area on the workpiece to be actually machined. Shape and processing accuracy cannot be obtained.
  • a method of appropriately adjusting a clamp position and a clamper by a clamp device according to a material and a shape of a workpiece to be processed has been generally performed.
  • the workpiece is fixed with sufficient force to perform stable processing, while, for example, a small thin-walled shape that easily deforms
  • the clamping force is determined in advance and adjusted for each workpiece, such as reducing the clamping force to the limit where machining can be performed in order to ensure processing accuracy. Processing accuracy can be obtained.
  • the adjustment of the clamping force of the clamping device is performed, for example, by adjusting the bolt fastening force in the case of a bolt fastening type, and by adjusting the supply pressure in the case of a hydraulic or pneumatic type.
  • the deformation of the work caused by the clamping force of the clamping device is a factor that lowers the processing accuracy in the dynamic processing, but on the other hand, in order to perform the stable processing, it is a force that can withstand the cutting force.
  • It is essential to secure
  • Fixing and supporting the work with sufficient force while minimizing it is an essential requirement for improving machining accuracy.
  • shortening the machining time per unit work and setting up various types of NC machining processes including the use of ATC (Automatic Tool Change) and the use of robots in machining centers, such as cutting and uncutting of workpieces.
  • ATC Automatic Tool Change
  • An object of the present invention is to reliably fix a workpiece having a shape that is easily deformed without lowering the processing accuracy due to the deformation of the workpiece due to the clamping force, thereby promoting automation and labor saving in NC machine tools. It is another object of the present invention to provide a workpiece deformation preventing clamp method which enables high-precision automatic machining.
  • the present invention relates to a method for clamping a workpiece to prevent deformation of a NC machine tool, comprising the steps of: a) placing a workpiece to be machined in accordance with a command of an NC device on a work table in a predetermined machining posture; B) Calculate the displacement of each machining part by comparing the positions of multiple machining parts on the work before and after clamping the work with the clamp device provided on the work table, c) The displacement calculated in each of the machining parts is compared with a predetermined displacement allowable value stored in advance in the NC device.d) Within a range where the displacement does not exceed the allowable displacement, Determine the maximum allowable clamping force of the clamp device for each and store it in the NC device.e) When performing NC machining, clamp the clamp device according to each of a plurality of machining parts by fingering of the NC device. Maximum power allowed clan Set the force, and continuously with the movement of the processing site
  • the present invention provides a method including each step of clamping a
  • the amount of deformation of the work that occurs when the work is clamped on the work table by the clamp device is calculated as the amount of displacement before and after clamping at a plurality of machining sites on the work.
  • the calculated displacement for each machined part is compared with the specified displacement tolerance in the NC unit, and if it exceeds the tolerance, the clamping force of the clamp device is changed so that the displacement is less than the tolerance. . In this way, the maximum allowable clamping force of the clamping device for reducing the work deformation amount to the allowable value or less for each of the plurality of machined parts is determined.
  • the NC device stores the maximum allowable clamping force for each processing portion, and operates the clamping device so as to clamp the workpiece with the maximum allowable clamping force corresponding to each processing portion when performing NC processing.
  • the clamping force of the clamping device is changed to the maximum allowable clamp force corresponding to the next machined part, and the workpiece is continuously clamped. All these operations are performed automatically by the command of the NC device of the NC machine tool.
  • step b) is performed by: f) measuring the positions of a plurality of machining sites on the workpiece by a measuring instrument equipped on the NC machine tool before clamping the workpiece by the clamping device provided on the work table; g) Clamps the workpiece with the clamp device, h) Measures the positions of multiple machining sites with the measuring device while being clamped by the clamp device, and i) Based on the measured values before and after the clamp
  • the measuring device may consist of a touch probe attached to the spindle of the NC machine tool.
  • step d) the workpiece is clamped in a predetermined machining posture by continuously changing the clamping force of the clamping device, and k) a plurality of The method may include a step of determining a maximum clamping force within a range in which a displacement amount does not exceed a displacement allowable value for each of the joint portions, and storing the maximum clamping force in the NC device as a maximum allowable clamping force.
  • FIG. 1 is a functional block diagram of an NC device for implementing the clamping method according to the present invention
  • FIG. 2 is a schematic diagram of a vertical NC drilling machine to which the method according to the present invention can be applied,
  • Fig. 3a is a diagram showing a clamp device provided on a work table of the drilling machine of Fig. 2 and a workpiece to be processed clamped by the clamp device in a state before the clamp,
  • FIG. 3b is a diagram showing the clamp device provided on the work table of the drilling machine of FIG. 2 and the workpiece to be processed clamped by the clamp device in a state after the clamping,
  • FIG. 4a is a flowchart showing a process of a clamping method according to an embodiment of the present invention.
  • Figure 4b is a flow chart showing the process following Figure 4a
  • Figure 4c is a flowchart showing the process following Figure 4b
  • Figure 4d is the flowchart showing the process following Figure 4c
  • Figure 4e is the flowchart showing the process following Figure 4d.
  • FIG. 4f is a flowchart showing a process following FIG. 4e
  • FIG. 4g is a flowchart showing a process following FIG. 4f.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in more detail based on preferred embodiments shown in the accompanying drawings.
  • any other type of NC machine tool that clamps a work to be processed on a work table using a clamping device is described. Needless to say, the present invention can be applied to this.
  • FIG. 2 shows a known vertical NC drilling machine 10 to which the clamping method according to an embodiment of the present invention can be applied.
  • the drilling machine 10 includes a bed 12 installed on the work floor.
  • a column 14 is erected on the bed 12, and the spindle head 16 is supported on the column 14 so as to be movable in the vertical direction (Z-axis direction) in the figure by driving the Z-axis feed motor Mz . It is.
  • the spindle head 16 rotatably supports the spindle 18 at its front end.
  • the spindle 18 rotates by driving the spindle motor M s, and a tool (not shown) held at the tip of the spindle 18 Performs drilling on the workpiece.
  • the bed 12 supports the saddle 20 so as to be able to be moved by driving a Y-axis feed motor (not shown) in a Y-axis direction orthogonal to the Z-axis.
  • a work table 22 is provided on the upper surface of the saddle 20 so as to be able to move by driving an X-axis feed motor (not shown) in the X-axis direction orthogonal to both the Z-axis and the Y-axis. You.
  • the main shaft 18 and the work table 22 can be relatively moved in an orthogonal three-axis coordinate system including the X-axis, the Y-axis, and the Z-axis, which are orthogonal to each other.
  • the drilling machine 10 includes an NC device 24 that performs various control operations in NC machining such as a feed operation in accordance with an NC program.
  • An NC program 26 that numerically represents command information such as position coordinates, a feed speed, and a rotation speed of a tool is generally created on an NC tape and then input to the NC device 24.
  • the drilling machine 10 is equipped with an automatic tool changer (ATC: not shown). Therefore, a desired tool can be automatically attached to and detached from the spindle 18 from a plurality of tools stored in a tool magazine (not shown), and can be replaced. In the tool magazine, together with various tools, an evening probe 28 (see Fig. 3) used for measuring the surface position of the workpiece to be machined, such as a machining reference point, is housed. Detachable.
