WO1994002411A1 - Procede d'obtention d'hydroxyapatite phosphocalcique, applications au comblement osseux ou dentaire, ou au moulage de pieces, et produits utilises - Google Patents

Procede d'obtention d'hydroxyapatite phosphocalcique, applications au comblement osseux ou dentaire, ou au moulage de pieces, et produits utilises Download PDF

Info

Publication number
WO1994002411A1
WO1994002411A1 PCT/FR1993/000726 FR9300726W WO9402411A1 WO 1994002411 A1 WO1994002411 A1 WO 1994002411A1 FR 9300726 W FR9300726 W FR 9300726W WO 9402411 A1 WO9402411 A1 WO 9402411A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
phosphate
proportion
phosphates
solution
Prior art date
Application number
PCT/FR1993/000726
Other languages
English (en)
Inventor
Jean-Louis Lacout
Elmiloud Mejdoubi
Original Assignee
Amp Medical
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amp Medical filed Critical Amp Medical
Priority to AU45738/93A priority Critical patent/AU4573893A/en
Publication of WO1994002411A1 publication Critical patent/WO1994002411A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/026Ceramic or ceramic-like structures, e.g. glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/02Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/327After-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite

Definitions

  • the invention relates to a process for obtaining phosphocalcic hydroxyapatite (PAH) of stoichiometric formula Ca-
  • PAH phosphocalcic hydroxyapatite
  • Phosphocalcic hydroxyapatites and in particular stoichiometric hydroxyapatite are well known to date and used in the surgical or dental field because of their biocompatibility and osteorestoration properties; they are used in particular for periodontal filling, covering of prostheses or even as an active principle support with slow local diffusion.
  • Solid hydroxyapatite are incompatible with the duration of a surgical or dental intervention which must be as short as possible. To shorten this setting time, it has been proposed to add phosphoric acid to the paste at the time of the reaction, but the control of the reaction is then very difficult and the latter generates non-stoichiometric apatites of mechanical qualities. less, having too high solubility.
  • Other reactions are also proposed in this document, for example the reaction of the monocalcium phosphate Ca (H2P ⁇ 4) 2 (MCP) on the tetracalcium phosphate (TTCP) to also lead to a hydroxyapatite. But here too, the setting times are long and the mechanical qualities of the product obtained are unsatisfactory.
  • DCPD brushite
  • the present invention proposes to provide a new process for obtaining stoichiometric or quasi-stoichiometric phosphocalcic hydroxyapatite (PAH).
  • PAH phosphocalcic hydroxyapatite
  • An objective of the invention is to provide a process benefiting from setting times compatible with surgical use in filling, in particular of the order of 5 to 45 minutes.
  • Another objective is to allow the setting time to be adjusted according to the application. Another objective is to provide a hydroxyapatite benefiting from improved mechanical qualities compared to those obtained by known methods.
  • Another objective is to allow a reduction in the overall cost of the raw materials required.
  • MCP monocalcium phosphate
  • TCP tricalcium phosphate
  • TTCP tetracalcium phosphate
  • Sodium glycerophosphate (Na GP) is preferably used as an adjuvant, because of its high solubility properties.
  • the implementation of the process may in particular consist in putting the glycerophosphate in solution in water beforehand, then in incorporating the solution obtained into the mixture of the three phosphates with stirring to homogenize the dough before it sets.
  • the mechanical qualities of the hydroxyapatite obtained are better using monocalcium phosphate monohydrate (MCPM) and tricalcium phosphate beta ( ⁇ TCP).
  • MCPM monocalcium phosphate monohydrate
  • ⁇ TCP tricalcium phosphate beta
  • the mixing of the three phosphates is carried out so that the Ca / P atomic ratio of the mixture is between 1.60 and 1.70 and the molar proportion of the phosphates in said mixture is as follows : - proportion of MCP between 3 and 20%,
  • the setting time can be adjusted by adjusting the proportions of the three phosphates in the aforementioned ranges, but above all by adjusting the amount of glycerophosphate added.
  • This setting time can also be modified in the direction of an increase by subjecting the mixture of phosphates beforehand to humidification, followed by drying. Humidification initiates a transformation of the mixture, and drying stops it: we note that the setting time is then all the longer as the humidification has been greater.
  • aqueous solution produced so that the proportion of glycerophosphate is between 0.4 and 0.8 g per cm 3 of water
  • the three phosphates are advantageously mixed in the form of a powder with a particle size of less than 150 microns.
  • the invention relates in particular to a first application of the method for preparing a dental or bone filling paste, intended to be put in place before hardening in order to set in situ and to form hydroxyapatite in the site.
  • filling is meant both the filling of a bone cavity, the placement of the paste in the gap between a prosthesis and the receiving bone or the filling of the space separating two bone parts.
  • the paste obtained is particularly suitable for these surgical or dental uses, in particular because of the optimal setting times for this type of use, the cold preparation and the very low exothermicity of the reactions.
  • a biosoluble additive such as collagen or DNA (preferably added to the phosphate mixture for reasons of sterilization and preservation), capable of subsequently creating a porosity in the apatitic material, or even of adding an active principle in view from its slow release into the bone site.
  • Another application of the process for producing molded parts consists in injecting the dough into a mold before hardening and in calcining the hydroxyapatite in shape (after hardening and demolding) in order to obtain a sintered part for surgical or prosthetic use.
  • the calcination is carried out according to conventional protocols in several phases (1150 ° C to 1200 ° C).
  • Such perfectly biocompatible parts may in particular consist of implantable parts such as screws, dental roots, vertebrae or artificial phalanges, ear bones, porous diffusion buttons.
  • the invention extends, as a new product, to the cement used in the process defined above, comprising a mixture of monocalcium phosphate (MCP), tricalcium phosphate (TCP) and tetracalcium phosphate (TTCP); this hydraulic cement (that is to say capable of setting also in a humid or aqueous medium) is particularly well suited to surgical or dental applications, or for manufacturing by molding parts for surgical or prosthetic use as described above.
  • MCP monocalcium phosphate
  • TCP tricalcium phosphate
  • TTCP tetracalcium phosphate
  • the hydraulic cement according to the invention advantageously consists of a mixture in the form of granulo etrie powder of less than 150 microns, and comprising monocalcium phosphate onohydrate (MCPM), tricalcium phosphate beta ( ⁇ TCP) and tetracalcium phosphate (TTCP) in the following molar proportions:
  • this material consists of a set comprising a dose of cement as defined above, packaged in a sterile manner, a container of aqueous glycerophosphate solution packaged in a sterile manner, and means for injecting a dose of solution into the dose of cement.
  • injection means can be constituted by an injection syringe of capacity adapted to the dose of solution to be injected.
  • the single figure in the drawing is a perspective view of this dental set.
  • X-ray diffraction allows the crystallographic structure to be highlighted by counting, classifying and determining the positions of the lines. A closer examination also makes it possible to define the crystalline parameters of the mesh, and to give an idea (width of the lines) of the state of crystallization. Finally, X-ray diffraction makes it possible to ensure, at the sensitivity of the method, the purity of the compound, - infrared absorption spectrometry: infrared absorption spectrometry makes it possible to highlight the bonds in atomic groups . In the case of apatites we can in particular highlight:. hydroxide ions: bands to
  • a mixture of 50 grams of a powder is prepared consisting of:
  • a cement is prepared consisting of a mixture of TTCP, MCPM and ⁇ TCP according to the conditions described in Example No. 1.
  • a solution is also prepared containing 70% water and 30% concentrated ammonia (density: 0.92 g / cm 3 ). 0.6 g of sodium glycerophosphate per cm 3 is added to this solution. 10 grams of powder and 4 cm 3 of solution are carefully mixed until a homogeneous paste is obtained. This paste is immediately introduced into a mold having the shape of a screw. It sets after about 5 minutes; demolding is carried out after about one hour. The presence of ammonia regulates the setting which is carried out in a perfectly uniform way (the ammonia then disappears during heat treatments). The piece obtained is then left in an atmosphere saturated with humidity for 3 days. The molded part is then placed in an oven and subjected to a programmed calcination cycle:
  • the part obtained is sintered and hard.
  • X-ray diffraction examination shows that the phase consists solely of hydroxyapatite stoichiometric.
  • a mixture of 50 grams of a powder is prepared consisting of:
  • a solution is prepared containing 0.6 grams of sodium glycerophosphate per cm 3 of water. We then have the two solid and liquid constituents of hydraulic cement. These two components are sterilized. To obtain the setting, 5 grams of the mixture are taken to which 2 cm 3 of the glycerophosphate solution are gradually added. Mix by stirring using a spatula. The taking is done after 30 minutes about .
  • EXAMPLE 4 preparation and use of a cement A mixture of 50 grams of a powder is prepared consisting of:
  • a mixture of 50 grams of a powder is prepared consisting of:
  • a mixture of 50 grams of a powder is prepared consisting of:
  • EXAMPLE 7 preparation and use of a cement A mixture of 50 grams of a powder is prepared consisting of:
  • a hydraulic cement formed from a mixture identical to that of Example 1 is prepared.
  • EXAMPLE 9 example of a surgical set
  • a cardboard package 1 comprises an inner cardboard sheet 2 folded and arranged to form three housings, one containing an injection syringe 3 with a capacity of 20 cm 3 , the other a sachet 4 made of flexible transparent plastic material containing 50 g of the powder mixture referred to in Example 1, the last one a stoppered bottle 5 by means of butyl rubber crimped by means of an aluminum ring, containing approximately 25 cm 3 of the solution referred to in Example 1.
  • Package 1 is closed by a cardboard cover, and put in double packaging. The whole is sterilized with gamma radiation.
  • the implementation for bone filling consists, after opening, of taking a dose of 20 cm 3 of solution through the stopper of the bottle 5 by means of the syringe 3, of injecting this dose through the wall of the flexible bag 4 , manually knead the sachet for 1 to 2 minutes, open it and take the dough to put it in place.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Surgery (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Dermatology (AREA)
  • Dental Preparations (AREA)
  • Materials For Medical Uses (AREA)

Abstract

L'invention concerne un procédé d'obtention d'hydroxyapatite phosphocalcique (HAP). Ce procédé consiste à mélanger, sous forme de poudre, un phosphate monocalcique (MCP), un phosphate tricalcique (TCP) et un phosphate tétracalcique (TTCP), et à faire réagir le mélange avec de l'eau en présence d'un glycérophosphate soluble dans l'eau, en particulier glycérophosphate de sodium (NaGP). Le procédé de l'invention permet d'obtenir une hydroxyapatite stoechiométrique ou quasi stoechiométrique, avec des temps de prise modulables, en particulier compatibles avec une utilisation chirurgicale.

Description

PROCEDE D'OBTENTION D'HYDROXYAPATITE PHOSPHOCALCIQUE,
APPLICATIONS AU COMBLEMENT OSSEUX OU DENTAIRE,
OU AU MOULAGE DE PIECES, ET PRODUITS UTILISES
L'invention concerne un procédé d'obtention d'hydroxyapatite phosphocalcique (HAP) de formule stoechiométrique Ca-|o(pθ4)6(°H)2 ou de formule proche. Elle s'étend à des applications dudit procédé, en particulier pour préparer une pâte de comblement dentaire ou osseux, ou pour mouler des pièces à usage chirurgical ou prothétique.
Les hydroxyapatites phosphocalciques et en particulier 1'hydroxyapatite stoechiométrique sont bien connues à ce jour et utilisées dans le domaine chirurgical ou dentaire en raison de leurs propriétés de biocompatibilité et d'ostéorestauration ; elles sont notamment utilisées pour le comblement parodontal, le recouvrement des prothèses ou encore comme support de principe actif à diffusion locale lente.
Les études concernant la préparation d'hydroxyapatite sont nombreuses. La publication suivante : "Y. FUKASE et al, Setting reactions and compressive strengths of calcium phosphate céments, J. Dent. Res. December 1990, vol. 69, n° 12, pages 1852-1856" fait le point sur les procédés proposés, et décrit, entre autres, un procédé d'obtention d'apatite consistant à faire réagir en présence d'eau, de la brushite Ca HPO4, 2H2O (DCPD) et du phosphate tétracalcique Ca4 P2 Og (TTCP). Toutefois, la réaction visée : eau DCPD + TTCP HAP est une réaction très lente à température ordinaire
(plusieurs heures), et les temps de prises conduisant à
1'hydroxyapatite solide sont incompatibles avec la durée d'une intervention chirurgicale ou dentaire qui doit être aussi courte que possible. Pour raccourcir ce temps de prise, on a proposé d'ajouter de l'acide phosphorique à la pâte au moment de la réaction, mais le contrôle de la réaction est alors très difficile et celle-ci engendre des apatites non stoechiométriques de qualités mécaniques moindres, ayant une solubilité trop élevée. D'autres réactions sont également proposées dans ce document, par exemple la réaction du phosphate monocalcique Ca(H2Pθ4)2 (MCP) sur le phosphate tétracalcique (TTCP) pour conduire également à une hydroxyapatite. Mais là aussi, les temps de prises sont longs et les qualités mécaniques du produit obtenu sont insatisfaisantes.
Par ailleurs, la publication "A.A. MIRTCHI et al. Calcium phosphate céments : study of the β-tricalcium phosphate-monocalcium phosphate System,
Biomaterials, vol. 10, pages 475-480, 1989" décrit la réaction suivante, conduisant à la brushite DCPD : eau MCPM + βTCP → DCPD (phosphate mono- (phosphate calcique monohydraté) tricalcique β)
Toutefois, la brushite (DCPD) n'est pas une hydroxyapatite et n'en a pas les qualités (biocompatibilité médiocre ; pas de caractère d'ostéorestauration ; très grande solubilité...). Le temps de prise est très court et serait de toute façon peu compatible avec une intervention chirurgicale.
On pourrait imaginer de combiner les deux réactions précitées : eau
(1 ) MCPM + βTCP → DCPD eau (2) DCPD + TTCP HAP pour conduire à de 1'hydroxyapatite à partir des trois phosphates calciques MCPM, βTCP et TTCP. Toutefois, la première réaction (1) étant très rapide et la seconde (2) très lente, on obtient aussitôt des grumeaux de DCPD qui se solidifient et demeurent séparés du TTCP : aucune prise en masse n'apparaît dans l'heure qui suit le début de la réaction, le matériau obtenu étant un matériau hétérogène pulvérulent, parsemé de grumeaux, totalement inutilisable ; les essais des inventeurs ont montré qu'en présence d'un excès d'eau, ce matériau évolue en une dizaine d'heures environ pour conduire à un solide apatitique présentant de très mauvaises qualités mécaniques.
La présente invention se propose de fournir un nouveau procédé d'obtention d'hydroxyapatite phosphocalcique (HAP), stoechiométrique ou quasi- stoechiométrique.
Un objectif de l'invention est de fournir un procédé bénéficiant de temps de prise compatibles avec une utilisation chirurgicale en comblement, en particulier de l'ordre de 5 à 45 minutes.
Un autre objectif est de permettre de moduler le temps de prise en fonction de l'application. Un autre objectif est de fournir une hydroxyapatite bénéficiant de qualités mécaniques améliorées par rapport à celles obtenues par les procédés connus.
Un autre objectif est de permettre une réduction du coût global des matières premières nécessaires.
A cet effet, selon le procédé d'obtention de HAP conforme à l'invention, on mélange du phosphate monocalcique (MCP), du phosphate tricalcique (TCP) et du phosphate tétracalcique (TTCP) et on fait réagir le mélange avec de l'eau en présence d'un glycerophosphate soluble dans l'eau.
Les expérimentations ont montré qu'en présence du glycerophosphate, le mélange des trois phosphates réagit à température ambiante avec l'eau pour donner une pâte homogène (sans grumeaux) qui fait prise dans un temps fonction de la proportion de glycerophosphate dans le mélange et des proportions relatives des différents phosphates du mélange ; ce temps de prise peut en particulier, pour les applications chirurgicales, être ajusté entre 5 et 45 minutes. Le glycerophosphate modifie la cinétique des réactions par un mécanisme encore inexpliqué. Après la prise, le solide homogène et massif obtenu évolue lentement sans se désagréger pour conduire à une hydroxyapatite de bonne qualité mécanique, ayant d'excellentes propriétés d'ostéorestauration.
Il convient de souligner que la prise et le durcissement s'effectuent aussi bien en milieu humide qu'en milieu sec, ce qui rend le procédé particulièrement bien adapté aux applications chirurgicales ou dentaires.
On utilise de préférence le glycerophosphate de sodium (Na GP) comme adjuvant, en raison de ses propriétés de grande solubilité. La mise en oeuvre du procédé peut en particulier consister à mettre préalablement le glycerophosphate en solution dans de l'eau, puis à incorporer la solution obtenue au mélange des trois phosphates avec un brassage pour homogénéiser la pâte avant sa prise.
Les qualités mécaniques de 1'hydroxyapatite obtenues sont meilleures en utilisant le phosphate monocalcique monohydraté (MCPM) et le phosphate tricalcique bêta (βTCP). Selon un mode de mise en oeuvre préféré, le mélange des trois phosphates est réalisé de sorte que le rapport atomique Ca/P du mélange soit compris entre 1,60 et 1,70 et que la proportion molaire des phosphates dans ledit mélange soit la suivante : - proportion de MCP comprise entre 3 et 20 %,
- proportion de TCP comprise entre 6,6 et 57 %,
- proportion de TTCP comprise entre 40 et 73 %.
Le temps de prise peut être ajusté en jouant sur les proportions des trois phosphates dans les plages précitées, mais surtout en jouant sur la quantité de glycerophosphate ajoutée. Ce temps de prise peut également être modifié dans le sens d'un accroissement en faisant subir au préalable au mélange de phosphates une humidification, suivie d'un séchage. L'humidification amorce une transformation du mélange, et le séchage arrête celle-ci : l'on constate que le temps de prise est ensuite d'autant plus long que l'humidification a été plus importante. En outre, on a pu constater que l'ajout à la solution de glycerophosphate, d'acide phosphorique (proportion pondérale d'acide phosphorique dans la solution comprise entre 0,3 % et 4 %) entraîne une réduction du temps de prise, d'autant plus importante que cette proportion est élevée dans la plage précitée (au-delà de 4 %, le temps de prise se stabilise).
Il est à noter que l'utilisation simultanée des trois phosphates MCP, TCP, TTCP donne un degré de liberté supplémentaire (par rapport à un des procédés connus mettant en oeuvre une seule réaction) pour choisir les proportions du mélange ; pour une qualité donnée d'hydroxyapatite (rapport atomique donné entre 1,60 et 1,70, temps de prise donné...), l'on peut ainsi choisir le mélange le moins coûteux, généralement celui qui contient le minimum de TTCP (produit le plus cher).
Les conditions optimales de mise en oeuvre du procédé semblent être les suivantes :
. solution aqueuse réalisée de façon que la proportion de glycerophosphate soit comprise entre 0,4 et 0,8 g par cm3 d'eau,
. incorporation d'un volume compris entre 0,3 et 0,8 cm3 de solution par gramme de mélange de phosphates.
En outre, les trois phosphates sont avantageusement mélangés sous forme de poudre de granulométr e inférieure à 150 microns.
L'invention vise en particulier une première application du procédé pour préparer une pâte de comblement dentaire ou osseux, destinée à être mise en place avant durcissement en vue de faire prise in situ et de former 1'hydroxyapatite dans le site.
Par "comblement" on entend aussi bien le remplissage d'une cavité osseuse, que la mise en place de la pâte dans l'intervalle situé entre une prothèse et l'os récepteur ou le remplissage de l'espace séparant deux parties osseuses.
La pâte obtenue est particulièrement adaptée à ces utilisations chirurgicales ou dentaires en raison notamment des durées de prise optimales pour ce type d'utilisation, de la préparation à froid et de la très faible exothermicité des réactions.
Il est possible d'ajouter au mélange de phosphates ou à la solution aqueuse incorporée audit mélange, un additif biosoluble, tel que collagène ou ADN (de préférence ajouté au mélange de phosphates pour des raisons de stérilisation et de conservation), susceptible de créer ultérieurement une porosité dans le matériau apatitique, ou encore d'ajouter un principe actif en vue de sa libération lente dans le site osseux.
Une autre application du procédé pour la réalisation de pièces moulées consiste à injecter dans un moule la pâte avant durcissement et à calciner 1'hydroxyapatite en forme (après durcissement et démoulage) en vue d'obtenir une pièce frittée à usage chirurgical ou prothétique. La calcination est conduite selon des protocoles classiques en plusieurs phases (1150° C à 1200° C). De telles pièces parfaitement biocompatibles peuvent notamment consister en pièces implantables telles que vis, racines dentaires, vertèbres ou phalanges artificielles, osselets auriculaires, boutons poreux de diffusion.
Par ailleurs, l'invention s'étend, en tant que produit nouveau, au ciment utilisé dans le procédé défini précédemment, comprenant un mélange de phosphate monocalcique (MCP), phosphate tricalcique (TCP) et phosphate tétracalcique (TTCP) ; ce ciment hydraulique (c'est-à-dire apte à faire prise également en milieu humide ou aqueux) est particulièrement bien adapté aux applications chirurgicales ou dentaires, ou pour fabriquer par moulage des pièces à usage chirurgical ou prothétique comme décrit ci-dessus.
Le ciment hydraulique conforme à l'invention est avantageusement constitué par un mélange se présentant sous forme de poudre de granulo étrie inférieure à 150 microns, et comprenant le phosphate monocalcique onohydraté (MCPM), le phosphate tricalcique bêta (βTCP) et le phosphate tétracalcique (TTCP) dans les proportions molaires suivantes :
- proportion de MCPM comprise entre 3 et 20 %,
- proportion de βTCP comprise entre 6,6 et 57 %,
- proportion de TTCP comprise entre 40 et 73 %. L'invention s'étend enfin à un matériel spécifique pour la mise en oeuvre de l'application chirurgicale ou dentaire sus-évoquée ; ce matériel est constitué par un set comprenant une dose de ciment tel que ci-dessus défini, conditionnée de façon stérile, un conteneur de solution aqueuse de glycerophosphate conditionnée de façon stérile, et des moyens d'injection d'une dose de solution dans la dose de ciment. Ces moyens d'injection peuvent être constitués par une seringue d'injection de capacité adaptée à la dose de solution à injecter.
La description qui suit présente des exemples de préparation de ciments hydrauliques conformes à l'invention, des exemples de mise en oeuvre du procédé, et un mode de réalisation d'un set dentaire.
La figure unique du dessin est une vue en perspective de ce set dentaire.
Les méthodes d'analyse utilisées sont dans tous les cas des méthodes classiques de la chimie et/ou de la physique du solide :
- diffraction des rayons X : la diffraction des rayons X permet de mettre en évidence la structure cristallographique en effectuant le dénombrement, la classification et la détermination des positions des raies. Un examen plus poussé permet en outre de définir les paramètres cristallins de la maille, et de donner une idée (largeur des raies) de l'état de cristallisation. Enfin, la diffraction des rayons X permet de s'assurer, à la sensibilité de la méthode, de la pureté du composé, - spectrométrie d'absorption infrarouge : la spectrométrie d'absorption infrarouge permet de mettre en évidence les liaisons dans des groupements atomiques. Dans le cas des apatites on peut en particulier mettre en évidence : . les ions hydroxyde : bandes à
3 560 et 740 cm-1 ,
. les ions carbonate : domaine 1 420 cm-1 , . les bandes phosphate et plus particulièrement la bande due aux ions HPO4 : bande à 830 cm-1 ,
EXEMPLE 1 : préparation et mise en oeuvre d'un ciment (prise en 5 minutes)
Ciment hydraulique :
On prépare un mélange de 50 grammes d'une poudre formée de :
- 36,1 grammes de phosphate tétracalcique [Ca4P2θg] (% pondéral = 72,2 , soit en proportion molaire :
66,67 %),
- 7,7 grammes de phosphate tricalcique β [Ca3(Pθ4)2- (% pondéral = 15,3 , soit en proportion molaire : 16,67 %), - 6,2 grammes de phosphate monocalcique monohydraté [Ca(H2PÛ4)2,2H2O] (% pondéral = 12,5 , soit en proportion molaire : 16,67 %).
Chacune de ces poudres de qualité pharmaceutique a été préalablement tamisée et seule la fraction inférieure à 125 μm a été retenue. Le mélange est soigneusement homogénéisé par broyage. Le rapport Ca/P du mélange est égal à 1,67.
Par ailleurs, on prépare une solution contenant 0,6 gramme de glycerophosphate de sodium par cm3 d'eau. On possède alors les deux constituants solide et liquide du ciment hydraulique. Ces deux constituants sont stérilisés.
Mise en oeuyre :
Pour obtenir la prise, on prend 5 grammes du mélange auquel on ajoute progressivement 2 cm3 de la solution de glycerophosphate (0,4 cmJ de solution par gramme de mélange). On mélange par brassage au moyen d'une spatule. La prise se fait au bout de 5 minutes.
Une analyse immédiate par diffraction des rayons X montre que le solide obtenu est constitué par :
- une phase brushite prédominante,
- une phase apatitique peu cristallisée.
Le mélange est ensuite laissé évoluer in vitro en milieu humide ; le produit reste dur. Après 3 jours, l'analyse par diffraction des rayons X, montre que le solide obtenu est alors constitué exclusivement par de l'hydroxyapatite de formule voisine de Ca-|n(P04)6(0H)2. Cette préparation permet de préparer environ 6 g de matériau. EXEMPLE 2 : préparation d'un échantillon fritte
On prépare un ciment constitué par un mélange de TTCP, MCPM et βTCP selon les conditions décrites à l'exemple n° 1.
On prépare également une solution contenant 70 % d'eau et 30 % d'ammoniaque concentré (masse volumique : 0,92 g/cm3). On ajoute à cette solution 0,6 g de glycerophosphate de sodium par cm3. On mélange soigneusement 10 grammes de poudre et 4 cm3 de solution jusqu'à obtenir une pâte homogène. On introduit immédiatement cette pâte dans un moule ayant la forme d'une vis. Elle fait prise au bout de 5 minutes environ ; on effectue le démoulage après une heure environ. La présence d'ammoniaque régularise la prise qui s'effectue de façon parfaitement uniforme (l'ammoniaque disparaît ensuite lors des traitements thermiques). La pièce obtenue est ensuite laissée en atmosphère saturée en humidité pendant 3 jours. On place ensuite la pièce moulée dans un four et on lui fait subir un cycle de calcination programmée :
- séchage de 10 heures à 100° C,
- montée lente jusqu'à 1 300° C : 2° C/minute, - palier de température à 1 300° C pendant
4 heures,
- refroidissement jusqu'à 900° C,
- recuit lent à 900° C : 2 heures,
- refroidissement jusqu'à température ordinaire,
La pièce obtenue est frittée et dure. L'examen par diffraction des rayons X montre que la phase est constituée uniquement par 1'hydroxyapatite stoechiométrique.
EXEMPLE 3 : préparation et mise en oeuvre d'un ciment
(prise en 30 minutes)
On prépare un mélange de 50 grammes d'une poudre formée de :
- 36,1 grammes de phosphate tétracalcique [Ca4P2θ9- (% pondéral = 72,2 , soit en proportion molaire : 66,67 %),
- 7,7 grammes de phosphate tricalcique β [Ca3(P04)2- (% pondéral = 15,3 , soit en proportion molaire : 16,67 %),
- 6,2 grammes de phosphate monocalcique monohydraté [Ca(H2Pθ4)2, 2H2O] (% pondéral = 12,5 , soit en proportion molaire : 16,67 %). Chacune de ces poudres de qualité pharmaceutique a été préalablement tamisée et seule la fraction inférieure à 125 μm a été retenue. Le mélange est soigneusement homogénéisé par broyage (rapport Ca/P = 1,67). Le mélange est ensuite humidifié de la façon suivante : on prépare une solution d'alcool éthylique à 90 % (10 % d'eau) et on incorpore cette solution au mélange de phosphates à raison de 50 g de solution pour 100 g de solide, l'ensemble étant brassé pour l'homogénéiser ; l'on chauffe ensuite l'ensemble à 120° C de façon à faire évaporer l'alcool (durée de chauffage : 1 heure). L'alcool peut être remplacé par tout solvant inerte vis-à-vis du mélange de phosphates ; la température de chauffage du solide résiduel sera avantageusement ajustée en pratique entre 100° C et 150° C. Le mélange est alors broyé à nouveau pour homogénéisation.
On prépare une solution contenant 0,6 gramme de glycerophosphate de sodium par cm3 d'eau. On possède alors les deux constituants solide et liquide du ciment hydraulique. Ces deux constituants sont stérilisés. Pour obtenir la prise, on prend 5 grammes du mélange auquel on ajoute progressivement 2 cm3 de la solution de glycerophosphate. On mélange par brassage au moyen d'une spatule. La prise se fait au bout de 30 minutes environ .
Les analyses donnent les mêmes résultats qu'à 1 ' exemple 1.
EXEMPLE 4 : préparation et mise en oeuvre d'un ciment On prépare un mélange de 50 grammes d'une poudre formée de :
- 25,67 grammes de phosphate tétracalcique [Ca4P2θg] (% pondéral = 51,3 , soit en proportion molaire : 46,67 %), - 21,82 grammes de phosphate tricalcique β
[Ca3(P04)2- (% pondéral = 43,6 , soit en proportion molaire : 46,67 %),
- 2,52 grammes de phosphate monocalcique monohydraté [Ca(H2Pθ4)2, 2H2O] (% pondéral = 5,1 , soit en proportion molaire : 6,67 %).
Chacune de ces poudres a été préalablement tamisée et seule la fraction inférieure à 125 μm a été retenue. Le mélange est soigneusement homogénéisé par broyage (rapport Ca/P : 1,67). Par ailleurs, on prépare une solution contenant 0,6 gramme de glycerophosphate de sodium par cmJ d'eau. On possède alors les deux constituants solide et liquide du ciment hydraulique. Ces deux constituants sont stérilisés. Pour obtenir la prise, on prend 5 grammes du mélange auquel on ajoute progressivement 2 cm3 de la solution de glycerophosphate. On mélange par brassage au moyen d'une spatule. La prise se fait au bout de 5 minutes.
Dans cet exemple, on a modifié les proportions des trois phosphates constitutifs du ciment tout en conservant le rapport Ca/P égal à 1,67 afin de diminuer la quantité du phosphate tétracalcique Ca4P2θg (composé plus onéreux), et ce, en obtenant un temps de prise identique à celui de l'exemple 1. EXEMPLE 5 : préparation et mise en oeuvre d'un ciment
On prépare un mélange de 50 grammes d'une poudre formée de :
- 36,1 grammes de phosphate tétracalcique [Ca4P2θg] (% pondéral = 72,2 , soit en proportion molaire : 67,67 %) ,
- 7,7 grammes de phosphate tricalcique β [Ca3(P04)2- (% pondéral = 15,3 , soit en proportion molaire : 16,67 %),
- 6,2 grammes de phosphate monocalcique monohydraté [Ca(H2P04)2, 2H2O] (% pondéral = 12,5 , soit en proportion molaire : 16,67 %).
Chacune de ces poudres a été préalablement tamisée et seule la fraction inférieure à 125 μm a été retenue. Le mélange est soigneusement homogénéisé par broyage (rapport Ca/P : 1,67).
Par ailleurs, on prépare une solution contenant 0,6 gramme de glycerophosphate de sodium par cmJ d'eau. On possède alors les deux constituants solide et liquide du ciment hydraulique. Ces deux constituants sont stérilisés.
Pour obtenir la prise, on prend 5 grammes , -3 du mélange auquel ou ajoute progressivement 4 cmJ de la solution de glycerophosphate (c'est-à-dire deux fois plus qu'aux exemples précédents : 0,8 cm3 de solution par gramme de mélange). On mélange par brassage au moyen d'une spatule. La prise se fait au bout de 7 minutes.
Le produit est analogue au produit de l'exemple n° 1 mais la dureté est plus faible, ce qui rend le produit bien adapté pour un comblement d'alvéoles dentaires après extraction. EXEMPLE 6 : préparation et mise en oeuvre d'un ciment
On prépare un mélange de 50 grammes d'une poudre formée de :
- 26,65 grammes de phosphate tétracalcique [Ca4P2θg] (% pondéral = 53,30 , soit en proportion molaire : 48, 4 %) ,
- 20,57 grammes de phosphate tricalcique β [Ca3(PÛ4)2] (% pondéral = 41,14 , soit en proportion molaire : 44,11 %),
- 2,84 grammes de phosphate monocalcique monohydraté [Ca(H2PÛ4 ) 2 < 2H2O] (% pondéral = 5,68 , soit en proportion molaire : 7,49 %).
Chacune de ces poudres a été préalablement tamisée et seule la fraction inférieure à 55 μm a été retenue. Le mélange est soigneusement homogénéisé par broyage (rapport Ca/P : 1,67). Il est ensuite humidifié en y incorporant 25 cm3 d'une solution eau-éthanol à 14 % en eau. Il est ensuite séché et chauffé à 120° C.
Par ailleurs, on prépare une solution contenant 0,6 gramme de glycerophosphate de sodium et 0,043 g d'acide phosphorique (densité 1,70) par c 0 d'eau. On possède alors les deux constituants solide et liquide du ciment hydraulique. Ces deux constituants sont stérilisés.
Pour obtenir la prise, on prend 5 grammes du mélange auquel on ajoute progressivement 2 cm3 de la solution de glycerophosphate et d'acide phosphorique. On mélange par brassage au moyen d'une spatule. La prise se fait au bout de 15 minutes.
EXEMPLE 7 : préparation et mise en oeuvre d'un ciment On prépare un mélange de 50 grammes d'une poudre formée de :
- 26,65 grammes de phosphate tétracalcique [Ca4P2θg] (% pondéral = 53,30 , soit en proportion molaire : 48,4 %), - 20,57 grammes de phosphate tricalcique β
[Ca3(P04)2- (% pondéral = 41,14 , soit en proportion molaire : 44,11 %),
- 2,84 grammes de phosphate monocalcique monohydraté [Ca(H2Pθ4)2, 2H2O] (% pondéral = 5,68 , soit en proportion molaire : 7,49 %).
Chacune de ces poudres a été préalablement tamisée et seule la fraction inférieure à 125 μm a été retenue. Le mélange est soigneusement homogénéisé par broyage (rapport Ca/P : 1,67). Le mélange est ensuite humidifié en y incorporant 25 cm3 d'une solution eau- éthanol à 14 % en eau. Il est ensuite séché et chauffé à 120° C.
Par ailleurs, on prépare une solution contenant 0,6 gramme de glycerophosphate de sodium et de
0,043 g d'acide phosphorique (densité 1,70) par cm3 d'eau.
On possède alors les deux constituants solide et liquide du ciment hydraulique. Ces deux constituants sont stérilisés. Pour obtenir la prise, on prend 5 grammes du mélange auquel on ajoute progressivement 2,5 cm3 de la solution de glycerophosphate et d'acide phosphorique. On mélange par brassage au moyen d'une spatule. La prise se fait au bout de 70 minutes. La prise très lente de ce produit convient particulièrement au moulage de pièces destinées à être frittées.
EXEMPLE 8 : essai in vivo sur le lapin
On prépare un ciment hydraulique formé d'un mélange identique à celui de l'exemple 1.
Par ailleurs, on prépare une solution contenant 0,6 gramme de glycerophosphate de sodium par cm3 d'eau.
On prend 1 gramme du mélange auquel on ajoute progressivement 0,4 cm3 de la solution de glycerophosphate. On mélange par brassage au moyen d'une spatule.
Le mélange pâteux est introduit dans un tube en Téflon bouché à une seule extrémité ( in = mm, Φeχt = 5 mm et longueur = 8 mm) . Ce tube est inséré dans l'omoplate et la mandibule d'un lapin.
Après 2 mois, le lapin est sacrifié. On effectue des coupes histologiques au niveau de l'implant et on fait des observations microscopiques pour apprécier la biocompatibilité du matériau. Aucune inflammation n'est constatée.
EXEMPLE 9 : exemple de set chirurgical
Un conditionnement en carton 1 comprend une feuille intérieure en carton 2 pliée et agencée pour former trois logements, contenant l'un une seringue d'injection 3 de capacité de 20 cm3, l'autre un sachet 4 en matière plastique transparente souple contenant 50 g du mélange de poudres visé à l'exemple 1, le dernier un flacon 5 bouché au moyen d'un caoutchouc butyl serti au moyen d'une bague d'aluminium, contenant 25 cm3 environ de la solution visée à 1'exemple 1.
Le conditionnement 1 est fermé par un couvercle en carton, et mis sous double emballage. L'ensemble est stérilisé au rayonnement gamma.
La mise en oeuvre pour opérer un comblement osseux consiste, après ouverture, à prélever une dose de 20 cm3 de solution à travers le bouchon du flacon 5 au moyen de la seringue 3, à injecter cette dose à travers la paroi du sachet souple 4, à malaxer manuellement pendant 1 à 2 minutes le sachet, à l'ouvrir et à prélever la pâte pour la mettre en place.

Claims

REVENDICATIONS 1/ - Procédé d'obtention ' hydroxyapatite phosphocalcique (HAP), caractérisé en ce que l'on mélange du phosphate monocalcique (MCP), du phosphate tricalcique (TCP) et du phosphate tétracalcique (TTCP) et en ce qu'on fait réagir le mélange avec de l'eau en présence d'un glycerophosphate soluble dans l'eau.
2/ - Procédé selon la revendication 1 , caractérisé en ce que l'on fait réagir le mélange des trois phosphates en présence du glycerophosphate de sodium (NaGP) .
3/ - Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'on utilise le phosphate monocalcique monohydraté (MCPM) et le phosphate tricalcique bêta (βTCP) pour effectuer le mélange.
4/ - Procédé selon l'une des revendications 1, 2 ou 3, caractérisé en ce que le mélange des trois phosphates est réalisé de sorte que le rapport atomique Ca/P du mélange soit compris entre 1,60 et 1,70 et que la proportion molaire des phosphates dans ledit mélange soit la suivante :
- proportion de MCP comprise entre 3 et 20 %,
- proportion de TCP comprise entre 6,6 et 57 %, - proportion de TTCP comprise entre 40 et 73 %.
5/ - Procédé selon l'une des revendications 1, 2, 3 ou 4, caractérisé en ce que :
- le glycerophosphate est préalablement mis en solution dans de l'eau, - la solution obtenue est ensuite incorporée au mélange des trois phosphates avec un brassage pour homogénéiser la pâte avant sa prise.
6/ - Procédé selon la revendication 5, caractérisé en ce que la solution aqueuse est réalisée de façon que la proportion de glycerophosphate soit comprise entre 0,4 et 0,8 g par cm3 d'eau.
7/ - Procédé selon la revendication 6, caractérisé en ce que l'on incorpore entre 0,3 et 0,8 cm3 de solution par gramme de mélange de phosphates.
8/ - Procédé selon l'une des revendications
5, 6 ou 7, caractérisé en ce que l'on ajoute à la solution aqueuse de glycerophosphate de l'acide phosphorique de façon que la proportion pondérale d'acide phosphorique dans la solution soit comprise entre 0,3 % et 4 %.
9/ - Procédé selon l'une des revendications 5, 6, 7 ou 8, dans lequel les trois phosphates sont mélangés sous forme de poudre de granulométrie inférieure à 150 microns.
10/ - Procédé selon l'une des revendications précédentes, caractérisé en ce que le mélange des trois phosphates est préalablement humidifié, puis chauffé. 11/ - Procédé selon la revendication 9, caractérisé en ce que le mélange des trois phosphates est préalablement humidifié en diluant dans un volume de solvant inerte vis-à-vis du mélange, la quantité d'eau nécessaire à l'humidification, en incorporant le liquide au mélange de phosphates, en homogénéisant l'ensemble et en faisant évaporer le solvant et en chauffant le solide résiduel à une température comprise entre 100° et 150° C.
12/ - Application du procédé conforme à l'une des revendications 1 à 11, pour préparer une pâte de comblement dentaire ou osseux, destinée à être mise en place avant durcissement en vue de former 1'hydroxyapatite in situ.
13/ - Application selon la revendication 12, dans laquelle l'on ajoute un composé biosoluble au mélange de phosphates, en particulier du collagene ou de 1'ADN.
14/ - Application selon l'une des revendications 12 ou 13, dans laquelle l'on ajoute un principe actif au mélange de phosphates ou à la solution incorporée à ce mélange.
15/ - Application du procédé conforme à l'une des revendications 1 à 11 pour fabriquer une pièce à usage chirurgical ou prothétique, dans laquelle l'on injecte dans un moule la pâte avant durcissement et l'on calcine 1'hydroxyapatite en forme en vue d'obtenir une pièce frittée.
16/ - Application selon la revendication 15, dans laquelle on ajoute de l'ammoniaque au mélange de phosphates.
17/ - Ciment chirurgical ou dentaire, apte à faire prise en donnant une hydroxyapatite phosphocalcique (HAP) conformément au procédé selon l'une des revendications 1 à 11, caractérisé en ce qu'il comprend un mélange de phosphate monocalcique (MCP), phosphate tricalcique (TCP) et phosphate tétracalcique (TTCP).
18/ - Ciment pour la fabrication de pièces moulées à usage chirurgical ou prothétique, apte à faire prise en donnant une hydroxyapatite phosphocalcique (HAP) conformément au procédé selon l'une des revendications 1 à 11, et à subir une calcination en vue de son frittage, caractérisé en ce qu'il comprend un mélange de phosphate monocalcique (MCP), phosphate tricalcique (TCP) et phosphate tétracalcique (TTCP).
19/ - Ciment selon l'une des revendications 17 ou 18, caractérisé en ce qu'il comprend un mélange sous forme de poudre de granulométrie inférieure à 150 microns, de phosphate monocalcique monohydrate (MCPM), de phosphate tricalcique bêta (βTCP) et de phosphate tétracalcique (TTCP) dans les proportions molaires suivantes :
- proportion de MCPM comprise entre 3 et 20 %,
- proportion de βTCP comprise entre 6,6 et 57 %,
- proportion de TTCP comprise entre 40 et 73 %. 20/ - Set chirurgical ou dentaire, caractérisé en ce qu'il comprend une dose (4) de ciment conforme à l'une des revendications 14 ou 16, conditionnée de façon stérile, un conteneur (5) de solution aqueuse de glycerophosphate conditionnée de façon stérile et des moyens (3) d'injection d'une dose de solution dans la dose de ciment.
PCT/FR1993/000726 1992-07-20 1993-07-15 Procede d'obtention d'hydroxyapatite phosphocalcique, applications au comblement osseux ou dentaire, ou au moulage de pieces, et produits utilises WO1994002411A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU45738/93A AU4573893A (en) 1992-07-20 1993-07-15 Method for preparing phosphocalcium hydroxyapatite, use thereof for bone or tooth filling or for moulding parts, and products used therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9209019A FR2693716B1 (fr) 1992-07-20 1992-07-20 Procédé d'obtention d'hydroxyapatite phosphocalcique, applications au comblement osseux ou dentaire, ou au moulage de pièces, et produits utilisés.
FR92/09019 1992-07-20

Publications (1)

Publication Number Publication Date
WO1994002411A1 true WO1994002411A1 (fr) 1994-02-03

Family

ID=9432122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000726 WO1994002411A1 (fr) 1992-07-20 1993-07-15 Procede d'obtention d'hydroxyapatite phosphocalcique, applications au comblement osseux ou dentaire, ou au moulage de pieces, et produits utilises

Country Status (3)

Country Link
AU (1) AU4573893A (fr)
FR (1) FR2693716B1 (fr)
WO (1) WO1994002411A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776282A1 (fr) * 1998-03-20 1999-09-24 Toulouse Inst Nat Polytech Procede de preparation d'un biomateriau a base d'hydroxyapatite, biomateriau obtenu et application chirurgicale ou dentaire
WO2000007639A1 (fr) * 1998-08-07 2000-02-17 Tissue Engineering, Inc. Compositions precurseurs osseuses
EP1534212A1 (fr) * 2002-06-20 2005-06-01 Doxa Aktiebolag Systeme destine a un materiau d'obturation dentaire ou un materiau d'implant, et materiau en poudre, liquide d'hydratation, materiau d'implant, et procede de liaison
WO2010068359A1 (fr) * 2008-12-11 2010-06-17 3M Innovative Properties Company Particules de phosphate de calcium traitées en surface pour soins buccaux et compositions dentaires
CN116407686A (zh) * 2022-12-29 2023-07-11 南京航空航天大学 一种高生物活性的透钙磷石/β-磷酸三钙骨组织工程支架的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962028A (en) * 1988-04-20 1999-10-05 Norian Corporation Carbonated hydroxyapatite compositions and uses
US6002065A (en) * 1988-04-20 1999-12-14 Norian Corporation Kits for preparing calcium phosphate minerals
US6005162A (en) * 1988-04-20 1999-12-21 Norian Corporation Methods of repairing bone
US5569442A (en) * 1994-11-04 1996-10-29 Norian Corporation Reactive tricalcium phosphate compositions and uses
FR2850282B1 (fr) 2003-01-27 2007-04-06 Jerome Asius Implant injectable a base de ceramique pour le comblement de rides, depressions cutanees et cicatrices, et sa preparation
MA33231B1 (fr) 2010-09-20 2012-05-02 Univ Hassan Ii Mohammedia Ciments macroporeux a base de bioverre, bioactif, bioresorbable a usage biomedical

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33161E (en) * 1982-04-29 1990-02-06 American Dental Association Health Foundation Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311309A (ja) * 1989-05-27 1990-12-26 Toshiba Ceramics Co Ltd 繊維状ヒドロキシアパタイトの製造方法
JPH0369536A (ja) * 1989-08-08 1991-03-25 Mitsubishi Materials Corp 水硬性リン酸カルシウムセメント組成物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33161E (en) * 1982-04-29 1990-02-06 American Dental Association Health Foundation Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOMATERIALS vol. 11, no. 2, Mars 1990, pages 83 - 88 MIRTCHI ET AL *
DATABASE WPIL Week 9107, Derwent Publications Ltd., London, GB; AN 91-047150 *
DATABASE WPIL Week 9118, Derwent Publications Ltd., London, GB; AN 91-129634 *
JOURNAL OF DENTAL RESEARCH vol. 69, no. 12, Décembre 1990, pages 1852 - 1856 FUKASE ET AL cité dans la demande *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776282A1 (fr) * 1998-03-20 1999-09-24 Toulouse Inst Nat Polytech Procede de preparation d'un biomateriau a base d'hydroxyapatite, biomateriau obtenu et application chirurgicale ou dentaire
WO2000007639A1 (fr) * 1998-08-07 2000-02-17 Tissue Engineering, Inc. Compositions precurseurs osseuses
EP1534212A1 (fr) * 2002-06-20 2005-06-01 Doxa Aktiebolag Systeme destine a un materiau d'obturation dentaire ou un materiau d'implant, et materiau en poudre, liquide d'hydratation, materiau d'implant, et procede de liaison
US7699925B2 (en) 2002-06-20 2010-04-20 Doxa Ab System for a dental filling material or implant material, and powdered material, hydration liquid, implant material and method of achieving bonding
WO2010068359A1 (fr) * 2008-12-11 2010-06-17 3M Innovative Properties Company Particules de phosphate de calcium traitées en surface pour soins buccaux et compositions dentaires
CN116407686A (zh) * 2022-12-29 2023-07-11 南京航空航天大学 一种高生物活性的透钙磷石/β-磷酸三钙骨组织工程支架的制备方法

Also Published As

Publication number Publication date
FR2693716A1 (fr) 1994-01-21
FR2693716B1 (fr) 1994-10-21
AU4573893A (en) 1994-02-14

Similar Documents

Publication Publication Date Title
EP0984902B1 (fr) Procede de preparation d&#39;un biomateriau a base d&#39;hydroxyapatite, biomateriau obtenu et application chirurgicale ou dentaire
US5542973A (en) Calcium phosphate hydroxyapatite precursor and methods for making and using the same
US5503164A (en) Device and method for repair of craniomaxillofacial bone defects including burr holes
JP3773254B2 (ja) 貯蔵安定性の部分中和化酸組成物及び利用
EP2252338B1 (fr) Matériau de greffe osseuse et ses utilisations
Jansen et al. Evaluation of tricalciumphosphate/hydroxyapatite cement for tooth replacement: an experimental animal study
WO1999033766A1 (fr) Procede de fabrication d&#39;une ceramique apatitique, en particulier pour usage biologique
FR2466983A1 (fr) Materiau pour la restauration des portions manquantes ou des parties creuses des os
WO1994002411A1 (fr) Procede d&#39;obtention d&#39;hydroxyapatite phosphocalcique, applications au comblement osseux ou dentaire, ou au moulage de pieces, et produits utilises
CH618951A5 (en) Process for the preparation of a sintered ceramic
EP0389629B1 (fr) Substance durcissante pour utilisations dentaires et medicales
EP1259271B1 (fr) Procede de preparation d&#39;un materiau pateux phosphocalcique injectable
KR20100039979A (ko) 실리콘이 치환된 수산화아파타이트와 β-TCP를 포함하는다공성 복합체 및 이의 제조방법
EP2307064B1 (fr) Biomateriaux a base de phosphate de calcium
EP2200670B1 (fr) Substitut osseux comprenant un agent de contraste, son procede de preparation et ses utilisations
FR2830249A1 (fr) Composition de ciment hydraulique a base de carbonates de calcium
RU2824989C1 (ru) Остеопластический материал для замещения дефектов костной ткани
US10117964B2 (en) Monolithic bodies of sintered chemically bonded ceramic (CBC) biomaterial prepared ex vivo for implantation, preparation and use thereof
BE831944A (fr) Materiau ceramique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA FI JP NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA