WO1994003687A1 - Structural member of beam or pillar, and connecting portion between pillar and beam - Google Patents

Structural member of beam or pillar, and connecting portion between pillar and beam Download PDF

Info

Publication number
WO1994003687A1
WO1994003687A1 PCT/JP1993/001110 JP9301110W WO9403687A1 WO 1994003687 A1 WO1994003687 A1 WO 1994003687A1 JP 9301110 W JP9301110 W JP 9301110W WO 9403687 A1 WO9403687 A1 WO 9403687A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
flange
web
steel
double
Prior art date
Application number
PCT/JP1993/001110
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiro Suzuki
Original Assignee
Toshiro Suzuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiro Suzuki filed Critical Toshiro Suzuki
Publication of WO1994003687A1 publication Critical patent/WO1994003687A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2415Brackets, gussets, joining plates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2445Load-supporting elements with reinforcement at the connection point other than the connector
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2448Connections between open section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2454Connections between open and closed section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B2001/2466Details of the elongated load-supporting parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B2001/2466Details of the elongated load-supporting parts
    • E04B2001/2472Elongated load-supporting part formed from a number of parallel profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0413Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0421Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section comprising one single unitary part
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/043Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the hollow cross-section comprising at least one enclosed cavity
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/0434Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the open cross-section free of enclosed cavities
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/0439Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the cross-section comprising open parts and hollow parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0452H- or I-shaped

Definitions

  • the present invention provides a beam member, a column member, and a beam member using a double tube shape having a pair of tubes arranged at predetermined intervals E and flanges at both ends of a web and having a closed cross-section at the center of the cross section.
  • the present invention relates to high-toughness structural members that actively utilize the high deformation performance in the plastic region of the double eb type in the design of methods, column-beam joints, and structural members such as columns and beams. . Background art
  • section steel As structural members of building structures, in particular, metal structural members (type I) that can be handled as one piece other than assembling materials used for beams, columns, etc., section steel has been widely used.
  • metal structural members type I
  • section steel For round steel pipes, square steel pipes are often used in addition to round steel pipes.
  • the beam members are rectangular steel beams.However, as an efficient design, the thickness of the tube, which is a structural plate element, is thin, and the flange width is narrower than that of the cross-section. And there is always a risk of lateral buckling. Therefore, stiffeners are provided as plate reinforcements, and buckling length is shortened by connecting beams or fire struts placed at required intervals to prevent lateral buckling, but the complexity is due to the design.
  • the steel pipe column has a large torsional rigidity, and the bending rigidity does not differ greatly between the weak axis and the strong axis unlike the ⁇ -shaped steel column.
  • the square steel pipe at the joint position is a separate bead, and the diaphragm is sandwiched between the upper and lower flange heights of the beam for welding, and a square hole is formed in the side wall of the square steel pipe to allow the beam member to penetrate.
  • 2-8909 or attach a specially shaped joint to the outer surface of the square steel pipe (for example, refer to Japanese Utility Model Publication No. 53-3811 16). are doing.
  • Japanese Utility Model Publication No. 48-12810 discloses a structure in which a long metal bolt penetrating a square pipe and a metal fitting for beam bonding are attached.
  • the square steel pipe has high bending stiffness and high torsional stiffness, but has a problem that it is difficult to mount the stiffener because it has a closed cross section.
  • the deformation performance is poor as compared with an open section member such as an H-section steel, and local buckling deformation or the like tends to affect the entire member.
  • it is particularly difficult to install the stiffener at the beam-to-column joint which complicates the beam-to-column joint, and poses problems in terms of manufacturing, strength due to processing, and workability. Many.
  • the present invention is based on a double web section steel that eliminates the disadvantages of conventional H-section steel and square steel pipes. Beam members with excellent performance, column members, structure of column-beam joints with excellent strength and workability, and plasticity It is an object of the present invention to provide a high-toughness structural member as a column or a beam member capable of utilizing a high deformation capacity in a region in a design. Disclosure of the invention
  • the double web form ⁇ comprises a pair arranged in parallel with each other at a predetermined interval.
  • a closed cross-section is formed at the center of the cross-section of the web, the flanges arranged at both ends of the web, and having a predetermined length on the outside of the web, that is, the double web and the upper and lower flanges. It is a form.
  • the beam member and the column member of the present invention use this double-tube shaped steel as a structural member.
  • a stiffening plate may be further attached between the flange and the flange as needed.
  • the beam member made of the double web form III has extremely high torsional rigidity as compared with the H-shaped steel beam, does not easily buckle as a beam member, and is effective as a large span beam.
  • a member having a relatively large gap between double tubes can be used, and can be used as a square steel pipe.
  • the central part of the cross section forms a closed cross section.
  • the stiffener or a metal fitting for the beam can be used by using the flange.
  • the presence of the flange portion can enhance the plastic deformation performance of the member.
  • These beam members or column members are, for example, two H-shaped members or two T-shaped steel members whose flanges are not symmetrical placed and butt-aligned on a line or point object in a cross section perpendicular to the longitudinal direction. It can be easily manufactured by joining the joining surfaces extending in the longitudinal direction by welding or the like. For example, by joining two H-shaped ⁇ with asymmetrical protrusions on the left and right flanges and joining the flanges together by welding, etc., the spacing between the webs is arbitrary, and with the internal stiffener attached in advance. Joining is also possible.
  • an H-section steel and a channel steel with the same web height are arranged so that the webs are parallel to each other, and the flange end of the H-section steel is It can also be manufactured by welding to the back end of the tube by welding etc., in which case the H-section steel and the channel steel are joined with the three sides of the stiffener welded to the channel steel Thus, an internal stiffener can be provided. Also, when it is desired to increase only the thickness of the portion between the flanges, the two flat plates having a step formed by making the thickness of the middle portion thicker than the thickness of both ends are opposed to each other. It can also be manufactured by arranging two parallel flat plates as webs and joining them together by welding or the like.
  • a double-ended steel section disposed near the beam end and an H-shaped section disposed in the middle of the beam can be connected in the longitudinal direction of the beam.
  • the beam is joined in the longitudinal direction by, for example, projecting the end of the web of the H-section steel from the flange and inserting the end of the double-tube into the closed section at the center of the section using bolts, etc.
  • a joining structure is conceivable. If the web thickness of the H-shape is smaller than the inner width of the closed section of the double web shape (dimension between the double webs), attach a splicing plate to the H-shape web to adjust the thickness. May be attached.
  • a vertical piece protruding in the beam joining direction is provided on an H-shaped cross section column or a column formed of a double section steel section or the like. With the vertical piece inserted into the closed cross-section of the double web section steel constituting the beam member, the vertical piece and the double-tube section steel are joined by bolt bonding or welding, etc. I do.
  • the end of the beam attached in the strong axis direction is joined to the flange of the double web section steel, and the column member is weakened.
  • the ends of the beams attached in the axial direction are joined between the flanges of the double-ended steel section.
  • a structure in which direct welding is performed or a structure in which joining is performed by bolt joining using a high-strength bolt, etc. are conceivable.
  • a concrete can be cast inside or outside the closed surface portion of the double-tube type to form a steel concrete composite structure.
  • the high toughness structural member of the present invention is designed in consideration of effectively exhibiting the high deformation performance of the double-ribbed steel in the design of structural members such as columns and beams, and is provided at predetermined intervals. It consists of a pair of tubes arranged in parallel with each other and a pair of flanges arranged at both ends of the tube. A predetermined flange width B, a section H, and a flange protruding from the center of the tube b! , The width b 2 between the centers of the tubes, the plate thickness ti at the protruding portion of the flange, the plate thickness t 2 at the portion between the tubes of the flange, and the plate thickness t s of the web. In addition to the formation of a part, the required toughness in the plastic zone is secured by the flange.
  • HZB ⁇ 1 that is, by making the outer edge of the section approximately square, the bending stiffness in the weak axis and strong axis directions is slightly smaller than that of a square steel pipe. Despite the difference, it is housed as a structural member, and an easy-to-use column member is constructed. In addition, by using the protruding part of the flange, it is easy to connect with the beam member and to stiffen it with a stiffener.
  • HZB the torsional rigidity is greatly increased compared to H-section steel, and a stable cross section with less lateral buckling is possible.
  • Extremely narrow ones such as HZB ⁇ 4 are also possible. As a practical range, there may be a range where HZB is slightly larger than 1.
  • the flange thickness t! Is used as a means for maintaining the resistance to plasticity and providing a stable plastic deformation capability.
  • T is effective with this to increase the t 2, was rather large the only plate thickness t 2 of the portion between the flanges of the web 2
  • the high toughness structural member of the present invention is mainly used as a structural member of a steel frame structure, it is embedded in a concrete section and used as a steel frame reinforced concrete, or it is used in a central closed section. It is also possible to fill concrete and use it as a concrete filled steel pipe.
  • FIGS. 1A and 1B show an embodiment of a double web type II according to the present invention, in which (a) is a cross-sectional view perpendicular to the longitudinal direction, (b) is a front view, and (c) is a view of (b).
  • FIG. 2 is a sectional view taken along line A-A.
  • FIGS. 2A and 2B show an embodiment in which an opening is provided in a double web section steel as a beam member.
  • FIG. 2A is a front view
  • FIG. 2B is a cross-sectional view perpendicular to the longitudinal direction. .
  • FIGS. 3A and 3B show another embodiment of the double-tube steel according to the present invention, wherein FIG. 3A is a cross-sectional view perpendicular to the longitudinal direction, and FIG. 3B is a horizontal cross-sectional view.
  • FIG. 4 is a perspective view showing a connection state in one embodiment of a beam member in which a double web section steel and a normal H-shaped section are connected in the longitudinal direction.
  • Figure 5 shows a beam member standardized with a double web shape at both ends and an H-beam at the middle.
  • A is a front view
  • (b) is a BB sectional view of (a)
  • (c) is a CC sectional view of (a).
  • Fig. 6 shows an embodiment of a beam-column joint using a beam member made of double-tube steel, where (a) is a front view and (b) is a cross-sectional view taken along line D-D of (a). It is.
  • Figures 7 (a) to 7 (h) are side views of a section steel showing the method of manufacturing a beam-type double web section steel.
  • FIGS. 8 (a) and 8 (b) are cross-sectional views perpendicular to the longitudinal direction showing another embodiment of the double-tube shaped steel according to the present invention.
  • FIG. 9 is a perspective view showing one embodiment of a beam-column joint using a double-ribbed column member.
  • FIGS. 10A and 10B show another embodiment of a beam-column joint using a column member made of a double-tube steel, wherein FIG. 10A is a vertical sectional view and FIG. 10B is a horizontal sectional view.
  • FIG. 11 is a cross-sectional view perpendicular to the longitudinal direction showing an example in which the double-web steel according to the present invention is configured as a hybrid steel in which different types of steel materials are combined.
  • FIG. 12 is a plan view showing the flow of force from the beam flange into the column section when the stiffener is not provided in the central closed section of the double web section steel.
  • FIGS. 13 (a) and 13 (b) are cross-sectional views perpendicular to the longitudinal direction showing an embodiment in which a stiffener is provided in a central closed cross section of a double web section steel.
  • Fig. 14 shows an example of a steel-concrete composite column with a double-tube steel structure as the steel frame.
  • (A) is a horizontal sectional view, and () is an EE section of (a).
  • Figure 15 shows another embodiment of a column with a concrete composite structure using double-tube steel as the steel frame.
  • (A) is a horizontal sectional view
  • (b) is a F-section of (a).
  • -It is F sectional drawing.
  • FIGS. 16A and 16B show still another embodiment of a column having a double concrete section using a concrete composite structure.
  • FIG. 16A is a horizontal sectional view
  • FIG. It is G-G sectional drawing.
  • Figs. 17 (a) to 17 (h) are side views of a section steel showing the method of manufacturing a column-type double web section steel.
  • FIG. 18 shows still another embodiment of the double-tube steel of the beam type according to the present invention.
  • (A) is a side view
  • (b) is a front view
  • (c) is an H-H sectional view of (b).
  • FIG. 19 shows still another embodiment of the column-type double-tube steel according to the present invention, wherein (a) is a side view, (b) is a front view, and (c) is (b).
  • FIG. 2 is a sectional view taken along the line I-I of FIG.
  • FIG. 20 is an explanatory diagram of a typical cross-sectional shape and dimensional relationship when the high toughness structural member of the present invention is applied to a column member.
  • FIG. 21 is an explanatory diagram of a typical cross-sectional shape and dimensional relationship when the high toughness structural member of the present invention is applied to a beam member.
  • FIGS. 22A and 22B are explanatory diagrams of the analysis on the plastic deformation capacity of the high toughness structural member of the present invention.
  • FIG. 22A is a diagram showing a cross section of a numerical simulation model
  • FIG. (C) is a diagram showing the relationship between the bending moment and the member rotation angle
  • (d) is a diagram of the analysis result.
  • FIG. 6 is a graph showing the relationship between the bending moment M and the member deformation angle ⁇ in a dimensionless manner with the all-plastic moment M P and the plastic deformation angle P P.
  • Figure 24 shows the numerical simulations with the parameter t! : T 2 : t! 7 is a graph showing the relationship between the bending moment M and the member deformation angle ⁇ in a dimensionless manner with the all-plastic moment M P and the plastic deformation angle ⁇ p.
  • 1 (a) to 1 (c) show an example of a double web section steel 1 according to the present invention, which is considered as a beam type standard section steel having a width: about 1: 2 to 1: 3. It is.
  • the ratio of the flange 3 to the left and right and the central part (the part between the two webs 2) is arbitrary, and the performance of the box-shaped section (square steel pipe) is closer if the width of the closed section at the center of the section is wider. If the width is narrow, the performance will be closer to that of an H-shaped section (H-shaped steel).
  • the torsional stiffness is extremely large compared to the H-shaped cross section, making it difficult for the beam to buckle laterally, and is effective as a large span beam.
  • the presence of flange 3 indicates that the flange 3 is localized in the region where the beam is plasticized. Large deformation occurs, and large plastic deformation can be secured as a member.
  • the web 2 has a greater restraining effect on the protruding portion (projected portion) of the flange 3 and is effective in terms of width-thickness ratio.
  • FIG. 2 shows an example in which an opening 4 is provided in a web 2 as a beam member having a double tube shape 1.
  • the openings 4 are continuously provided at the same position with respect to the two webs 2, but the positions of the openings 4 may be shifted between the two tubes 2.
  • the torsional rigidity of the box-shaped cross section is maintained, and the beam is effective against lateral buckling.
  • Figures 3 (a) and 3 (b) are examples of beam-type pots in which the distance between the two tubes 2 is further reduced compared to the double-web shaped steel shown in Figs. 1 (a) to 1 (c). Also in this case, the torsional stiffness is considerably larger than that of a single tube such as H-shaped steel, and it is an effective beam against lateral buckling.
  • Fig. 4 shows an embodiment in which the double web section steel 1 and the normal H section steel 11 are connected in the longitudinal direction to form a single beam member.
  • the double web type 1 is provided near the beam end having a large moment, and the middle portion of the beam is a normal H-shaped steel 11. Is performed by inserting a web 12 portion protruding from an end of an H-shaped steel 11 between two webs 2 of a double web shape ⁇ 1.
  • the spigot plate 14 of the H-section steel 1 1 is provided with an attachment plate 14 according to the thickness, etc., and is bolted in a state where it is superimposed on the web 2 of the double-section steel section 1.
  • the flanges 3 and 13 of the shape 11 are joined together.
  • 5 and 15 are bolt holes
  • 16 is an H-shaped cross section column
  • 17 is a stiffener.
  • FIG. 5 is a diagram in which the beam 22a is previously standardized at both ends of the member, with the web 22a being doubled and the middle web 22b being a single sheet.
  • FIG. 6 shows an embodiment of a joint section of a beam member composed of an H-shaped column 16 and a double-tube form 1.
  • the flange of the T-shaped fitting 18 having a T-shaped horizontal section is joined to the hub of the H-shaped section 16 with a bolt 19, and the hub of the T-shaped fitting 18 is connected. Is inserted between the webs 2 of the double web section 1 and fastened with bolts 19.
  • the flange 3 of the double tube type 1 may be welded or bolted.
  • FIGS. 7 (a) to 7 (h) show a method of manufacturing a beam-type double web section steel 1, and the following methods are conceivable.
  • FIG. 7 ( a) Two H-section steels 31 with the same tube height are placed so that the webs are parallel to each other, and the flange ends of both H-sections 31 are joined by welding or the like.
  • the present embodiment is a beam type, and the H-shaped steel 31 having an asymmetric flange is used for the tubes, and the interval between the tubes is reduced.
  • Fig. 7 (g) shows the use of H-shaped steel 31 'with an extremely small protrusion on one side of the flange and a protruding shape, in which the gap between the tubes is further reduced.
  • H-section steel 3 2a and channel section steel 3 2b with the same web height are arranged so that the ⁇ sections are parallel to each other, and the flange end of H-section steel section 32a is grooved section section 3 2b. (See Fig. 7 (b)). Even when a stiffener is required in the closed section of the double web section steel, the H section steel 32a and the channel section steel are welded with the three sides of the stiffener welded to the channel section steel 32b. It is possible to join 32b.
  • Tube 33 has flanges 33b and 33c at both ends, with a T-shaped cross-section at one end and an L-shaped cross-section at the other end. , Two are placed on the point target, and they are joined to each other by welding at the flange height (see Fig. 7 (c)) c
  • T The T-shape ⁇ 34, whose flanges are not symmetrical to the web, is placed at two points, and the flange end of both T-shapes 34 and the web end are joined by welding or the like. (See Fig. 7 (d)).
  • a flat plate 35b is placed between the flanges of the H-section steel 35a in parallel with the flanges of the H-section 35a, and both ends of the flat section 35b are respectively connected to the flanges of the H-section 35a. (See Fig. 7 (e)).
  • the H-section steel 35a The use of an H-shape in which the protrusion of the flange is asymmetrical makes it possible to eliminate the bias of the hub as a double-tube shaped steel. Further, a flat plate may be joined to both sides of the web of the H-section steel, and a shape in which another web is added to the double-lobed shape may be employed.
  • Two T-sections 37 b are arranged at a predetermined interval with the web facing each other, and the opposing webs are sandwiched between two flat plates 37 a from both sides, and the T-sections 37 b And the two flat plates 37a are welded together (see Fig. 7 (h)).
  • FIGS. 8 (a) and 8 (b) show examples of column-type double-tube steel members 41 in which the distance between the two tubes 42 is larger than that of the double-tube steel members of FIG.
  • This figure shows a standard section steel with a 1: 1 ratio of section width to width, but the ratio is arbitrary according to the intended use.
  • FIG. 8A shows the case where the thickness of the flange 43 is substantially uniform
  • FIG. 8B shows the case where the thickness of the central portion is larger than the thickness of the protruding portion. This is related to the flange width, as shown in Figure 8 (b) as a standard, but vice versa.
  • this cross section has the properties of both the H-shaped section and the box-shaped section.
  • the torsional rigidity is extremely large compared to open section members such as H-section steel, and bending torsional buckling hardly occurs.
  • Fig. 9 shows a beam-column joint when a double web section steel 41 is used as a column member.
  • the beam-to-column connection when double web steel 41 is used as the column member is similar to the case of the H-shaped column, and there is no complexity that is a problem with box-shaped members such as square steel tube columns,
  • the H-shaped steel beam 45 is directly joined by welding or the like (a split tee or other joining fittings can also be used).
  • a stiffener 44 that is also used as a joint fitting is mounted within the cross-sectional width between the flanges 43, and the stiffener 144 is used to make an H-shape in the weak axis direction. Beams 4 and 5 are joined. In this case, the force from the H-shaped beam 45 can be transmitted to the flange 43 of the double E-beam 41 via the stiffener 14, and the flow of stress near the joint can be smooth. Become.
  • the double-ribbed shape shown in FIG. 1 and the like can be used.
  • various joining metal fittings and joining methods conventionally used for joints between H-section columns and H-shaped steel beams can be applied.
  • Figures 10 (a) and 10 (b) show H-beams 45 in the strong axis direction and the weak axis direction for the beam-column joint when the double-ribbed steel 41 is also used as the column member. This shows an embodiment in which joining can be performed only by bolt joining.
  • a strong axial direction metal fitting 49a having a T-shaped vertical section such as a split tee is used as an H-shaped steel beam.
  • 4 Vertically aligned with the flange height of 5 5 and the vertically extending flange of the strong axial joint metal 4 9 a is brought into contact with the flange 4 3
  • the upper and lower flanges of the H-shaped steel beam 45 are joined to the upper and lower strong axial direction joining hardware 49 a by a bolt 50.
  • a weak axis joint metal piece 49 b composed of a flange with a horizontal cross section and a horizontal web is used, and the flange of the weak axis joint metal piece 49 b is double-web. Abut on the inner surface of flange 4 3 of form 4 1 and the web 4 2, and connect them with bolts 50 and long bolts 50 a, respectively. Are connected to the upper and lower webs of the weak-joining hardware 49 b with bolts 50.
  • the flange 43 of the double-tube section steel 41 as the column member was sandwiched between the flange of the strong-axis joint metal piece 49a and the flange of the weak-axis joint metal piece 49b. They are joined by a common bolt 50. Further, as for the web 42 of the double-rib type 41, the long bolt 50a is made to penetrate therethrough to join the flanges of the joints 49b on the both sides in the weak axis direction.
  • the beam members to be joined to the column members are usually narrower than the column members, and in the strong axis direction, the distance between the webs 4 2 of the double web shape 4 1 should be set appropriately. Therefore, the flow of stress is smoother than in the case of H-shaped steel columns and tubular columns.
  • FIG. 11 shows an example in which the double-tube type 41 according to the present invention is configured as a hybrid type combining different materials.
  • it is effective to put high-strength steel on the web 42 to adjust the bending stiffness and strength around the X-X axis and Y-Y axis.
  • ⁇ Other members such as beams between the protrusions of the flange 43 Since the stiffener 44 for joining can be attached by welding or the like, it is possible to avoid weldability and other difficulties peculiar to high-strength steel when considering how to construct the workplace.
  • Fig. 12 shows the flow of force from the beam flange of the H-shaped beam 45 into the column section when the stiffener is not provided in the central closed cross-section of the double web type 41. There is no need to provide an outer stiffener as in the case of a box-shaped column or to provide a stiffener in a closed section.
  • FIGS. 13 (a) and 13 (b) show an embodiment in which a stiffener 46 is provided in a central closed cross section of the double web section steel 41.
  • FIG. Fig. 13 (a) shows the case where a stiffener 46 is provided on the H-shaped ⁇ 41 a side before the double web ⁇ 41 is made of the H-shaped ⁇ 41 a and the groove ⁇ 41 b.
  • Fig. 13 (b) shows an example of assembling.
  • the stiffeners 4 This is an example in which 6 is provided and assembled.
  • FIGS. 14 to 16 show an embodiment of a column having a steel concrete composite structure using a double tube type 41 as a steel frame.
  • FIGS. 14 (a) and 14 (b) show examples in which a concrete 48 is driven into the entire cross section by providing an opening 47 in the tube 42 or the like.
  • FIGS. 15 (a) and 15 (b) are examples in which concrete 48 was struck except for the center of the cross section.
  • Figures 16 (a) and (b) show examples where concrete 48 was driven into the central closed cross section, which is close to a steel pipe concrete.
  • the connection part becomes a problem, whereas the protrusion (protruding part) of the flange 43 easily includes a stiffener and other joining metal fittings. Can be attached to
  • Figure 17 (a) to (!) Show the method of manufacturing the double-tube type 41 with pillar type, and the following methods can be considered.
  • H-section steel 52 a and the channel steel 52 b Place the H-section steel 52 a and the channel steel 52 b with the same height of the lobe so that the lobes are parallel to each other, and attach the flange end of the H-section 52 a to the It is joined to the back end of the web by welding or the like (see Fig. 17 (c)). If a stiffener is required within the closed surface of the double-tube section steel, the H-section steel 52a and the channel section steel must be welded in advance with three sides of the stiffener welded to the channel section 52b. 5 2b can be joined.
  • Tube 53 has flanges 53b and 53c at both ends of tube 53a, and has a T-shaped cross section at one end and an L-shaped cross section at the other end. , Two pieces are distributed to the point object, and they are connected to each other by welding at the flange height (see Fig. 17 (d))
  • T T-shape ⁇ 54 in which the flange is not symmetrical to the web, is placed at two points, and the ends of the flanges of both T-shapes 54 and the web are joined by welding or the like. (See Figure 17 (e)).
  • H-section steel 55a can be used as an H-section steel in which the protrusion of the flange to the tube is not symmetrical to the left and right.
  • a flat plate may be joined to both sides of the H-section steel web, and another web may be added to the double web section steel.
  • a flat plate 56b as a flange is provided with a projection 56b 'which is continuous in the longitudinal direction, and both ends of the flat plate 56a as a tube are provided with respect to the protrusion 56b'.
  • FIG. 18 and FIG. 19 show still another embodiment of the double web section steel according to the present invention.
  • Figures 18 (a) to 18 (c) show examples of beam-type double web steel in which two flanges 61b are joined to a thin rectangular steel pipe 61a by welding or the like.
  • the width of the change in cross-sectional shape and the use of this section are the same as in the case of the double web section 1 of beam type described above.
  • Figs. 19 (a) to 19 (c) show examples of a column-type double Eb steel with two flanges 71b joined to a rectangular square steel tube 71a by welding or the like.
  • Fig. 20 and Fig. 21 show the typical cross-sectional shape and dimensional relationship of the high toughness structural member of the present invention.
  • Basic cross-sectional shapes are parallel to each other A pair of flanges 82 and a pair of flanges 83 at both ends of the web 82 form a closed section surrounded by these at the center of the cross section.
  • the required toughness in the plastic region is secured as a structural member mainly by the protrusion b of the flange in relation to the sheet thickness t3 of the steel sheet.
  • FIG. 22 shows an example of analysis on the plastic deformation capacity of the high toughness structural member of the present invention.
  • the analysis was made for a total of eight types of structural members.
  • the horizontal axis shows the plastic deformation capacity ( maK / ⁇ 9p-1), and the vertical axis shows the parameters b,: b2: b, with two plots. Change the position and order The numbers are H type (1: 0: 1), A to F types, and mouth type (0: 1: 0).
  • the point at which the maximum bending moment is reached is indicated by a black circle. Since the flange b, b is large and the load near the H-shaped cross section is accompanied by a change in load, the second peak point is indicated by a white circle. The fluctuation of the proof stress during this period is small and can be sufficiently evaluated as the plastic deformation capacity of the member.
  • the A to F types have better deformability compared to the H type and rotive types at both poles, and in particular, correspond to the B to E types in the range of 2: 1: 2 to 1: 2: 1. It can be seen that the deformation ability has been greatly improved.
  • the ⁇ type and C type are examples in which the flange output b, is relatively large.
  • the protruding portion of the flange first buckles locally, and then the portion between the tubes of the flange deforms while compensating for its resistance to deterioration (see Fig. 23 (a)).
  • D type and E type are examples in which the flange output b is relatively small.
  • the part between the webs precedes or couples with the part of the flange that buckles locally.
  • Figure 24 shows the parameters ti: t2: t! This shows the relationship between the bending moment M and the member deformation angle ⁇ in a dimensionless manner with the all-plastic moment M P and the plastic deformation angle ⁇ p.
  • Fig. 24 (a) shows the flange thickness t for type B (corresponding to Fig. 22 (d)). , t are compared with B 'type and B "type.
  • the proof strength gradually decreases as the deformation progresses while increasing, decreasing and increasing the proof strength.
  • the B 'type doubles only the plate thickness t2 at the middle part of the flange. Similarly, although it progresses in a waveform due to local buckling of the protruding part of the flange, the overall heat resistance increases. .
  • the B "type has a flange thickness 1.5 times that of the B type.
  • the waveform of the resistance to change tends to disappear, and the plastic deformation properties are stable.
  • E 'type obtained by only the thickness t 2 of the flange intermediate portion 1 5 times
  • E "data I flop is obtained by the thickness of the entire flange 1 5 times..
  • the use of the double rib shape makes the torsional stiffness extremely large compared to conventional H-beams and the like, even when the spacing between the webs is small. Good for buckling, suitable for large span beams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

A structural member such as a beam member and a pillar member, which is formed of double web-steel consisting of pairs of webs arranged in parallel to each other and flanges provided at both sides thereof. Since the structural member has a closed sectional portion in the center of the cross section, the structural member shows the sectional performance close to that of a square steel pipe in terms of torsional rigidity. Since the structural member has protrusions of the flange portions, the structural member can find applications similar to those of H-section. In the connecting portion between the pillar and the beam, a beam member, etc. formed of the H-section or the double web-steel can be connected to the pillar member formed of the double web-steel using a connecting structure similar to the case with H-section pillar. Furthermore, mainly, due to setting of the protrusions of the flanges, the structural member can secure high toughness as compared with H-section and square steel pipe which are close to the structural member in cross section.

Description

明 細 書  Specification
梁、 柱構造部材および柱梁接合部  Beams, column structural members and beam-column joints
技術分野  Technical field
本発明は、 所定間隔をおいて E置した一対のゥュブとウェブ両端のフランジか らなり、 断面中央部に閉断面部を有する二重ゥ ブ形鐧を用いた梁部材、 柱部材、 その製作方法、 柱梁接合部、 および柱、 梁等の構造部材の設計において、 二重ゥ エブ形鐧の塑性域における高い変形性能を積極的に活用することを図った高靱性 構造部材に関するものである。 背景技術  The present invention provides a beam member, a column member, and a beam member using a double tube shape having a pair of tubes arranged at predetermined intervals E and flanges at both ends of a web and having a closed cross-section at the center of the cross section. The present invention relates to high-toughness structural members that actively utilize the high deformation performance in the plastic region of the double eb type in the design of methods, column-beam joints, and structural members such as columns and beams. . Background art
従来、 建築構造物の構造部材、 特に梁、 柱等に用いられる組立て材以外の一体 として取扱いが可能な金属製の構造部材 (形鐧) としては Η形鋼が広く用いられ ており、 また柱については丸鋼管の他、 角鋼管が用いられることも多い。  Conventionally, as structural members of building structures, in particular, metal structural members (type I) that can be handled as one piece other than assembling materials used for beams, columns, etc., section steel has been widely used. For round steel pipes, square steel pipes are often used in addition to round steel pipes.
梁部材に関しては、 Η形鋼梁がそのほとんどであるが、 効率的な設計として構 成板要素であるゥュブの板厚が薄く、 さらに断面せいに比しフラ ンジの幅が狭く、 局部座屈や横座屈の恐れが常にある。 従って、 板補強としてスティ フナーを設け たり、 横座屈に対しては所要間隔で Ε置したつなぎ梁や火打材により座屈長を短 くすることが行われているが、 その煩雑さは設計上、 施工上の問題となっている また、 柱部材に関し、 綱管柱はねじり剛性が大きく、 Η形鋼柱のように弱軸、 強軸で曲げ剛性が大き く異なることがないことから、 柱部材として多用されてい るが、 梁、 筋違、 その他の部材との接合でスティフナーを設けることが Η形鐧柱 に比べ難しく、 鋼管内部ないし外部スティ フナ一は製作上、 施工上厄介な点であ る。  Most of the beam members are rectangular steel beams.However, as an efficient design, the thickness of the tube, which is a structural plate element, is thin, and the flange width is narrower than that of the cross-section. And there is always a risk of lateral buckling. Therefore, stiffeners are provided as plate reinforcements, and buckling length is shortened by connecting beams or fire struts placed at required intervals to prevent lateral buckling, but the complexity is due to the design. In addition, as for the column members, the steel pipe column has a large torsional rigidity, and the bending rigidity does not differ greatly between the weak axis and the strong axis unlike the Η-shaped steel column. Although it is often used as a member, it is more difficult to provide a stiffener at the connection with beams, bracing, and other members than a Η-shaped pillar, and the inner or outer stiffeners of the steel pipe are difficult to manufacture and construct. is there.
柱梁接合部については、 Η形鐧柱の場合、 梁接合高さのフラ ンジ間に設けたス ティ フナーあるいはスプリ ッ トティー、 その他特殊形状の接合金具を介して梁端 部の接合が行われ、 接合方法としては溶接、 ボルト接合等が一般的である。 一方- 角鋼管柱の場合は断面内外へのスティ フナ一、 あるいは接合金具の取り付けが困 難であるため、 柱梁接合位置で上下の柱を切断し、 ボルト接合用の内挿部材を揷 入したり (曰本国公開特許公報 6 3— 2 5 1 5 4 0号参照) 、 柱梁接合位置の角 鋼管を別ビースとし、 梁の上下フランジ高さにダイアフラムを挟み込んで溶接し たり、 角鋼管の側壁に梁部材を貫通させる角穴を形成したり (曰本国公開実用新 案公報 5 2 - 8 9 0 9号参照) 、 あるいは角鋼管の外面に特殊形状の接合金具を 取り付ける (例えば、 曰本国公開実用新案公報 5 3— 3 8 1 1 6号参照) 等して 梁部材を接合している。 この他、 日本国公開実用新案公報 4 8— 1 2 8 1 0号に は、 角鑭管を貫通する長尺のボル トで梁接合用の接合金具を取り付けた構造が開 示されている。 For beam-column joints, in the case of rectangular columns, beam ends are joined via stiffeners, split tees, or other specially shaped joints provided between flanges at the beam joint height. As a joining method, welding, bolt joining and the like are generally used. On the other hand, in the case of square tubular columns, it is difficult to install Because of the difficulty, the upper and lower columns are cut at the beam-to-column joint position, and an insertion member for bolt connection is inserted (refer to Japanese Patent Application Laid-Open No. 63-251510). The square steel pipe at the joint position is a separate bead, and the diaphragm is sandwiched between the upper and lower flange heights of the beam for welding, and a square hole is formed in the side wall of the square steel pipe to allow the beam member to penetrate. 2-8909), or attach a specially shaped joint to the outer surface of the square steel pipe (for example, refer to Japanese Utility Model Publication No. 53-3811 16). are doing. In addition, Japanese Utility Model Publication No. 48-12810 discloses a structure in which a long metal bolt penetrating a square pipe and a metal fitting for beam bonding are attached.
H形鐧、 角鋼管とも、 従来、 構造部材として広く用いられているものであるが、 H形鋼の場合、 強軸方向の曲げ剛性に比べ、 弱軸方向の曲げ剛性が極端に小さく、 また開断面部材でありねじり剛性も低い。 このため、 梁部材として用いた場合に は、 横座屈等の問題がある。 また、 H形鋼を柱部材として用いた場合も同様の問 題がある。  Conventionally, both H-shaped steel and square steel pipes have been widely used as structural members.However, in the case of H-shaped steel, the bending rigidity in the weak axis direction is extremely small compared to the bending rigidity in the strong axis direction. Open section member with low torsional rigidity. For this reason, when used as a beam member, there are problems such as lateral buckling. There is a similar problem when H-section steel is used as a column member.
角鋼管は、 上述したように、 曲げ剛性、 ねじり剛性とも高いが、 閉断面である ためスティ フナ一の取り付けが困難であるという問題がある。 また、 H形鋼のよ うな開断面の部材に比べると変形性能が乏しく、 局部的な座屈変形等が部材全体 に影響しやすい。 また、 特に柱梁接合部におけるスティ フナ一の取り付けが困難 であることから柱梁接合部が複雑になり、 製作上の問題、 加工による強度上の問 題の他、 施工性の面でも問題が多い。  As described above, the square steel pipe has high bending stiffness and high torsional stiffness, but has a problem that it is difficult to mount the stiffener because it has a closed cross section. In addition, the deformation performance is poor as compared with an open section member such as an H-section steel, and local buckling deformation or the like tends to affect the entire member. In addition, it is particularly difficult to install the stiffener at the beam-to-column joint, which complicates the beam-to-column joint, and poses problems in terms of manufacturing, strength due to processing, and workability. Many.
本発明は、 従来の H形鋼、 角鋼管の欠点を解消する二重ウェブ形鋼による部材 性能の優れた梁部材、 柱部材、 強度、 施工性に優れた柱梁接合部の構造、 および 塑性域における高い変形能力を設計に活かすことができる柱または梁部材として の高靱性構造部材を提供することを目的としたものである。 発明の開示  The present invention is based on a double web section steel that eliminates the disadvantages of conventional H-section steel and square steel pipes. Beam members with excellent performance, column members, structure of column-beam joints with excellent strength and workability, and plasticity It is an object of the present invention to provide a high-toughness structural member as a column or a beam member capable of utilizing a high deformation capacity in a region in a design. Disclosure of the invention
本発明に係る二重ウェブ形鐧は、 所定間隔をおいて互いに平行に配置した一対 のゥュブと、 ウェブの両端に配置され、 ウェブの外側に所定長の出を有するフラ ンジ、 すなわち二重に配置したウェブと、 上下のフラ ンジとで、 断面中央部に閉 断面部を形成した形鐧である。 The double web form 鐧 according to the present invention comprises a pair arranged in parallel with each other at a predetermined interval. A closed cross-section is formed at the center of the cross-section of the web, the flanges arranged at both ends of the web, and having a predetermined length on the outside of the web, that is, the double web and the upper and lower flanges. It is a form.
本発明の梁部材および柱部材はこの二重ゥュブ形鋼を構造部材として用いたも のである。 なお、 梁部材ゃ柱部材として用いる場合、 必要に応じゥ ブ間ゃフラ ンジ間にさらに補剛用の板材を取り付ける場合もある。  The beam member and the column member of the present invention use this double-tube shaped steel as a structural member. When used as a beam member and a column member, a stiffening plate may be further attached between the flange and the flange as needed.
梁部材の場合は、 比較的二重ウェブ間の間隔が狭いものを用い、 H形鋼的に使 用することができる。 この場合、 二重ウェブ形鐧からなる梁部材は H形鋼梁に比 ベ、 ねじり剛性が極端に大き く なり、 梁部材として横座屈し難く、 大スパン梁と して有効である。  In the case of a beam member, a material having a relatively narrow interval between the double webs can be used and can be used as an H-beam. In this case, the beam member made of the double web form III has extremely high torsional rigidity as compared with the H-shaped steel beam, does not easily buckle as a beam member, and is effective as a large span beam.
柱部材の場合は、 比較的二重ゥ ブ間の間隔が広いものを用い、 角鋼管的に使 用することができる。 この場合、 断面中央部は閉断面を構成するが、 フラ ンジの 出があることで、 スティ フナーや梁接合用の金具等を取り付ける場合、 フラ ンジ の出を利用して取り付けることができる。 また、 フランジ部分があることで部材 の塑性変形性能を高めることができる。  In the case of a column member, a member having a relatively large gap between double tubes can be used, and can be used as a square steel pipe. In this case, the central part of the cross section forms a closed cross section. However, since there is a flange, it is possible to attach the stiffener or a metal fitting for the beam by using the flange. In addition, the presence of the flange portion can enhance the plastic deformation performance of the member.
これらの梁部材または柱部材は、 例えば H形鐧 2本、 あるいはフラ ンジの出が 左右非対象な T形鋼 2本を、 長手方向と直角な断面において線対象または点対象 に配置して突き合わせ、 長手方向に延びる接合面を溶接等により接合する等して、 容易に製作することができる。 例えば、 左右のフランジの出が非対称な H形鐧を 2本突き合わせ、 フラ ンジどう しを溶接等で接合することで、 ウェブ間の間隔が 任意となり、 また予め内部スティ フナ一を取り付けた状態で接合することも可能 である。  These beam members or column members are, for example, two H-shaped members or two T-shaped steel members whose flanges are not symmetrical placed and butt-aligned on a line or point object in a cross section perpendicular to the longitudinal direction. It can be easily manufactured by joining the joining surfaces extending in the longitudinal direction by welding or the like. For example, by joining two H-shaped 鐧 with asymmetrical protrusions on the left and right flanges and joining the flanges together by welding, etc., the spacing between the webs is arbitrary, and with the internal stiffener attached in advance. Joining is also possible.
また、 線対象、 点対象な場合だけでなく、 例えばウェブ高さが等しい H形鋼と 溝形鋼をウェブどう しが平行となるよう配置し、 H形鋼のフランジ端部を溝形鋼 のゥュブ背面端部に溶接等により接合することによつても製作することができ、 その場合、 溝形鋼にスティ フナ一の 3辺を溶接した状態で H形鋼と溝形鋼を接合 することで、 内部スティ フナーを設けることができる。 また、 フラ ンジのゥュブ間の部分の板厚のみを大き く したい場合には、 中間部 の板厚を両端部の板厚より厚く して段を形成した 2枚の平板を向き合わせ、 その 間にウェブとしての平行な 2枚の平板を配置し、 溶接等で互いに接合することに よっても製作することができる。 In addition to the line and point targets, for example, an H-section steel and a channel steel with the same web height are arranged so that the webs are parallel to each other, and the flange end of the H-section steel is It can also be manufactured by welding to the back end of the tube by welding etc., in which case the H-section steel and the channel steel are joined with the three sides of the stiffener welded to the channel steel Thus, an internal stiffener can be provided. Also, when it is desired to increase only the thickness of the portion between the flanges, the two flat plates having a step formed by making the thickness of the middle portion thicker than the thickness of both ends are opposed to each other. It can also be manufactured by arranging two parallel flat plates as webs and joining them together by welding or the like.
また、 梁部材として用いる場合、 梁端近傍に配置した二重ゥ ブ形鋼と梁中間 部に配置した H形鑭を梁長手方向に接続して用いることもできる。  In addition, when used as a beam member, a double-ended steel section disposed near the beam end and an H-shaped section disposed in the middle of the beam can be connected in the longitudinal direction of the beam.
この場合の梁長手方向の接合は、 例えば H形鋼のウェブ端部をフランジより突 出させ、 ゥ ブ端部を二重ゥュブ形鑭断面中央部の閉断面部内に挿入した状態で ボルト等により接合する構造が考えられる。 H形鑭のウェブ厚が二重ウェブ形鐧 の閉断面部の内法 (二重ウェブ間の寸法) より小さい場合は、 H形鋼のゥ ブに- 板厚調節のために添接板を取り付ける場合もある。  In this case, the beam is joined in the longitudinal direction by, for example, projecting the end of the web of the H-section steel from the flange and inserting the end of the double-tube into the closed section at the center of the section using bolts, etc. A joining structure is conceivable. If the web thickness of the H-shape is smaller than the inner width of the closed section of the double web shape (dimension between the double webs), attach a splicing plate to the H-shape web to adjust the thickness. May be attached.
逆に、 二重ゥュブ形鑭のゥュブ端部をフラ ンジより突出させ、 二重ウェブ形鋼 のウェブで H形鋼のウェブを挟み込み、 これらをボルト接合等により接合するこ とも考えられる。 この場合も、 必要に応じ板厚調節用の添接板を取り付ける。 この他、 二重ウェブ形鋼と H形鐧を単に溶接等により接合することも可能であ る。  Conversely, it is also conceivable that the end of the double-tube shape is protruded from the flange, the web of the H-shaped steel is sandwiched between the webs of the double-web shape steel, and these are joined by bolting or the like. In this case, too, an attachment plate for adjusting the thickness is attached as necessary. In addition, it is also possible to simply join the double web section steel and H section II by welding or the like.
二重ウェブ形鋼を梁部材として用いた場合の本発明の柱梁接合部では、 H形断 面柱あるいは二重ゥ ブ形鋼等からなる柱に、 梁接合方向に突出する縦片を有す る接合金具を接合し、 この縦片を梁部材を構成する前記二重ウェブ形鋼の閉断面 部に挿入した状態で、 縦片と二重ゥュブ形鋼をボル ト接合あるいは溶接等により 接合する。  In the column-beam joint of the present invention in which a double web section steel is used as a beam member, a vertical piece protruding in the beam joining direction is provided on an H-shaped cross section column or a column formed of a double section steel section or the like. With the vertical piece inserted into the closed cross-section of the double web section steel constituting the beam member, the vertical piece and the double-tube section steel are joined by bolt bonding or welding, etc. I do.
二重ウェブ形鋼を柱部材として用いた場合の本発明の柱梁接合部では、 柱部材 強軸方向に取り付く梁の端部を二重ウェブ形鋼のフラ ンジに接合するとともに、 柱部材弱軸方向に取り付く梁の端部を二重ゥ ブ形鋼のフラ ンジ間に接合する。 この場合、 従来の H形断面柱に対する梁部材の接合と同様に、 直接溶接する構 造や、 高力ボル ト等を用いたボル ト接合により接合する構造が考えられるが、 強 軸方向については二重ウェブ形鋼のウェブどう しの間隔を適切に設定することで H形鐧柱ゃ鋼管柱に比べ応力の流れがスムーズとなり、 また弱軸方向については 例えばスティ フナーを兼ねた接合金物を介して梁部材からの力を二重ウェブ形鋼 のフランジにも伝えるといったことが可能であり、 接合の容易さだけでなく、 力 学面でも非常に有利な構造となる。 In the column-beam joint of the present invention in which the double web section steel is used as the column member, the end of the beam attached in the strong axis direction is joined to the flange of the double web section steel, and the column member is weakened. The ends of the beams attached in the axial direction are joined between the flanges of the double-ended steel section. In this case, similar to the conventional joining of beam members to an H-shaped section column, a structure in which direct welding is performed or a structure in which joining is performed by bolt joining using a high-strength bolt, etc., are conceivable. By properly setting the distance between the webs of the double web section steel, The flow of stress is smoother than in H-shape columns and steel tube columns, and in the weak axis direction, for example, the force from the beam member is also transmitted to the flange of the double web section steel through a metal joint that also serves as a stiffener. This is a very advantageous structure in terms of mechanical strength as well as ease of joining.
また、 特に二重ゥ ブ形鑭を柱部材として用いる場合、 二重ゥュブ形鐧の閉断 面部の内側または外側にコンク リー トを打設し、 鋼コンク リー ト複合構造とする こともできる。  In particular, when a double-tube type is used as a column member, a concrete can be cast inside or outside the closed surface portion of the double-tube type to form a steel concrete composite structure.
本発明の高靱性構造部材は、 柱や梁等の構造部材の設計において、 二重ゥ ブ 形鋼が持つ高い変形性能を有効に発揮させることを考慮したものであり、 所定間 隔をおいて互いに平行に配置した一対のゥュブと、 ゥュブの両端に配置した一対 のフラ ンジとからなり、 所定のフランジ幅 B、 断面せい H、 ゥュブ中心からのフ ランジの出 b ! 、 ゥュブ中心間の幅 b 2 、 フラ ンジの出の部分の板厚 t i 、 フラ ンジのゥュブ間の部分の板厚 t 2 、 およびウェブの板厚 t s を有し、 断面中央部 に閉断面部を形成するとともに、 フラ ンジの出 により塑性域における所要の 靱性を確保したものである。 The high toughness structural member of the present invention is designed in consideration of effectively exhibiting the high deformation performance of the double-ribbed steel in the design of structural members such as columns and beams, and is provided at predetermined intervals. It consists of a pair of tubes arranged in parallel with each other and a pair of flanges arranged at both ends of the tube. A predetermined flange width B, a section H, and a flange protruding from the center of the tube b! , The width b 2 between the centers of the tubes, the plate thickness ti at the protruding portion of the flange, the plate thickness t 2 at the portion between the tubes of the flange, and the plate thickness t s of the web. In addition to the formation of a part, the required toughness in the plastic zone is secured by the flange.
靱性を確保するための断面形状としては、 フラ ンジの出 b i とゥュブ中心間の 幅 b 2 について、 b ! : b 2 - b i S z l z S 1 : 3 : 1程度が考えられ、 より効果的な範囲としては、 b i b a b i ^ S l Z ^ l S i l 柱部 材として最も効果的な範囲としては、 b ! - t^ b ! l i l l l : :^ 5 : 1程度となる。 The cross-sectional shape for securing the toughness, the width b 2 of between bi and Uyubu center out of flange, b: b 2 - bi S zlz S 1:! 3: about 1 is considered, a more effective As the range, the most effective range as the column material of bibabi ^ SlZ ^ lSil is b! -T ^ b! Lilll:: ^ 5: 1.
フランジ幅 Bと断面せい Hとの関係においては、 柱部材の場合、 HZB ^ 1 、 すなわち断面の外縁を略正方形とすることで、 角形鋼管に比べ若干、 弱軸、 強軸 方向の曲げ剛性に差が生ずるものの、 構造部材として納まり、 使い勝手のよい柱 部材が構成される。 また、 フラ ンジの出の部分を利用することで、 梁部材との取 り合いゃスティ フナ一による補剛も容易である。  Regarding the relationship between the flange width B and the section height H, in the case of a column member, HZB ^ 1, that is, by making the outer edge of the section approximately square, the bending stiffness in the weak axis and strong axis directions is slightly smaller than that of a square steel pipe. Despite the difference, it is housed as a structural member, and an easy-to-use column member is constructed. In addition, by using the protruding part of the flange, it is easy to connect with the beam member and to stiffen it with a stiffener.
この他、 H/B= 1〜 2程度の中幅、 HZB= 2〜 4程度の細幅の断面等もあ り、 特に一般に細幅となる梁部材については、 2つのウェブに挟まれた閉断面部 があることで、 H形鋼に比べ大幅にねじり剛性が上がり、 横座屈し難い安定した 断面となり、 H Z B ^ 4といった極端に細幅のものも可能である。 また、 実用的 な範囲としては H Z Bが 1 より若干大きい範囲もあり得る。 In addition, there are narrow sections with a medium width of about H / B = 1 to 2 and a narrow section with HZB = about 2 to 4.Particularly for narrow beam members, in particular, closed members sandwiched between two webs Cross section Because of this, the torsional rigidity is greatly increased compared to H-section steel, and a stable cross section with less lateral buckling is possible. Extremely narrow ones such as HZB ^ 4 are also possible. As a practical range, there may be a range where HZB is slightly larger than 1.
また、 本願発明の高靭性構造部材において、 塑性域の耐カを維持し、 安定した 塑性変形能力を付与するための手段として、 フラ ンジの板厚 t ! , t 2 を増すこ とは有効であるが、 フランジのウェブ間の部分の板厚 t 2 のみを大き く した t 2 In addition, in the high toughness structural member of the present invention, the flange thickness t! Is used as a means for maintaining the resistance to plasticity and providing a stable plastic deformation capability. , T is effective with this to increase the t 2, was rather large the only plate thickness t 2 of the portion between the flanges of the web 2
> t , の関係においても、 良好な改善効果が得られる。 この傾向はウェブ中心間 の幅 b 2 に比べフラ ンジの出 が比較的小さい、 角形鋼管に近づいた形態で顕 著である。 > In the relationship of t, a good improvement effect can be obtained. This tendency is relatively small out of the flange than the width b 2 between the web center, a remarkable in a form close to the RHS.
この他、 例えばフラ ンジを軟鋼、 ゥュブを高張力鋼という ように異種鋼材で構 成し、 弱軸、 強軸方向の曲げ剛性、 強度を調整しつつ、 塑性変形能力を改善する ことも可能である。  In addition, it is possible to improve the plastic deformation capacity by adjusting the bending stiffness and strength in the weak axis and the strong axis direction, for example, by configuring the flange with mild steel and the tube as high strength steel, and adjusting the bending rigidity and strength in the weak axis and strong axis directions. is there.
なお、 本発明の高靱性構造部材は主として鉄骨構造の構造部材として用いられ るが、 コンク リ一ト断面内に埋設して鉄骨鉄筋コ ンク リー トとして用いたり、 中 央の閉断面部にコ ンク リー トを充塡してコンク リー ト充塡鋼管的に用いることも 可能である。 図面の簡単な説明  Although the high toughness structural member of the present invention is mainly used as a structural member of a steel frame structure, it is embedded in a concrete section and used as a steel frame reinforced concrete, or it is used in a central closed section. It is also possible to fill concrete and use it as a concrete filled steel pipe. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明に係る二重ウェブ形鑭の一実施例を示したもので、 (a) は長手 方向と直角な断面図、 (b) は正面図、 (c) は(b) の A— A線断面図である。 図 2は、 梁部材としての二重ウェブ形鋼に開口部を設けた場合の一実施例を示 したもので、 (a) は正面図、 (b) は長手方向と直角な断面図である。  FIGS. 1A and 1B show an embodiment of a double web type II according to the present invention, in which (a) is a cross-sectional view perpendicular to the longitudinal direction, (b) is a front view, and (c) is a view of (b). FIG. 2 is a sectional view taken along line A-A. FIGS. 2A and 2B show an embodiment in which an opening is provided in a double web section steel as a beam member. FIG. 2A is a front view, and FIG. 2B is a cross-sectional view perpendicular to the longitudinal direction. .
図 3は、 本発明に係る二重ゥュブ形鋼の他の実施例を示したもので、 (a) は長 手方向と直角な断面図、 (b) は水平断面図である。  FIGS. 3A and 3B show another embodiment of the double-tube steel according to the present invention, wherein FIG. 3A is a cross-sectional view perpendicular to the longitudinal direction, and FIG. 3B is a horizontal cross-sectional view.
図 4は、 二重ウェブ形鋼と通常の H形鐧を長手方向に接続した梁部材の一実施 例における接続の様子を示す斜視図である。  FIG. 4 is a perspective view showing a connection state in one embodiment of a beam member in which a double web section steel and a normal H-shaped section are connected in the longitudinal direction.
図 5は、 両端を二重ウェブ形鐧、 中間を H形鋼として規格化した梁部材の一実 施例を示したもので、 (a) は正面図、 (b) は(a) の B— B断面図、 (c) は(a) の C— C断面図である。 Figure 5 shows a beam member standardized with a double web shape at both ends and an H-beam at the middle. (A) is a front view, (b) is a BB sectional view of (a), and (c) is a CC sectional view of (a).
図 6は、 二重ゥュブ形鋼からなる梁部材を用いた柱梁接合部の一実施例を示し たもので、 (a) は正面図、 (b) は(a) の D— D断面図である。  Fig. 6 shows an embodiment of a beam-column joint using a beam member made of double-tube steel, where (a) is a front view and (b) is a cross-sectional view taken along line D-D of (a). It is.
図 7 (a) 〜(h) は、 梁タイプの二重ウェブ形鋼の製作方法を示す形鋼の側面図 である。  Figures 7 (a) to 7 (h) are side views of a section steel showing the method of manufacturing a beam-type double web section steel.
図 8 (a) 、 (b) は、 本発明に係る二重ゥュブ形鋼の他の実施例を示す長手方向 と直角な断面図である。  FIGS. 8 (a) and 8 (b) are cross-sectional views perpendicular to the longitudinal direction showing another embodiment of the double-tube shaped steel according to the present invention.
図 9は、 二重ゥ ブ形鐧からなる柱部材を用いた柱梁接合部の一実施例を示す 斜視図である。  FIG. 9 is a perspective view showing one embodiment of a beam-column joint using a double-ribbed column member.
図 1 0は、 二重ゥュブ形鋼からなる柱部材を用いた柱梁接合部の他の実施例を 示したもので、 (a) は鉛直断面図、 (b) は水平断面図である。  FIGS. 10A and 10B show another embodiment of a beam-column joint using a column member made of a double-tube steel, wherein FIG. 10A is a vertical sectional view and FIG. 10B is a horizontal sectional view.
図 1 1 は、 本発明に係る二重ウェブ形鋼を異種鋼材を組み合わせたハイブリ ッ ド形鋼として構成した場合の実施例を示す長手方向と直角な断面図である。 図 1 2は、 二重ウェブ形鋼の中央部閉断面部内にスティフナーを設けない場合 の梁フランジからの柱断面内への力の流れを示した平面図である。  FIG. 11 is a cross-sectional view perpendicular to the longitudinal direction showing an example in which the double-web steel according to the present invention is configured as a hybrid steel in which different types of steel materials are combined. FIG. 12 is a plan view showing the flow of force from the beam flange into the column section when the stiffener is not provided in the central closed section of the double web section steel.
図 1 3 (a) 、 (b) は、 二重ウェブ形鋼の中央部閉断面内にスティフナーを設け る場合の実施例を示す長手方向と直角な断面図である。  FIGS. 13 (a) and 13 (b) are cross-sectional views perpendicular to the longitudinal direction showing an embodiment in which a stiffener is provided in a central closed cross section of a double web section steel.
図 1 4は、 二重ゥュブ形鋼を鉄骨とする鋼コンク リ一ト複合構造の柱の実施例 を示したもので、 (a) は水平断面図、 ) は(a) の E— E断面図である。  Fig. 14 shows an example of a steel-concrete composite column with a double-tube steel structure as the steel frame. (A) is a horizontal sectional view, and () is an EE section of (a). FIG.
図 1 5は、 二重ゥュブ形鋼を鉄骨とする鐧コンク リート複合構造の柱の他の実 施例を示したもので、 (a) は水平断面図、 (b) は(a) の F— F断面図である。 図 1 6は、 二重ゥヱブ形鋼を用いた鐧コンク リ一ト複合構造の柱のさらに他の 実施例を示したもので、 (a) は水平断面図、 (b) は(a) の G— G断面図である。 図 1 7 (a) 〜(h) は、 柱タィプの二重ゥェブ形鋼の製作方法を示す形鋼の側面 図である。  Figure 15 shows another embodiment of a column with a concrete composite structure using double-tube steel as the steel frame. (A) is a horizontal sectional view, and (b) is a F-section of (a). -It is F sectional drawing. FIGS. 16A and 16B show still another embodiment of a column having a double concrete section using a concrete composite structure. FIG. 16A is a horizontal sectional view, and FIG. It is G-G sectional drawing. Figs. 17 (a) to 17 (h) are side views of a section steel showing the method of manufacturing a column-type double web section steel.
図 1 8は、 本発明に係る梁タィプの二重ゥュブ形鋼のさらに他の実施例を示し たもので、 (a) は側面図、 (b) は正面図、 (c) は(b) の H— H断面図である。 図 1 9は、 本発明に係る柱タイプの二重ゥュブ形鋼のさらに他の実施例を示し たもので、 (a) は側面図、 (b) は正面図、 (c) は(b) の I — I断面図である。 図 2 0は、 本発明の高靱性構造部材を柱部材に適用した場合の代表的な断面形 状と寸法関係についての説明図である。 FIG. 18 shows still another embodiment of the double-tube steel of the beam type according to the present invention. (A) is a side view, (b) is a front view, and (c) is an H-H sectional view of (b). FIG. 19 shows still another embodiment of the column-type double-tube steel according to the present invention, wherein (a) is a side view, (b) is a front view, and (c) is (b). FIG. 2 is a sectional view taken along the line I-I of FIG. FIG. 20 is an explanatory diagram of a typical cross-sectional shape and dimensional relationship when the high toughness structural member of the present invention is applied to a column member.
図 2 1 は、 本発明の高靱性構造部材を梁部材に適用した場合の代表的な断面形 状と寸法関係についての説明図である。  FIG. 21 is an explanatory diagram of a typical cross-sectional shape and dimensional relationship when the high toughness structural member of the present invention is applied to a beam member.
図 2 2は、 本発明の高靱性構造部材の塑性変形能力に関する解析の説明図であ り、 (a) は数値シュ ミ レーシヨ ンモデルの断面を示す図、 (b) は加力方法を示す 図、 (c) は曲げモーメ ン ト と部材回転角の関係を示す図、 (d) は解析結果の図で ある。  FIGS. 22A and 22B are explanatory diagrams of the analysis on the plastic deformation capacity of the high toughness structural member of the present invention. FIG. 22A is a diagram showing a cross section of a numerical simulation model, and FIG. (C) is a diagram showing the relationship between the bending moment and the member rotation angle, and (d) is a diagram of the analysis result.
図 2 3は、 数値シュ ミ レーショ ンにおいて、 パラメーターを b ! : b 2 : b ! として、 曲げモーメ ン ト Mと部材変形角 Θの関係を、 全塑性モ一メ ン ト M P と塑 性変形角 P P で無次元化して示したグラフである。 Figure 23 shows the parameter b! In the numerical simulation. : B2: b! FIG. 6 is a graph showing the relationship between the bending moment M and the member deformation angle 無 in a dimensionless manner with the all-plastic moment M P and the plastic deformation angle P P.
図 2 4は、 数値シュ ミ レーショ ンにおいて、 バラメーターを t ! : t 2 : t ! として、 曲げモーメ ン ト Mと部材変形角 Θの関係を、 全塑性モーメ ン ト M P と塑 性変形角 Θ p で無次元化して示したグラフである。 発明を実施するための最良の形態 Figure 24 shows the numerical simulations with the parameter t! : T 2 : t! 7 is a graph showing the relationship between the bending moment M and the member deformation angle Θ in a dimensionless manner with the all-plastic moment M P and the plastic deformation angle Θ p. BEST MODE FOR CARRYING OUT THE INVENTION
図 1 (a) ~ (c) は本発明に係る二重ウェブ形鋼 1 の一例を示したもので、 幅: せいが 1 : 2〜 1 : 3程度の梁タイプ標準形鋼として考えたものである。  1 (a) to 1 (c) show an example of a double web section steel 1 according to the present invention, which is considered as a beam type standard section steel having a width: about 1: 2 to 1: 3. It is.
フラ ンジ 3の左右への出と中央部 ( 2本のウェブ 2間の部分) の比は任意で、 断面中央部の閉断面部の幅が広ければ箱形断面 (角鋼管) の性能に近ぐなり、 幅 が狭ければ H形断面 (H形鋼) の性能に近く なる。  The ratio of the flange 3 to the left and right and the central part (the part between the two webs 2) is arbitrary, and the performance of the box-shaped section (square steel pipe) is closer if the width of the closed section at the center of the section is wider. If the width is narrow, the performance will be closer to that of an H-shaped section (H-shaped steel).
H形断面に比べねじり剛性は極端に大き くなり、 梁部材として横座屈し難く、 大スパン梁として有効である。  The torsional stiffness is extremely large compared to the H-shaped cross section, making it difficult for the beam to buckle laterally, and is effective as a large span beam.
また、 フラ ンジ 3の出があることは、 梁が塑性化する領域でフラ ンジ 3の局部 変形が大き く生じ、 部材として大きな塑性変形を確保することができる。 一方、 ウェブが 1枚の H形鑭に比べ、 フランジ 3突出部 (出の部分) に対するウェブ 2 の拘束効果が大き く、 幅厚比の上で有効である。 In addition, the presence of flange 3 indicates that the flange 3 is localized in the region where the beam is plasticized. Large deformation occurs, and large plastic deformation can be secured as a member. On the other hand, compared to a single H-shaped web, the web 2 has a greater restraining effect on the protruding portion (projected portion) of the flange 3 and is effective in terms of width-thickness ratio.
図 2は二重ゥ ブ形鐧 1からなる梁部材として、 ウェブ 2に開口部 4を設けた 例である。 本実施例では開口部 4を両ウェブ 2について同一位置に連続的に設け ているが、 開口部 4の位置を両ゥュブ 2間でずらして設けてもよい。  FIG. 2 shows an example in which an opening 4 is provided in a web 2 as a beam member having a double tube shape 1. In the present embodiment, the openings 4 are continuously provided at the same position with respect to the two webs 2, but the positions of the openings 4 may be shifted between the two tubes 2.
二重ゥヱブ形鐧 1 では、 ゥヱブ 2に開口部 4を設けても、 箱形断面としてのね じり剛性は保たれ、 横座屈に対し有効な梁となる。  In the double tube type 1, even if the opening 2 is provided in the tube 2, the torsional rigidity of the box-shaped cross section is maintained, and the beam is effective against lateral buckling.
囪 3 (a) 、 (b) は図 1 (a) ~ (c) の二重ウェブ形鋼に対し、 2枚のゥュブ 2間 の間隔をさらに狭く した梁タイプの形鍋の例である。 この場合も H形鑭等、 ゥュ ブ 1枚の場合と比べれば、 ねじり剛性は相当大き く、 横座屈に対し有効な梁とな る。  Figures 3 (a) and 3 (b) are examples of beam-type pots in which the distance between the two tubes 2 is further reduced compared to the double-web shaped steel shown in Figs. 1 (a) to 1 (c). Also in this case, the torsional stiffness is considerably larger than that of a single tube such as H-shaped steel, and it is an effective beam against lateral buckling.
図 4は二重ウェブ形鋼 1 と通常の H形鋼 1 1 を長手方向に接続して、 1本の梁 部材とした場合の実施例を示したものである。 本実施例では、 二重ウェブ形鐧 1 をモーメ ン トの大きい梁端近傍に設け、 梁中間部は通常の H形鋼 1 1 としている 二重ゥュブ形鐧 1 と H形鐧 1 1 の接続は、 二重ウェブ形鑭 1 の 2枚のウェブ 2 間に、 H形鋼 1 1 の端部から突出させたウェブ 1 2部分を挿入して行っている。 H形鋼 1 1 のゥ ブ 1 2には板厚に応じて添接板 1 4を設ける等し、 二重ゥ ブ 形鋼 1 のウェブ 2 と重ね合わせた状態でボル ト接合し、 その後両形鐧し 1 1 の フラ ンジ 3, 1 3どう しを接合する。 図中、 5 , 1 5はボル ト孔、 1 6は H形断 面柱、 1 7はスティ フナ一である。  Fig. 4 shows an embodiment in which the double web section steel 1 and the normal H section steel 11 are connected in the longitudinal direction to form a single beam member. In this embodiment, the double web type 1 is provided near the beam end having a large moment, and the middle portion of the beam is a normal H-shaped steel 11. Is performed by inserting a web 12 portion protruding from an end of an H-shaped steel 11 between two webs 2 of a double web shape 鑭 1. The spigot plate 14 of the H-section steel 1 1 is provided with an attachment plate 14 according to the thickness, etc., and is bolted in a state where it is superimposed on the web 2 of the double-section steel section 1. The flanges 3 and 13 of the shape 11 are joined together. In the figure, 5 and 15 are bolt holes, 16 is an H-shaped cross section column, and 17 is a stiffener.
図 5は予め部材の両端でゥエブ 2 2 aを二重とし、 中間のゥヱブ 2 2 bを一枚 として梁部材 2 1 を規格化したものである。  FIG. 5 is a diagram in which the beam 22a is previously standardized at both ends of the member, with the web 22a being doubled and the middle web 22b being a single sheet.
製作方法としては、 図 4のような接続方法を用いる場合の他、 ウェブが 1枚の 通常の H形鋼の材端部近傍のある区間について、 H形鋼のゥュブと平行に片側ま たは両側に第 2または第 3のゥヱブとして平板を配し、 ゥヱブと平板ないしは平 板どう しで箱形の閉断面部を作ってもよい。 図 6は H形断面柱 1 6 と二重ゥュブ形鐧 1 からなる梁部材の接合部の一実施例 を示したものである。 本実施例では H形断面柱 1 6のゥュブに対し、 水平断面が T字形の T形接合金具 1 8のフラ ンジ部をボル ト 1 9で接合し、 T形接合金具 1 8のゥ ブ部を二重ウェブ形鋼 1 のウェブ 2間に挿入し、 ボルト 1 9で止め付け ている。 二重ゥュブ形鐧 1 のフランジ 3は溶接でもボルト接合でもよい。 In addition to using the connection method shown in Fig. 4, the method of manufacture is to use a single section of the web near the end of a normal H-section steel with one web parallel to the H-section tube. A flat plate may be arranged as a second or third rib on both sides, and the box and the flat plate or the flat plate may form a box-shaped closed cross section. FIG. 6 shows an embodiment of a joint section of a beam member composed of an H-shaped column 16 and a double-tube form 1. In this embodiment, the flange of the T-shaped fitting 18 having a T-shaped horizontal section is joined to the hub of the H-shaped section 16 with a bolt 19, and the hub of the T-shaped fitting 18 is connected. Is inserted between the webs 2 of the double web section 1 and fastened with bolts 19. The flange 3 of the double tube type 1 may be welded or bolted.
図 7 (a) ~ (h) は梁タイプの二重ウェブ形鋼 1 の製作方法を示したもので、 以 下のような方法が考えられる。  FIGS. 7 (a) to 7 (h) show a method of manufacturing a beam-type double web section steel 1, and the following methods are conceivable.
① ゥュブ高さが等しい 2本の H形鋼 3 1 を、 ウェブどう しが平行となるよう配 置し、 両 H形鐧 3 1 のフランジ端部どう しを溶接等により接合する (図 7 (a) 参照) 。 本実施例は梁タイプであり、 ゥュブに関し、 フラ ンジの出が非対称の H形鋼 3 1 を用い、 ゥヱブ間の間隔を狭く している。 図 7 (g) はフランジの片 側の出が極端に小さく突起状となった H形鋼 3 1 ' を用いたものであり、 ゥュ ブの間隔がさらに狭くなるようにしたものである。  ① Two H-section steels 31 with the same tube height are placed so that the webs are parallel to each other, and the flange ends of both H-sections 31 are joined by welding or the like (Fig. 7 ( a)). The present embodiment is a beam type, and the H-shaped steel 31 having an asymmetric flange is used for the tubes, and the interval between the tubes is reduced. Fig. 7 (g) shows the use of H-shaped steel 31 'with an extremely small protrusion on one side of the flange and a protruding shape, in which the gap between the tubes is further reduced.
② ウェブ高さが等しい H形鋼 3 2 a と溝形鋼 3 2 bを、 ゥ ブどう しが平行と なるよう配置し、 H形鋼 3 2 aのフランジ端部を溝形鋼 3 2 bのウェブ背面端 部に溶接等により接合する (図 7 (b) 参照) 。 なお、 二重ウェブ形鋼の閉断面 内にスティ フナーを必要とする場合にも、 溝形鋼 3 2 bにスティ フナ一の 3辺 を溶接した状態で H形鋼 3 2 a と溝形鋼 3 2 bを接合することが可能である。 ② H-section steel 3 2a and channel section steel 3 2b with the same web height are arranged so that the ゥ sections are parallel to each other, and the flange end of H-section steel section 32a is grooved section section 3 2b. (See Fig. 7 (b)). Even when a stiffener is required in the closed section of the double web section steel, the H section steel 32a and the channel section steel are welded with the three sides of the stiffener welded to the channel section steel 32b. It is possible to join 32b.
③ ゥュブ 3 3 aの両端にフラ ンジ 3 3 b , 3 3 cを有し、 一端を T字状断面、 他端を L字状断面とした形鋼 3 3を、 長手方向と直角な断面において、 点対象 に 2本配置し、 互いにフラ ンジ高さで溶接等により接合する (図 7 (c) 参照) c(3) Tube 33 has flanges 33b and 33c at both ends, with a T-shaped cross-section at one end and an L-shaped cross-section at the other end. , Two are placed on the point target, and they are joined to each other by welding at the flange height (see Fig. 7 (c)) c
④ ウェブに対するフランジの出が左右非対象な T形鐧 3 4を、 2本点対象に配 置し、 両 T形鋼 3 4のフラ ンジ先端とウェブ先端どう しを溶接等により接合す る (図 7 (d) 参照) 。 T The T-shape 鐧 34, whose flanges are not symmetrical to the web, is placed at two points, and the flange end of both T-shapes 34 and the web end are joined by welding or the like. (See Fig. 7 (d)).
⑤ H形鋼 3 5 aのフラ ンジ間に、 H形鐧 3 5 aのゥヱブと平行に平板 3 5 bを 記置し、 平板 3 5 bの両端をそれぞれ H形鐧 3 5 aのフラ ンジの内面に溶接等 により接合する (図 7 (e) 参照) 。 なお、 H形鋼 3 5 aはゥ ブに対するフラ ンジの出が左右非対象な H形鑭を用いることで、 二重ゥュブ形鋼としてのゥ ブの偏りをなくすことができる。 また、 H形鋼のウェブの両側に平板を接合し- 二重ゥヱブ形鐧にさらにもう 1枚ウェブが加わった形としてもよい。 平板 A flat plate 35b is placed between the flanges of the H-section steel 35a in parallel with the flanges of the H-section 35a, and both ends of the flat section 35b are respectively connected to the flanges of the H-section 35a. (See Fig. 7 (e)). The H-section steel 35a The use of an H-shape in which the protrusion of the flange is asymmetrical makes it possible to eliminate the bias of the hub as a double-tube shaped steel. Further, a flat plate may be joined to both sides of the web of the H-section steel, and a shape in which another web is added to the double-lobed shape may be employed.
⑥ フランジとしての平行な 2枚の平板 3 6 b間に、 ゥエブとしての平板 3 6 a を 2枚平行に E置し、 ゥュブとしての平板 3 6 aの両端をそれぞれフランジと しての平板 3 6 bの内面に溶接等により接合する (図 7 (f) 参照) 。 なお、 図 7 (f ) では、 フランジとしての平板 3 6 bの中間部の板厚を両端部の板厚より 厚く して、 溶接性を改善するとともに、 組立接合部における応力の伝達がスム —ズとなるようにしている。 間 に Two parallel flat plates 36a are placed in parallel between two parallel flat plates 36b as flanges, and the flat plate 36a as a hub is a flat plate with flanges at both ends. 6 Join the inner surface of b by welding or the like (see Fig. 7 (f)). In Fig. 7 (f), the thickness of the middle part of the flat plate 36b as the flange is made thicker than the thickness of both ends to improve weldability, and the transmission of stress at the assembled joint is smooth. To make sure that
⑦ 2本の T形鋼 3 7 bをウェブを対向させて所定間隔をおいて配置し、 対向す るゥヱブを両側から 2枚の平板 3 7 aで挟みこみ、 T形鋼 3 7 bのゥヱブと 2 枚の平板 3 7 aを溶接等で接合する (図 7 (h) 参照) 。 ⑦ Two T-sections 37 b are arranged at a predetermined interval with the web facing each other, and the opposing webs are sandwiched between two flat plates 37 a from both sides, and the T-sections 37 b And the two flat plates 37a are welded together (see Fig. 7 (h)).
図 8 (a) 、 (b) は図 1 の二重ゥュブ形鋼に比べ、 2枚のゥ ブ 4 2間の間隔が 大きい柱タイプの二重ゥュブ形鋼 4 1 の例である。 この図では断面の幅とせいの 比が 1 : 1 の標準的な形鋼を示しているが、 使用目的に応じ、 その比は任意であ る。  FIGS. 8 (a) and 8 (b) show examples of column-type double-tube steel members 41 in which the distance between the two tubes 42 is larger than that of the double-tube steel members of FIG. This figure shows a standard section steel with a 1: 1 ratio of section width to width, but the ratio is arbitrary according to the intended use.
図 8 (a) はフラ ンジ 4 3の板厚が略均一な場合、 図 8 (b) は中央部の板厚が突 出部の板厚より厚い場合である。 これはフラ ンジ幅とも関連し、 図 8 (b) を標準 とするものの、 その逆であってもよい。  FIG. 8A shows the case where the thickness of the flange 43 is substantially uniform, and FIG. 8B shows the case where the thickness of the central portion is larger than the thickness of the protruding portion. This is related to the flange width, as shown in Figure 8 (b) as a standard, but vice versa.
この断面の力学的性能に関しては H形断面と箱形断面の両者の性質を合わせ持 つ。 二重ゥュブ 4 2の位置を変えることで、 性能をコン トロールでき、 設計の自 由度が増す。  Regarding the mechanical performance of this cross section, it has the properties of both the H-shaped section and the box-shaped section. By changing the position of the dual tube 42, performance can be controlled and design freedom is increased.
また、 H形鋼等の開断面部材に比べねじり剛性は極端に大き く、 曲げねじれ座 屈が起こり難い。  In addition, the torsional rigidity is extremely large compared to open section members such as H-section steel, and bending torsional buckling hardly occurs.
図 9は、 柱部材として二重ウェブ形鋼 4 1 を用いた場合の柱梁接合部を示した ものである。 二重ウェブ形鋼 4 1 を柱部材として用いた場合の柱梁接合部は、 H 形断面柱の場合に類似し、 角鋼管柱等、 箱形断面部材で問題となる複雑さはない, 本実施例では二重ゥュブ形鋼 4 1からなる柱部材の強軸方向については、 H形 鋼梁 4 5を溶接等により直接接合し (スプリ ッ トティ一その他の接合金具を用い ることもできる) 、 弱軸方向については、 フラ ンジ 4 3間の断面幅内に接合金具 と して兼用されるスティ フナー 4 4を取り付け、 このスティ フナ一 4 4を利用し て弱軸方向の H形鑭梁 4 5を接合している。 この場合、 H形鐧梁 4 5からの力を スティ フナ一 4 を介して二重ゥエブ形鋼 4 1 のフラ ンジ 4 3へも伝えることが でき、 仕口部近傍における応力の流れがスムーズとなる。 Fig. 9 shows a beam-column joint when a double web section steel 41 is used as a column member. The beam-to-column connection when double web steel 41 is used as the column member is similar to the case of the H-shaped column, and there is no complexity that is a problem with box-shaped members such as square steel tube columns, In the present embodiment, in the strong axis direction of the column member made of the double-tube shaped steel 41, the H-shaped steel beam 45 is directly joined by welding or the like (a split tee or other joining fittings can also be used). In the weak axis direction, a stiffener 44 that is also used as a joint fitting is mounted within the cross-sectional width between the flanges 43, and the stiffener 144 is used to make an H-shape in the weak axis direction. Beams 4 and 5 are joined. In this case, the force from the H-shaped beam 45 can be transmitted to the flange 43 of the double E-beam 41 via the stiffener 14, and the flow of stress near the joint can be smooth. Become.
もちろん H形鋼梁 4 5の代わりに、 図 1等に示した二重ゥヱブ形鐧を用いるこ ともできる。 また、 接合金具や接合方法については、 従来、 H形断面柱と H形鋼 梁の接合部に用いられている種々の接合金具、 接合方法が適用可能である。  Of course, instead of the H-shaped steel beam 45, the double-ribbed shape shown in FIG. 1 and the like can be used. In addition, as for the joining metal fittings and joining methods, various joining metal fittings and joining methods conventionally used for joints between H-section columns and H-shaped steel beams can be applied.
図 1 0 (a) 、 (b) は、 同じく柱部材として二重ゥ ブ形鋼 4 1 を用いた場合の 柱梁接合部について、 強軸方向および弱軸方向の H形鋼梁 4 5をボル ト接合のみ で接合できるようにした場合の実施例を示したものである。  Figures 10 (a) and 10 (b) show H-beams 45 in the strong axis direction and the weak axis direction for the beam-column joint when the double-ribbed steel 41 is also used as the column member. This shows an embodiment in which joining can be performed only by bolt joining.
本実施例では二重ウェブ形鋼 4 1からなる柱部材の強軸方向については、 スプ リ ッ トティ一等の鉛直断面が T字状の強軸方向接合金物 4 9 aを、 H形鋼梁 4 5 のフラ ンジ高さに合わせて上下に配置し、 強軸方向接合金物 4 9 aの鉛直方向に 延びるフランジを二重ゥェブ形鑭 4 1 のフラ ンジ 4 3に当接させてボルト 5 0で 接合し、 さらに H形鋼梁 4 5の上下フラ ンジを上下の強軸方向接合金物 4 9 aの ウェブにボル ト 5 0で接合している。  In the present embodiment, regarding the strong axis direction of the column member made of the double web section steel 41, a strong axial direction metal fitting 49a having a T-shaped vertical section such as a split tee is used as an H-shaped steel beam. 4 Vertically aligned with the flange height of 5 5 and the vertically extending flange of the strong axial joint metal 4 9 a is brought into contact with the flange 4 3 In addition, the upper and lower flanges of the H-shaped steel beam 45 are joined to the upper and lower strong axial direction joining hardware 49 a by a bolt 50.
—方、 弱軸方向については水平断面が溝形のフラ ンジと水平方向のウェブとか らなる弱軸方向接合金物 4 9 bを用い、 弱軸方向接合金物 4 9 bのフラ ンジを二 重ゥェブ形鑭 4 1 のフランジ 4 3の内面およびウェブ 4 2に当接させて、 それぞ れボルト 5 0および長ボルト 5 0 aで接合し、 さらに弱軸方向の H形鋼梁 4 5の 上下フランジを上下の弱軸方向接合金物 4 9 bのウェブにボルト 5 0で接合して いる。  On the other hand, in the weak axis direction, a weak axis joint metal piece 49 b composed of a flange with a horizontal cross section and a horizontal web is used, and the flange of the weak axis joint metal piece 49 b is double-web. Abut on the inner surface of flange 4 3 of form 4 1 and the web 4 2, and connect them with bolts 50 and long bolts 50 a, respectively. Are connected to the upper and lower webs of the weak-joining hardware 49 b with bolts 50.
なお、 本実施例では柱部材としての二重ゥュブ形鋼 4 1 のフラ ンジ 4 3を強軸 方向接合金物 4 9 aのフラ ンジと弱軸方向接合金物 4 9 bのフラ ンジで挟み込み. 共通のボル卜 5 0で接合している。 また、 二重ゥヱブ形鑭 4 1 のウェブ 4 2に関 しては、 長ボルト 5 0 aを貫通させて両側の弱軸方向接合金物 4 9 bのフラ ンジ 間を接合している。 In the present embodiment, the flange 43 of the double-tube section steel 41 as the column member was sandwiched between the flange of the strong-axis joint metal piece 49a and the flange of the weak-axis joint metal piece 49b. They are joined by a common bolt 50. Further, as for the web 42 of the double-rib type 41, the long bolt 50a is made to penetrate therethrough to join the flanges of the joints 49b on the both sides in the weak axis direction.
柱部材に接合される梁部材は、 通常、 柱部材に比べ細幅であり、 強軸方向につ いては二重ウェブ形鐧 4 1 のゥ ブ 4 2どう しの間隔を適切に設定することで、 H形鋼柱ゃ鐧管柱に比べ応力の流れがスムーズとなる。  The beam members to be joined to the column members are usually narrower than the column members, and in the strong axis direction, the distance between the webs 4 2 of the double web shape 4 1 should be set appropriately. Therefore, the flow of stress is smoother than in the case of H-shaped steel columns and tubular columns.
図 1 1 は、 本発明に係る二重ゥュブ形鐧 4 1 を、 異種鐧材を組み合わせたハイ ブリ ッ ド形鐧として構成した場合の例である。 特に、 X — X軸、 Y— Y軸回りの 曲げ剛性と強度を調整するため、 ウェブ 4 2に高張力鋼をおく ことは有効である < フランジ 4 3の突出部間に梁等、 他部材接合のためのスティ フナー 4 4を溶接 等により取り付けることができるため、 作業場での建方を考える上で、 溶接性そ の他高張力鋼特有の困難さを避けることができる。  FIG. 11 shows an example in which the double-tube type 41 according to the present invention is configured as a hybrid type combining different materials. In particular, it is effective to put high-strength steel on the web 42 to adjust the bending stiffness and strength around the X-X axis and Y-Y axis. <Other members such as beams between the protrusions of the flange 43 Since the stiffener 44 for joining can be attached by welding or the like, it is possible to avoid weldability and other difficulties peculiar to high-strength steel when considering how to construct the workplace.
図 1 2は、 二重ウェブ形鐧 4 1 の中央部閉断面部内にスティ フナーを設けない 場合の H形鐧梁 4 5の梁フランジからの柱断面内への力の流れを示したもので、 箱形断面柱の場合のように、 外周スティ フナーを設けたり、 閉断面部内にスティ フナーを設ける面倒はない。  Fig. 12 shows the flow of force from the beam flange of the H-shaped beam 45 into the column section when the stiffener is not provided in the central closed cross-section of the double web type 41. There is no need to provide an outer stiffener as in the case of a box-shaped column or to provide a stiffener in a closed section.
図 1 3 (a) 、 (b) は、 二重ウェブ形鋼 4 1 の中央部閉断面内に、 スティ フナー 4 6を設ける場合の実施例を示したものである。 図 1 3 (a) は H形鐧 4 1 a と溝 形鑭 4 1 bで二重ウェブ形鑭 4 1 を作る場合において、 予め H形鐧 4 1 a側にス ティ フナー 4 6を設けて組み立てた例であり、 図 1 3 (b) は二重ウェブ形鋼 4 1 を並列する 2本の H形鋼 4 1 cで構成する場合において、 予め両 H形鋼 4 1 cに スティ フナー 4 6を設けて組み立てた例である。  FIGS. 13 (a) and 13 (b) show an embodiment in which a stiffener 46 is provided in a central closed cross section of the double web section steel 41. FIG. Fig. 13 (a) shows the case where a stiffener 46 is provided on the H-shaped 鐧 41 a side before the double web 鑭 41 is made of the H-shaped 鐧 41 a and the groove 鑭 41 b. Fig. 13 (b) shows an example of assembling. In the case where the double web section 41 is composed of two parallel H sections 41c, the stiffeners 4 This is an example in which 6 is provided and assembled.
図 1 4〜図 1 6は二重ゥ ブ形鐧 4 1 を鉄骨とする鋼コ ンク リー 卜複合構造の 柱の実施例を示したものである。  FIGS. 14 to 16 show an embodiment of a column having a steel concrete composite structure using a double tube type 41 as a steel frame.
図 1 4 (a) 、 (b) はゥ ブ 4 2に開口部 4 7を設ける等して断面全体にコ ンク リー ト 4 8を打ち込んだ例である。  FIGS. 14 (a) and 14 (b) show examples in which a concrete 48 is driven into the entire cross section by providing an opening 47 in the tube 42 or the like.
図 1 5 (a) 、 (b) は断面中央部を除き、 コ ンク リー ト 4 8を打った例である。 図 1 6 (a) 、 (b) は中央部の閉断面部内にコ ンク リー ト 4 8を打ち込んだ例で、 鋼管コ ンク リー トに近いものである。 この場合、 従来の鋼管コ ンク リ ー ト構造で は、 仕口部が問題となるのに対し、 フランジ 4 3の突出部 (出の部分) にはステ ィ フナ一、 その他接合金具等を容易に取り付けることができる。 FIGS. 15 (a) and 15 (b) are examples in which concrete 48 was struck except for the center of the cross section. Figures 16 (a) and (b) show examples where concrete 48 was driven into the central closed cross section, which is close to a steel pipe concrete. In this case, in the conventional steel pipe concrete structure, the connection part becomes a problem, whereas the protrusion (protruding part) of the flange 43 easily includes a stiffener and other joining metal fittings. Can be attached to
図 1 7 (a) 〜(! は柱タィプの二重ゥ ブ形鑭 4 1 の製作方法を示したもので、 以下のような方法が考えられる。  Figure 17 (a) to (!) Show the method of manufacturing the double-tube type 41 with pillar type, and the following methods can be considered.
① ウェブ高さが等しい 2本の左右対称な H形鋼 5 1 を、 ゥュブどう しが平行と なるよう E置し、 両 H形鋼 5 1 のフランジ端部どう しを溶接等により接合する (図 1 7 (a) 参照) 。  ① Two symmetrical H-sections 51 with the same web height are placed E so that the tubes are parallel to each other, and the flange ends of both H-sections 51 are joined by welding or the like ( (See Fig. 17 (a)).
② フラ ンジの出が非対称な 2本の H形鋼 5 1 ' を、 ゥュブどう しが平行となる よう配置し、 両 H形鋼 5 1 ' のフランジ端部どう しを溶接等により接合する (図 1 7 (b) 参照) 。 穽対称としたフラ ンジの出の選択により、 ウェブ間の間 隔が自由に選択でき、 また閉断面内にスティ フナーを必要とする場合にも、 ス ティ フナ一の 3辺を溶接した状態で両 H形鋼 5 1 ' を突き合わせて接合するこ とができる。 (2) Two H-shaped steel members 51 'with asymmetric flanges are arranged so that the tubes are parallel to each other, and the flange ends of both H-shaped steel members 51' are joined by welding or the like ( See Figure 17 (b)). By selecting the flange symmetrical, the spacing between the webs can be freely selected, and even when a stiffener is required in a closed section, the three sides of the stiffener are welded together. Both H-sections 5 1 ′ can be butt-joined.
③ ゥヱブ高さが等しい H形鋼 5 2 a と溝形鋼 5 2 bを、 ゥヱブどう しが平行と なるよう配置し、 H形鐧 5 2 aのフランジ端部を溝形鋼 5 2 bのウェブ背面端 部に溶接等により接合する (図 1 7 (c) 参照) 。 なお、 二重ゥュブ形鋼の閉断 面内にスティ フナーを必要とする場合、 予め溝形鋼 5 2 b にスティ フナ一の 3 辺を溶接した状態で H形鋼 5 2 a と溝形鋼 5 2 bを接合することができる。 ③ H Place the H-section steel 52 a and the channel steel 52 b with the same height of the lobe so that the lobes are parallel to each other, and attach the flange end of the H-section 52 a to the It is joined to the back end of the web by welding or the like (see Fig. 17 (c)). If a stiffener is required within the closed surface of the double-tube section steel, the H-section steel 52a and the channel section steel must be welded in advance with three sides of the stiffener welded to the channel section 52b. 5 2b can be joined.
④ ゥュブ 5 3 aの両端にフラ ンジ 5 3 b , 5 3 cを有し、 一端を T字状断面、 他端を L字状断面とした形鋼 5 3を、 長手方向と直角な断面において、 点対象 に 2本配蘆し、 互いにフラ ンジ高さで溶接等により接合する (図 1 7 (d) 参照)形 Tube 53 has flanges 53b and 53c at both ends of tube 53a, and has a T-shaped cross section at one end and an L-shaped cross section at the other end. , Two pieces are distributed to the point object, and they are connected to each other by welding at the flange height (see Fig. 17 (d))
⑤ ウェブに対するフラ ンジの出が左右非対象な T形鐧 5 4を、 2本点対象に配 置し、 両 T形鋼 5 4のフラ ンジ先端とウェブ先端どう しを溶接等により接合す る (図 1 7 (e) 参照) 。 T T-shape 鐧 54, in which the flange is not symmetrical to the web, is placed at two points, and the ends of the flanges of both T-shapes 54 and the web are joined by welding or the like. (See Figure 17 (e)).
⑥ H形鋼 5 5 aのフラ ンジ間に、 H形鋼 5 5 aのゥュブと平行に平板 5 5 bを 配置し、 平板 5 5 bの両端をそれぞれ H形鋼 5 5 aのフラ ンジの内面に溶接等 により接合する (図 1 7 (f ) 参照) 。 なお、 H形鋼 5 5 a はゥュブに対するフ ラ ンジの出が左右非対象な H形鋼を用いることで、 二重ゥ ブ形鐧と してのゥ エブの偏りをなくすことができる。 また、 H形鋼のウェブの両側に平板を接合 し、 二重ウェブ形鋼にさらにもう 1枚ウェブが加わった形としてもよい。を Place a flat plate 55b between the flanges of the H-beam 55a in parallel with the tube of the H-beam 55a. Then, both ends of the flat plate 55b are joined to the inner surface of the flange of the H-beam 55a by welding or the like (see Fig. 17 (f)). It should be noted that the H-section steel 55a can be used as an H-section steel in which the protrusion of the flange to the tube is not symmetrical to the left and right. Also, a flat plate may be joined to both sides of the H-section steel web, and another web may be added to the double web section steel.
⑦ フランジとしての平行な 2枚の平板 5 6 b間に、 ウェブとしての平板 5 6 a を 2枚平行に配置し、 ウェブとしての平板 5 6 aの両端をそれぞれフランジと しての平板 5 6 bの内面に溶接等により接合する (図 1 7 (g) 参照) 。 なお、 図 1 7 (g) では、 フランジとしての平板 5 6 bに長手方向に連続する突起 5 6 b ' を設け、 この突起 5 6 b ' に対して、 ゥュブとしての平板 5 6 aの両端を 接合している。 ウ ェ ブ Two flat plates 56a as webs are placed in parallel between two parallel flat plates 56b as flanges, and both ends of flat plates 56a as webs Join the inner surface of b by welding or the like (see Fig. 17 (g)). In Fig. 17 (g), a flat plate 56b as a flange is provided with a projection 56b 'which is continuous in the longitudinal direction, and both ends of the flat plate 56a as a tube are provided with respect to the protrusion 56b'. Are joined.
⑧ フランジとしての平行な 2枚の平板 5 7 b間に、 ウェブとしての平板 5 7 a を 2枚平行に配置し、 ウェブとしての平板 5 7 aの両端をそれぞれフラ ンジと しての平板 5 7 bの内面に溶接等により接合する (図 1 7 (h) 参照) 。 なお、 図 1 7 ( ) では、 フランジとしての平板 5 7 bの中間部の板厚を両端部の板厚 より厚く している。  ウ ェ ブ Two flat plates 57a as webs are placed in parallel between two parallel flat plates 57b as flanges, and both ends of the flat plate 57a as webs are flanged. Join the inner surface of 7b by welding or the like (see Fig. 17 (h)). In FIG. 17 (), the thickness of the middle portion of the flat plate 57 b as the flange is larger than the thickness of both ends.
図 1 8および図 1 9 は本発明に係る二重ウェブ形鋼のさらに他の実施例を示し たものである。  FIG. 18 and FIG. 19 show still another embodiment of the double web section steel according to the present invention.
図 1 8 (a:) 〜(c) は薄い矩形の角鋼管 6 1 aに 2枚のフランジ 6 1 bを溶接等 により接合した梁タイプの二重ウェブ形鋼の例である。 断面形状の変化の幅や、 この形鋼の使い方は、 上述した梁タィプの二重ウェブ形鋼 1等の場合と同様であ る。  Figures 18 (a) to 18 (c) show examples of beam-type double web steel in which two flanges 61b are joined to a thin rectangular steel pipe 61a by welding or the like. The width of the change in cross-sectional shape and the use of this section are the same as in the case of the double web section 1 of beam type described above.
図 1 9 (a) 〜(c) は矩形の角鋼管 7 1 aに 2枚のフラ ンジ 7 1 bを溶接等によ り接合した柱タィプの二重ゥエブ形鋼の例である。  Figs. 19 (a) to 19 (c) show examples of a column-type double Eb steel with two flanges 71b joined to a rectangular square steel tube 71a by welding or the like.
図 2 0および図 2 1 は、 本発明の高靱性構造部材の代表的な断面形状と寸法関 係を示したもので、 図 2 0 はフランジ幅 Bと断面せい Hが、 H Z B = 1 の関係に ある柱部材 8 1 に適用した場合である。 基本的な断面形状としては、 互いに平行 な一対のゥエブ 8 2 と、 ウェブ 8 2の両端の一対のフランジ 8 3 とからなり、 断 面中央部にこれらで囲まれる閉断面部を形成している。 Fig. 20 and Fig. 21 show the typical cross-sectional shape and dimensional relationship of the high toughness structural member of the present invention. Fig. 20 shows the relationship between the flange width B and the cross-sectional height H, where HZB = 1. This is the case where the method is applied to the column member 81 in FIG. Basic cross-sectional shapes are parallel to each other A pair of flanges 82 and a pair of flanges 83 at both ends of the web 82 form a closed section surrounded by these at the center of the cross section.
図 2 1 はフランジ幅 Bと断面せい Hが、 H Z B = 2の関係にある梁部材 9 1 に 適用した場合であり、 互いに平行な一対のゥヱブ 9 2 と、 ウェブ 9 2の両端の一 対のフランジ 9 3 とからなり、 断面中央部にこれらで囲まれる閉断面部を形成し ている。  Fig. 21 shows a case where the flange width B and the cross section H are applied to the beam member 91 with the relationship of HZB = 2, and a pair of parallel ribs 9 2 and a pair of both ends of the web 9 2 are provided. It is composed of a flange 93 and forms a closed section surrounded by these at the center of the section.
フランジ幅 B、 断面せい H、 ゥュブ中心からのフランジの出 b , 、 ゥヱブ中心 間の幅 b 2 、 フランジの出の部分の板厚 t i 、 フランジのゥュブ間の部分の板厚 t 2 、 およびゥヱブの板厚 t 3 との関係において、 主としてフランジの出 b , に より構造部材として塑性域における所要の靱性を確保する。 Flange width B, section sei H, b out of the flange from Uyubu center, the width b 2, the thickness of the portion of the output flange ti, the thickness t 2 of a portion between the flanges of Uyubu between Uwebu centers, and Uwebu The required toughness in the plastic region is secured as a structural member mainly by the protrusion b of the flange in relation to the sheet thickness t3 of the steel sheet.
図 2 2は、 本発明の高靱性構造部材の塑性変形能力についての解析例を示した ものである。  FIG. 22 shows an example of analysis on the plastic deformation capacity of the high toughness structural member of the present invention.
数値シュ ミ レーショ ンモデルは、 図 2 2 (a) の部材断面 (図 2 0 に対応) にお けるフランジ幅 B = 1 5 0關、 断面せい H = 1 5 0 rara、 フランジの板厚 t ! = t : = 4 . 5 ram、 ウェブの板厚 t 3 = 4 . 5 ramとしている。 In the numerical simulation model, the flange width B = 150 in the member cross section of Fig. 22 (a) (corresponding to Fig. 20), the cross section H = 150 rara, and the flange thickness t! = t: = 4.5 ram, web thickness t 3 = 4.5 ram.
図 2 2 (b) に示すような片持梁形式で、 材長 L = 9 0 0 mmの端部に鉛直荷重 P により曲げせん断荷重 M = P Lを作用させた場合の塑性変形能力 ( ΰ ma x / θ ρ 一 1 ) を、 Η形鐧 (Ηタイプ) 、 角形鋼管 (口タイプ) を両極として、 A〜Fの 6タィプのダブルゥュブ構造部材 (本発明における平行な一対のゥェブ 2を有す る構造部材をいうものとする) の合計 8種類について解析した。  In the case of a cantilever beam type as shown in Fig. 22 (b), the plastic deformation capacity when a bending load M = PL is applied to the end of a material length L = 900 mm by a vertical load P (ΰ ma x / θ ρ 1 1) is a double-walled structural member of 6 types A to F (having a pair of parallel webs 2 in the present invention), with a rectangular shape (Η type) and a square steel pipe (mouth type) as both poles. The analysis was made for a total of eight types of structural members.
材料強度は σ y = 3 0 kg/rara2で、 応力一ひずみ関係における塑性域での勾配 E = E / 1 0 0のバイ リユアモデルとしている (図 2 2 (c) 参照) 。 The material strength is σ y = 30 kg / rara 2 , and a bilinear model with a gradient E = E / 100 in the plastic region in the stress-strain relationship (see Fig. 22 (c)).
なお、 この数値シュ ミ レーショ ンでは、 正方形断面のせん断曲げによる荷重変 形を対象としたが、 軸力の存在する柱部材の場合でも、 細幅の梁部材の場合でも 力学的特徴はあまり変わらない。  In this numerical simulation, load deformation due to shear bending of a square cross section was targeted.However, the mechanical characteristics did not change much in the case of a column member with an axial force or a narrow beam member. Absent.
図 2 2 (d) は、 横軸に塑性変形能力 ( m a K / <9 p — 1 ) をとり、 縦軸につい てはパラメ一ターを b , : b 2 : b , として、 2枚のゥヱブ位置を変化させ、 順 番に Hタイプ ( 1 : 0 : 1 ) , A ~ Fの各タイプ, 口タイプ ( 0 : 1 : 0 ) を並 ベたものである。 In Fig. 2 (d), the horizontal axis shows the plastic deformation capacity ( maK / <9p-1), and the vertical axis shows the parameters b,: b2: b, with two plots. Change the position and order The numbers are H type (1: 0: 1), A to F types, and mouth type (0: 1: 0).
図において、 最大曲げモーメ ン トとなる時点を黒丸で示している。 なお、 フラ ンジの出 b , が大き く、 H形断面寄りの部材は荷重の変動を伴うので、 第 2のビ 一ク点を白丸で示した。 この間の耐力の変動は小さく、 部材の塑性変形能力とし て十分評価できる。  In the figure, the point at which the maximum bending moment is reached is indicated by a black circle. Since the flange b, b is large and the load near the H-shaped cross section is accompanied by a change in load, the second peak point is indicated by a white circle. The fluctuation of the proof stress during this period is small and can be sufficiently evaluated as the plastic deformation capacity of the member.
この図から、 A ~ Fのタイプでは両極にある Hタイプとロタイブと比較し、 変 形能力が向上し、 特に B〜Eのタイプに相当する 2 : 1 : 2〜 1 : 2 : 1 の範囲 では変形能力が大幅に向上していることがわかる。  From this figure, it can be seen that the A to F types have better deformability compared to the H type and rotive types at both poles, and in particular, correspond to the B to E types in the range of 2: 1: 2 to 1: 2: 1. It can be seen that the deformation ability has been greatly improved.
図 2 3は、 パラメーターを b i : b 2 : b , として、 曲げモーメ ン ト Μと部材 変形角 Θの関係を、 全塑性モ一メ ン ト Μ Ρ と塑性変形角 θ ρ で無次元化して示し たものである。 2 3, the parameters bi: b 2: b, as, bending Mome down preparative Micromax and member deformation angle Θ relationship, and dimensionless in all plastic model Ichime down preparative Micromax [rho and plastic deformation angle theta [rho It is shown.
Βタイプ、 Cタイプ (図 2 2 (d) に対応) はフラ ンジの出 b , が比較的大きな 例である。 Hタイプと同様、 まずフラ ンジの出の部分が局部座屈し、 その後、 フ ラ ンジのゥュブ間の部分がその耐カ劣化を補いつつ変形する (図 2 3 (a) 参照) c The Β type and C type (corresponding to Fig. 22 (d)) are examples in which the flange output b, is relatively large. As with the H type, the protruding portion of the flange first buckles locally, and then the portion between the tubes of the flange deforms while compensating for its resistance to deterioration (see Fig. 23 (a)).
Dタイプ、 Eタイプはフラ ンジの出 b , が比較的小さな例である。 口タイプと 同様、 ウェブ間の部分が先行し、 またはフラ ンジの出の部分と連成して局部座屈 する。 降伏以降も耐力が上昇するものの、 最大耐カ後は単調に劣化する (図 2 3 (b) 参照) D type and E type are examples in which the flange output b is relatively small. As with the mouth type, the part between the webs precedes or couples with the part of the flange that buckles locally. Although the yield strength increases after yielding, it deteriorates monotonously after the maximum yield strength (see Fig. 23 (b))
図 2 4は、 パラメーターを t i : t 2 : t ! として、 曲げモーメ ン ト Mと部材 変形角 Θの関係を、 全塑性モーメ ン ト M P と塑性変形角 Θ p で無次元化して示し たものである。 Figure 24 shows the parameters ti: t2: t! This shows the relationship between the bending moment M and the member deformation angle 無 in a dimensionless manner with the all-plastic moment M P and the plastic deformation angle Θ p.
図 2 4 (a) は Bタイプ (図 2 2 (d) に対応) について、 フランジ板厚 t ! , t を変化させた B ' タイプ、 B " タイプとの比較を行ったものである。  Fig. 24 (a) shows the flange thickness t for type B (corresponding to Fig. 22 (d)). , t are compared with B 'type and B "type.
Bタイプは耐力の上昇、 下降、 上昇と変化しつつ変形が進むにつれ緩やかに耐 力低下する。  In the B type, the proof strength gradually decreases as the deformation progresses while increasing, decreasing and increasing the proof strength.
B ' タイプはフランジ中間部の板厚 t 2 のみを 2倍にしたもので、 Bタイプと 同様、 フランジの出の部分の局部座屈により波形に進行するものの、 全体的には 耐カは上昇する。. The B 'type doubles only the plate thickness t2 at the middle part of the flange. Similarly, although it progresses in a waveform due to local buckling of the protruding part of the flange, the overall heat resistance increases. .
B " タイプはフラ ンジ全体の板厚を、 Bタイプの板厚の 1 . 5倍としたもので、 耐カ変化の波形が消える傾向にあり、 塑性変形性状は安定してく る。  The B "type has a flange thickness 1.5 times that of the B type. The waveform of the resistance to change tends to disappear, and the plastic deformation properties are stable.
図 2 4 ) は Eタイプについて、 フラ ンジ板厚 t , , t 2 を変化させた E ' タ イブ、 E " タイプとの比較を行ったものである。 Figure 2 4) for E-type, flange thickness t,, E 'data Eve with varying t 2, in which was compared with E "type.
― E ' タイプはフラ ンジ中間部の板厚 t 2 のみを 1 . 5倍にしたもので、 E " タ ィプはフランジ全体の板厚を 1 . 5倍にしたものである。 -. E 'type obtained by only the thickness t 2 of the flange intermediate portion 1 5 times, E "data I flop is obtained by the thickness of the entire flange 1 5 times..
図 2 4 (a) の Bタイプの場合と比べて分かることは、 図 2 4 (b) の Eタイプの ように角形断面を構成する口タイプに近づく につれ、 ウェブに挟まれた部分の板 厚 t 2 を上げるだけで、 塑性変形能力を向上させることができるという ことであ る。 産業上の利用可能性 Compared to the case of type B in Fig. 24 (a), it can be understood that the thickness of the portion sandwiched between the webs approaches the mouth type which has a square cross section as shown in type E of Fig. 24 (b). only raise t 2, Ru Kotodea that it is possible to improve the plastic deformation capacity. Industrial applicability
① 本発明の梁部材では、 二重ゥ ブ形鐧を用いたことで、 ウェブ間の間隔が小 さい場合でも、 従来の H形鋼梁等と比べ、 ねじり剛性が極端に大き くなり、 横 座屈に対し有利であり、 大スパンの梁に適する。  (1) In the beam member of the present invention, the use of the double rib shape makes the torsional stiffness extremely large compared to conventional H-beams and the like, even when the spacing between the webs is small. Good for buckling, suitable for large span beams.
② 梁部材の両端部のみ二重ウェブ形鋼とした場合も、 ①と同様の利点が得られ る他、 横座屈があま り問題とならない部分を H形鋼とすることで、 鋼材量を減 少させ、 コス トの低減が可能となる。  (2) The same advantages as (1) can be obtained even when the both ends of the beam member are made of double-web steel. In addition, the H-shaped steel is used for the part where lateral buckling is not a problem and the amount of steel is reduced. The cost can be reduced.
③ 二重ウェブ形鋼の閉断面部を利用して、 H形鋼との梁部材長手方向の接続を 容易に行う ことができる。  ③ By using the closed section of the double web section steel, it is easy to connect the beam section to the H section steel in the longitudinal direction.
④ 線対象または点対象な形鋼を突き合わせて接合する等して、 比較的容易に製 作することができる。  形 It can be manufactured relatively easily, for example, by butt-joining section steels that are wire or point objects.
⑤ 柱梁接合部についても、 梁部材と しての二重ウェブ形鐧の閉断面部を利用し た強度および施工性に優れた接合部構造が可能となる。  も Regarding the beam-column joint, a joint structure with excellent strength and workability using the double web-type closed cross-section as a beam member is possible.
⑥ 本発明の柱部材では、 二重ウェブ形鋼を用いたことで、 角鋼管柱と同等の力 学的性能を保持しつつ、 スティ フナーや接合金具の取り付けを H形断面柱と同 様に行う ことができ、 柱梁接合部の構造も簡略化され、 強度上も欠陥のない接 合部構造が可能となる。 柱 In the column member of the present invention, the use of double web steel Stiffeners and fittings can be attached in the same way as H-shaped columns, while maintaining the mechanical performance, the structure of the beam-to-column joint is simplified, and there is no defect in strength or joints Becomes possible.
⑦ 断面中央部に形成した閉断面部により曲げ剛性、 ねじり剛性を確保しつつ、 フランジの出を適切に設定することで、 断面的に近い H形鋼や角形鋼管に比べ 塑性域における高い変形性能を確保することができ、 高靱性構造部材としてそ の変形性能を構造物の設計に反映させることができる。  高 い High deformation performance in the plastic region compared to H-section steel and square steel pipes that are close in cross section by appropriately setting the protrusion of the flange while securing bending rigidity and torsional rigidity by the closed cross section formed at the center of the cross section Therefore, the deformation performance of a high toughness structural member can be reflected in the design of the structure.
⑧ フランジの板厚については、 フランジのウェブ間の部分の板厚のみを大き く した場合にも、 靱性に関し良好な改善効果が得られる。  良好 Regarding the thickness of the flange, even when only the thickness of the portion between the webs of the flange is increased, a good effect of improving the toughness can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 所定間隔をおいて互いに平行に配置した一対のウェブと、 前記ウェブの両端 に e置され、 前記ウェブの外側に所定長の出を有するフラ ンジとで、 断面中央 部に閉断面部を形成してなる二重ウェブ形鋼からなることを特徴とする梁部材 c 1. A pair of webs arranged in parallel with each other at a predetermined interval, and flanges arranged at both ends of the web and having a predetermined length on the outside of the web to form a closed cross-section at the center of the cross-section. Beam member c characterized by being formed of a double web section steel
2 . 所定間隔をおいて互いに平行に配置した一対のウェブと、 前記ウェブの両端 に配置され、 前記ゥ ブの外側に所定長の出を有するフラ ンジとで、 断面中央 部に閉断面部を形成してなる二重ウェブ形鑭を梁端近傍に設け、 梁中間部に H 形鐧を設け、 前記二重ゥュブ形鋼と前記 H形鑭を長手方向に接合したことを特 徴とする梁部材。 2. A pair of webs arranged in parallel with each other at a predetermined interval, and flanges arranged at both ends of the web and having a predetermined length on the outside of the web, and a closed cross-section is formed at the center of the cross-section. A beam characterized in that the formed double web shape is provided near the beam end, an H shape is provided in the middle of the beam, and the double tube shape steel and the H shape are joined in the longitudinal direction. Element.
3 . 前記二重ゥュブ形鐧または H形鍋のウェブの長手方向端部をフランジ端部よ り突出させ、 前記二重ゥュブ形鑭および H形鋼のウェブ端部どう しを重ね合わ せて接合したことを特徴とする請求項 2記載の梁部材。  3. The longitudinal end of the web of the double-tub or H-shaped pan is projected from the end of the flange, and the web ends of the double-tube and the H-shaped steel are overlapped and joined. 3. The beam member according to claim 2, wherein:
4 . 梁接合方向に突出する縦片を有する接合金具を柱に接合し、 該接合金具の前 記縦片を、 請求項 1、 2または 3記載の梁部材を構成する前記二重ゥュブ形鐧 の閉断面部に挿入した状態で、 前記縦片に前記梁部材を接合することを特徴と する柱梁接合部。  4. A joint having a vertical piece protruding in the beam joining direction is joined to a column, and the vertical piece of the joint is formed by the double tube-shaped member forming the beam member according to claim 1, 2 or 3. A beam-column joint, wherein the beam member is joined to the vertical piece in a state where the beam member is inserted into the closed cross-section.
5 . 前記接合金物は、 前記柱外面に接合されるフラ ンジ部と、 前記縦片としての ウェブ部とからなる T形断面の接合金物である請求項 4記載の柱梁接合部。  5. The beam-column joint according to claim 4, wherein the metal joint is a metal joint having a T-shaped cross section including a flange portion joined to the column outer surface and a web portion as the vertical piece.
6 . 長手方向と直角な断面が線対象または点対象な 2本の形鐧を突き合わせ、 長 手方向に延びる接合面で接合することを特徴とする請求項 1記載の梁部材の製 作方法。 6. The method for manufacturing a beam member according to claim 1, wherein two shapes whose cross sections perpendicular to the longitudinal direction are symmetrical with respect to a line or points are abutted and joined at a joint surface extending in the longitudinal direction.
7 . 前記形鋼は左右のフランジの出が非対象な H形鋼である請求項 6記載の梁部 材の製作方法。  7. The method of manufacturing a beam member according to claim 6, wherein the section steel is an H-section steel in which left and right flanges are not symmetrical.
8 . ウェブ高さが等しい H形鋼と溝形鋼をウェブどう しが平行となるように配置 し、 前記 H形鍋のフランジ端部を前記溝形鋼のゥ ブ背面端部に接合すること を特徴とする請求項 1記載の梁部材の製作方法。 8. H-section steel and channel steel with the same web height are arranged so that the webs are parallel to each other, and the flange end of the H-shaped pan is joined to the rear end of the groove of the channel steel. The method for producing a beam member according to claim 1, wherein:
9 . 中間部の板厚を両端部の板厚より厚く したフランジとしての平行な 2枚の平 板間に、 ゥュブとしての平板を 2枚平行に S置し、 互いに接合することを特徴 とする請求項 1記載の梁部材の製作方法。 9. Between two parallel flat plates as flanges with the thickness of the middle part larger than the thickness of both ends, two flat plates as tubes are placed S in parallel and joined to each other. A method for manufacturing a beam member according to claim 1.
1 0 . 所定間隔をおいて互いに平行に S置した一対のウェブと、 前記ウェブの両 端に配置され、 前記ゥュブの外側に所定長の出を有するフラ ンジとで、 断面中 央部に閉断面部を形成してなる二重ウェブ形鐧からなることを特徴とする柱部 材。  10. Closed at the center of the cross section by a pair of webs arranged in parallel with each other at a predetermined interval and flanges arranged at both ends of the web and having a predetermined length outside the tube. A column member having a double web shape having a cross section.
1 1 . 前記フラ ンジを普通鋼、 前記ウェブを高張力鑭とした請求項 1 0記載の柱 部材。  11. The column member according to claim 10, wherein the flange is made of ordinary steel, and the web is made of high tension steel.
1 2 . 前記閉断面部内にコンク リー トを充塡してなる請求項 1 0または 1 1記載 の柱部材。 12. The column member according to claim 10 or 11, wherein a concrete is filled in the closed section.
1 3 . 前記閉断面部の外側にコ ンク リー トを打設してなる請求項 1 0または 1 1 記載の柱部材。  13. The column member according to claim 10 or 11, wherein a concrete is cast outside the closed cross section.
1 4 . 請求項 1 0、 1 1、 1 2または 1 3記載の柱部材に対し、 柱部材強軸方向 の梁の端部を前記柱部材を構成する二重ゥュブ形鋼のフランジに接合するとと もに、 柱部材弱軸方向の梁の端部を前記二重ゥ ブ形鑭のフランジ間に接合し たことを特徴とする柱梁接合部。  14. For the column member according to claim 10, 11, 12, or 13, when the end of the beam in the column member strong axis direction is joined to the flange of the double-tube shaped steel constituting the column member A beam-column joint, wherein the end of the beam in the columnar member weak axis direction is joined between the double rib-shaped flanges.
1 5 . 前記二重ゥュブ形鋼のフランジ間に該フラ ンジ間をつなぐスティ フナーを 兼ねた接合金物を取り付け、 前記接合金物に前記弱軸方向の梁を接合した請求 項 1 4記載の柱梁接合部。  15. The column-beam according to claim 14, wherein a metal joint serving also as a stiffener for connecting the flanges is attached between the flanges of the double-tube shaped steel, and the beam in the weak axis direction is joined to the metal joint. Joint.
1 6 . 前記強軸方向の梁を前記二重ゥュブ形鋼のフラ ンジに対し、 強軸方向接合 金物を介してボル ト接合した請求項 1 4記載の柱梁接合部。  16. The beam-column joint according to claim 14, wherein the beam in the strong axis direction is bolted to the flange of the double-tube shaped steel via a metal joint in the strong axis direction.
1 7 . 前記強軸方向接合金物は、 鉛直方向のフラ ンジと水平方向のウェブとから なる鉛直断面が T字状の接合金物であり、 強軸方向接合金物のフランジを前記 二重ゥュブ形鐧のフラ ンジ外面に当接させてボルト接合し、 前記強軸方向の梁 の端部を該強軸方向接合金物のゥュブに当接させてボルト接合した請求項 1 6 記載の柱梁接合部。 17. The strong axial direction metal joint is a T-shaped metal joint having a vertical flange and a horizontal web, and the flange of the strong axial direction metal joint is formed by the double-tube shape. 17. The beam-column joint according to claim 16, wherein the beam is joined in a strong axial direction by contacting the outer surface of the flange with a bolt, and the end of the beam in the strong axis direction is contacted with a tube of the metal joint in the strong axis direction.
1 8 . 前記弱軸方向の梁を前記二重ゥュブ形鋼のフラ ンジ間に、 弱軸方向接合金 物を介してボルト接合した請求項 1 4、 1 6または 1 7記載の柱梁接合部。18. The beam-column joint according to claim 14, 16, or 17, wherein the beam in the weak axis direction is bolted between flanges of the double-tube shaped steel via a weak axis joint metal. .
1 9 . 前記弱軸方向接合金物は、 鉛直方向に延び前記二重ゥュブ形鋼のフランジ 間においてフラ ンジ内面およびゥュブに当接する水平断面が溝形のフラ ンジと 水平方向のゥ ブとからなり、 弱軸方向接合金物のフラ ンジを前記二重ウェブ 形鐧のフラ ンジおよびウェブにボルト接合し、 前記弱軸方向の梁の端部を該弱 軸方向接合金物のゥュブに当接させてボル ト接合した請求項 1 8記載の柱梁接 合部。 19. The metal joint in the weak axis direction extends vertically, and has a groove-shaped flange and a horizontal tube having a horizontal cross section that abuts against the inner surface of the flange and the tube between the flanges of the double-tube shaped steel. The flange of the weak axis joint is bolted to the flange and the web of the double web shape, and the end of the beam in the weak axis direction is brought into contact with the tube of the weak axis joint to mount the bolt. 18. The beam-to-column connection according to claim 18, wherein the beam-to-column connection is performed.
2 0 . 長手方向と直角な断面が線対象または点対象な 2本の形鋼を突き合わせ、 長手方向に延びる接合面で接合することを特徴とする請求項 1 0記載の柱部材 の製作方法。  20. The method for manufacturing a column member according to claim 10, wherein two section steels whose cross sections perpendicular to the longitudinal direction are symmetrical with respect to a line or a point are joined to each other and joined at a joint surface extending in the longitudinal direction.
2 1 . 前記形鋼は左右のフラ ンジの出が非対象な H形鐧である請求項 2 0記載の 柱部材の製作方法。  21. The method for manufacturing a column member according to claim 20, wherein the shaped steel is an H-shape in which the left and right flanges are not symmetrical.
2 2 . ウェブ高さが等しい H形鐧と溝形鋼をゥヱブどう しが平行となるように配 置し、 前記 H形鑭のフランジ端部を前記溝形鋼のウェブ背面端部に接合するこ とを特徴とする請求項 1 0記載の柱部材の製作方法。  2 2. Place the H-section and the channel steel with the same web height so that the ribs are parallel to each other, and join the flange end of the H-section to the web back end of the channel. 10. The method for manufacturing a column member according to claim 10, wherein:
2 3 . 中間部の板厚を両端部の板厚より厚く したフランジとしての平行な 2枚の 平板間に、 ウェブとしての平板を 2枚平行に E置し、 互いに接合することを特 徴とする請求項 1 0記載の柱部材の製作方法。 23. Two flat plates as webs are placed in parallel between two parallel flat plates as flanges with the thickness of the middle part greater than the thickness of both ends, and they are joined to each other. 10. The method for manufacturing a column member according to claim 10, wherein:
2 4 . 所定間隔をおいて互いに平行に E置した一対のウェブと、 前記ウェブの両 端に E置した一対のフラ ンジとからなり、 所定のフラ ンジ幅 B、 断面せい H、 ゥュブ中心からのフラ ンジの出 b , 、 ウェブ中心間の幅 b 2 、 フラ ンジの出の 部分の板厚 t , 、 フラ ンジのウェブ間の部分の板厚 t 2 、 およびウェブの板厚 t 3 を有し、 断面中央部に閉断面部を形成するとともに、 前記フラ ンジの出 b により塑性域における所要の靱性を確保したことを特徴とする高靱性構造部材£ 2 5 . 前記フラ ンジの出 b i とゥェブ中心間の幅 b 2 力く、 b I : b 2 : b : = 2 : 1 : 2 ~ 1 : 2 : 1 の関係にある請求項 2 4記載の高靱性構造部材。 24. Consists of a pair of webs placed parallel to each other at a predetermined interval E and a pair of flanges placed E at both ends of the web, with a predetermined flange width B, cross-sectional height H, and center of the tube. b out of the flange, the width b 2 between the web center, plate thickness of the portion of the output of the flange t, the thickness t 2 of a portion between the flanges web, and the web have a thickness t 3 and, to form a closed cross-section portion to the center of the section, and the high toughness structural members £ 2 5. out of the flange bi, characterized in that to ensure the required toughness in the plastic zone by exiting b of the flange width b 2 Chikaraku between Webu centers, b I: b 2: b : = 2: 1: 2 ~ 1: 2: high tenacity structural member of claim 2 4, wherein in the first relationship.
2 6. 前記フランジの出の部分の板厚 t , とフラ ンジのゥュブ間の部分の板厚 t 2 が、 t 2 > t i の関係にある請求項 2 4または 2 5記載の高靱性構造部材。 26. The high toughness structural member according to claim 24, wherein a thickness t 2 of a portion protruding from the flange and a thickness t 2 of a portion between the tubes of the flange have a relationship of t 2 > ti. .
2 7. 前記フランジ幅 Bと断面せい Hが、 HZB= 1〜4の関係にある請求項 2 4、 2 5または 2 6記載の高靱性構造部材。  27. The high-toughness structural member according to claim 24, 25 or 26, wherein the flange width B and the cross-sectional height H have a relationship of HZB = 1 to 4.
2 8. 柱部材を構成し、 前記フランジ幅 Bと断面せい Hが、 ΗΖΒ ^ 1 の関係に ある請求項 2 4、 2 5または 2 6記載の高靭性構造部材。 28. The high toughness structural member according to claim 24, 25 or 26, wherein the structural member comprises a column member, and the flange width B and the cross-sectional height H have a relationship of ΗΖΒ ^ 1.
PCT/JP1993/001110 1992-08-07 1993-08-06 Structural member of beam or pillar, and connecting portion between pillar and beam WO1994003687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21179892 1992-08-07
JP4/211798 1992-08-07

Publications (1)

Publication Number Publication Date
WO1994003687A1 true WO1994003687A1 (en) 1994-02-17

Family

ID=16611787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001110 WO1994003687A1 (en) 1992-08-07 1993-08-06 Structural member of beam or pillar, and connecting portion between pillar and beam

Country Status (1)

Country Link
WO (1) WO1994003687A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034599A1 (en) * 1997-05-23 2000-06-15 Roger Ericsson Lightweight i-beam and lightweight building unit
US7207148B2 (en) * 2003-10-24 2007-04-24 Surowiecki Matt F Wall structures
WO2010105594A1 (en) * 2009-03-14 2010-09-23 Ulrike Weber Girder made of a one-piece structural steel section
BE1023201B1 (en) * 2015-06-18 2016-12-20 Frans Vandenhove BUILDING ELEMENT, WALL, AND BUILDING
CN106760196A (en) * 2016-11-16 2017-05-31 中铁三局集团建筑安装工程有限公司 The construction method of cross box-type section steel column structure
CN107816131A (en) * 2017-11-07 2018-03-20 北京工业大学 It is a kind of can drawing-in wire double web H type frame structure of aluminum alloy
CN114892803A (en) * 2022-05-09 2022-08-12 长安大学 High-performance steel frame structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153617Y2 (en) * 1973-07-30 1976-12-22
JPS51149856A (en) * 1975-06-19 1976-12-23 Nippon Kokan Kk Special hhsteel and method of rolling thereof
JPS529223Y2 (en) * 1974-11-29 1977-02-26
JPS5333365Y1 (en) * 1969-04-09 1978-08-17
JPS5547570U (en) * 1978-09-26 1980-03-28

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333365Y1 (en) * 1969-04-09 1978-08-17
JPS5153617Y2 (en) * 1973-07-30 1976-12-22
JPS529223Y2 (en) * 1974-11-29 1977-02-26
JPS51149856A (en) * 1975-06-19 1976-12-23 Nippon Kokan Kk Special hhsteel and method of rolling thereof
JPS5547570U (en) * 1978-09-26 1980-03-28

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034599A1 (en) * 1997-05-23 2000-06-15 Roger Ericsson Lightweight i-beam and lightweight building unit
US7207148B2 (en) * 2003-10-24 2007-04-24 Surowiecki Matt F Wall structures
WO2010105594A1 (en) * 2009-03-14 2010-09-23 Ulrike Weber Girder made of a one-piece structural steel section
DE102009013241B4 (en) * 2009-03-14 2011-01-20 Weber, Ulrike, Dipl.-Ing. Support made of a one-piece steel construction profile
BE1023201B1 (en) * 2015-06-18 2016-12-20 Frans Vandenhove BUILDING ELEMENT, WALL, AND BUILDING
EP3106582A1 (en) * 2015-06-18 2016-12-21 Frans Vandenhove A wall for a building, and a method of assembling such a wall
CN106760196A (en) * 2016-11-16 2017-05-31 中铁三局集团建筑安装工程有限公司 The construction method of cross box-type section steel column structure
CN106760196B (en) * 2016-11-16 2018-12-04 中铁三局集团建筑安装工程有限公司 The construction method of cross box-type section steel column structure
CN107816131A (en) * 2017-11-07 2018-03-20 北京工业大学 It is a kind of can drawing-in wire double web H type frame structure of aluminum alloy
CN114892803A (en) * 2022-05-09 2022-08-12 长安大学 High-performance steel frame structure
CN114892803B (en) * 2022-05-09 2023-05-09 长安大学 High-performance steel frame structure

Similar Documents

Publication Publication Date Title
EP3696336B1 (en) Joint structure for h-beam
JP7295681B2 (en) Column-beam joint structure and construction method for building with column-beam joint structure
JPH09256461A (en) Non-welded column and beam joint structure for capital
WO1994003687A1 (en) Structural member of beam or pillar, and connecting portion between pillar and beam
JP2002220873A (en) Beam end joint part structure of h-shape steel beam
JP2002146921A (en) Steel pipe structure
JPH05311738A (en) Post-beam connecting structure
KR102037633B1 (en) Structure Of Connecting Column And Beam Using W-shaped Beam
JPH0288832A (en) Welding method of reinforced concrete column and steel framed beam
KR101747959B1 (en) Built-up beam with double web
KR101371198B1 (en) Square pipe type assembling structural member
JP3295007B2 (en) Joint structure of space truss
JP4011499B2 (en) Joint structure of steel column and steel beam
JP2000129779A (en) Column-to-beam junction structure by connection metal
JPH09125515A (en) Pillar beam connection part structure
JP2702104B2 (en) Joint structure of steel tube column beam, column, column base
JP2003105856A (en) Split t-shaped joint metal, and structure of jointing between column and beam
JPH07150635A (en) Joint construction between column and beam using shape steel
JP2567437Y2 (en) Column-beam joint hardware
JPH0718780A (en) High toughness structural member
JPH03212534A (en) Pillar-beam joint part
KR101017791B1 (en) Reinforcement structure for connection of cold formed plate column and steel beam
JPH0452353A (en) Steel pipe concrete pole
JP2022073985A (en) Joint structure of steel materials
WO2003072885A1 (en) Column-to-beam connection part integration work method for structural steelwork

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US