  • a clamp device 30 for clamping a workpiece W is provided on a work table 22 of the drilling machine 10.
  • the clamp device 30 includes a base 32 fixed to the work table 22, a claw 34 in contact with the work W, and a cylinder 36 for moving the claw 34 with respect to the base 32.
  • the cylinder 36 is operated, for example, by hydraulic pressure or air pressure, and can clamp the workpiece W with a clamping force that can oppose the cutting force during machining, and can change the clamper as desired.
  • the work W is deformed by the clamper of the clamp device 30 as shown in FIG. If machining is performed in this state, there will be a deviation between the coordinate values of the machining area in the NC program and the actual coordinate values of the machining area on the workpiece W to be actually machined, due to the deformation of the workpiece. Is a problem with conventional NC machine tools. Therefore, in the present invention, the above-mentioned displacement, that is, the amount of displacement due to the clamping force at the machined portion of the workpiece W is measured and calculated before the machining is performed, and the maximum amount of the displacement within a range that does not exceed a predetermined allowable value is measured.
  • the NC unit 24 includes an input unit 38 for inputting an NC program 26 having NC command data such as a tool operation mode, a moving position, and a feed speed, and an NC input from the input unit 38.
  • NC command data such as a tool operation mode, a moving position, and a feed speed
  • An arithmetic control unit 40 that performs calculations such as positioning and interpolation based on command data
  • a storage unit 42 that records calculation results and control programs
  • a feed drive motor and spindle motor for each axis based on the calculation results
  • This is a well-known NC device including a servo control unit 44 for controlling the control.
  • the NC device 24 calculates the amount of displacement of the workpiece clamped by the clamp device on the worktable at a plurality of machining sites, and stores the amount of displacement in the storage unit 4.
  • a comparison calculation unit 46 for comparing with the predetermined displacement allowable value recorded in 2 and a maximum allowable clamper is determined based on the calculation result of the comparison calculation unit 46, and a clamping device is And a clamp controller 48 for setting and changing the clamper 30 to the maximum allowable clamping force.
  • the data 50 for calculating the work displacement amount is obtained by using the touch probe 28 attached to the tip of the spindle to obtain the coordinate values of the work site of the work before and after clamping. That is, it is obtained by measuring before and after deformation.
  • FIGS. 4A to 4G a series of processes of the clamping method according to an embodiment of the present invention will be described.
  • the NC program 24 and the NC program 26 and the allowable displacement (X, «a, az) at each machining site are input to the NC device 24 , and the work table 22 is displayed. Place the workpiece W at the predetermined position in the same posture as when processing is performed, and press the start button of the NC device 24. Thus, the machining operation of the drilling machine 10 is started.
  • the evening probe 28 is attached to the spindle 18 by the automatic tool changer.
  • the clamp device 30 is released (step 62), and the work W is kept in a deformed state (see FIG. 3A).
  • the processing portion is not arranged on the end face of the workpiece W, and the processing surface is generally orthogonal to the feed direction of the spindle 18, that is, the ⁇ -axis direction.
  • the predetermined tolerance 2 is set, and the location of the workpiece probe 28 in contact with the workpiece W is set. If the coordinates are within two tolerances (that is, ⁇ ⁇ ⁇ ⁇ ⁇ - ⁇ ⁇ X ⁇ Xp + in step 63), it is determined that the workpiece can be reached.
  • the evening probe 28 touches the workpiece W in step 64.
  • step 65 the YUTSU probe 28 is slightly shifted in the Y-axis direction to approach the workpiece W in the X-axis direction in the same manner. Abuts on workpiece W near machining area
  • the position coordinate value (X,, Yi, Za) of the processing position on the work W without deformation before being clamped by the clamping device 30 on the work table 22 or a point near the processing position. Is measured and recorded. Therefore, next, the work W is firmly clamped at the same position on the work table 22 in the same posture by the maximum clamper of the clamp device 30 (step 75).
  • the position coordinate values (X,, ,,, ⁇ ,) and () before and after clamping (ie, after the displacement) at the machining site of the workpiece W or at one point near the same are determined.
  • the comparison calculation unit 46 of the NC device 24 calculates the displacement amount ( ⁇ ,, ⁇ y, ⁇ ⁇ ), then, the displacement amount ( ⁇ X, ⁇ ⁇ , ⁇ ⁇ ) prerecorded displaced allowable value in the storage section 3 6 and the axial component of ( ⁇ ⁇ , ⁇ , t) is compared with.
  • Step 8 3 to compare the X-axis component ⁇ comparison result, if the amount of displacement epsilon chi is greater than the displacement tolerance X, Sutetsu
  • step 83 if the displacement amount £ X is smaller than the allowable displacement value ⁇ , the clamping force used in step 75 is regarded as the maximum clamping force Px and recorded in the storage unit 36 of the NC device.
  • Step 92 c
  • the maximum clamp force ⁇ ⁇ ⁇ ⁇ in the range where the Y component ⁇ ⁇ ⁇ of the displacement amount is equal to or less than the allowable value ⁇ is obtained. Is determined and recorded in the storage unit 36 of the NC device. Further, as shown in Fig.
  • the maximum clamping force ⁇ ⁇ in the range where the Z component ⁇ ⁇ ⁇ of the displacement amount is equal to or less than the allowable value ⁇ ⁇ is similarly determined in steps 103 to 112. Recorded in the storage unit 36 of the NC unit.
  • the automatic probe changer replaces the evening probe 28 attached to the tip of the spindle with a desired tool for machining.
  • step 1 16 under the control of the clamp controller 48 of the NC device 24, the clamp device 30 is set to the maximum allowable clamping force P to clamp the workpiece W, and then in step 1 17 Perform NC machining.
  • the clamping device 30 is set as needed to the maximum allowable clamping force determined for the machining area. Change and clamp the workpiece W. In this way, during the execution of the NC machining, the workpiece W can always be reliably clamped by the optimal clamping force that causes deformation below the allowable value in all the machining portions of the workpiece W.
  • the work displacement amount calculation data that is, the coordinate values of the machined parts before and after the clamp or the vicinity thereof were measured using the evening probe 28 for work surface position measurement provided on the NC drilling machine. Based on this, the configuration is such that the coordinate values of the corrected machining site are calculated.
  • the workpiece shape is complicated and the YUTSU probe 28 cannot approach the machined part, and even if a point near the machined part is measured, the error between the obtained displacement and the actual displacement of the machined part is small. May be expected to be large.
  • a projection to which the UTSU probe 28 can be brought into contact with the processing surface of the processing portion of the workpiece W is formed by a magnet or the like.
  • a possible method is to measure the position as close as possible to the part to be machined.
  • manual work is required when attaching and detaching the protrusions to and from the work, which hinders complete automation. Therefore, it is convenient to input various data for clamping the workpiece to the NC device 24 and calculate the work displacement amount by a predetermined calculation such as a finite element method.
  • the present invention compares the amount of deformation of the work generated when the work to be processed is clamped on the worktable by the clamp device with a predetermined allowable value in the NC device. Determine the maximum allowable clamping force of the clamp device to reduce the amount of work deformation below the allowable value for each of the multiple machining parts, and when performing NC machining, automatically execute the machining part
  • the work piece is clamped by setting and changing the clamp force of the clamp device to the maximum allowable clamping force in accordance with the movement.

Abstract

A clamp method is provided to promote automation and energy saving in an NC machine tool and accomplish high precision automatic machining. According to this method, a workpiece liable to deformation is firmly clamped without causing clamping forces to bring about its deformation that may cause inaccuracy in machining. First, a work to be machined in accordance with an instruction of an NC machine (24) is placed on a work table. A plurality of machining positions on the workpiece are measured by a touch probe (28) before and after the workpiece is set on a clamping device (30) provided to the work table. The quantity of displacement of each machining portion is computed by comparison/computation portion (46) on the basis of the measurement data (50), and is compared with an allowable displacement quantity stored in a memory unit (42), in order to determine a maximum allowable clamp force of the clamping device (30) for each of a plurality of machining portions so that the displacement quantity does not exceed the allowable value. When NC machining is carried out, the clamping device (30) is set for the maximum allowable clamp force control of the clamp control unit (48) in such a manner as to correspond to the movement of the machining portions. The clamping force may be varied depending on actual clamping conditions.

Description

明細書 ワークの変形防止クランプ方法 技術分野  Description Clamping method for work deformation prevention
本発明は、 工作機械における被加工ワークの過度の変形を防止し たクランプ方法に関する。 さらに詳述すれば、 本発明は、 N C工作 機械において、 中空形状や小形又は薄肉の撓み易い形状の被加エワ ークをワークテーブル上でクランプ装置によってクランプしたとき に発生するワークの変形量を、 加工部位ごとに N C加工の開始前に 自動検出し、 この変形量が許容値を超えない範囲でのクランプ装置 の最大許容クランプ力を加工部位ごとに決定し、 N C加工の実施に 際して、 加工部位に対応してクランプ装置のクランブカを上記決定 に従い自動的に変更することにより、 ワーク変形を許容範囲に抑え た高精度の自動機械加工を可能とした被加工ワークの変形防止クラ ンプ方法に関する。 背景技術  The present invention relates to a clamping method for preventing a workpiece to be machined from being excessively deformed in a machine tool. More specifically, the present invention relates to an NC machine tool, which is capable of reducing the amount of deformation of a workpiece generated when a hollow, small, or thin-walled flexible workpiece is clamped on a work table by a clamping device. , Automatically detected before starting NC machining for each machining area, and the maximum allowable clamping force of the clamping device is determined for each machining area within the range where this deformation does not exceed the allowable value. By automatically changing the clamper of the clamp device according to the processing area according to the above determination, a method for preventing deformation of the workpiece to be processed that enables high-precision automatic machining with workpiece deformation within an allowable range About. Background art
機械加工を実施する際には、 工具の切削力に対抗して被加エワ一 クをワークテーブル上に強固に固定支持する必要がある。 したがつ て一般に工作機械では、 ワークを固定支持するためのクランプ装置 がワークテーブルに配備される。 しかしながら、 ワークが中空形状 や小型又は薄肉の撓み易い形状を有する場合は、 クランプ装置のク ランプ力によってワークに変形が生じることがある。 N C工作機械 によって自動加工を行う際に、 クランプ力によるワークの変形は、 結果として加工精度に悪影響を及ぼす。 N C工作機械においては、 予め記憶された N Cプログラムに従ってワークの自動加工を遂行す るので、 クランプ時にワークが変形すると、 N Cプログラムで座標 値により指定された加工部位と実際に加工すべきワーク上の加工部 位との間にずれが生じ、 加工を実施した結果、 所望の部品形状及び 加工精度が得られないことになる。 When performing machining, it is necessary to firmly support the affected workpiece on the work table against the cutting force of the tool. Therefore, generally, in a machine tool, a clamp device for fixing and supporting a work is provided on a work table. However, when the work has a hollow shape or a small or thin flexible shape, the work may be deformed by the clamping force of the clamp device. When performing automatic machining with an NC machine tool, deformation of the workpiece due to the clamping force will adversely affect machining accuracy. NC machine tools perform automatic machining of workpieces according to NC programs stored in advance. Therefore, if the workpiece is deformed during clamping, there will be a gap between the machining area specified by the coordinate values in the NC program and the machining area on the workpiece to be actually machined. Shape and processing accuracy cannot be obtained.
このような不具合を回避するため、 従来は加工しょうとするヮー クの材質や形状に応じて、 クランプ装置によるクランプ位置やクラ ンプカを適正に調整する方法が一般に行われている。 例えば、 クラ ンプ力が大きくても変形を生じないような材質及び形状のワークに 対しては、 安定した加工を行うに充分な力でワークを固定し、 他方、 変形を生じ易い例えば小形薄肉形状のワークに対しては、 加工精度 を確保するために機械加工が可能な限界までクランプ力を小さくす るというように、 ワークごとにクランプ力を加工実施前に予め決定 しかつ調整することにより所要の加工精度を得ることができる。 ま た、 1つのワーク上で加工部位が移動する間に、 直前の加工部位で は適切だったクランプ力が次の加工部位では不適切 (変形量が大き い、 又はクランプ力が弱い) となる場合があるが、 この場合には一 旦加工を止めてクランプ力を適切に調整したり、 ワーク上のクラン プ位置を移動して加工部位での変形量を最小限にしつつ充分なクラ ンプカを付与したりした後に、 加工を実施すればよい。 これらの方 法において、 クランプ装置のクランプ力の調整は、 例えばボルト締 結式の場合はボルトの締結力を、 油圧や気圧式の場合は供給圧力を、 それぞれ調整することにより行われる。  Conventionally, in order to avoid such a problem, a method of appropriately adjusting a clamp position and a clamper by a clamp device according to a material and a shape of a workpiece to be processed has been generally performed. For example, for a workpiece with a material and shape that does not cause deformation even if the clamping force is large, the workpiece is fixed with sufficient force to perform stable processing, while, for example, a small thin-walled shape that easily deforms For workpieces of the same type, the clamping force is determined in advance and adjusted for each workpiece, such as reducing the clamping force to the limit where machining can be performed in order to ensure processing accuracy. Processing accuracy can be obtained. In addition, while the machining part moves on one workpiece, the appropriate clamping force at the previous machining part becomes inappropriate (large deformation or weak clamping force) at the next machining part. In this case, in this case, stop machining and adjust the clamping force appropriately, or move the clamp position on the workpiece to minimize the amount of deformation in the machined part and ensure that there is sufficient clamping force. After the application, processing may be performed. In these methods, the adjustment of the clamping force of the clamping device is performed, for example, by adjusting the bolt fastening force in the case of a bolt fastening type, and by adjusting the supply pressure in the case of a hydraulic or pneumatic type.
このように、 クランプ装置のクランプ力によって生じるワークの 変形は、 動加工における加工精度を低下させる要因であるが、 そ の反面、 安定した加工を実施するためには切削力に耐え得る力でヮ —クを固定することが不可欠である。 特に今日のように小形で薄肉 なワークを精密に加工する要請が増してくると、 ワークの変形を最 小限にしつつ充分な力でワークを固定支持することが、 加工精度を 向上するための必須要件となっている。 また、 マシニングセンタに おける A T C (自動工具交換) やロボッ トの採用によるワークの口 一ディ ング、 アン口一ディ ングを含めて、 単位ワーク当たりの加工 時間の短縮及び多種類の N C加工工程の段取りの省力化を達成しよ うとする際に、 クランプ位置を加工工程中に変更したりワークや加 ェ部位ごとにクランプカを調整することは一般に人為的作業の介入 を要するので、 機械加工の自動化を妨げることとなる。 発明の開示 As described above, the deformation of the work caused by the clamping force of the clamping device is a factor that lowers the processing accuracy in the dynamic processing, but on the other hand, in order to perform the stable processing, it is a force that can withstand the cutting force. —It is essential to secure In particular, as the demand for precision machining of small, thin-walled workpieces has increased as in today, deformation of the workpieces has been minimized. Fixing and supporting the work with sufficient force while minimizing it is an essential requirement for improving machining accuracy. In addition, shortening the machining time per unit work and setting up various types of NC machining processes, including the use of ATC (Automatic Tool Change) and the use of robots in machining centers, such as cutting and uncutting of workpieces. When trying to achieve labor savings, changing the clamping position during the machining process or adjusting the clamping force for each work or added part generally requires the intervention of human work. It will hinder. Disclosure of the invention
本発明の目的は、 変形を生じ易い形状のワークを、 クランプ力に よるワーク変形に起因した加工精度の低下を生じることなく確実に 固定でき、 以て、 N C工作機械において自動化及び省力化を推進し つつ、 高精度の自動機械加工を実施可能とするワークの変形防止ク ランプ方法を提供することにある。  An object of the present invention is to reliably fix a workpiece having a shape that is easily deformed without lowering the processing accuracy due to the deformation of the workpiece due to the clamping force, thereby promoting automation and labor saving in NC machine tools. It is another object of the present invention to provide a workpiece deformation preventing clamp method which enables high-precision automatic machining.
上記目的を達成するために、 本発明は、 N C工作機械におけるヮ ークの変形防止クランプ方法であって、 a ) N C装置の指令に従つ て加工されるワークをワークテーブルに所定の加工姿勢で載せ、 b ) ワークテーブルに設けたクランプ装置によってワークをクラン プする前と後とで、 ワーク上の複数の加工部位の位置を比較して各 加工部位の変位量を算出し、 c ) 複数の加工部位の各々において算 出された変位量を、 N C装置に予め記憶された所定の変位許容値と 比較し、 d ) 変位量が変位許容値を超えない範囲で、 複数の加工部 位のそれぞれに対しクランプ装置の最大許容クランプカを決定して N C装置に記憶し、 e ) N C加工を実施する際に、 N C装置の指合 により、 複数の加工部位の各々に対応してクランプ装置のクランプ 力を最大許容クランプ力に設定し、 かつ加工部位の移動に伴い連続 的に変化させて、 ワークを所定の加工姿勢でクランプする各ステツ プを具備する方法を提供する。 In order to achieve the above object, the present invention relates to a method for clamping a workpiece to prevent deformation of a NC machine tool, comprising the steps of: a) placing a workpiece to be machined in accordance with a command of an NC device on a work table in a predetermined machining posture; B) Calculate the displacement of each machining part by comparing the positions of multiple machining parts on the work before and after clamping the work with the clamp device provided on the work table, c) The displacement calculated in each of the machining parts is compared with a predetermined displacement allowable value stored in advance in the NC device.d) Within a range where the displacement does not exceed the allowable displacement, Determine the maximum allowable clamping force of the clamp device for each and store it in the NC device.e) When performing NC machining, clamp the clamp device according to each of a plurality of machining parts by fingering of the NC device. Maximum power allowed clan Set the force, and continuously with the movement of the processing site The present invention provides a method including each step of clamping a work in a predetermined machining posture by changing the work position.
ワークをワークテーブル上でクランプ装置によってクランプした ときに発生するワークの変形量は、 ワーク上の複数の加工部位にお けるクランプ前後の変位量として算出される。 各加工部位について 算出された変位量は N C装置内で所定の変位許容値と比較され、 許 容値を超える場合は、 変位量が許容値以下になるようにクランプ装 置のクランプ力を変更する。 このようにして、 複数の加工部位のそ れぞれに対して、 ワーク変形量を許容値以下にするクランプ装置の 最大許容クランプ力が決定される。 N C装置は、 加工部位ごとの最 大許容クランプ力を記憶し、 N C加工を実施する際に、 各加工部位 に対応した最大許容クランプ力でワークをクランプするようにクラ ンプ装置を作動させる。 加工部位が次の部位に移動すると、 クラン プ装置のクランプ力を次の加工部位に対応した最大許容クランプ力 に変化させて引き続きワークをクランプする。 これらの操作は全て、 N C工作機械の N C装置の指令により自動的に実施される。  The amount of deformation of the work that occurs when the work is clamped on the work table by the clamp device is calculated as the amount of displacement before and after clamping at a plurality of machining sites on the work. The calculated displacement for each machined part is compared with the specified displacement tolerance in the NC unit, and if it exceeds the tolerance, the clamping force of the clamp device is changed so that the displacement is less than the tolerance. . In this way, the maximum allowable clamping force of the clamping device for reducing the work deformation amount to the allowable value or less for each of the plurality of machined parts is determined. The NC device stores the maximum allowable clamping force for each processing portion, and operates the clamping device so as to clamp the workpiece with the maximum allowable clamping force corresponding to each processing portion when performing NC processing. When the machined part moves to the next part, the clamping force of the clamping device is changed to the maximum allowable clamp force corresponding to the next machined part, and the workpiece is continuously clamped. All these operations are performed automatically by the command of the NC device of the NC machine tool.
上記の方法において、 ステップ b ) は、 f ) ワークテーブルに設 けたクランプ装置によってワークをクランプする前に、 ワーク上の 複数の加工部位の位置を N C工作機械に装備した測定器によって測 定し、 g ) クランプ装置によってワークをクランプし、 h ) クラン プ装置にクランプされた状態で、 複数の加工部位の位置を測定器に よって測定し、 i ) クランプ前とクランプ後との各測定値に基づき、 複数の加工部位の各々の変位量を N C装置内で算出する各ステツプ を含むことができる。 この場合、 測定器は、 N C工作機械の主軸に 装着されるタツチブローブからなってもよい。  In the above method, step b) is performed by: f) measuring the positions of a plurality of machining sites on the workpiece by a measuring instrument equipped on the NC machine tool before clamping the workpiece by the clamping device provided on the work table; g) Clamps the workpiece with the clamp device, h) Measures the positions of multiple machining sites with the measuring device while being clamped by the clamp device, and i) Based on the measured values before and after the clamp Each step of calculating the displacement amount of each of the plurality of processing parts in the NC device can be included. In this case, the measuring device may consist of a touch probe attached to the spindle of the NC machine tool.
また、 ステップ d ) は、 j ) クランプ装置のクランプ力を連続的 に変化させてワークを所定の加工姿勢でクランプし、 k ) 複数の加 ェ部位のそれぞれに対し、 変位量が変位許容値を超えない範囲での 最大クランプ力を決定して、 最大クランプ力を最大許容クランプ力 として N C装置に記憶する各ステップを含むことができる。 図面の簡単な説明 In step d), j) the workpiece is clamped in a predetermined machining posture by continuously changing the clamping force of the clamping device, and k) a plurality of The method may include a step of determining a maximum clamping force within a range in which a displacement amount does not exceed a displacement allowable value for each of the joint portions, and storing the maximum clamping force in the NC device as a maximum allowable clamping force. BRIEF DESCRIPTION OF THE FIGURES
本発明の上記及び他の目的、 特徵、 及び利点を、 添付図面に示す 実施例に基づいて説明する。 同添付図面において ;  The above and other objects, features, and advantages of the present invention will be described based on embodiments shown in the accompanying drawings. In the accompanying drawings;
図 1 は、 本発明によるクランプ方法を実施するための N C装置の 機能ブロック図、  FIG. 1 is a functional block diagram of an NC device for implementing the clamping method according to the present invention,
図 2は、 本発明に係る方法を適用可能な立形 N Cボール盤の概略 図、  FIG. 2 is a schematic diagram of a vertical NC drilling machine to which the method according to the present invention can be applied,
図 3 aは、 図 2のボール盤のヮークテーブルに設けたクランプ装 置と、 クランプ装置によってクランプされた被加工ワークとを、 ク ランプ前の状態で示す図、  Fig. 3a is a diagram showing a clamp device provided on a work table of the drilling machine of Fig. 2 and a workpiece to be processed clamped by the clamp device in a state before the clamp,
図 3 bは、 図 2のボール盤のヮークテーブルに設けたクランプ装 置と、 クランプ装置によってクランプされた被加工ワークとを、 ク ランプ後の状態で示す図、  FIG. 3b is a diagram showing the clamp device provided on the work table of the drilling machine of FIG. 2 and the workpiece to be processed clamped by the clamp device in a state after the clamping,
図 4 aは、 本発明の一実施例によるクランプ方法のプロセスを示 すフローチヤ一ト、  FIG. 4a is a flowchart showing a process of a clamping method according to an embodiment of the present invention.
図 4 bは、 図 4 aに続くプロセスを示すフローチャー ト、  Figure 4b is a flow chart showing the process following Figure 4a,
図 4 cは、 図 4 bに続くプロセスを示すフローチヤ一ト、 図 4 dは、 図 4 cに続くプロセスを示すフローチヤ一ト、 図 4 eは、 図 4 dに続くプロセスを示すフローチヤ一ト、  Figure 4c is a flowchart showing the process following Figure 4b, Figure 4d is the flowchart showing the process following Figure 4c, and Figure 4e is the flowchart showing the process following Figure 4d. ,
図 4 f は、 図 4 eに続くプロセスを示すフローチヤ一ト、 図 4 gは、 図 4 f に続くプロセスを示すフローチヤ一トである。 発明を実施するための最良の形態 以下、 添付図面に示した好適な実施例に基づき、 本発明をさらに 詳細に説明する。 なお、 以下の説明では、 本発明によるクランプ方 法を立形 N Cボール盤に適用した例を示すが、 クランプ装置を用い て被加工ワークをワークテーブル上にクランプする他のあらゆる形 式の N C工作機械に対して本発明が適用可能であることは言うまで もない。 FIG. 4f is a flowchart showing a process following FIG. 4e, and FIG. 4g is a flowchart showing a process following FIG. 4f. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail based on preferred embodiments shown in the accompanying drawings. In the following description, an example in which the clamping method according to the present invention is applied to a vertical NC drilling machine will be described. However, any other type of NC machine tool that clamps a work to be processed on a work table using a clamping device is described. Needless to say, the present invention can be applied to this.
図面を参照すると、 図 2は、 本発明の実施例によるクランプ方法 を適用可能な周知の立形 N Cボール盤 1 0を示す。 ボール盤 1 0は、 作業床面に設置されるべッ ド 1 2を備える。 べッ ド 1 2にはコラム 1 4が立設され、 コラム 1 4に、 主軸頭 1 6が Z軸送りモータ M z の駆動によって図の上下方向 (Z軸方向) に送り移動可能に支持さ れる。 主軸頭 1 6は、 その前端に主軸 1 8を回転可能に支持し、 主 軸モータ M s の駆動により主軸 1 8が回転して、 主軸 1 8の先端に 保持された工具 (図示せず) がワークに穴あけ加工を実施する。 ま た、 ベッ ド 1 2は、 サドル 2 0を、 Z軸に直交する Y軸方向に Y軸 送りモータ (図示せず) の駆動により送り移動可能に支持する。 さ らに、 サドル 2 0の上面にはヮークテーブル 2 2が、 Z軸及び Y軸 の両軸に直交する X軸方向に X軸送りモータ (図示せず) の駆動に より送り移動可能に設置される。 このように主軸 1 8 とワークテー ブル 2 2とは、 相互に直交する X軸、 Y軸及び Z軸で構成された直 交 3軸座標系において相対的に送り移動可能となっている。 Referring to the drawings, FIG. 2 shows a known vertical NC drilling machine 10 to which the clamping method according to an embodiment of the present invention can be applied. The drilling machine 10 includes a bed 12 installed on the work floor. A column 14 is erected on the bed 12, and the spindle head 16 is supported on the column 14 so as to be movable in the vertical direction (Z-axis direction) in the figure by driving the Z-axis feed motor Mz . It is. The spindle head 16 rotatably supports the spindle 18 at its front end. The spindle 18 rotates by driving the spindle motor M s, and a tool (not shown) held at the tip of the spindle 18 Performs drilling on the workpiece. Further, the bed 12 supports the saddle 20 so as to be able to be moved by driving a Y-axis feed motor (not shown) in a Y-axis direction orthogonal to the Z-axis. In addition, a work table 22 is provided on the upper surface of the saddle 20 so as to be able to move by driving an X-axis feed motor (not shown) in the X-axis direction orthogonal to both the Z-axis and the Y-axis. You. As described above, the main shaft 18 and the work table 22 can be relatively moved in an orthogonal three-axis coordinate system including the X-axis, the Y-axis, and the Z-axis, which are orthogonal to each other.
ボール盤 1 0は、 送り動作等の N C加工における種々の制御動作 を N Cプログラムに従って遂行する N C装置 2 4を備える。 工具の 位置座標、 送り速度、 回転速度等の指令情報を数値化して示す N C プログラム 2 6は、 一般に N Cテープに作成した上で N C装置 2 4 に入力される。 また、 ボール盤 1 0は自動工具交換装置 (A T C : 図示せず) を備え、 N Cプログラム 2 6内の工具交換プログラムに 従って、 工具マガジン (図示せず) に収容された複数の工具から所 望の工具を主軸 1 8に自動的に着脱、 交換できるようになつている。 工具マガジン内には種々の工具とともに、 被加工ワークの加工基準 点等の面位置測定に使用される夕ツチプローブ 2 8 (図 3参照) が 収容され、 自動工具交換装置によって同様に主軸 1 8に着脱される。 図 3に示すように、 ボール盤 1 0のヮークテーブル 2 2には、 被 加工ワーク Wをクランプするクランプ装置 3 0が配備される。 クラ ンプ装置 3 0は、 ワークテーブル 2 2に固定される基台 3 2と、 ヮ ーク Wに当接する爪 3 4 と、 爪 3 4を基台 3 2に対して移動させる シリ ンダ 3 6 とを備える。 シリ ンダ 3 6は、 例えば油圧又は気圧に よって作動し、 加工時の切削力に対抗し得るクランプ力でワーク W をクランプするとともに、 所望によりそのクランプカを変化させる ことができる。 The drilling machine 10 includes an NC device 24 that performs various control operations in NC machining such as a feed operation in accordance with an NC program. An NC program 26 that numerically represents command information such as position coordinates, a feed speed, and a rotation speed of a tool is generally created on an NC tape and then input to the NC device 24. The drilling machine 10 is equipped with an automatic tool changer (ATC: not shown). Therefore, a desired tool can be automatically attached to and detached from the spindle 18 from a plurality of tools stored in a tool magazine (not shown), and can be replaced. In the tool magazine, together with various tools, an evening probe 28 (see Fig. 3) used for measuring the surface position of the workpiece to be machined, such as a machining reference point, is housed. Detachable. As shown in FIG. 3, a clamp device 30 for clamping a workpiece W is provided on a work table 22 of the drilling machine 10. The clamp device 30 includes a base 32 fixed to the work table 22, a claw 34 in contact with the work W, and a cylinder 36 for moving the claw 34 with respect to the base 32. And The cylinder 36 is operated, for example, by hydraulic pressure or air pressure, and can clamp the workpiece W with a clamping force that can oppose the cutting force during machining, and can change the clamper as desired.
クランプ装置 3 0によって、 例えば図 3 aに示すような薄板状の ワーク Wをクランプすると、 ワーク Wはクランプ装置 3 0のクラン プカによって、 図 3 bに強調して図示したように変形する。 この状 態で加工を実施すると、 N Cプログラムにおける加工部位の座標値 と実際に加工すべきワーク W上の加工部位の実際の座標値との間に ワーク変形に起因したずれが生じるので、 加工精度が低下するとい うのが従来の N C工作機械の課題であった。 そこで本発明では、 上 記の位置ずれ、 すなわちワーク Wの加工部位におけるクランプ力に よる変位量を加工実施前に測定かつ算出し、 この変位量が所定の許 容値を超えない範囲での最大許容クランプ力を決定して、 加工部位 に対応した最大許容クランプ力でワーク Wをクランプしながら N C 加工を実施する。 以下、 本発明の実施例を、 図 1のブロック図及び 図 4 a〜図 4 gのフローチヤ一トを参照して説明する。  When a thin work W as shown in FIG. 3A is clamped by the clamp device 30, the work W is deformed by the clamper of the clamp device 30 as shown in FIG. If machining is performed in this state, there will be a deviation between the coordinate values of the machining area in the NC program and the actual coordinate values of the machining area on the workpiece W to be actually machined, due to the deformation of the workpiece. Is a problem with conventional NC machine tools. Therefore, in the present invention, the above-mentioned displacement, that is, the amount of displacement due to the clamping force at the machined portion of the workpiece W is measured and calculated before the machining is performed, and the maximum amount of the displacement within a range that does not exceed a predetermined allowable value is measured. Determine the allowable clamping force, and perform NC machining while clamping the workpiece W with the maximum allowable clamping force corresponding to the machining area. Hereinafter, an embodiment of the present invention will be described with reference to the block diagram of FIG. 1 and the flowcharts of FIGS. 4A to 4G.
図 1 に示すように、 本発明によるクランプ方法を実施するための N C装置 2 4は、 工具の動作モード、 移動位置、 送り速度等の N C 指令デ一夕を備えた N Cプログラム 2 6を入力するための入力部 3 8 と、 入力部 3 8から入力される N C指令データに基づき位置決め や補間等の演算を実施する演算制御部 4 0 と、 演算結果や制御プロ グラムを記録する記憶部 4 2と、 演算結果に基づいて各軸の送り駆 動モータや主軸モータを制御するサーボ制御部 4 4 とを備えた周知 の N C装置である。 そして本発明を実施するにあたり、 N C装置 2 4は、 ヮ一クテ一ブル上でクランプ装置によりクランプされたヮー クの複数の加工部位における変位量を算出するとともに、 この変位 量を、 記憶部 4 2に記録された所定の変位許容値と比較する比較演 算部 4 6 と、 比較演算部 4 6の演算結果に基づいて最大許容クラン ブカを決定し、 加工部位の移動に対応してクランプ装置 3 0のクラ ンプカを最大許容クランプ力に設定かつ変更するクランプ制御部 4 8 とをさらに備える。 ワーク変位量を算出するためのデータ 5 0は、 本発明の好適な一実施例によれば、 主軸先端に取着したタツチプロ ーブ 2 8を用いて、 ワークの加工部位座標値をクランプの前後すな わち変形前と変形後とで測定することによって得られる。 以下、 図 4 a〜図 4 gを参照して、 本発明の一実施例によるクランプ方法の —連のプロセスを説明する。 As shown in FIG. 1, a method for implementing the clamping method according to the present invention is described. The NC unit 24 includes an input unit 38 for inputting an NC program 26 having NC command data such as a tool operation mode, a moving position, and a feed speed, and an NC input from the input unit 38. An arithmetic control unit 40 that performs calculations such as positioning and interpolation based on command data, a storage unit 42 that records calculation results and control programs, and a feed drive motor and spindle motor for each axis based on the calculation results This is a well-known NC device including a servo control unit 44 for controlling the control. In practicing the present invention, the NC device 24 calculates the amount of displacement of the workpiece clamped by the clamp device on the worktable at a plurality of machining sites, and stores the amount of displacement in the storage unit 4. A comparison calculation unit 46 for comparing with the predetermined displacement allowable value recorded in 2 and a maximum allowable clamper is determined based on the calculation result of the comparison calculation unit 46, and a clamping device is And a clamp controller 48 for setting and changing the clamper 30 to the maximum allowable clamping force. According to a preferred embodiment of the present invention, the data 50 for calculating the work displacement amount is obtained by using the touch probe 28 attached to the tip of the spindle to obtain the coordinate values of the work site of the work before and after clamping. That is, it is obtained by measuring before and after deformation. Hereinafter, with reference to FIGS. 4A to 4G, a series of processes of the clamping method according to an embodiment of the present invention will be described.
図 4 aに示すように、 準備作業として、 N C装置 2 4に N Cプロ グラム 2 6 と各加工部位における変位許容値 (な X , « Υ , a z ) とを入力し、 ワークテーブル 2 2上の所定位置にワーク Wを加工実 施時と同じ姿勢で置き、 N C装置 2 4のスタートボタンを押す。 こ れによりボール盤 1 0の加工作業が開始されるが、 本発明ではまず 最初にステップ 6 1で自動工具交換装置により主軸 1 8に夕ツチプ ローブ 2 8を取着する。 ここでクランプ装置 3 0を開放し (ステツ プ 6 2 ) 、 ワーク Wを変形のない状態にする (図 3 a参照) 。 次いでステップ 6 3で、 夕ツチプローブ 2 8を、 NCプログラム 2 6の加工部位座標値データ (ΧΡ , ΥΡ , Z P ) に基づきワーク W上の加工部位へまず X軸方向から接近させ (すなわち X軸及び Y 軸の送り駆動モータを作動させて主軸 1 8を Υ = ΥΡ の直線上で X = Χ Ρ の地点へ向けて移動させ) 、 加工部位へ到達できるか否かを 判定する (夕ツチプローブ 2 8を移動させる方向を X軸の正方向と する) 。 ここで本実施例では NCボール盤による穴あけ加工を想定 しているため、 加工部位はワーク Wの端面に配置されず、 しかも一 般に加工面は主軸 1 8の送り方向すなわち Ζ軸方向に直交する X— Υ平面に平行である。 したがって上記の方法では夕ツチプローブ 2 8を正確に加工部位へ到達させることは事実上不可能であり、 その ため所定の公差 2 を設定して、 夕ツチプローブ 2 8がワーク Wに 当接した位置の座標が公差 2ひの範囲内 (すなわちステップ 6 3で は Χ Ρ - α≤ X≤ Xp + ) にあれば加工部位へ到達できたと判定 する。 As shown in Fig. 4a, as a preparation work, the NC program 24 and the NC program 26 and the allowable displacement (X, «a, az) at each machining site are input to the NC device 24 , and the work table 22 is displayed. Place the workpiece W at the predetermined position in the same posture as when processing is performed, and press the start button of the NC device 24. Thus, the machining operation of the drilling machine 10 is started. In the present invention, first, in step 61, the evening probe 28 is attached to the spindle 18 by the automatic tool changer. Here, the clamp device 30 is released (step 62), and the work W is kept in a deformed state (see FIG. 3A). Next, in step 63, the evening probe 28 is first approached from the X-axis direction to the machining site on the workpiece W based on the machining site coordinate value data (ΧΡ, ,, ZP) of the NC program 26 (that is, the X-axis and by operating the delivery driving motor of the Y-axis is moved toward the point X = chi [rho spindle 1 8 Upsilon = Upsilon [rho straight line), to determine if it can reach the machining area (evening Tsuchipurobu 2 The direction in which 8 is moved is the positive direction of the X axis.) Here, in the present embodiment, since drilling with an NC drilling machine is assumed, the processing portion is not arranged on the end face of the workpiece W, and the processing surface is generally orthogonal to the feed direction of the spindle 18, that is, the Ζ-axis direction. X—parallel to the Υ plane. Therefore, it is practically impossible for the above method to accurately reach the workpiece probe 28, and therefore, the predetermined tolerance 2 is set, and the location of the workpiece probe 28 in contact with the workpiece W is set. If the coordinates are within two tolerances (that is, ス テ ッ プ Ρ-α ≤ X ≤ Xp + in step 63), it is determined that the workpiece can be reached.
このようにして、 加工部位へ X軸方向から接近可能と判定された 場合は、 ステップ 6 4で、 夕ツチプローブ 2 8がワーク Wに当接 In this way, when it is determined that the workpiece can be approached from the X-axis direction, the evening probe 28 touches the workpiece W in step 64.
(スィッチ ON) した位置で主軸 1 8の送り移動を停止させる。 他 方、 加工部位へ X軸方向から接近不可能と判定された場合は、 ステ ップ 6 5で夕ツチプローブ 2 8を Y軸方向へ僅かにずらして同様に X軸方向からワーク Wに接近させ、 加工部位近傍でワーク Wに当接Stop the feed movement of spindle 18 at the position where the switch was turned on. On the other hand, if it is determined that the workpiece cannot be approached from the X-axis direction, in step 65, the YUTSU probe 28 is slightly shifted in the Y-axis direction to approach the workpiece W in the X-axis direction in the same manner. Abuts on workpiece W near machining area
(スィッチ ON) した位置で主軸 1 8の送り移動を停止させる。 こうしてタツチプローブ 2 8が ONとなり主軸 1 8の移動が止ま つた時点で、 ステップ 6 6でこのときの X座標値 X, を NC装置 2 4の記憶部 3 6に記録する。 同様にして、 図 4 bに示すように、 ス テツプ 6 7〜 7 0で加工部位又は加工部位近傍の 1地点における Y 座標値 を測定かつ記録し、 ステップ 7 1〜 7 4で同じく Z座標 値 Z i を測定かつ記録する。 Stop the feed movement of spindle 18 at the position where the switch was turned on. At this point, when the touch probe 28 is turned ON and the movement of the spindle 18 stops, the X coordinate value X, at this time, is recorded in the storage unit 36 of the NC device 24 in step 66. Similarly, as shown in Fig. 4b, the Y coordinate value at the processing part or at one point near the processing part is measured and recorded at steps 67 to 70, and the Z coordinate value is similarly calculated at steps 71 to 74. Measure and record the value Z i.
ここまでの各ステツプで、 ワークテーブル 2 2上でクランプ装置 3 0によってクランプする前の変形のないワーク Wにおける加工部 位又はその近傍の 1地点の位置座標値 (X, , Yi , Z a ) が測定 かつ記録されたことになる。 そこで次に、 ワーク Wを、 ワークテー ブル 2 2上の同一位置に同一姿勢でクランプ装置 3 0の最大クラン プカによって強固にクランプする (ステップ 7 5 ) 。  In each of the steps up to this point, the position coordinate value (X,, Yi, Za) of the processing position on the work W without deformation before being clamped by the clamping device 30 on the work table 22 or a point near the processing position. Is measured and recorded. Therefore, next, the work W is firmly clamped at the same position on the work table 22 in the same posture by the maximum clamper of the clamp device 30 (step 75).
続いて図 4 cに示すように、 ステップ 7 6で、 クランプ前に測定 した加工部位の座標値 (X , , Υ, , Z i ) に基づき、 夕ツチプロ ーブ 2 8をまず X軸方向からこの測定位置へ接近させ (すなわち X 軸及び Y軸の送り駆動モータを作動させて主軸 1 8を Y = Y, の直 線上で Χ = Χ , の地点へ向けて移動させ) 、 夕ツチプローブ 2 8が ワーク Wに当接 (スィッチ ON) した位置で主軸 1 8の送り移動を 停止させる。 そしてステップ 7 7で、 このときの X座標値 X2 を Ν C装置 2 4の記憶部 3 6に記録する。 同様にして、 ステップ 7 8 , 7 9でクランプ後の加工部位又は加工部位近傍の 1地点における Υ 座標値 Υ2 を測定かつ記録し、 ステップ 8 0 , 8 1で同じく Ζ座標 値 Ζ2 を測定かつ記録する。 Subsequently, as shown in FIG. 4c, in step 76, the evening probe 28 is first moved from the X-axis direction based on the coordinate values (X,, Υ,, Z i) of the machined part measured before clamping. Close to this measurement position (that is, actuate the X-axis and Y-axis feed drive motors to move the spindle 18 to the point Χ = Χ, on the line of Y = Y,), Stops the feed movement of the spindle 18 at the position where it contacts the workpiece W (switch ON). Then, in step 77, the X coordinate value X 2 at this time is recorded in the storage unit 36 of the ΝC device 24. Similarly, Step 7 8, 7 Upsilon coordinates Upsilon 2 in 1 point machining area or processing site near the clamped measured and recorded at 9, Step 8 0, also measured Zeta coordinates Zeta 2 8 1 And record.
このようにして、 ワーク Wの加工部位又はその近傍の 1地点にお けるクランプ前 (すなわち変位前) 及びクランプ後 (すなわち変位 後) の位置座標値 (X , , Υ, , Ζ , ) 及び (Χ2 , Υ2 , Ζ2 ) が測定かつ記録されると、 ステップ 8 2で、 NC装置 2 4の比較演 算部 4 6が変位量 ( ε χ , ε y , ε ζ ) を算出し、 次いで、 変位量 ( ε X , ε γ , ε ζ ) の各軸方向成分量と記憶部 3 6に予め記録さ れた変位許容値 (αχ , αν , t ) とを比較する。 In this way, the position coordinate values (X,, ,,, Ζ,) and () before and after clamping (ie, after the displacement) at the machining site of the workpiece W or at one point near the same are determined. When Χ 2 , Υ 2 , Ζ 2 ) are measured and recorded, in step 82, the comparison calculation unit 46 of the NC device 24 calculates the displacement amount (ε ,, ε y, ε ζ), then, the displacement amount (ε X, ε γ, ε ζ) prerecorded displaced allowable value in the storage section 3 6 and the axial component of χ, αν, t) is compared with.
図 4 dに示すように、 まずステップ 8 3で X軸成分の比較を行う < 比較の結果、 変位量 ε χ が変位許容値 X より大きい場合、 ステツ プ 8 4で、 クランプによるワーク変形が加工部位を夕ツチプローブ 2 8に近づけるものであつたか否か、 すなわち X2 < X 1 であるか 否かを判定する。 Χ2 <Χ, の場合は、 ステップ 8 5でクランプ装 置 3 0を開放し、 ステップ 8 6で夕ツチプローブ 2 8を Υ = Υ! の 直線上で X = X i — X の位置に固定配置する。 この状態で、 ステ ップ 8 7でクランプ装置 3 0を徐々に閉塞し、 ワーク Wが徐々に変 形して夕ツチプローブ 2 8に当接したときにクランプ装置 3 0の閉 塞を停止する。 Figure 4 As shown in d, first, in Step 8 3 to compare the X-axis component <comparison result, if the amount of displacement epsilon chi is greater than the displacement tolerance X, Sutetsu In step 84, it is determined whether or not the deformation of the workpiece due to the clamp has brought the processed part closer to the Tsuchi probe 28, that is, whether or not X 2 <X 1. If Χ 2 <Χ, open clamp device 30 in step 85, and fix Utsuchi probe 28 in position X = X i — X on the straight line Υ = Υ! In step 86. I do. In this state, the clamp device 30 is gradually closed in step 87, and when the work W is gradually deformed and comes into contact with the evening probe 28, the closing of the clamp device 30 is stopped.
ステップ 8 4で、 X2 < X j でないと判定された場合は、 ステツ プ 8 8でクランプ装置 3 0を閉塞し、 ステップ 8 9でタツチプロ一 ブ 2 8を Y = Y, の直線上で Χ = Χ, + αχ の位置に固定配置する。 この状態で、 ステップ 9 0でクランプ装置 3 0を徐々に開放し、 変 形したワーク Wが徐々に復元して夕ツチプローブ 2 8に当接したと きにクランプ装置 3 0の開放を停止する。 このようにして、 変位量 の X成分 £ X が許容値 X 以下になる範囲での最大クランプ力 Px が決定され、 ステップ 9 1でこのクランプ力 Px を N C装置の記憶 部 3 6に記録する。 If it is determined in step 84 that X 2 <X j is not satisfied, the clamp device 30 is closed in step 88 and the touch probe 28 is moved in step 89 to a straight line of Y = Y, Χ. = Χ, + αχ. In this state, the clamp device 30 is gradually released in step 90, and when the deformed work W is gradually restored and comes into contact with the evening probe 28, the release of the clamp device 30 is stopped. In this way, the maximum clamping force P x in a range where the X component of displacement amount X X is equal to or less than the allowable value X is determined, and in step 91, this clamping force P x is recorded in the storage unit 36 of the NC device. I do.
ステップ 8 3での比較の結果、 変位量 £ X が変位許容値 αχ より 小さい場合は、 ステップ 7 5で用いたクランプ力を最大クランプ力 Px と見なして NC装置の記憶部 3 6に記録する (ステップ 9 2 ) c 続いて図 4 eに示すように、 ステップ 9 3〜 1 0 2で、 同様にし て変位量の Y成分 ε Υ が許容値 γ 以下になる範囲での最大クラン プカ ΡΥ が決定され、 NC装置の記憶部 3 6に記録される。 さらに、 図 4 f に示すように、 ステップ 1 0 3〜 1 1 2で、 同様にして変位 量の Z成分 ε ζ が許容値 αζ 以下になる範囲での最大クランプ力 Ρ ζ が決定され、 NC装置の記憶部 3 6に記録される。 As a result of the comparison in step 83, if the displacement amount £ X is smaller than the allowable displacement value αχ , the clamping force used in step 75 is regarded as the maximum clamping force Px and recorded in the storage unit 36 of the NC device. (Step 92) c Subsequently, as shown in FIG. 4e, in steps 93 to 102, similarly, the maximum clamp force 範範 囲 in the range where the Y component ε 変 位 of the displacement amount is equal to or less than the allowable value γ is obtained. Is determined and recorded in the storage unit 36 of the NC device. Further, as shown in Fig. 4f, the maximum clamping force Ρ で in the range where the Z component ε 変 位 of the displacement amount is equal to or less than the allowable value α is similarly determined in steps 103 to 112. Recorded in the storage unit 36 of the NC unit.
最後に図 4 gに示すように、 このようにして得られた最大クラン プカ P x , P Y , P z を相互に比較して、 それらのうちで最小のク ランプ力を最大許容クランプ力 Pとする (ステップ 1 1 3 ) 。 以上 の各ステツブで、 1つの加工部位に対する最大許容クランプ力 Pが 得られたので、 同様にして他の加工部位に対する最大許容クランプ 力 Pを決定し、 その全てを N C装置の記憶部 3 6に記録する (ステ ッブ 1 1 4 ) 。 Finally, as shown in Fig. Puka P x, PY and P z are compared with each other, and the minimum clamping force among them is set as the maximum allowable clamping force P (step 113). In each of the above steps, the maximum allowable clamping force P for one processing part was obtained.In the same manner, the maximum allowable clamping force P for other processing parts was determined, and all of them were stored in the storage unit 36 of the NC unit. Record (steps 114).
次にステップ 1 1 5で、 自動工具交換装置により、 主軸先端に装 着した夕ツチプローブ 2 8を加工用の所望の工具に交換する。 そし てステップ 1 1 6で、 N C装置 2 4のクランプ制御部 4 8の制御の 下に、 クランプ装置 3 0を最大許容クランプ力 Pに設定してワーク Wをクランプし、 その後ステップ 1 1 7で N C加工を実施する。 こ のとき、 N Cプログラム 2 8に指定された加工部位が移動するに従 い、 クランプ装置 3 0を加工部位に対応して決定されている最大許 容クランプ力に随時設定し、 すなわちクランブカを随時変化させて ワーク Wをクランプする。 このようにして、 N C加工の実施の間、 ワーク Wの全ての加工部位において許容値以下の変形をもたらす最 適なクランプ力によって、 常にワーク Wを確実にクランプすること が可能となる。  Next, at step 115, the automatic probe changer replaces the evening probe 28 attached to the tip of the spindle with a desired tool for machining. Then, in step 1 16, under the control of the clamp controller 48 of the NC device 24, the clamp device 30 is set to the maximum allowable clamping force P to clamp the workpiece W, and then in step 1 17 Perform NC machining. At this time, as the machining area specified in the NC program 28 moves, the clamping device 30 is set as needed to the maximum allowable clamping force determined for the machining area. Change and clamp the workpiece W. In this way, during the execution of the NC machining, the workpiece W can always be reliably clamped by the optimal clamping force that causes deformation below the allowable value in all the machining portions of the workpiece W.
上記の実施例では、 N Cボール盤に装備したワーク面位置測定用 の夕ツチプローブ 2 8を用いて、 ワーク変位量算出用データすなわ ちクランプ前後の加工部位又はその近傍地点の座標値を測定し、 こ れに基づいて補正加工部位座標値を算出する構成とした。 しかしな がら、 ワーク形状が複雑で夕ツチプローブ 2 8が加工部位に接近で きず、 仮に加工部位近傍地点を測定したとしても、 得られる変位量 と実際の加工部位の変位量との間の誤差が大きいことが予測される 場合がある。 このような場合には、 例えばワーク Wの加工部位の加 工面上に夕ツチプローブ 2 8が当接可能な突起物を磁石等により取 着して、 できる限り加工部位に近い位置を測定する方法が考えられ る。 しかし、 この方法ではワークに突起物を着脱する際に手作業が 介在するため、 完全な自動化の妨げとなってしまう。 そこで、 ヮー クをクランプする際の諸データを N C装置 2 4に入力して、 例えば 有限要素法等の所定の演算によってワーク変位量を算出することが 好都合である。 産業上の利用可能性 In the above-described embodiment, the work displacement amount calculation data, that is, the coordinate values of the machined parts before and after the clamp or the vicinity thereof were measured using the evening probe 28 for work surface position measurement provided on the NC drilling machine. Based on this, the configuration is such that the coordinate values of the corrected machining site are calculated. However, because the workpiece shape is complicated and the YUTSU probe 28 cannot approach the machined part, and even if a point near the machined part is measured, the error between the obtained displacement and the actual displacement of the machined part is small. May be expected to be large. In such a case, for example, a projection to which the UTSU probe 28 can be brought into contact with the processing surface of the processing portion of the workpiece W is formed by a magnet or the like. A possible method is to measure the position as close as possible to the part to be machined. However, in this method, manual work is required when attaching and detaching the protrusions to and from the work, which hinders complete automation. Therefore, it is convenient to input various data for clamping the workpiece to the NC device 24 and calculate the work displacement amount by a predetermined calculation such as a finite element method. Industrial applicability
以上の説明から明らかなように、 本発明は、 被加工ワークをヮー クテーブル上でクランプ装置によってクランプしたときに発生する ワークの変形量を N C装置内で所定の許容値と比較することにより、 複数の加工部位のそれぞれに対して、 ワーク変形量を許容値以下に するクランプ装置の最大許容クランプ力を決定し、 N C加工を実施 する際に、 N C装置の指令により自動的に、 加工部位の移動に対応 してクランプ装置のクランプカを最大許容クランプ力に設定かつ変 化させて被加工ワークをクランプする構成とした。 その結果、 本発 明のクランプ方法によれば、 変形を生じ易い形状のワークを、 クラ ンプ力によるワーク変形に起因した加工精度の低下を生じることな く確実に固定することができる。 したがって本発明は、 N C工作機 械に使用することにより、 自動化及び省力化を推進しつつ、 高精度 及び高効率の自動機械加工の実施を可能とする。  As is clear from the above description, the present invention compares the amount of deformation of the work generated when the work to be processed is clamped on the worktable by the clamp device with a predetermined allowable value in the NC device. Determine the maximum allowable clamping force of the clamp device to reduce the amount of work deformation below the allowable value for each of the multiple machining parts, and when performing NC machining, automatically execute the machining part The work piece is clamped by setting and changing the clamp force of the clamp device to the maximum allowable clamping force in accordance with the movement. As a result, according to the clamping method of the present invention, a workpiece having a shape that is easily deformed can be securely fixed without lowering the processing accuracy due to the workpiece deformation due to the clamping force. Therefore, the present invention, when used in an NC machine tool, enables high-precision and high-efficiency automatic machining while promoting automation and labor saving.

Claims

請求の範囲 The scope of the claims
1 . N C工作機械におけるワークの変形防止クランプ方法であつ て、 1. A method for clamping workpiece deformation in NC machine tools,
a ) N C装置の指令に従って加工されるワークをワークテーブル に所定の加工姿勢で載せ、  a) Place the work to be machined in accordance with the command of the NC device on the work table in the specified machining posture,
b ) 前記ワークテーブルに設けたクランプ装置によって前記ヮー クをクランプする前と後とで、 該ワーク上の複数の加工部位の位置 を比較して各加工部位の変位量を算出し、  b) before and after clamping the workpiece by the clamping device provided on the work table, comparing the positions of a plurality of machining parts on the work to calculate the displacement amount of each machining part;
c ) 前記複数の加工部位の各々において算出された前記変位量を、 N C装置に予め記憶された所定の変位許容値と比較し、  c) comparing the displacement amount calculated in each of the plurality of machining parts with a predetermined displacement allowable value stored in advance in the NC device,
d ) 前記変位量が前記変位許容値を超えない範囲で、 前記複数の 加工部位のそれぞれに対し該クランプ装置の最大許容クランプカを 決定して N C装置に記憶し、  d) determining a maximum allowable clamp force of the clamp device for each of the plurality of processing parts within a range where the displacement amount does not exceed the displacement allowable value, storing the maximum allowable clamp force in the NC device,
e ) N C加工を実施する際に、 N C装置の指令により、 前記複数 の加工部位の各々に対応して前記クランプ装置のクランプ力を前記 最大許容クランプ力に設定し、 かつ加工部位の移動に伴い連続的に 変化させて、 前記ワークを前記所定の加工姿勢でクランプする、 各ステップを具備する方法。  e) When performing the NC machining, the clamping force of the clamping device is set to the maximum allowable clamping force corresponding to each of the plurality of machining sites, according to a command of the NC device, and the movement of the machining region is performed. Continuously changing and clamping the workpiece in the predetermined machining posture.
2 . 前記ステップ b ) は、  2. Step b) is performed
f ) 前記ワークテーブルに設けたクランプ装置によって前記ヮー クをクランプする前に、 該ワーク上の複数の加工部位の位置を N C 工作機械に装備した測定器によって測定し、  f) Before clamping the workpiece by the clamping device provided on the work table, measure the positions of a plurality of machining sites on the workpiece by a measuring instrument equipped on the NC machine tool;
g ) 前記クランプ装置によって前記ワークをクランプし、 h ) 前記クランプ装置にクランプされた状態で、 前記複数の加工 部位の位置を前記測定器によって測定し、  g) clamping the workpiece by the clamping device; h) measuring the positions of the plurality of processing parts by the measuring device while being clamped by the clamping device;
i ) クランプ前とクランプ後との各測定値に基づき、 前記複数の 加工部位の各々の変位量を NC装置内で算出する、 i) Based on the measured values before and after clamping, Calculate the amount of displacement of each processing part in the NC device,
各ステップを含む請求項 1に記載の方法。 The method of claim 1, comprising each step.
3. 前記測定器が、 前記 NC工作機械の主軸に装着されるタツチ プローブからなる請求項 2に記載の方法。  3. The method according to claim 2, wherein the measuring device comprises a touch probe mounted on a spindle of the NC machine tool.
4. 前記ステップ d) は、  4. Step d) above
j ) 前記クランプ装置のクランプ力を連続的に変化させて前記ヮ ークを前記所定の加工姿勢でクランプし、  j) clamping the workpiece in the predetermined machining position by continuously changing the clamping force of the clamping device;
k) 前記複数の加工部位のそれぞれに対し、 前記変位量が前記変 位許容値を超えない範囲での最大クランプ力を決定して、 該最大ク ランプ力を最大許容クランプ力として NC装置に記憶する、 各ステップを含む請求項 1に記載の方法。  k) For each of the plurality of machining parts, determine a maximum clamping force within a range where the displacement amount does not exceed the allowable displacement value, and store the maximum clamping force as a maximum allowable clamping force in the NC device. The method of claim 1, comprising:
PCT/JP1993/001146 1992-08-13 1993-08-13 Clamp method for preventing deformation of workpiece WO1994004310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4216154A JP3051576B2 (en) 1992-08-13 1992-08-13 Workpiece deformation prevention clamp method
JP4/216154 1992-08-13

Publications (1)

Publication Number Publication Date
WO1994004310A1 true WO1994004310A1 (en) 1994-03-03

Family

ID=16684138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001146 WO1994004310A1 (en) 1992-08-13 1993-08-13 Clamp method for preventing deformation of workpiece

Country Status (2)

Country Link
JP (1) JP3051576B2 (en)
WO (1) WO1994004310A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836211A (en) * 1986-09-17 1989-06-06 Naomi Sekino Ultrasonic treatment apparatus for performing medical treatment by use of ultrasonic vibrations
CN105149896B (en) * 2015-07-27 2017-03-29 长春轨道客车股份有限公司 The method for making the adjusting benchmark of framework consistent with machining benchmark
JP6509348B2 (en) * 2015-08-28 2019-05-08 三菱電機株式会社 Method and apparatus for processing tubular member
CN105290832A (en) * 2015-11-16 2016-02-03 耒阳新达微科技有限公司 Novel fixing clamp for bearing machining
JP6604154B2 (en) * 2015-11-16 2019-11-13 トヨタ自動車株式会社 Clamping device
JP7043067B2 (en) * 2017-05-29 2022-03-29 株式会社ナガセインテグレックス Work processing method and work processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682144A (en) * 1979-12-10 1981-07-04 Hitachi Ltd Clamping apparatus of workpiece for machine tool
JPS6352956A (en) * 1986-08-20 1988-03-07 Toyoda Mach Works Ltd Dimension measuring device using contact probe
JPH04193445A (en) * 1990-11-26 1992-07-13 Toshiba Mach Co Ltd Clamping control device of machine tool for long-size work piece

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682144A (en) * 1979-12-10 1981-07-04 Hitachi Ltd Clamping apparatus of workpiece for machine tool
JPS6352956A (en) * 1986-08-20 1988-03-07 Toyoda Mach Works Ltd Dimension measuring device using contact probe
JPH04193445A (en) * 1990-11-26 1992-07-13 Toshiba Mach Co Ltd Clamping control device of machine tool for long-size work piece

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microfilm of the Specification and Drawings Annexed to the Written Application of Japanese Utility Model Application No. 148395/1987, (Laid-Open No. 52630/1989), (MITSUBISHI HEAVY INDUSTRIES, LTD.), 31 March 1989. *

Also Published As

Publication number Publication date
JP3051576B2 (en) 2000-06-12
JPH0655408A (en) 1994-03-01

Similar Documents

Publication Publication Date Title
US6243621B1 (en) Method of determining workpiece positions including coordinated motion
JP3833386B2 (en) Scroll-shaped processing device and method for manufacturing scroll-shaped component
JP2002224936A (en) Tool presetter and method for calculation of tool offset data
JP4803491B2 (en) Position correction device for machine tool
JPH0238342B2 (en)
Nee et al. An intelligent fixture with a dynamic clamping scheme
JP3910482B2 (en) Machining error correction method for numerically controlled machine tool and grinding machine using the same
US4881021A (en) Numerical control equipment
WO1994004310A1 (en) Clamp method for preventing deformation of workpiece
JPH07266194A (en) Tool cutting edge measurement compensator
US6163735A (en) Numerically controlled machine tool
JP3064043B2 (en) Machining method in which workpiece deformation due to clamp is corrected, and NC machine tool for implementing the method
JP3283278B2 (en) Automatic lathe
JP7097254B2 (en) Workpiece movement positioning device
JPH0655415A (en) Measuring method for and secular change of machine tool
JPS6334049A (en) Method of compensating elongation of boring spindle of numerically controlled (nc) type horizontal boring machine
JPH03281146A (en) Impact test specimen automatic processing system
JP2004148422A (en) Multi-axis machining device, machining method in multi-axis machining device and program
JPH07185943A (en) Method and device for electric discharge machining
JP4324264B2 (en) Tool presetter
JP4242229B2 (en) Method and apparatus for correcting thermal displacement of machine tool
JPH0691481A (en) Driving amount correcting device of drive shaft of finishing machine
JPH04148308A (en) Designating method for pressing direction for force control robot
CN114952623A (en) Control method for grinding operation of numerical control machine tool for actively controlling grinding force
CN113840687A (en) Control device and control method for processing machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase