WO1994001542A1 - PROCEDIMIENTO PARA LA PURIFICACION DE DOS ISOENZIMAS LIPASA DE $i(CANDIDA RUGOSA) - Google Patents

PROCEDIMIENTO PARA LA PURIFICACION DE DOS ISOENZIMAS LIPASA DE $i(CANDIDA RUGOSA) Download PDF

Info

Publication number
WO1994001542A1
WO1994001542A1 PCT/ES1993/000058 ES9300058W WO9401542A1 WO 1994001542 A1 WO1994001542 A1 WO 1994001542A1 ES 9300058 W ES9300058 W ES 9300058W WO 9401542 A1 WO9401542 A1 WO 9401542A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipase
purification
column
solution
candida rugosa
Prior art date
Application number
PCT/ES1993/000058
Other languages
English (en)
French (fr)
Inventor
Mª Luisa RUA RODRIGUEZ
Antonio Ballesteros Olmo
Original Assignee
Consejo Superior Investigaciones Cientificas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior Investigaciones Cientificas filed Critical Consejo Superior Investigaciones Cientificas
Publication of WO1994001542A1 publication Critical patent/WO1994001542A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase

Definitions

  • lipases occupy a preferential place due to their versatility of action on lipophilic compounds, and also because a large number of them are commercially available, even if it is as crude lipase.
  • the lipase most commonly used is by far the one produced by Candida rugosa yeast (previously cataloged as Candida cylindracea) due to its good activity both in various hydrolysis reactions [Benzoana, G., Esposito, S. Biochim.
  • the present invention includes a rapid procedure for the separation and purification of two lipase isoenzymes in a single step of hydrophobic chromatography, starting from
  • a crude preparation of lipase from a yeast In essence, it consists, as shown in Figure 1, in the passage of the dissolution of the crude lipase in a buffer [1] through a column [2] filled with a hydrophobic agarose matrix, which is eluted first with the buffer solution itself [3] that carries the impurities [6] and then with the same more diluted buffer solution [4], which carries the lipase B [7]. Then with a
  • lipase A [8] is eluted, from which solution the alcohol is subsequently removed.
  • a phosphate buffer for example a 0.25 M phosphate solution (NaH 2 P ⁇ 4 / Na 2 HPO 4 ) preferably by stirring, in a tank [3], more of one hour, until, in any case, dissolve the greatest part of the hepatic activity.
  • the insoluble material [5] is then discarded by any solid-liquid separation process, preferably by centrifugation [4].
  • the resulting solution which can be stored in a lung reservoir (not shown in the figure), is loaded into a column [8] filled with a hydrophobic agarose matrix (preferably a medium-pore-sized phenyl-agarose in the proportion of 4% agarose with respect to the gel, although this figure is not limiting), previously balanced in the same buffer in which the starting material was solubilized.
  • a hydrophobic agarose matrix preferably a medium-pore-sized phenyl-agarose in the proportion of 4% agarose with respect to the gel, although this figure is not limiting
  • a fraction [10] is eluted with activity corresponding to lipase B, while lipase A is eluted with the same buffer to which a di or polyalcohol [7] is added, preferably a 50% (v / v) solution of ethylene glycol.
  • the columns used have a height / diameter ratio of 3: 1 or less. Increasing the volume of the column bed 5.7 times improves the yield with respect to units of activity of lipase B, while practically the performance of lipase A is not affected.
  • the load ratio admitted by the matrix must be between 0.05 and 0.25, preferably between 0.10 and 0.15.
  • the solution containing lipase A is preferably stored in a lung reservoir [11], to subsequently, after concentrating it by ultrafiltration using a filter [12] that allows substances of molecular weight less than 30 kD to pass [13], is removed.
