WO1993026050A1 - Groupement de photodetecteurs de bolometre a micropont a deux niveaux et procede de fabrication - Google Patents

Groupement de photodetecteurs de bolometre a micropont a deux niveaux et procede de fabrication Download PDF

Info

Publication number
WO1993026050A1
WO1993026050A1 PCT/US1992/004895 US9204895W WO9326050A1 WO 1993026050 A1 WO1993026050 A1 WO 1993026050A1 US 9204895 W US9204895 W US 9204895W WO 9326050 A1 WO9326050 A1 WO 9326050A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon nitride
glass
array
dielectric
Prior art date
Application number
PCT/US1992/004895
Other languages
English (en)
Inventor
Robert E. Higashi
Robert G. Johnson
James O. Holmen
Original Assignee
Honeywell Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Inc. filed Critical Honeywell Inc.
Priority to DE69215241T priority Critical patent/DE69215241T2/de
Priority to PCT/US1992/004895 priority patent/WO1993026050A1/fr
Priority to CA002121042A priority patent/CA2121042C/fr
Priority to EP92914216A priority patent/EP0645054B1/fr
Priority claimed from CA002121042A external-priority patent/CA2121042C/fr
Publication of WO1993026050A1 publication Critical patent/WO1993026050A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J2005/202Arrays

Definitions

  • the field of the invention is in a two-level infrared bolometer array based on a pitless microbridge detector structure with integrated circuitry on a silicon substrate beneath.
  • This invention is directed to a pixel size sensor of an array of sensors for an infrared pitless microbridge construction of high fill factor.
  • the large fill factor (> 75%) is made possible by placing the detector microbridge on a second plane above the silicon surface carrying the integrated diode and bus lines.
  • Figure 1 is an elevation view of the two-level detector.
  • Figure 3 is a plan view of the top plane of the detector.
  • Figure 3a shows adjoining detectors.
  • Figure 4 is a schematic representation of a pixel circuit and connections.
  • Figure 5 and 6 show perspective and top views of an array of the two-level detectors.
  • the elevation and/or cross section view of the two-level pitless microbridge bolometer pixel 10 is shown in Figure 1.
  • the device 10 has two levels, an elevated microbridge detector 11 and lower level 12.
  • the lower level has a flat surfaced semiconductor substrate 13, such as single crystal silicon substrate.
  • the surface 14 of the silicon substrate 13 has fabricated thereon several components of an integrated circuit 15 including diodes, x and y bus lines, connections, and contact pads at the ends of the x and y bus lines, the fabrication following conventional silicon IC technology.
  • the integrated circuit 15 is coated with a protective layer of silicon nitride 16.
  • a top plan view of the lower level is shown in Figure 2 and comprises a y-diode metal (via) and an x-diode metal (via), chrome-gold-chrome x and y bus lines, a y- side bus conductor contact 18, an x-side contact 19, and the silicon nitride protective layer.
  • the valley strip 17 is the area not covered by the elevated detector.
  • the elevated detector level 11 includes a silicon nitride layer 20, a serpentine metallic resistive layer 21, such as of nickel-iron, often called permalloy, a silicon nitride layer 22 over the layers 20 and 21, and an IR absorber coating 23 over the silicon nitride layer 22.
  • the absorber coating may also be of a nickel-iron alloy.
  • Downwardly extending silicon nitride layers 20' and 22' deposited at the same time during the fabrication make up the four sloping support legs for the elevated detector level. The number of support legs may be greater or less than four.
  • the cavity 26 (approximately 3 microns high) between the two levels is ambient atmosphere.
  • the cavity 26 was originally filled with a previously deposited layer of easily dissolvable glass or other dissolvable material until the layers 20, 20' and 22, 22' were deposited. Subsequently in the process the glass was dissolved out to leave the cavity.
  • the horizontal dimension, as shown, is greatly foreshortened for descriptive purposes. That is, the height of Figure 1 is greatly exaggerated in the drawing compared to the length in order to show the details of the invention.
  • Figure 3 is a top plan view of the elevated detector level 11. This drawing is made as though the overlying absorber coating 23 and upper silicon nitride layer 22 are transparent so the serpentine resistive layer path 21 can be shown. The exact layout of the serpentine pattern 21 is not significant to the invention.
  • the resistive lines and spaces may be about 1.5 micron.
  • Permalloy was selected as the material for the resistive path 21 in one embodiment because of its relatively high resistivity together with a good temperature coefficient of resistance. In one embodiment the resistivity was on the order of 2500 ohms, with a fill factor of about 75 % .
  • the ends of the resistive paths 21a and 21b are continued down the slope area 30 to make electrical contact with pads 31 and 32 on the lower level.
  • Figure 3 also shows nitride window cuts 35, 36 and 37 which are opened through the silicon nitride layers 20 and 22 to provide access to the phos-glass beneath for dissolving it from beneath the detector plane.
  • nitride cuts may be made by ion milling or other suitable process. It may be noted that the ion milled cuts 35, 36 and 37 to provide this access are very narrow ( ⁇ 2 microns) and are shared with adjacent pixels on the sides, (see
  • Figure 3a thus maximizing the area available to the detector and thus maximizing the resulting fill-factor.
  • the four supporting legs may be as short or as long as necessary to provide adequate support and thermal isolation. With the detector thickness of 3000 A or less, the thermal impedance is high over the entire detector film. Consequently, short legs should not contribute excessively to the conductance.
  • Figure 3a shows that the adjacent identical pixels are in close proximity.
  • Figure 4 is a schematic representation of a pixel circuit shown in the other figures comprising the sensing element 21 and the connections to it which are clearly labeled on the drawing.
  • each pixel assembly may cover an area about 50 microns on a side, for example.
  • Figures 5 and 6, as well as Figure 3a show a section of the array.
  • Figure 5 shows in perspective the sensing ridges of abutting sensors in a column. This figure is partially cut away to show the lower level and the cavity as well.
  • the ridges may be about 40 microns wide, so that the elevated detector pixels 11 are on the order of 50x40 microns.
  • Figure 6 is a top view block diagram of Figure 5.
  • a suitable IR lens system is usually used to focus a scene onto the array of pixels.
  • a chopper may be used if desired to interrupt the incoming IR energy in synchronism with the related utilizing video electronics.
  • the focused scene heats each pixel according to the energy of the received scene at each pixel position and changes the resistance of the resistive layer 21 according to the pixel temperature.
  • the upper level 11 is then ready to commence.
  • a layer of phos-glass or other easily soluble material approximately 3 microns thick is deposited and delineated along x-direction strips and the strip slopes 30 and 30' are thoroughly rounded to eliminate slope coverage problems. In the delineation the glass is cut to less than one micron on the strip 17.
  • the remaining glass is cut to open the strip, and the external glass areas including the x-pad and the y-pad.
  • the upper plane silicon nitride base layer 20 is then deposited, the nickel-iron resistance layer 21 is deposited, delineated, and connected to the lower plan contacts 18 and 19, and covered with silicon nitride passivation layer 22.
  • the trim site 40 ( Figure 3) is cut, x-pads and y-pads are opened, the absorber coating 23 is deposited and delineated, and finally the side slots 35, 36 and 37 are ion milled allowing the phos-glass to be dissolved from beneath the detector plane.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Groupement de photodétecteurs à infrarouge à deux niveaux d'un modèle à haut coefficient de remplissage. Le détecteur à micropont du niveau supérieur est espacé au-dessus du circuit intégré et des lignes de bus se trouvant sur la surface du substrat inférieur, et recouvre ces derniers.
PCT/US1992/004895 1992-06-11 1992-06-11 Groupement de photodetecteurs de bolometre a micropont a deux niveaux et procede de fabrication WO1993026050A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69215241T DE69215241T2 (de) 1992-06-11 1992-06-11 Abbildende bolometer matrix auf zwei niveaus aus mikrobrücken und verfahren zu dessen herstellung.
PCT/US1992/004895 WO1993026050A1 (fr) 1992-06-11 1992-06-11 Groupement de photodetecteurs de bolometre a micropont a deux niveaux et procede de fabrication
CA002121042A CA2121042C (fr) 1992-06-11 1992-06-11 Detecteur thermique
EP92914216A EP0645054B1 (fr) 1992-06-11 1992-06-11 Groupement de photodetecteurs de bolometre a micropont a deux niveaux et procede de fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US1992/004895 WO1993026050A1 (fr) 1992-06-11 1992-06-11 Groupement de photodetecteurs de bolometre a micropont a deux niveaux et procede de fabrication
CA002121042A CA2121042C (fr) 1992-06-11 1992-06-11 Detecteur thermique

Publications (1)

Publication Number Publication Date
WO1993026050A1 true WO1993026050A1 (fr) 1993-12-23

Family

ID=25677180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/004895 WO1993026050A1 (fr) 1992-06-11 1992-06-11 Groupement de photodetecteurs de bolometre a micropont a deux niveaux et procede de fabrication

Country Status (1)

Country Link
WO (1) WO1993026050A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014218A1 (fr) * 1993-11-17 1995-05-26 Honeywell Inc. Matrice d'imagerie infrarouge a capteurs combines formant chaque pixel
WO1996021248A1 (fr) * 1994-12-30 1996-07-11 Honeywell Inc. Reseau de projecteurs sceniques a infrarouge de faible puissance et procede de fabrication associe
US5760398A (en) * 1995-12-04 1998-06-02 Lockheed Martin Ir Imaging Systems, Inc. Infrared radiation detector having a reduced active area
US5811815A (en) * 1995-11-15 1998-09-22 Lockheed-Martin Ir Imaging Systems, Inc. Dual-band multi-level microbridge detector
US6194722B1 (en) 1997-03-28 2001-02-27 Interuniversitair Micro-Elektronica Centrum, Imec, Vzw Method of fabrication of an infrared radiation detector and infrared detector device
US6249002B1 (en) 1996-08-30 2001-06-19 Lockheed-Martin Ir Imaging Systems, Inc. Bolometric focal plane array
US6515285B1 (en) 1995-10-24 2003-02-04 Lockheed-Martin Ir Imaging Systems, Inc. Method and apparatus for compensating a radiation sensor for ambient temperature variations
US6730909B2 (en) 2000-05-01 2004-05-04 Bae Systems, Inc. Methods and apparatus for compensating a radiation sensor for temperature variations of the sensor
US6791610B1 (en) 1996-10-24 2004-09-14 Lockheed Martin Ir Imaging Systems, Inc. Uncooled focal plane array sensor
US7176111B2 (en) 1997-03-28 2007-02-13 Interuniversitair Microelektronica Centrum (Imec) Method for depositing polycrystalline SiGe suitable for micromachining and devices obtained thereof
US7495220B2 (en) 1995-10-24 2009-02-24 Bae Systems Information And Electronics Systems Integration Inc. Uncooled infrared sensor
US8368022B2 (en) 2007-09-10 2013-02-05 Centre National De La Recherche Scientifique (Cnrs) Bolometer with heat feedback

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990016082A1 (fr) * 1989-06-21 1990-12-27 Hughes Aircraft Company Reseau de detecteurs de rayonnement utilisant des ponts sensibles au rayonnement
US5008541A (en) * 1988-11-29 1991-04-16 Commissariat A L'energie Atomique Monolithic detection or infrared imaging structure and its production process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008541A (en) * 1988-11-29 1991-04-16 Commissariat A L'energie Atomique Monolithic detection or infrared imaging structure and its production process
WO1990016082A1 (fr) * 1989-06-21 1990-12-27 Hughes Aircraft Company Reseau de detecteurs de rayonnement utilisant des ponts sensibles au rayonnement

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014218A1 (fr) * 1993-11-17 1995-05-26 Honeywell Inc. Matrice d'imagerie infrarouge a capteurs combines formant chaque pixel
WO1996021248A1 (fr) * 1994-12-30 1996-07-11 Honeywell Inc. Reseau de projecteurs sceniques a infrarouge de faible puissance et procede de fabrication associe
US5600148A (en) * 1994-12-30 1997-02-04 Honeywell Inc. Low power infrared scene projector array and method of manufacture
USRE37146E1 (en) 1994-12-30 2001-04-24 Honeywell International Inc. Low power infrared scene projector array and method of manufacture
US6515285B1 (en) 1995-10-24 2003-02-04 Lockheed-Martin Ir Imaging Systems, Inc. Method and apparatus for compensating a radiation sensor for ambient temperature variations
US7495220B2 (en) 1995-10-24 2009-02-24 Bae Systems Information And Electronics Systems Integration Inc. Uncooled infrared sensor
US5811815A (en) * 1995-11-15 1998-09-22 Lockheed-Martin Ir Imaging Systems, Inc. Dual-band multi-level microbridge detector
US6157404A (en) * 1995-11-15 2000-12-05 Lockheed-Martin Ir Imaging Systems, Inc. Imaging system including an array of dual-band microbridge detectors
US5760398A (en) * 1995-12-04 1998-06-02 Lockheed Martin Ir Imaging Systems, Inc. Infrared radiation detector having a reduced active area
US6249002B1 (en) 1996-08-30 2001-06-19 Lockheed-Martin Ir Imaging Systems, Inc. Bolometric focal plane array
US6791610B1 (en) 1996-10-24 2004-09-14 Lockheed Martin Ir Imaging Systems, Inc. Uncooled focal plane array sensor
US6884636B2 (en) 1997-03-28 2005-04-26 Interuniversitair Micro-Elektronica Centrum (Imec,Vzw) Method of fabrication of an infrared radiation detector and infrared detector device
US7075081B2 (en) 1997-03-28 2006-07-11 Interuniversitair Microelektronica Centrum (Imec Vzw) Method of fabrication of an infrared radiation detector and infrared detector device
US7176111B2 (en) 1997-03-28 2007-02-13 Interuniversitair Microelektronica Centrum (Imec) Method for depositing polycrystalline SiGe suitable for micromachining and devices obtained thereof
US7320896B2 (en) 1997-03-28 2008-01-22 Interuniversitair Microelektronica Centrum (Imec) Infrared radiation detector
US6194722B1 (en) 1997-03-28 2001-02-27 Interuniversitair Micro-Elektronica Centrum, Imec, Vzw Method of fabrication of an infrared radiation detector and infrared detector device
US6730909B2 (en) 2000-05-01 2004-05-04 Bae Systems, Inc. Methods and apparatus for compensating a radiation sensor for temperature variations of the sensor
US8368022B2 (en) 2007-09-10 2013-02-05 Centre National De La Recherche Scientifique (Cnrs) Bolometer with heat feedback

Similar Documents

Publication Publication Date Title
US5300915A (en) Thermal sensor
US4914055A (en) Semiconductor antifuse structure and method
US6144285A (en) Thermal sensor and method of making same
WO1993026050A1 (fr) Groupement de photodetecteurs de bolometre a micropont a deux niveaux et procede de fabrication
US5939971A (en) Infrared bolometer
US4720738A (en) Focal plane array structure including a signal processing system
US5844297A (en) Antifuse device for use on a field programmable interconnect chip
US6094127A (en) Infrared bolometer and method for manufacturing same
KR20010013151A (ko) 열 검출기 어레이
US5959298A (en) Infrared detector array with an elevated thin film
EP0645054B1 (fr) Groupement de photodetecteurs de bolometre a micropont a deux niveaux et procede de fabrication
US7170059B2 (en) Planar thermal array
EP1137918B1 (fr) Bolometre a infrarouge
JPH0621423A (ja) 赤外線検出装置及びその製造方法
US5631467A (en) Etching of ceramic materials with an elevated thin film
JP2852562B2 (ja) 温度センサ
EP0281026A2 (fr) Détecteur mosaiqué optique de haute densité et son procédé de fabrication
US4025793A (en) Radiation detector with improved electrical interconnections
JP3715886B2 (ja) 熱型赤外線固体撮像装置の製造方法及びその構造
EP1141669B1 (fr) Bolometre a infrarouges et procede de fabrication associe
JPS5870588A (ja) 温度センサとその製造方法
KR100299642B1 (ko) 3층구조의적외선흡수볼로메터
WO2000003214A1 (fr) Bolometre a taux de remplissage accru
JP3408163B2 (ja) 半導体装置およびその製造方法
JPS6447046A (en) Mos-type semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2121042

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992914216

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992914216

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992914216

Country of ref document: EP