  • the organic solvent by passing it through a molecular exclusion column [14], filled with a dextran gel or an analogous material that excludes substances with molecular weight greater than 5 kD.
  • Lipase A is eluted from this column with the same diluted buffer solution [6], obtaining, as in [10] a buffered solution [15] of lipase A.
  • the polyalcohol is eluted [ 16] which constitutes an effluent to be removed from the process.
  • the operations can be carried out within a temperature range between 5 and 30 ° C.
  • Second elution solution (diluted buffer containing di or polyalcohol)
  • the loading ratio defined as g of commercial powder loaded per ml of Phenyl-sepharose® CL-4B gel, is 0.1.
  • a volume of equilibrium buffer equal to or greater than twice the volume of the column and at a flow of 40 ml / h, an intensely colored material is eluted and without lipase activity. It is then washed with 1 mM phosphate buffer (pH 7.0) to elute the activity fractions corresponding to lipase B.
  • Lipase A is eluted with the same buffer to which ethylene glycol has been added in the 1: 1 volumetric ratio.
  • the sample obtained (6 ml) is concentrated to 2.5 ml by ultrafiltration, using a PM30 membrane (from Amicon), and loaded onto a Sephadex® G-25 column (from Pharmacia. ). This column is eluted with 1 mM sodium phosphate buffer (pH 7.0).
  • tributyrin as a lipase substrate, defining a unit of activity (U) as the amount of enzyme that releases 1 ⁇ mol of fatty acid per minute of reaction.
  • U a unit of activity
  • Proteins and neutral sugars were determined, respectively, according to the Lowry method, with bovine serum albumin as standard [Lowry, OH, Rosebrough, NJ, Farr, AL, Randall, RJ Biol. Chem. 193, 256-275 (1951)] , and according to the phenol-sulfuric method [Mckelvy, JF, Lee, YC Arch. Biochem. Biophys 132, 99-110 (1969)] with xylose as standard.
  • lipases A and B are obtained with a yield, with respect to total units of lipase activity in the starting solid, of 36 and 20%, respectively; Purification factors (ratio of specific activities) were 6 and 2. The specific activities were 90 U / mg protein (lipase A) and 415 U / mg protein (lipase B). More than 90% of the neutral sugars present in the crude lipase were detected in the fraction not retained in the phenyl-agarose column, while in the fractions with activity the content was 0.3% (lipase A) and 0 , 15% (lipase B). 5
  • a column of 2.5 cm internal diameter by 7 cm in length is used.
  • 3.4 g of commercial powder is used, which after being subjected to the same process is loaded into the column.
  • the elution conditions for the two lipases were those described in the previous case except for the flow that was
  • lipase A is obtained with a yield of 22% and lipase B increases to 60%.
  • the final specific activity of this lipase is 906 U / mg protein, which means a purification factor of 11.
  • Lipases A and B are obtained with a yield of 19% and 80%, respectively.
  • the specific activity of lipase B is 185 U / mg protein, with a purification factor of 2.8.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Procedimiento para la purificación de dos lipasas extracelulares presentes en lipasa bruta comercial de la levadura Candida rugosa. El método consta de un sólo paso de cromatografía hidrofóbica en matriz de agarosa. Condiciones de elución muy diferentes permiten la completa separación y purificación de dos enzimas con actividad lipásica (lipasas A y B) presentes en el extracto comercial de partida. Para ello se utiliza un tampón concentrado de pH 6 a 8, con el que se eluyen de la columna gran parte de los contaminantes presentes en el extracto; luego con la misma solución tampón más diluida se arrastra la lipasa B. Posteriormente, con un di o polialcohol disuelto en el tampón diluido se eluye la lipasa A, de cuya solución, mediante concentración por ultrafiltración y cromatografía de exclusión molecular con dextrano, se elimina el alcohol. Se aplica industrialmente en la purificación de enzimas.

Description

MEMORIA DESCRIPTIVA Título
Procedimiento para la purificación de dos isoenzimas lipasa de Candida rugosa.
Campo de la técnica
Procesos para la preparación y purificación de enzimas (C12N9)
Estado de la técnica
La aplicación industrial de los enzimas se ha establecido en los últimos años como una alternativa válida frente a procesos químicos convencionales. En este campo de la biotecnología las lipasas ocupan un lugar preferente debido a su versatilidad de acción sobre compuestos lipofílicos, y también a que un gran número de las mismas es asequible comercialmente, aún cuando sea como lipasa bruta. La lipasa más utilizada es con mucho la producida por la levadura Candida rugosa (anteriormente catalogada como Candida cylindracea) debido a su buena actividad tanto en diversas reacciones de hidrólisis [Benzo- nana, G., Esposito, S. Biochim. Biophys. Acta 231, 15-22 (1971); Deleuze, H., Langrand, G., Millet, H., Baratti, J., Buono, G., Triantaphylides, C. Biochim. Biophys. Acta 911, 117- 120 1987); Ballesteros, A., Bernabé, M., Cruzado, C, Martin-Lomas, M., Otero, C. Tetrahedron 45, 7077-7082 (1989); Otero, C, Pastor, E., Fernandez, V.M., Ballesteros, A. Appl. Biochem. Biotechnol. 23, 237-246 (1990)] como de síntesis [Otero, C, Pastor, E., Ballesteros, A. Appl. Biochem. Biotechnol. 26, 35-44 (1990)]. La mayoría de los estudios llevados a cabo hasta la fecha con esta lipasa lo han sido con lipasas brutas cuyo grado de pureza es muy bajo (generalmente <10 de proteína y <1 de lipasa, relativos al peso total del extracto). La creciente necesidad de obtener compuestos puros de alto valor añadido mediante procesos reproducibles, ha aumentado notablemente el interés por la purificación y caracterización de los biocatalizadores. Para la producción industrial de enzimas se aprovecha que en muchos casos éstas son segregadas durante la fermentación al medio extracelular, lo cual facilita su posterior aislamiento sin necesidad de recurrir a la ruptura de las células. Este es el caso de la lipasa producida por la levadura Candida rugosa. A pesar del uso generalizado de esta lipasa, el progreso en el conocimiento a nivel fundamental de este enzima es inferior al logrado con otras lipasas. Prueba de ello es que hasta el año 1989 no se describe la existencia de dos enzimas extracelulares con actividad lipásica producidas por C. rugosa [Veeraragavan, K., Gibbs, B.F. Biotechnol. Lett. 11, 345- 348 (1989); Brahimi-Horn, M., Guglielmino, M.L., Elling, L., Sparrow, L.G. Biochim. Biophys. Acta 1042, 51-54 (1990); Shaw, J.F., Chang, C.H., Wang, Y.J. Biotecnol. Lett. 11, 779-784 (1989); Wu, S.H., Guo, Z.V., Sih, CJ. J. Am. Chem. Soc. 112, 1990-1995 5 (1990)]. Estas dos proteínas, similares en algunas propiedades moleculares, muestran diferencias en la especificidad de sustrato, lo cual aporta un interés adicional al desarrollo de métodos de purificación rápidos y sencillos. Existe un proceso patentado en el año 1989 que consta de tres pasos cromatográficos: una columna de intercambio iónico y dos colum¬ nas de exclusión molecular [Patente japonesa [89 80, 286] (Jpn. Kokai Tokkyo Koho JP 01
10 80, 286)]. Estos tipos de columnas son las que se están utilizado en la bibliografía para la purificación de los isoenzimas lipasa de C. rugosa [Veeraragavan, K., Gibbs, B.F. Bio¬ technol. Lett. 11, 345-348 (1989); Brahimi-Horn, M., Guglielmino, M.L., Elling, L., Sparrow, L.G. Biochim. Biophys. Acta 1042, 51-54 (1990); Shaw, J.F., Chang, C.H., Wang, Y.J. Biotecnol. Lett. 11, 779-784 (1989); Wu, S.H., Guo, Z.V, Sih, CJ. J. Am. Chem. Soc.
15 112, 1990-1995 (1990)].
Breve descripción de la invención
La presente invención recoge un procedimiento rápido para la separación y purifica¬ ción de dos isoenzimas lipasa en un sólo paso de cromatografía hidrofóbica, partiendo de
20 una preparación bruta de lipasa procedente de una levadura. En esencia, consiste, como se muestra en la figura 1, en el paso de la disolución de la lipasa bruta en un tampón [1] a través de una columna [2] rellena con una matriz de agarosa hidrofóbica, la cual se eluye primero con la propia solución tampón [3] que arrastra las impurezas [6] y luego con la misma solución tampón más diluida [4], que arrastra la lipasa B [7]. A continuación con un
25 di o polialcohol disuelto en la solución tampón diluida [5] se eluye la lipasa A [8], de cuya solución, posteriormente, se elimina el alcohol. Descripción detallada de la invención
Como se muestra en la figura 2, la lipasa comercial en polvo [1], obtenida mediante un aislamiento bruto a partir de un cultivo de Candida rugosa, se solubiliza en una solución
30 tamponada a pH 6-8 para lo que preferentemente se utiliza un tampón fosfato (por ejemplo una solución 0,25 M de fosfato (NaH24/Na2HPO4) preferentemente mediante agitación, en un tanque [3], más de una hora, hasta conseguir, en cualquier caso, disolver la mayor parte de la actividad lipásica. A continuación se desecha el material insoluble [5] por cualquier procedimiento de separación sólido-líquido, preferentemente por centrifugación [4]. La solución resultante, que puede almacenarse en un depósito pulmón (no mostrado en la figura), se carga en una columna [8] rellena con una matriz de agarosa hidrofóbica (pre- ferentemente una fenil-agarosa de tamaño de poro mediano en la proporción de un 4 % de agarosa respecto al gel, aunque esta cifra no es limitativa), previamente equilibrada en el mismo tampón en el que se solubilizó el material de partida. Lavando intensamente la columna con un volumen de tampón de equilibrio [2] superior a dos veces el volumen total de la columna, se eluye un material fuertemente coloreado [9], sin actividad lipásica. A continuación, y con el tampón diluido al menos 50 veces (por ejemplo fosfato lmM) [6], se eluye una fracción [10] con actividad correspondiente a la lipasa B, mientras que la lipasa A se eluye con el mismo tampón al que se le adiciona un di ó polialcohol [7], preferentemente un solución al 50% (v/v) de etilenglicol. Las columnas utilizadas tienen una relación altura/diámetro de 3:1 o inferior. Aumentando 5,7 veces el volumen del lecho de columna se mejora el rendimiento respecto a unidades de actividad de la lipasa B, mientras que prácticamente no se afecta el rendimiento de la lipasa A. Aumentando la relación de carga de lipasa bruta (definida como gramos de polvo comercial cargado por mi de gel de fenil-agarosa) en la columna se aumenta el rendimiento respecto a lipasa B pero disminuye el factor de purificación. La relación de carga admitida por la matriz debe ser estar comprendida entre 0.05 y 0.25, preferentemente entre 0.10 y 0.15.
La solución conteniendo la lipasa A, preferentemente se almacena en un depósito pulmón [11], para, posteriormente, después de concentrarla por ultrafiltración usando un filtro [12] que deja pasar sustancias de peso molecular menor de 30 kD [13], se elimina el disolvente orgánico haciéndola pasar a través de una columna de exclusión molecular [14], rellena con un gel de dextrano o un material análogo que excluya las substancias con peso molecular superior a 5 kD. La lipasa A se eluye de esta columna con la misma solución tampon diluida [6], obteniéndose, como en [10] una solución tamponada [15] de lipasa A. Posteriormente, y totalmente separado de la lipasa A, se eluye el polialcohol [16] que constituye un efluente a eliminar del proceso. Las operaciones pueden realizarse dentro de un intervalo de temperaturas compren¬ dido entre 5 y 30 °C.
Descripción de las figuras Figura 1.
Esquema fundamental del proceso: 1] Solución tamponada a tratar 2] Columna rellena con agarosa 3] Solución de lavado (tampón concentrado) [4] Primera solución de elución (tampón diluido)
5] Segunda solución de elución (tampón diluido conteniendo di ó polialcohol)
6] Efluente
7] Eluato de la primera operación (lipasa B)
8] Eluato de la segunda operación (lipasa A)
Figura 2
I] Lipasa comercial (A+B+impurezas) 2] Solución tampón concentrada
3] Tanque
4] Separador sólido-líquido
5] Residuo sólido
6] Solución tampón diluida
7] Solución de di o polialcohol en tampón diluido
8] Columna de relleno
9] Efluente sin actividad enzimática
10] Solución tamponada de lipasa B
II] Depósito 12] Ultrafiltro 13] Ultrafiltrado
14] Columna de relleno
15] Solución tamponada de lipasa A
16] Efluente sin actividad enzimática Ejemplos
Ejemplo 1
Se pesan 0.6 g del polvo comercial de lipasa de la casa Sigma Chemical Co., USA y se resuspenden en 6 mi de tampón fosfato sódico 0.25 M, pH 7.0 (tampón de equilibrio). Esta relación (100 mg de sólido/ml de tampón) se mantiene constante en todos los ejemplos que se detallan. La mezcla se agita magnéticamente durante 90 min y posteriormente se centrifuga a 17.000 x g durante 20 min. El sobrenadante obtenido se carga directamente en una columna de 6.2 mi de volumen total (1.2 cm de diámetro interno y 5.5 cm de longitud) con un relleno hidrofóbico de Phenyl-sepharose® CL-4B (de la firma Pharmacia), equili- brada con el tampón de equilibrio. En estas condiciones la relación de carga, definida como g de polvo comercial cargados por mi de gel de Phenyl-sepharose® CL-4B, es de 0,1. Lavando intensamente la columna con un volumen de tampón de equilibrio igual o superior a dos veces el volumen de la columna y a un flujo de 40 ml/h, se eluye un material intensamente coloreado y sin actividad lipásica. A continuación se lava con tampón fosfato 1 mM (pH 7.0) para eluir las fracciones de actividad correspondientes a la lipasa B. La lipasa A se eluye con el mismo tampón al que se ha añadido etilenglicol en la proporción volumétrica 1:1. Para eliminar el etilenglicol, la muestra obtenida (6 mi) se concentra hasta 2,5 mi por ultrafíltración, usando una membrana PM30 (de la firma Amicon), y se carga en una columna de Sephadex® G-25 (de la firma Pharmacia). Esta columna se eluye con tampón fosfato sódico 1 mM (pH 7,0).
En todos los casos la actividad fue determinada en pH-estato, utilizando tributirina como sustrato lipásico, definiéndose una unidad de actividad (U) como la cantidad de enzima que libera 1 μmol de ácido graso por minuto de reacción. Proteínas y azúcares neutros se determinaron, respectivamente, según el método de Lowry, con seroalbúmina de bovino como estándar [Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R. J. Biol. Chem. 193, 256-275 (1951)], y según el método del fenol-sulfúrico [Mckelvy, J.F., Lee, Y.C. Arch. Biochem. Biophys. 132, 99-110 (1969)] con xilosa como estándar.
En las condiciones descritas las lipasas A y B se obtienen con un rendimiento, respecto a unidades totales de actividad lipasa en el sólido de partida, del 36 y del 20%, respectivamente; los factores de purificación (cociente de actividades específicas) fueron de 6 y 2. Las actividades específicas fueron 90 U/mg proteína (lipasa A) y 415 U/mg proteína (lipasa B). Más del 90% de los azúcares neutros presentes en la lipasa bruta se detectaron en la fracción no retenida en la columna de fenil-agarosa, mientras que en las fracciones con actividad el contenido fue del 0,3% (lipasa A) y del 0,15% (lipasa B). 5
En los ejemplos que se detallan a continuación se estudia el efecto del escalado (con una columna de volumen 5,7 veces mayor) y de la relación de carga sobre el factor de purificación y sobre el rendimiento en lipasa B, mayoritaria en el extracto de partida.
10 Ejemplo 2
Se utiliza una columna de 2,5 cm de diámetro interno por 7 cm de longitud. Para mantener la misma relación de carga del ejemplo 1 se parte de 3,4 g de polvo comercial, que después de ser sometido al mismo proceso, se carga en la columna. Las condiciones de elución para las dos lipasas fueron las descritas en el caso anterior salvo el flujo que fue de
15 60 ml/h. En estas condiciones la lipasa A se obtiene con un rendimiento del 22% y la lipasa B aumenta hasta el 60%. La actividad específica final de esta lipasa es de 906 U/mg proteína, lo que significa un factor de purificación de 11.
Ejemplo 3
20 En la misma columna del ejemplo anterior se cargan 5 g del polvo comercial, con lo que se aumenta la relación de carga hasta 0,15. La preparación de las muestras, así como las condiciones de elución fueron las mismas que en el ejemplo 2. Las lipasas A y B se obtuvieron con un rendimiento del 14% y del 71%, respectivamente. Para la lipasa B la actividad específica fue de 325 U/mg proteína, con un factor de purificación de 4,8.
25
Ejemplo 4
En la misma columna de los ejemplos 2 y 3 se cargan 7 g del polvo comercial para obtener una relación de carga de 0,2. Las lipasas A y B se obtienen con un rendimiento del 19% y del 80%, respectivamente. La actividad específica de la lipasa B es de 185 U/mg 30 proteína, con un factor de purificación de 2,8.

Claims

REIVINDICACIONES
1. Procedimiento para la purificación de dos isoenzimas lipasa de Candida rugosa, mediante el tratamiento del producto solubilizado en una columna de cromatografía, caracterizado porque el producto a purificar se disuelve en una solución tampón para un pH entre 6 y 8, preferentemente una solución 0,25 M de fosfato (NaH2PO-,/Na2HPO4), pasándola a través de una columna cromatográfica con un relleno hidrofóbico; a continua¬ ción la columna se lava dos veces, primero con la misma solución tampón para arrastrar las impurezas y luego con la misma solución tampón, diluida por lo menos 50 veces, para arrastrar la lipasa B; posteriormente se eluye con un di o polialcohol disuelto en el tampón, lo que da lugar a una solución alcohólica que arrastra la lipasa A, de cuya solución, mediante concentración por ultrafiltración y cromatografía de exclusión molecular con un gel de dextrano, se elimina el alcohol.
2. Procedimiento para la purificación de dos isoenzimas lipasa de Candida rugosa, según la reivindicación 1, caracterizado porque el di o polialcohol empleado para la elución de la lipasa A es preferentemente etilenglicol y la proporción volumétrica con el tampón es de 1 a 1.
3. Procedimiento para la purificación de dos isoenzimas lipasa de Candida rugosa, según las reivindicaciones 1 y 2, caracterizado porque el relleno de la columna hidrofóbica es, preferentemente, una fenil-agarosa de tamaño de poro mediano, preferentemente en una proporción del 4 % de agarosa en el gel.
4. Procedimiento para la purificación de dos isoenzimas lipasa de Candida rugosa, según las reivindicaciones 1 a 3, caracterizado porque la relación altura/diámetro de la columna es 3:1 ó inferior, preferentemente de un diámetro de 2 cm.
5. Procedimiento para la purificación de dos isoenzimas lipasa de Candida rugosa, según las reivindicaciones 1 a 4, caracterizado porque las columnas se desarrollan a flujos comprendidos entre 25 y 50 cm/h.
6. Procedimiento para la purificación de dos isoenzimas lipasa de Candida rugosa, según las reivindicaciones 1 a 5, caracterizado porque la relación de carga admitida por la matriz debe ser estar comprendida entre 0.05 y 0.25, preferentemente entre 0.10 y 0.15.
PCT/ES1993/000058 1992-07-03 1993-07-02 PROCEDIMIENTO PARA LA PURIFICACION DE DOS ISOENZIMAS LIPASA DE $i(CANDIDA RUGOSA) WO1994001542A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES9201378A ES2050068B1 (es) 1992-07-03 1992-07-03 Procedimiento para la purificacion de dos isoenzimas lipasa de candida rugosa.
ESP9201378 1992-07-03

Publications (1)

Publication Number Publication Date
WO1994001542A1 true WO1994001542A1 (es) 1994-01-20

Family

ID=8277528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1993/000058 WO1994001542A1 (es) 1992-07-03 1993-07-02 PROCEDIMIENTO PARA LA PURIFICACION DE DOS ISOENZIMAS LIPASA DE $i(CANDIDA RUGOSA)

Country Status (2)

Country Link
ES (1) ES2050068B1 (es)
WO (1) WO1994001542A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014338A1 (en) * 1997-09-16 1999-03-25 Unilever N.V. Total synthesis and functional overexpression of a candida rugosa lip1 gene coding for a major industrial lipase
WO2000058500A1 (en) * 1999-03-26 2000-10-05 Chirotech Technology Limited THE PREPARATION OF trans-4-AMINO-2-CYCLOPENTENE-1-CARBOXYLIC ACID DERIVATIVES
EP2710126A1 (en) * 2011-05-18 2014-03-26 Swedish Orphan Biovitrum AB (Publ) Low ph protein purification process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108916A (en) * 1989-06-05 1992-04-28 Rhone-Poulenc Rorer, S.A. Process for stereoselectively hydrolyzing, transesterifying or esterifying with immobilized isozyme of lipase from candida rugosa

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GBF MONOGRAPHS. LIPASES: STRUCTURE, MECHANISM AND GENETIC ENGINEERING vol. 16, 1991, páginas 369 - 372 E. CERNIA ET AL. 'Lipolytic enzymes separation and purification through functionalized synthetic polymers' *
JOURNAL OF BIOCHEMISTRY. vol. 89, núm. 3, Marzo 1981, TOKYO JP páginas 817 - 822 KAZUO AISAKA ET AL. 'Purification and properties of lipase from Rhizopus japonicus' *
PATENT ABSTRACTS OF JAPAN vol. 13, no. 286 (C-613)(3634) 29 Junio 1989 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014338A1 (en) * 1997-09-16 1999-03-25 Unilever N.V. Total synthesis and functional overexpression of a candida rugosa lip1 gene coding for a major industrial lipase
WO2000058500A1 (en) * 1999-03-26 2000-10-05 Chirotech Technology Limited THE PREPARATION OF trans-4-AMINO-2-CYCLOPENTENE-1-CARBOXYLIC ACID DERIVATIVES
EP2710126A1 (en) * 2011-05-18 2014-03-26 Swedish Orphan Biovitrum AB (Publ) Low ph protein purification process
EP2710126A4 (en) * 2011-05-18 2014-11-26 Swedish Orphan Biovitrum Ab Publ PROCESS FOR CLEANING PROTEINS WITH LOW PH

Also Published As

Publication number Publication date
ES2050068A1 (es) 1994-05-01
ES2050068B1 (es) 1994-12-16

Similar Documents

Publication Publication Date Title
Breer et al. Adenosine triphosphatase activity associated with purified cholinergic synaptic vesicles of Torpedo marmorata
Akabori et al. The role of lipids and 17‐kDa protein in enhancing the recovery of O2 evolution in cholate‐treated thylakoid membranes
PT94253A (pt) Processo para o isolamento, imobilizacao e utilizacao de enzimas para a preparacao de lipase a partir de candida rugosa
Pfisterer et al. Transport of Proteins into Chloroplasts: Binding of Nuclear‐Coded Chloroplast Proteins to the Chloroplast Envelope
NEUMANN et al. Purification, partial characterization and substrate specificity of a squalene cyclase from Bacillus acidocaldarius
Pencreac'h et al. Activity of Pseudomonas cepacia lipase in organic media is greatly enhanced after immobilization on a polypropylene support
Sabuquillo et al. ‘Interfacial affinity chromatography’of lipases: separation of different fractions by selective adsorption on supports activated with hydrophobic groups
US5508185A (en) Lipase immobilized on a chitosan carrier
Thelen et al. The multisubunit acetyl-CoA carboxylase is strongly associated with the chloroplast envelope through non-ionic interactions to the carboxyltransferase subunits
US5508182A (en) Esterification of hydrophilic polyols by adsorption onto a solid support and employing a substrate-immiscible solvent
WO1994001542A1 (es) PROCEDIMIENTO PARA LA PURIFICACION DE DOS ISOENZIMAS LIPASA DE $i(CANDIDA RUGOSA)
Yoda et al. A new simple preparation method for NaK-ATPase-rich membrane fragments
Labrou et al. Biomimetic-dye affinity chromatography for the purification of mitochondrial L-malate dehydrogenase from bovine heart
Kanazawa et al. Detection of two distinct isozymes of nicotianamine aminotransferase in Fe-deficient barley roots
Tojo et al. Purification of intracellular phospholipase A2 from rat spleen supernatant by reverse-phase high-performance liquid chromatography
Yasuda et al. Purification and characterization of lipase from Rhizopus chinensis cells
RU2186849C2 (ru) Способ очистки тромбиноподобной протеазы из змеиного яда
Tunis et al. Studies on the nucleoside phosphotransferase of carrot II. Separation of transferase and phosphatase activities
US4013512A (en) Method for adsorption and elution of lipid hydrolyzing enzymes
Pacaud Purification of protease II from Escherichia coli by affinity chromatography and separation of two enzyme species from cells harvested at late log phase
US4350767A (en) Method for isolating and purifying enzymes from a crude enzyme solution
Fazi et al. Purification and Partial Characterization of the Phosphoglucomutase Isozyhes from Human Placenta
Klibanov et al. Thermal stabilities of membrane-bound, solubilized, and artificially immobilized hydrogenase from Chromatium vinosum
Eisenstadt et al. [55] Isolation of chloroplasts from Euglena gracilis
Lykins et al. Dissociation and reconstitution of human ferroxidase II

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase