WO1993025829A1 - Construction of sealing through-hole penetrating through metallic partitioning member - Google Patents

Construction of sealing through-hole penetrating through metallic partitioning member Download PDF

Info

Publication number
WO1993025829A1
WO1993025829A1 PCT/JP1993/000746 JP9300746W WO9325829A1 WO 1993025829 A1 WO1993025829 A1 WO 1993025829A1 JP 9300746 W JP9300746 W JP 9300746W WO 9325829 A1 WO9325829 A1 WO 9325829A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
sealing
sealing structure
metal
penetrating
Prior art date
Application number
PCT/JP1993/000746
Other languages
English (en)
French (fr)
Inventor
Morio Tamura
Ken Ichiryu
Kiyoshi Tanaka
Kouji Harada
Hisanobu Kanamaru
Nobuyuki Tobita
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd., Hitachi, Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to DE69326415T priority Critical patent/DE69326415T2/de
Priority to KR1019940700245A priority patent/KR0149896B1/ko
Priority to EP93913476A priority patent/EP0598136B1/en
Priority to JP50132994A priority patent/JP3334804B2/ja
Publication of WO1993025829A1 publication Critical patent/WO1993025829A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • G02B6/4428Penetrator systems in pressure-resistant devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • F16L5/10Sealing by using sealing rings or sleeves only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/30Sealing
    • H01B17/303Sealing of leads to lead-through insulators
    • H01B17/308Sealing of leads to lead-through insulators by compressing packing material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/22Installations of cables or lines through walls, floors or ceilings, e.g. into buildings

Definitions

  • the present invention relates to a sealing structure for a member through-hole of a metal partition member, and in particular, it is formed on a metal partition member that separates the inside and outside regions, such as a pressure container, a vacuum container, and a sealed container for containing gas or liquid.
  • a metal partition member that separates the inside and outside regions
  • the structure that penetrates the optical fiber and other members has a high pressure resistance against high pressure, and the above-mentioned holes are sealed so that the holes can be stably sealed for a long period of time.
  • the present invention relates to a structure for fixing the member. Background technology
  • a pressure sensor is usually configured as an electric unit including a wheatstone storage circuit using a strain gauge.
  • the hydraulic pressure to be detected is the pressure as an electric unit. It is converted into an electric quantity by the force sensor and detected as an electric signal.
  • the electrical signal generated by the pressure sensor is drawn from the inside of the high-pressure equipment to the outside of the equipment at atmospheric pressure through the signal lead-out line.
  • a control device for controlling the operation of the hydraulic drive device is installed outside the device, and the detection signal drawn out to the outside by the signal lead-out line is input to the control device and is used as information on the operating state after that. Used for various controls.
  • the conventional typical structure for drawing out the signal lead wire to the outside of the device is, for example, forming a hole in a part of the metal container of the device and inserting the signal lead wire through this hole.
  • a signal seal wire structure is applied to fix the signal lead wire in the hole to maintain the seal against the pressure oil and the electrical insulation between the signal lead wire and the metal container. It was Conventionally, such a hermetic seal structure has been a glass hermetic seal and a plastic hermetic seal.
  • the glass metal seal requires a high temperature treatment of about 100 ° C in a N 2 atmosphere using a furnace. Therefore, the manufacturing cost will be higher overall.
  • F e-N i was used for the core material of the signal line
  • stainless steel with a large expansion coefficient was used for the metal material of the container wall.
  • the production cost is further increased.
  • the problem of brittleness is caused by the use of glass, which is difficult to put into practical use for civil engineering and construction machinery.
  • the plastic herme seal has a problem in the bonding strength between it and the metal material that is the base, and it has a problem that it cannot withstand use at high pressure and lacks durability.
  • the structure in which the electric signal supplied from the electric unit arranged in the device with high voltage is taken out of the device under atmospheric pressure by using the signal lead wire is explained.
  • a structure in which an electric signal is taken out of the container under atmospheric pressure from an electric unit arranged inside a vacuum container having a high degree of vacuum can occur.
  • a metallic partition member that separates the inside and the outside, such as a sealed metal container.
  • the member When it is necessary to connect or connect the existing device in any of the rigid members, the member must be penetrated through the hole formed in the partition member, and a structure for sealing the hole must be provided.
  • This sealing structure is not limited only to the case where the pressures on the both sides of the partition member are significantly different as described above, but the physical or chemical conditions on both sides of the partition member (such as existing gas or liquid) It is also required when different types (such as different types) are used.
  • the member penetrating the hole formed in the metal partition member is not limited to the above-mentioned signal lead wire, but is generally a conductor for transmitting an electric signal or electric power, a pipe member for flowing various fluids, It includes members that have the required rigidity, such as heat pipes for flowing heat medium and optical fibers for transmitting optical signals. Make these members penetrate through the holes in the metal partition member, and The above-mentioned problems are also raised in the case of sealing.
  • Japanese Patent Laid-Open No. 6 3-2 1 4 4 2 9 relates to a structure for connecting a tubular member made of fiber reinforced resin and a metal mounting member, and for example, see As shown in Figs. 3 and 4, insert one end of the tubular member into the hole formed in the mounting member, insert the reinforcing member into the stepped portion inside the tubular member, and insert the hole in the mounting member.
  • the portion around the inlet is pushed in by the punch pressure to cause plastic deformation (metal flow) on the inner surface of the hole of the mounting member, and the end of the tubular member is sandwiched between the plastically deformed portion and the reinforcing member.
  • the mounting members are connected.
  • the metal flow is generated in the inner peripheral surface portion near one opening of the hole by utilizing the pressure applied by the punch.
  • the embodiment shown in FIG. 4 of the document shows a structure in which a metal flow is generated and coupled to the inner peripheral surface portion near the openings at both ends of the hole.
  • the technique disclosed in Japanese Patent Laid-Open No. 6-3,214,430 relates to a structure in which a rod-shaped member made of fiber reinforced resin and a mounting member made of metal are coupled to each other. — 2 1 4 4 2 9 gazette), it has substantially the same structure as the bonding structure using the metal flow described in (1).
  • FIG. 10 of the document at one end of the hole A structure for generating metal flow on the inner peripheral surface near the opening is shown, and Fig. 11 of the same document shows a structure for generating metal flow on the inner peripheral surface near both openings of the hole. ..
  • the techniques disclosed in the above two documents are both techniques for joining a member made of fiber reinforced resin and a metal mounting member using the metal flow technique.
  • the above-mentioned tubular member or rod member made of fiber reinforced resin is a hard fiber such as carbon fiber or glass fiber wound by, for example, the filament winding method. Since it is formed by impregnating the material with resin, it has high hardness as a whole and does not have the desired elastic-plasticity, and effective deformation does not occur, so sufficient sealing performance cannot be exerted. .. Therefore, the technologies disclosed in the above-mentioned two conventional documents are intended only for coupling the fiber-reinforced resin member and the metal mounting member, and for the purpose of sealing between them. is not. This fact is clear from the fact that a sealing zero ring is additionally provided, as shown in FIG. 7 of JP-A-6 3-2 1 4 4 2 9 for example.
  • the object of the present invention is to provide a hole in a portion of a metal partition member of a container for isolating internal and external regions, such as a pressure vessel, a vacuum vessel, and a sealed vessel for containing gas or liquid, for example, an electric signal. Or a conductor for transmitting electric power, a conductive pin, other conductors, a pipe member for flowing a fluid, a heat pipe, an optical fiber, and the like. It can be reliably sealed with extremely high pressure resistance, can be stably sealed for a long period of time, and has a simple structure and can be manufactured at a low cost and in a simple process.
  • Another object of the present invention is to provide a sealing structure for a member through hole of a partition wall material. Disclosure of the invention
  • the present invention has the following configuration in order to achieve the above object.
  • the hole formed in the partition wall member made of a metal material has a length in the axial direction larger than the thickness of the partition wall member, and a member with desired rigidity is penetrated, and this penetration state
  • the member that penetrates the hole (hereinafter referred to as the penetrating member) has the desired elasticity and plasticity (elastoplasticity) and its outer diameter. Is almost equal to the inner diameter of the hole, It is arranged via a sealing member whose axial length is equal to or greater than the thickness of the partition member, and is provided in at least one of the openings at both ends of the hole and in the peripheral portion of the opening.
  • the partition wall member On the basis of the pressure applied in the axial direction of the hole, the partition wall member causes a plastic deformation in the vicinity of the opening, which bulges almost uniformly from the inner wall of the hole over the entire circumference, thereby forming a narrowed portion.
  • the penetrating member and the sealing member are pressed with high pressure from the entire circumference, and the sealing member is sealed in the hole under a high pressure condition that prevents the deterioration of the yield due to aging.
  • the penetration member is fixed to the hole to seal the hole.
  • a deformation suppressing portion that prevents the sealing member from bulging and deforming to the outside of the hole is provided in an inner peripheral portion of the opening portion at one end of the hole, and the other end of the hole is preferable.
  • the deformation restraining portion is preferably formed by providing a stepped hole portion having a reduced diameter at the opening portion at one end of the hole. It is also possible to taper the inner surface of the stepped hole.
  • the penetrating members preferably carry electrical signals or power.
  • the sealing member is an electrically insulating member that covers the electrically conductive member.
  • the electrically conductive member is preferably a linear member or a pin-shaped member.
  • a terminal for conducting electricity provided in a hermetically sealed case that accommodates an electric device such as a semiconductor device therein can be given.
  • the penetrating member is preferably a pipe member for transmitting gas or liquid.
  • a heat pipe for transmitting a heat medium can be mentioned.
  • the penetrating member is preferably an optical fiber for transmitting an optical signal.
  • the sealing member is preferably made of synthetic resin.
  • synthetic resin one of P P S, P E I, P E E K .P I and synthetic resin materials similar thereto is used.
  • metal partition wall member preferably, it is a wall portion of the container in which a pressure difference exists between the regions on both sides thereof. More specifically, a pressure vessel in which the inner region is under high pressure and the outer region is under atmospheric pressure, or a vacuum vessel in which the inner region is under vacuum and the outer region is under atmospheric pressure, or between both sides
  • a metal part provided in a container having a different physical or chemical environment, or a general sealed container. Examples of different physical environments are, for example, different phases of gas or liquid in the inner and outer regions of the container.
  • the metal partition member is used for various It may be a type of plug for sealing.
  • the number of penetrating members provided in the sealing plug is arbitrary.
  • the pressure vessel is a part of a hydraulic circuit mechanism in which high-pressure hydraulic oil exists
  • the penetrating material is information related to the hydraulic pressure arranged inside the pressure vessel. This is the case when it is an electrical signal line that is pulled out from the electrical sensor unit for detecting the detection signal to the outside of the container.
  • a metal pressure vessel is a vessel forming a valve casing member having a displacement sensor in the hydraulic fluid in which high-pressure hydraulic oil is present, and the penetrating member is a displacement sensor. This is the case when it is an electrical signal line that is extracted to extract the detection signal from the container to the outside of the container.
  • a core member covered with a synthetic resin sealing member having elastoplasticity is inserted into a hole formed in a metal partition member (metal base) and
  • metal partition member metal partition member
  • plastic deformation occurs in the metal part around the opening of the hole (inner peripheral surface of the hole), and this plastic deformation causes the inner wall surface of the draw-through hole.
  • An annular bulge is formed in the part.
  • the bulging part due to the plastic deformation of the metal base is almost uniform inward from the inner wall of the hole to the entire circumference in the vicinity of the opening. It has a ring shape that bulges out.
  • the bulging portion presses the sealing member from the entire circumference and crushes and deforms it so as to satisfy the required condition, thereby fixing the core member and sealing the hole.
  • FIG. 1 shows a basic embodiment of the present invention, which shows a structure in which a predetermined member such as a conductor is penetrated through a hole formed in a metal partition member and the hole is sealed in that state. It is a side view.
  • FIG. 2 is a longitudinal cross-sectional view of an essential part showing a first state (a state before applying a pressing force) for explaining a process for producing the sealing structure of the present invention.
  • FIG. 3 is a longitudinal sectional view of an essential part showing a second state (a state after applying a pressing force) for explaining the process for producing the sealing structure of the present invention.
  • FIG. 4 is a diagram showing a table showing experimental values of the relationship between the pressing force of the pressing metal fitting and the pulling-out force of the conductor as the core material.
  • FIG. 5 is a front view showing an outline of a test piece for obtaining an experimental result regarding the performance of the sealing structure according to the present invention.
  • FIG. 6 is a diagram showing a table showing the result of the impulse test regarding the sealing structure of the present invention.
  • FIG. 7 is a diagram showing the compressive stress distribution on the inner peripheral surface of the synthetic resin (sealing member) generated when the metal base is pushed in by the pressing metal fitting.
  • FIG. 8 is a diagram showing a compressive stress distribution on the outer peripheral surface of the synthetic resin (sealing member) generated when the metal base is pushed in by the pressing metal fitting.
  • FIG. 9 is a diagram showing the relationship between the temperature and the conductor drawing force in the sealing structure of the present invention.
  • FIG. 10 is a longitudinal sectional view of an essential part showing another embodiment of the sealing structure according to the present invention.
  • FIG. 11 is a longitudinal sectional view of a main part showing another embodiment of the sealing structure according to the present invention.
  • FIG. 12 is an external perspective view of a metal base to which two conductors are attached by applying the sealing structure of the present invention.
  • FIG. 13 is an external perspective view of a plug to which a large number of conductors are attached by applying the sealing structure of the present invention.
  • FIG. 14 is a vertical sectional view of a screw-type plug to which at least two electric conductors are attached by applying the sealing structure of the present invention.
  • FIG. 15 is a vertical cross-sectional view C of a screw-type plug in which a plurality of conductors are attached by collectively applying the sealing structure of the present invention.
  • FIG. 16 is a longitudinal sectional view of an essential part showing another embodiment of the sealing structure according to the present invention.
  • FIG. 17 shows a differential pressure sensor arranged in a pressure oil having a signal lead wire lead-out portion manufactured by applying the sealing structure of the present invention. It is a vertical cross-sectional view of the unit.
  • FIG. 18 is a vertical cross-sectional view of a displacement sensor arranged in hydraulic fluid having a lead-out portion for a signal lead wire manufactured by applying the sealing structure of the present invention.
  • FIG. 1 shows a typical embodiment of the sealing structure according to the present invention, in which a predetermined member such as a conductor is penetrated through a hole formed in a metal partition member, and the hole is sealed in that state.
  • the structure shows that the member is fixed in the hole.
  • Figures 2 and 3 show the process by which the encapsulation structure is made.
  • Reference numeral 5 is a hole formed in the metal base.
  • the hole 5 has openings at the top and bottom in the figure and connects the regions on both sides of the metal base 4.
  • the hole indicated by reference numeral 5 is a hole before the sealing structure according to the present invention is formed, and the hole 5A described later is a hole after the sealing structure is formed.
  • 1 is a member which is penetrated into the hole 5 of the metal base 4 and then fixed in the hole 5 by applying the sealing structure according to the present invention to the hole 5.
  • the member 1 Is a conductor consisting of conductor 2 and insulator 3.
  • conductor 1 is a part for transmitting, for example, an electric signal or electric power. It is a material and has an appropriate axial length that allows it to project to the outside of the openings at least at both ends of the hole 5. That is, the length of the conductor 1 is larger than the thickness of the metal base 4.
  • the hole 5 When the conductor 1 is passed through the hole 5 of the metal base 4 and the sealing structure according to the present invention is formed by the hole 5 as described later, the hole 5 has a small diameter as shown in FIG. The hole becomes 5 A. Since the conductor 1 is for transmitting an electric signal or power as described above, the insulator 3 is inevitable in that the conductor 2 is electrically insulated and protected from other conductive members. It is something. Therefore, the members that are fixed while penetrating the hole 5 are the conductor 2 and the insulator 3 that are inseparable from each other.
  • a characteristic point of this embodiment is that the conductor 3 is fixed to the hole 5 and the conductor 2 is fixed to the hole 5 while the insulator 3 formed of the synthetic resin having the required elasto-plasticity (elasticity and plasticity) is fixed. It is intended to be used as a sealing material that seals with extremely high sealing performance.
  • the member that is penetrated and fixed in the hole 5 of the metal base 4 is the conductor 2 and the sealing member of the hole 5 is the synthetic resin insulator 3, but in general,
  • the member that penetrates and is fixed in the hole 5 of the metal base 4 is a member having rigidity (member serving as a core), and the sealing member of the hole 5 covers the core member and has the required elasticity and axial direction.
  • a synthetic resin body having a length and a volume.
  • the synthetic resin of is a material that is substantially the same as that of the insulator 3, but since the insulating function is not necessarily required, it functions purely as a sealing member.
  • the pressure resistance is high, the impact resistance is high, and stable sealing for a long period of time becomes possible.
  • FIG. 1 shows that the hole 5A is formed by applying the sealing structure according to the present invention to the hole 5 of the metal base 4 in which the conductor 1 is penetrated, and the plastic deformation (metal flow) of the metal base 4 is formed. 2) The state in which the conductor 1 is fixed in the hole 5 of the metal base 4 and the hole 5 is sealed by the action and the deformation action based on the elasto-plasticity of the insulator 3 is shown.
  • the metal base 4 is, for example, a wall part of a container such as a pressure container having a high pressure inside, a vacuum container having a high vacuum inside, and a sealed container having a gas or a liquid sealed inside. It is a metal part.
  • the metal base 4 is a partition member that separates the regions on both sides thereof. When the metal base 4 is part of the container, the metal base 4 separates the area inside and outside the container.
  • the metal base 4 is a pressure vessel or a vacuum vessel
  • the inner region of the metal base 4 is a high pressure or vacuum region, and the outer region is an atmospheric pressure region. That is, the metal base 4 desirably acts as a partition member in the two regions where the pressure difference exists.
  • the regions on both sides of the metal base 4 are regions in which different gases and liquids having almost the same pressure exist, and the metal base 4 is made to function as a partition member for two kinds of gases.
  • the metal base 4 can be
  • the partition member can have different physical (chemical) environments between them. Another possible difference in the physical environment is the case where the same kind of gas or liquid has different phases (states and properties) on both sides.
  • the thickness of the metal base 4 is, for example, about 3 to 1 O mm. Further, as a specific material of the metal base 4, it is possible to use any metal that causes plastic deformation, such as copper, soft iron, aluminum-based metal, bronze-based metal, and stainless steel (SUS).
  • any metal that causes plastic deformation such as copper, soft iron, aluminum-based metal, bronze-based metal, and stainless steel (SUS).
  • the metal base 4 shall be a plug that can be detachably attached to a metal member provided on a part of a container made of a material other than metal, or a container made of a material other than metal. It is also possible. In order to realize the sealing structure according to the present invention, the base 4 itself needs to be originally a metal member, but the container is not necessarily made of metal.
  • the conductor 1 is composed of the conductor 2 serving as the core material and the insulator 3 that covers the conductor 2 and maintains the insulation between the conductor 2 and the metal base 4. It is important that the insulator 3 functions as a sealing member. It is desirable that the length of the insulator 3 be equal to or longer than the thickness of the metal base 4. It is desirable that the conductor 2 and the insulator 3 project outside the openings at both ends of the hole 5.
  • the conductor 2 is, for example, a linear object or a pin object having high rigidity, and functions as an electric signal lead wire or an electrical connection member.
  • the conductor 2 which is a linear object is, for example, a bare wire, and the conductor 2 which is a pin is used, for example, as a relay terminal or a current supply terminal. It's a pin.
  • FIG. 1 shows a part of the conductor 2 which is a linear object or a pin object.
  • the diameter of the conductor 2 is, for example, 0.5 mm.
  • the conductor 2 is a pin used as a relay terminal or a current supply terminal
  • these terminals are terminals for conducting electricity provided in a sealed case that houses an electric device inside.
  • the metal base 4 becomes part of the sealed case.
  • the electric device is a device configured by using a semiconductor element or the like.
  • the insulator 3 is made of an elasto-plastic material, has the function of insulating the conductor 2 and the metal base 4, and is a sealing member that seals the hole 5 when fixing the conductor 1 to the hole 5. Has all the effects.
  • the material of the insulator 3 is preferably a synthetic resin material. Specific examples of the synthetic resin material include PPS (ponyphenylene sulfide), PEI (polyether imido), PEEK (polyether ether keton), PI (polyimide). ) Etc., a relatively hard resin is used. Due to the sealing action of the insulator 3 as a sealing member, the sealing performance in the hole 5 is extremely high, and it has extremely high resistance to the force that pushes out the conductor 2.
  • the insulator 3 has, for example, a tube shape, and a hole 3 a for inserting the conductor 2 is formed in the central axis portion thereof.
  • the hole 3a of the insulator 3 is formed with an appropriate diameter from the viewpoint of the sealing structure described later. It is desirable that the inner diameter of the hole 3a of the insulator 3 and the diameter of the conductor 2 be substantially equal.
  • the conductor 2 prepared separately for the insulator 3 is The conductor 1 is made by inserting it into the hole 3 a of the body 3. Further, it is desirable that the outer diameter of the insulator 3 is almost equal to the inner diameter of the hole 5 of the metal base 4.
  • the distance between the conductor 1 and the inner surface of the hole 5 is 0 when the conductor 1 is penetrated into the hole 5.
  • the outer diameter (diameter of the outer peripheral surface) of the insulator 3 is, for example, about 1.6 mm.
  • the linear conductor 2 is put in a container containing a synthetic resin in a molten state, and the conductor 2 is passed through a hole having a predetermined diameter to synthesize the conductor 2.
  • the resin spontaneously adheres to the conductor 2, and then the synthetic resin becomes a coating material by the subsequent cooling and adheres to the surface of the conductor 2.
  • the insulator 3, which is a synthetic resin firmly adheres to the surface of the conductor 2 in a close contact state.
  • the conductor 1 consisting of the conductor 2 and the insulator 3 covering the conductor 2 penetrates the hole 5 formed in the metal base 4, and the metal base 4 swells near the openings at both ends of the hole 5. Clamped by part 6. This bulging portion acts as a narrowed portion.
  • the conductor 1 is firmly fixed to the hole 5 of the metal base 4 by the compressive force (or tightening force) generated by the deformation of the upper and lower bulges 6 and the insulator 3, and the upper and lower bulges 6 and The hole 5 for drawing out the conductor 1 based on the deformation of the insulator 3 is sealed.
  • the openings at both ends (upper and lower in Fig. 1) of the hole 5 are used for the purpose of crimping the conductor 1 penetrating the hole 5.
  • pressure pressing force
  • plastic deformation plastic flow
  • the part moves to the central axis side of the hole 5 and the central part side in the axial direction of the hole to form the bulging part 6.
  • the bulging portions 6 formed at both ends of the hole 5 each have a ring-like shape that bulges inward substantially uniformly from the inner wall surface of the hole 5 over the entire circumference.
  • the swelling portion 6 having a narrowing action formed near the openings at both ends of the hole 5 causes the elastoplastic insulator 3 to be strongly crushed from the entire circumference.
  • the insulator 3 acts as a sealing member, and due to its elasto-plasticity, the insulator 3 itself is deformed inward uniformly over the entire circumference by the pushing action of the bulging portion 6.
  • the insulator 3 is deformed into a spindle shape (or barrel shape) as a whole and is held in a state where there is no escape, and the internal pressure generated there is generated in the upper and lower bulges 6. Therefore, it is enclosed in the space defined by high pressure so as to prevent the deterioration over time.
  • the insulator 3 thus deformed fixes the conductor 2 with an extremely strong internal pressure, and exhibits a very high pressure resistance and a sealing action. Further, due to such a sealing action, it is possible to perform stable sealing over a long period of time.
  • the metal base 4 is a part of the vessel wall of the pressure vessel having the high pressure inside or the vacuum vessel having the high vacuum inside, and the conductor 1 is exposed to the high pressure environment.
  • Fig. 2 the conductor 1 consisting of the conductor 2 and the insulator 3 is placed through the hole 5 formed in the metal base 4, and the central axis position is aligned with the center line 7 of the conductor 1.
  • the two pressing metal fittings 8 and 9 are moved to the metal base 4 side along the center line 7, and the required pressing force 11 is applied to the portion of the metal base 4 around the opening of the hole 5.
  • the mode of pushing operation of the pressing metal fittings 8 and 9 is arbitrary. That is, it can be pressed in a short time like pressing, or can be pressed in relatively slowly over time.
  • the two pressing fittings 8 and 9 may perform the pushing operation at the same time, or may perform the pushing operation with a time lag. Illustration of the device for causing the pressing fittings 8 and 9 to perform the pushing operation is omitted.
  • the pressing metal fittings 8 and 9 When the pressing metal fittings 8 and 9 are pushed, as shown in Fig. 3, the pressing metal fittings 8 and 9 apply pressure (pressing force) 11 to the metal base 4 around the openings at both ends of the hole 5.
  • bulging part 6 is formed by causing plastic deformation.
  • the bulging portion 6 has an annular shape along the entire circumference of the inner wall surface of the hole 5.
  • the bulging amount of the bulging portion 6 is substantially equal to the pushing amount by the pressing metal fittings 8 and 9.
  • the insulator 3 made of synthetic resin having elasto-plasticity is squeezed based on the stenosis pressing force of the bulging part 6 of the metal base 4 near the open end of both ends, and it is in a high pressure state to prevent its deterioration over time.
  • the conductor 2 of the conductor 1 is fixed with extremely high strength due to the compressive stress generated in the insulator 3 that is deformed into a spindle shape by the constriction compression force, which forms the sealing structure of the hole 5 through which the conductor 1 penetrates. Is made.
  • the pressing operation by the pressing metal fittings can be performed at two places on both end openings of the hole 5 by using the two pressing metal fittings 8 and 9, or by one pressing metal fitting at both end opening portions of the hole 5. It is also possible to do it in only one place. When performed at two locations, it is suitable for sealing high-pressure liquid or gas. It is also possible to do it in one place when sealing relatively low pressure fluid.
  • Figure 5 shows a schematic diagram of the dimensions of the test pieces used in the experiment.
  • the unit of length in Fig. 5 is mm (millimeters), in which at least three conductors 1 are attached to the metal base 4.
  • Material of metal base 4 PT 93 0746
  • the table shown in Fig. 4 shows the pull-out force when two types of insulators (synthetic resin) A and B with different materials are used as insulator 3 for each pressing force. Insulator A uses P PS and insulator B uses P E E K. As is clear from the table in Fig. 4, the larger the pushing force, the larger the pulling force. Also, the pulling force differs depending on the material of the insulator 3.
  • Figure 6 is a table showing the results of an impulse test (three-wave impulse) related to withstand voltage.
  • the base pressure was 350 kgf / cm 2
  • the peak pressure was 525 kgf / cm 2
  • the temperature of the test tank and the test oil was 100 ° C
  • the number of repetitions was 1 It is 0,000 times (1 second each time).
  • two kinds of synthetic resin materials PPS, PEEK
  • the lower part of Fig. 7 shows the result of the machining simulation in which the metal base 4 around the opening of the hole 5 is caulked by the pressing metal fitting 8 using the non-linear structural analysis program (N I K E HZ2 D).
  • the analytical model is two-dimensional axisymmetric. Regarding restraint conditions, each part was allowed to move in the direction parallel to the center line 12.
  • the coordinates of the horizontal axis correspond to the positional relationship in the upper diagram of Fig. 7, and indicate the distance from the left end of insulator 3 (this is the origin), and the vertical axis is the insulator.
  • the compressive stress in the radial direction on the inner surface of 3 is shown.
  • the stress value shows the compressive stress as a negative value.
  • conductor 2 is fixed by insulator 3 with a large tightening force. If the stress distribution 13 is followed, in particular, a compressive stress portion 1 3 a will be generated that has a larger tightening force at a position (point 14) on the inner side of the metal base than the surface portion where pressure is applied by the pressing metal fitting 8. The compressive stress of about 3 kgi Zmm 2 is also generated in other parts. As shown in this stress distribution 13, conductor 2 which is the core material of conductor 1 is constricted under the pressure applied by pressing metal fitting 8 to insulator 3. Internal pressure is generated in the insulator 3 due to the force, and it is firmly fixed and held.
  • the peak value is about 16 kgf / mm 2 or more.
  • This peak value forms a sealing structure with extremely good sealing performance.
  • the stress distribution 13 can be changed arbitrarily by adjusting the pressing force and changing the amount of pressing.
  • the above stress distribution characteristics are also formed at the right end of the insulator 3 in a shape symmetrical to the distribution shown in the lower diagram of FIG.
  • FIG. 8 shows the distribution of the compressive stress in the radial direction on the outer peripheral surface of the insulator 3 after the pressing metal fitting 8 has been pushed into the metal base 4 and the pressing metal fitting 8 has been removed.
  • Fig. 8 The upper part of Fig. 8 is the same as the upper part of Fig. 7, and the lower part of Fig. 8 is substantially the same as the lower part of Fig. 7, showing the radial compression on the outer peripheral surface of the insulator.
  • the stress distribution is shown. In this case as well, it is the result of the addition simulation performed using the nonlinear structural analysis program (NIKE HZ 2 D).
  • NIKE HZ 2 D nonlinear structural analysis program
  • the tightening force portion 15a has a peak value of about 12 kg / mm 2 , and the peak value forms a sealing structure with extremely excellent sealing performance.
  • a sealing structure for a member through hole of a metal partition member is realized.
  • the relationship between the temperature rise and the pulling force shown in Fig. 9 was obtained by setting the pressing force of the pressing metal fitting to 60 O kgi and using the above-mentioned insulator B (PEEK) as the insulator. Is.
  • the materials of the conductor 2 and the metal base 4 are the same as in the above case.
  • FIG. 10 shows another embodiment of the sealing structure for a member through hole according to the present invention.
  • FIG. 10 corresponds to FIG. 3, and in FIG. 10 the same elements as those shown in FIG. 3 are designated by the same reference numerals.
  • the hole 5 A formed in the metal base 4 has, for example, an annular protrusion protruding radially inward from the beginning in the lower opening, and the stepped hole 4 a It is becoming For this reason, the diameter of the lower opening of hole 5A is smaller than that of the other parts.
  • the conductor 1 is inserted from the upper opening of the hole 5 before pressing. There is a small The diameter portion is formed to form the stepped portion 3a.
  • the stepped portion 3a engages with the stepped hole portion 4a and prevents the conductor 1 from coming out of the lower opening of the hole 5A.
  • the upper pressing metal fitting 8 is arranged for the pressing metal fitting.
  • the upper pressing metal fitting 8 is pushed into the metal base 4 with the conductor 1 placed in the hole 5 of the metal base 4, a hole 5A is formed and the sealing structure shown in Fig. 10 is obtained.
  • the stepped hole portion 4a prevents the insulator 3 from coming out, at the upper end opening portion of the hole 5A, the above-mentioned bulging portion is caused by the plastic deformation of the metal base 4 caused by the pressing of the pressing metal fitting 8. 6 is formed, the stenotic pressure is generated, and the insulator 3 is deformed.
  • the lower part of the insulator 3 is prevented from being deformed by the stepped hole 4a, and as a result, the insulator 3 is enclosed in the space defined by the stepped hole 4a and the bulge 6. According to the configuration of this embodiment, only one pressing tool is required, and a sealing structure with high pressure resistance can be created.
  • FIG. 11 is a modification of the embodiment shown in FIG.
  • the upper surface of the stepped hole portion 4a formed below the hole 5A that is, the surface on the inner side of the hole 5A is a tapered surface.
  • Other configurations are the same as the configurations described in FIG.
  • the lower stepped hole 4a acts as a deformation suppressing part to enclose the insulator 3 in Fig. 12 in Fig. 12 where two holes are formed in the metal base 4, for example.
  • FIG. 1 An example of an external configuration in which the conductor 1 is penetrated through each of these holes and sealed by the above-described sealing structure shown in FIG. 1 is shown.
  • the metal base 4 is shown by cutting out the periphery of the portion where the sealing structure is formed.
  • the annular groove 10 is formed.
  • the conductor 1 uses a linear conductor 2, that is, a conductor wire.
  • FIG. 13 shows an embodiment of a plug in which a plurality of lead wire lead portions are formed by applying the above-mentioned sealing structure.
  • This plug 21 is formed with a conductor wire lead-out portion 22 for drawing out the six linear conductors 2.
  • the material of the plug 21 is the same as that of the metal base, and the peripheral surface of the plug 21 is formed with an annular recess, and the zero ring 23 is attached to this recess.
  • the same elements as those shown in FIG. 13 are designated by the same reference numerals.
  • FIG. 14 shows an embodiment in which the sealing structure shown in FIG. 1 is applied to the lead-out portion of the conductor provided on the screw-type plug.
  • the screw-type plug 24 has a threaded portion 25 on the lower peripheral surface, and is screwed into the screw hole of the mounting portion to be mounted, so that it exhibits a high sealing performance.
  • at least two conductors 2 covered with respective spindle-shaped insulators 3 are fixed in holes 5A formed in screw-type plugs 24, and The sealing structure of is formed for each conductor 1.
  • the material of the screw plug 24 is the same as the material of the metal base 4.
  • FIG. 15 shows another embodiment of the screw plug.
  • This fruit In the screwed plug of the embodiment, at least two linear conductors 2 are fixed to the holes 26 by applying the above-mentioned sealing structure using one hole 26 and the insulator 27. According to this embodiment, the structure is simple and the manufacture is easy.
  • the conductor 1 including the conductor 2 as the core material and the synthetic resin insulator 3 as the sealing member covering the core material is formed on the metal base 4.
  • the target member fixed to the hole 5 by the above-mentioned sealing structure by penetrating the hole 5 is not limited to the conductor 2.
  • the target member include a metal pipe member for flowing gas or liquid, a heat pipe for flowing a heat medium, an optical fiber for transmitting an optical signal, and members similar to these.
  • the present invention can also be applied to a structure in which a member having a predetermined rigidity and an appropriate length longer than the thickness of the metal base 4 is fixed and sealed. These members can be fixed by the above-mentioned sealing structure by penetrating the hole 5 in a state where the insulator 3 is covered with substantially the same synthetic resin material.
  • a concrete example of a metal pipe member for flowing gas or liquid is a pipe for flowing a cooling medium used in a refrigerator of a refrigerator.
  • the metal base to which the metal pipe member for flowing gas or liquid is fixed is, for example, a part of the container wall of the hermetically sealed container for enclosing gas or liquid.
  • a member such as a heat pipe or an optical fiber is penetrated through the hole 5 of the metal base 4 and the sealing structure is formed and fixed in the hole 5, the insulator 4 is used.
  • the sealing performance is more important than the insulating property, and it functions as a sealing member.
  • the metal base 4 may be the container wall of the vacuum container as described above.
  • the sealing structure provided on the conductor 1 is a structure for isolating the depressurized region inside the vacuum container and the atmospheric pressure region outside the vacuum container.
  • the electric conductor 1 serves as an electrical connection means for connecting the electric unit provided inside the vacuum container and the electric device arranged outside the vacuum container.
  • the results of the airtightness test of the vacuum sealing property are as follows.
  • a helium (H e) leak tester was used to perform the test by the vacuum enclosure method.
  • the sealing structure according to the present invention can also exert a high vacuum sealing performance in the sealing structure of, for example, the Helium gas in the vacuum device.
  • the insulator 3 When the pressing force is applied to the metal base 4 using the pressing metal fittings 8 and 9 while penetrating the hole 5 in a state of being covered with, the insulator 3 is enclosed by the plastic deformation of the metal base 4, The insulator 3 flows into the annular groove 31. Thus, the conductor 3 2 and the insulator 3 are firmly attached. In this case, it is necessary to set the pressing amount (or pressing force) of the pressing metal fitting in consideration of the volume of the annular groove 31. In another embodiment, the conductor 3 2 and the synthetic resin insulator 3 are preliminarily bonded to each other in a close contact state before they are penetrated into the holes of the metal base 4 or when they are arranged in a penetrated state. You may.
  • FIG. 17 shows an example in which the above-mentioned hole sealing structure for penetrating the conductor is applied.
  • This application example is a sealing structure of the signal line lead-out part from the differential pressure sensor incorporated in the hydraulic circuit. It is about.
  • Fig. 17 41 is a casing and 4 2 is a casein cover.
  • the casing 41 is a part of a wall of a hydraulic container, for example, a metal container, and is a main body having a hole for introducing a pressure medium such as pressure oil, but for convenience, it is referred to as a casing.
  • the casing 41 has a recessed portion 4 3 in the center thereof, a first pressure oil introduction passage 4 4 leading from the bottom surface to the depression 4 3 and a second pressure oil introduction passage 4 leading from the side surface to the depression 4 3. 5 is formed.
  • a diaphragm base 46 formed of a metal material at the bottom, a metal base 47 at the upper opening, and a spacer 4.8 force at the middle are arranged.
  • the diaphragm base 46 is formed of a supporting portion 46a and a diaphragm portion 46b.
  • the diaphragm part 46 b functions as a strain generating part that receives different pressures on the front and back sides.
  • the metal base 47 functions as a lid of the recess 43, closes the pressure oil introduced therein, and includes a plurality of conductors 5 1 in a fixed state.
  • the conductor 5 1 is composed of the linear conductor 5 2 and the insulator 5 3.
  • the above-mentioned sealing structure is formed by extracting and fixing the conductor 5 1 in the metal base 4 7 and sealing the extraction hole. A space is secured between the diaphragm base 46 and the metal base 47 by a spacer 48.
  • An insulating film is formed on the upper surface of the diaphragm 4 6 b.By forming a strain gauge and a wiring film on the insulating film of the bracket, a difference for detecting the pressure difference applied to both sides of the diaphragm 4 6 b is detected.
  • a pressure detecting film forming unit 49 is formed. The detection signal output from the film forming unit for differential pressure detection 49 is FPC (free It is taken out to the outside by the conductor 5 1 via the flexible cable circuit 50.
  • the first pressure oil C 4 is supplied to the lower surface of the diaphragm portion 4 6 b through the first pressure oil introduction path 4 4 and the second pressure oil D is supplied to the upper surface through the second pressure oil introduction path 45. To be done. Therefore, the upper space of the diaphragm base 46 is filled with the second pressure oil D.
  • the differential pressure detection film formation unit 49 is covered with a protective film and is protected from pressure oil.
  • the lower end of conductor 5 2 of conductor 5 1 is connected to F PC 50, and the upper end of conductor 5 2 is connected to amplifier 5 4.
  • the casing 4 1 and the casing cover 4 2 are joined together by a plurality of bolts 5 5.
  • the metal base 4 7 is clamped and fixed by the casing cover 4 2. Note that 5 6 is a 0 ring for sealing.
  • the differential pressure signal detected by the differential pressure detection film formation unit 49 is guided to the conductor 5 1 of the metal base 4 7 via the FPC 50, and the conductor 5 1 is connected to the conductor 5 1. Take out via amplifier 54. A second pressure oil D is introduced into the space below the metal base 47, and high pressure is generated. According to the sealing structure of the mounting hole for the conductor 5 1 in the metal base 47, the atmospheric pressure in which the amplifier 5 4 is present is detected from the differential pressure detection film forming unit 49 located in the high pressure region of the pressure oil. An electric signal can be taken out to the area side. At this time, even if a high pressure exceeding 35 O kgf / cm 2 is repeatedly introduced through the second pressure oil introduction passage 45, the pressure resistance performance of the sealing structure of the attachment portion of the conductor 51 is sufficiently satisfied. Was experimentally confirmed.
  • FIG. 18 shows another embodiment of the lead wire lead portion utilizing the sealing structure according to the present invention.
  • the It shows the sealing structure of the signal extraction part from the displacement sensor that is embedded.
  • reference numeral 61 is a casing, which has a predetermined space inside. The space is filled with pressure oil, and a movable member (spool) 62 is slidably arranged inside the space. The movable member (spool) 62 moves by the inflow or outflow of hydraulic oil and has a function as a valve.
  • 63 is a displacement sensor, which is placed in the pressure oil at the end of the space. The displacement sensor 63 is configured by utilizing the function of the differential transformer.
  • 6 4 is a displacement sensor cylindrical holder, which is made of metal material.
  • the right end of the holder 64 in the figure is a closed wall 65. Inside the holder 1 64, a coil 6 6 is arranged. A rod-shaped fly core 67 is attached to the right end of the movable member (spool) 62. The fly core 67 moves in the internal space of the coil 6 6 according to the change in the position of the movable member (spool) 62. By moving the ferrite core 67 in the coil 66, the displacement of the movable member (spool) 62 can be taken out as an electric signal. In the displacement sensor 63, the coil 66 is kept in an excited state. Therefore, the current is supplied through the conductor wire in order to pass the required current through the coil winding.
  • 6 8 is a conducting wire drawn out from the displacement sensor 63.
  • the above-described sealing structure of the signal line lead-out portion is applied to the wall portion 6 5 of the holder 64 when the lead wires 68 are drawn out.
  • 6 9 indicates the above-mentioned coated synthetic resin material.
  • the holder 6 4 and valve casing 6 1 A zero ring 70 is provided between the pressure sensor and the pressure sensor to seal the pressure oil around the displacement sensor 63.
  • the sealing structure according to the present invention if used, it can be sufficiently sealed against a high internal pressure.
  • the sealing structure of the member through-hole according to the present invention includes a high-pressure gas sealing structure, a similar sealing structure in a sensor in which gas N 2 is sealed, a similar sealing structure in a semiconductor device, etc. It can be used for
  • the conductor 2 is passed through the holes of the tube-shaped insulator 3, but the conductor 2 and the insulator 3 may be bonded with an adhesive. With this structure, the sealing performance can be further improved.
  • a flexible FPC flexible printed circuit
  • the FPC as the conductor is covered with the insulator 3 by using the injection molding method or the like.
  • the FPC covered with the insulator 3 is fixed to the metal base by the above-mentioned sealing structure.
  • a sealing structure is mainly provided in which a core member covered with a synthetic resin sealing member having elastoplasticity is penetrated into a hole formed in a metal partition member to seal the hole.
  • a constriction compression coupling part is formed in the sealing member, and a sealing structure with extremely high pressure resistance can be formed.
  • the sealing member is substantially spindle-shaped, and the sealing performance is improved.
  • This sealing structure has a simple structure, Also, it can be manufactured at a low cost and with a simple process.
  • the sealing structure of the present invention can improve the pressure resistance reliability of the lead-out portion or the connection portion of the conductor or the like, and improve the economical efficiency.
  • transmitting electrical signals or power to holes formed in the metal part of the partition member that separates the inner and outer regions from each other such as a pressure vessel made of a metal material, a vacuum vessel, and a sealed vessel containing gas or liquid.
  • a pressure vessel made of a metal material, a vacuum vessel, and a sealed vessel containing gas or liquid.
  • it has a high pressure resistance against ultra-high pressure, and has realized a sealing structure that stably seals the holes for a long period of time, and is used as the sealing structure for the drawer part of each type of member. To be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Installation Of Indoor Wiring (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Measuring Fluid Pressure (AREA)
  • Gasket Seals (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Connections Arranged To Contact A Plurality Of Conductors (AREA)

Description

明細書 金属製隔壁部材の部材貫通孔の封止構造 技術分野
本発明は金属製隔壁部材の部材貫通孔の封止構造に関し、 特に、 例えば圧力容器、 真空容器、 気体や液体を収容する密 封容器のように内外の領域を隔離する金属製隔壁部材に形成 された孔に、 例えば電気信号または電力を伝送するための導 線や導電ピン、 その他の導電体、 流体を流すための金属製パ イブ部材、 熱媒体を流すためのヒー トパイプ、 光信号を伝送 するための光フ ァイバなどの部材を貫通した構造において、 高圧に対しても高い耐圧性能を有し、 さ らに前記孔を長期間 安定して封止できるように前述の孔を封止し当該部材を固定 する構造に関する。 背景技術
例えば油圧ショベル等の油圧機械では、 当該機械を作動さ せる油圧駆動装置の作動状態を把握するため、 装置内部の圧 力状態等が計測できるように、 装置内の各部で圧油中に例え ば圧力センサ、 差圧センサ、 変位センサ等を配置する。 圧力 センサ等が配置される環境は、 装置内部の圧油中の高圧環境 である。 例えば圧力センサは、 通常、 歪みゲージを利用した ホイー トス ト ンブリ ッ ジ回路等を含み、 電気ュニッ ト と して 構成される。 検出対象である油圧は電気ュニッ ト と しての圧 力セ ンサによって電気量に変換され、 電気信号と して検出さ れる。 圧力センサで発生した電気信号は、 信号引出し線で、 高圧の装置内部から大気圧の装置外部に引き出される。 装置 外部には油圧駆動装置の動作を制御するための制御装置が設 置されており、 信号引出し線で外部に引き出された検出信号 は制御装置に入力され、 作動状態に関する情報と してその後 の各種制御に使用される。
上記の構成において、 信号引出し線を装置外部に引き出す ための従来の代表的な構造は、 例えば、 装置の金属製容器の 一部に孔を形成し、 この孔に信号引出し線を貫通させ、 さ ら にハ一メチッ ク シール構造を適用して信号引出し線を孔内に 固定し、 これにより圧油に対する封止と、 信号引出し線と金 属製容器の間の電気的絶縁性を保持していた。 このようなハ ーメチッ ク シール構造には、 従来、 ガラスハーメチッ ク シー ルとプラスチッ クハ一メ シールが存在した。
従来の信号線引出し部の封止構造において、 ガラスハ一メ チッ ク シールでは、 炉を用いて N 2 雰囲気中で 1 0 0 0 °C程 度の高温処理が必要となる。 従って、 製作コス トが全体的に 高く なる。 また、 線膨脹係数に関しても注意を払う必要があ り、 信号線の芯材ゃベースとなる金属材が限定される。 例え ば信号線の芯材には F e - N i を使用し、 容器壁の金属材には 膨脹率が大きいステンレスを使用していた。 その結果、 さ ら に製作コス トが高く なる。 また、 ガラスを用いる点で脆さ力 問題となり、 土木機械や建設機械用と しては実用化が難しか つ 7こ o またプラスチッ クハーメ シールでは、 ベースとなる金属材 との間の接合力に問題があり、 高圧では使用に耐えず、 耐久 性に欠けるという問題を有していた。
前述の例では、 高圧である装置内に配置される電気ュニッ トから供給される電気信号を大気圧状態の装置外部に信号引 出し線を用いて取り出す構造について説明したが、 同様な問 題は、 例えば高い真空度を有する真空容器の内部に配置され た電気ュニッ トから電気信号を大気圧状態の容器外部に取り 出す構造についても起り得る。
さ らに上記の問題を一般的に考えて、 例えば密封金属容器 等のごと く 内外を隔てる金属製隔壁部材が存在し、 この隔壁 部材によつて両側の領域が互いに隔離されかつ両側の各領域 に存在する装置を剛性を有する何等かの部材で接続または連 結する必要があるとき、 当該部材を隔壁部材に形成した孔に 貫通せしめ、 当該孔を封止する構造を設けなければならない。 この封止構造は、 前述のように隔壁部材の両側領域の圧力が 大き く異なるという場合のみに限定されず、 隔壁部材の両側 の物理的または化学的な条件等 (存在する気体や液体等の種 類が異なる等) が異なる場合にも必要となる。
また金属製隔壁部材に形成された孔に貫通される部材は、 前述の信号引出し線だけではなく、 一般的に電気信号または 電力を伝送するための導電体、 各種流体を流すためのパイプ 部材、 熱媒体を流すためのヒー トパイプ、 光信号を伝送する ための光フ ァイバなど、 所要の剛性を有する部材が含まれる。 これらの部材を金属製隔壁部材の孔に貫通せしめ、 当該孔を 封止する場合にも、 前述した問題が提起される。
また本発明に関連する従来技術文献と して、 こ こで、 特開 昭 6 3— 2 1 4 4 2 9号公報と特開昭 6 3— 2 1 4 4 3 0号 公報の 2つの文献を挙げる。 これらの文献に開示される技術 は、 2つの部材を結合するための技術であり、 封止構造を提 案するものではないが、 類似した関連技術と して捉えること もできるので、 以下に説明する。
特開昭 6 3 - 2 1 4 4 2 9号公報に開示される技術は、 繊 維強化樹脂製の筒状部材と金属製の取付部材とを結合する構 造に関し、 例えば当該文献の第 1図〜第 3図に示すように、 筒状部材の一端部を取付部材に形成された孔に挿入し、 筒状 部材の内部の段付部に補強部材を嵌込み、 取付部材の孔の挿 入口の周囲の部分をポンチ圧力で押込み、 取付部材の孔内面 に塑性変形 (メ タルフ ロ ー) を起こ して塑性変形部分と補強 部材とで筒状部材の端部を挟持し、 筒状部材と取付部材を結 合している。 前記第 1図の実施例では、 ポンチによる加圧を 利用して孔の一方の開口部の近傍の内周面部分にメ タルフ ロ —を発生させている。 また、 当該文献の第 4図に示す実施例 では、 孔の両端の開口部の近傍の内周面部分にメ タルフ ロ ー を発生させて結合する構造を示している。
また特開昭 6 3 - 2 1 4 4 3 0号公報に開示される技術は、 繊維強化樹脂製の棒状部材と金属製の取付部材とを結合する 構造に関し、 上記文献 (特開昭 6 3— 2 1 4 4 2 9号公報) で説明されたメ タルフ ローを利用した結合構造と実質的に同 じ構造を有する。 例えば当該文献の第 1 0図では孔の一端の 開口部の近傍の内周面にメ タルフローを発生させる構造を示 し、 同文献の第 1 1図では孔の両端の開口部の近傍の内周面 部分にメ タルフ ローを発生させる構造を示す。
上記 2つの文献に開示される技術は、 いずれも、 繊維強化 樹脂で作られた部材と金属製取付部材とをメ タルフローの技 術を利用して結合するための技術である。 その結合部の封止 性能という観点では、 前述の繊維強化樹脂製の筒状部材また は棒状部材は、 例えばフィ ラメ ン ト ワイ ンデイ ング法等で巻 回した炭素繊維やガラス繊維等の硬い繊維材料に樹脂を含浸 させて形成されるので、 全体と して硬度が高く て望ま しい弾 塑性を有しておらず、 有効な変形が生じないので、 十分な封 止性能を発揮させることができない。 従って、 前述の 2つの 従来文献に開示される技術は、 単に繊維強化樹脂製部材と金 属製取付部材との結合を目的とするものであって、 両者の間 の封止を目的とするものではない。 その事実は、 例えば特開 昭 6 3— 2 1 4 4 2 9号公報における第 7図に示されるよう に、 封止用の 0 リ ングを別途に設けるこ ともからも明らかで ある o
また他の観点からの問題を述べると、 特開昭 6 3 - 2 1 4 4 2 9号の結合構造では、 繊維強化樹脂製の筒状部材の内部 にリ ング状の捕強部材を配置しているが、 その軸方向の長さ は金属製取付部材の厚みとほぼ等しいので、 たとえ両端から 押圧し結合したと しても、 筒状部材に曲げ応力が加わったと きには、 捕強部材の端部周囲を支点と した曲げ応力が加わり、 結合部にク リ ーブが発生しやすいという問題があり、 結合の 信頼性が低い。 さ らに、 特開昭 6 3 — 2 1 4 4 3 0号の結合 構造では、 繊維強化樹脂製の棒状部材は、 樹脂が存在する部 分に関しては剛性が低いので、 押圧部近傍は局部的に集中し て変形する一方、 全体と しては剛性が高いので内部に押圧力 が加わらないという問題を有している。
本発明の目的は、 例えば圧力容器、 真空容器、 気体や液体 を収容する密封容器のごと く、 内外の領域を隔離する容器の 金属製隔壁部材の部分に形成された孔に、 例えば電気信号ま たは電力を伝送するための導線、 導電ピン、 その他の導電体、 流体を流すためのパイプ部材、 ヒー トパイプ、 光フ ァイバな どの部材を貫通せしめた構造において、 前記部材が貫通した 当該孔を極めて高い耐圧性能で確実に封止することができ、 かつ長期間安定して封止することができ、 さ らに、 簡単な構 造を有し、 安価にかつ簡素な工程で製作できる金属製隔壁部 材の部材貫通孔の封止構造を提供するこ とにある。 発明の開示
本発明は、 上記の目的を達成するために次のような構成を 有している。
金属材で作られた隔壁部材に形成された孔に、 当該隔壁部 材の厚みより も大きな軸方向の長さを有し、 さ らに所望の剛 性を有する部材を貫通させ、 この貫通状態で当該孔を封止部 材をもって封止する封止構造であって、 孔に貫通された部材 (以下、 貫通部材という) は、 所望の弾性および塑性 (弾塑 性) を有すると共にその外径が前記孔の内径とほぼ等しく 力、 つその軸方向の長さが隔壁部材の厚みと同等以上の封止部材 を介して配置されるものであり、 前記孔の両端の開口部の少 なく と も一方に、 開口部の周囲部分での孔軸方向の加圧に基 づいて隔壁部材に開口部の近傍で前記孔の内壁から全周にわ たってほぼ均一に膨出する形の塑性変形を生起させ、 これに より狭窄部が形成され、 この狭窄部で貫通部材と封止部材を 全周囲から高圧で押圧し、 かつ封止部材をその経年降伏劣化 を防ぐ程度の高圧状態で前記孔の中に封じ込め、 当該封じ込 めによる内圧で貫通部材を前記孔に固定し前記孔を封止する ように構成される。
前記の構成において、 好ま しく は、 前記孔の両端の開口部 の周囲部分に対し加圧を行って塑性変形を生起させ、 前記孔 の両端の開口部に狭窄部を形成し、 封止部材を実質的に紡錘 形に変形せしめて前記孔の中に高圧状態で封じ込めるように 構成する。
また前記の構成において、 好ま しく は、 前記孔の一端の開 口部の内側周囲部分に封止部材が前記孔の外に膨出変形する のを妨げる変形抑止部を設け、 前記孔の他端の開口部の周囲 部分に対し加圧を行って塑性変形を生起させるこ とにより狭 窄部を形成し封止部材を変形せしめて前記孔の中に高圧状態 で封じ込めるように構成する。
変形抑止部は、 好ま しく は、 孔の一端の開口部の直径を小 さ く した段付き孔部を設けるこ とで形成される。 また段付き 孔部の内部側の面をテーパー面にするこ とも可能である。
また貫通部材は、 好ま しく は、 電気信号または電力を伝送 するための電気伝導部材であり、 この場合において、 封止部 材は電気伝導部材を被覆する電気絶縁部材である。 また電気 伝導部材は、 好ま しく は線状部材またはピン状部材である。 電気伝導部材の例と して、 内部に半導体デバイス等の電気的 装置を収容する密封型ケースに設けられた電気を導通させる ための端子を挙げることができる。
さ らに貫通部材は、 好ま しく は、 気体または液体を伝送す るためのパイプ部材である。 パイプ部材の一例と して、 熱媒 体を伝送するためのヒー トパイプを挙げることができる。
前記貫通部材は、 好ま しく は、 光信号を伝送するための光 ファイバである。
前記封止部材は好ま しく は合成樹脂を用いて形成される。 この場合に合成樹脂と しては、 P P S、 P E I、 P E E K . P I 、 およびこれらに類似する合成樹脂材の内のいずれか 1 つが使用される。
また前述の金属製隔壁部材の例と しては、 好ま し く は、 そ の両側の領域の間で圧力差が存在する容器の壁部である。 さ らに詳しく は、 内部領域が高圧状態であり外部領域が大気圧 状態である圧力容器、 または内部領域は真空状態であり外部 領域が大気圧状態である真空容器、 またはその両側の領域の 間で例えば物理的または化学的な環境が異なる容器、 または 一般的な密封容器に設けられた金属部分である。 物理的な環 境が異なる例と して、 例えば容器の内部領域と外部領域に存 在する気体または液体の相が異なることである。
また、 前記金属製隔壁部材は、 密封容器に装着される各種 タイプの封止用プラグであってもよい。 封止用プラグには設 けられる貫通部材の個数は任意である。
さ らに、 貫通部材の表面と孔の内周面の内の少なく ともい ずれか一方に粗面加工を施すことが可能である。 また貫通部 材における前記孔の中に位置する部分の表面に凹凸部を形成 するこ とが可能である。 凹凸部と して環状の溝を少なく とも 1つ形成するこ と もできる。
かかる封止構造が適用される例と して、 圧力容器が内部に 高圧の作動油が存在する油圧回路機構の一部であり、 貫通部 材が、 圧力容器の内部に配置された油圧に関する情報を検出 するための電気的センサュニッ トから検出信号を容器外部に 取り出すため引き出される電気的信号線である場合である。 他の例と して、 例えば金属製の圧力容器が内部に高圧の作動 油が存在しかっこの作動油中に変位センサを有する弁ケ一シ ング部材を形成する容器であり、 貫通部材が変位センサから 検出信号を容器の外部に取り出すために引き出される電気的 信号線である場合である。
特徴的な作用を説明する。 例えば弾塑性を有する合成樹脂 製封止部材で被覆された芯部材を、 金属製隔壁部材 (金属べ ース) に形成された孔に貫通させた状態で、 当該孔の開口部 の周囲部分に押付け金具を利用して加締めのための押込み動 作を行う と、 孔の開口部周囲の金属部分 (孔の内周面) に塑 性変形が生じ、 この塑性変形で揷通孔の内壁面部分に環状の 膨出部が形成される。 金属ベースの塑性変形による膨出部は、 開口部の近傍で孔の内壁から全周にわたってほぼ均一に内方 へ膨出する環形状を有する。 当該膨出部は、 封止部材を全周 から押圧して所要の条件を満たすように押潰して変形させ、 これにより芯部材を固定して孔の封止を行う。 金属ベースの 塑性変形で生じた膨出部による狭窄圧迫作用、 および合成樹 脂製封止部材を経年降伏劣化を防ぐ程度の高圧状態で前記孔 の中に封じ込めること (例えば紡錘形の変形) によって、 当 該封じ込めによる内圧で芯部材を貫通させるための孔を高い 封止性能で封止する。 図面の簡単な説明
第 1図は、 本発明の基本的実施例を示し、 金属製隔壁部材 に形成された孔に導電体等の所定部材を貫通させ、 その状態 で当該孔を封止した構造を示す要部縦断面図である。
第 2図は、 本発明の封止構造を製作するプロセスを説明す るための第 1の状態 (押付け力を加える前の状態) を示す要 部縦断面図である。
第 3図は、 本発明の封止構造の製作するプロセスを説明す るための第 2の状態 (押付け力を加えた後の状態) を示す要 部縦断面図である。
第 4図は、 押付け金具の押付け力と芯材である導体の引抜 き力との関係を実験数値で示した表を示す図である。
第 5図は、 本発明による封止構造の性能に関する実験結果 を得るための試験片の概要を示す正面図である。
第 6図は、 本発明の封止構造に関するイ ンパルス試験の結 果を表す表を示した図である。 第 7図は、 押付け金具によって金属ベースを押し込んだと きに生じる合成樹脂 (封止部材) の内周面での圧縮応力分布 を示す図である。
第 8図は、 押付け金具によって金属ベースを押し込んだと きに生じる合成樹脂 (封止部材) の外周面での圧縮応力分布 を示す図である。
第 9図は、 本発明の封止構造における温度と導体引抜き力 との関係を示す図である。
第 1 0図は、 本発明に係る封止構造の他の実施例を示す要 部縦断面図である。
第 1 1図は、 本発明に係る封止構造のさ らなる他の実施例 を示す要部縦断面図である。
第 1 2図は、 2つの導電体が本発明の封止構造を適用され て取り付けられた金属ベースの外観斜視図である。
第 1 3図は、 多数の導電体が本発明の封止構造を適用され て取り付けられたプラグの外観斜視図である。
第 1 4図は、 本発明の封止構造を適用して少なく と も 2つ の導電体を取り付けたねじ込み式プラグの縦断面図である。
第 1 5図は、 複数の導電体を本発明の封止構造を一括的に 適用することにより取り付けたねじ込み式プラグの縦断面図 C、め 。
第 1 6図は、 本発明に係る封止構造の他の実施例を示す要 部縦断面図である。
第 1 7図は、 本発明の封止構造を適用して製作された信号 引出し線の取出し部を有する圧油内に配置された差圧センサ ュニッ 卜の縦断面図である。
第 1 8図は、 本発明の封止構造を適用して製作された信号 引出し線の取出し部を有する作動油内に配置された変位セン サュニッ 卜の縦断面図である。 発明を実施するための最良の形態
以下に、 本発明の好適な実施例を添付図面に基づいて説明 する。
第 1図に本発明に係る封止構造の代表的な実施例を示し、 金属製隔壁部材に形成された孔に導電体等の所定の部材が貫 通され、 その状態で当該孔が封止され当該部材が孔に固定さ れる構造を示す。 第 2図および第 3図は当該封止構造が作ら れるプロセスを示す。
第 1図〜第 3図で示された実施例で、 4は金属ベースの一 部断面を示し、 金属ベース 4は全体と して金属製の隔壁部材 と しての機能を有する。 5は金属ベースに形成された孔であ り、 孔 5は図中上下に開口部を有し、 金属べ一ス 4の両側の 領域を連通する。 符号 5で示された孔は本発明に係る封止構 造が形成される前の孔であり、 後述される孔 5 Aは当該封止 構造が形成された後の孔である。 1 は、 金属ベース 4の孔 5 に貫通され、 その後、 本発明による封止構造を孔 5に適用す るこ とによって孔 5の中で固定される部材であり、 この実施 例では、 部材 1 は導体 2 と絶縁体 3からなる導電体である。 導電体 1 において導体 2は絶縁体 3によって被覆されている。 導電体 1 は、 例えば電気信号または電力を伝送するための部 材であり、 少なく と も孔 5の両端の開口部より も外側に突出 するこ とが可能な適当な軸方向の長さを有している。 すなわ ち導電体 1 の長さは金属ベース 4の厚みより も大きい。
導電体 1を金属ベース 4の孔 5に貫通させ、 後述するよう に孔 5にて本発明に係る封止構造を形成すると、 第 1図に示 されるごと く孔 5 はその直径が小さ く なつて孔 5 Aになる。 前記導電体 1 は、 上記の通り電気信号または電力を伝送す るためのものであるので、 導体 2を、 他の導電性部材から電 気的に絶縁し保護する点で絶縁体 3は必然的なものである。 それ故に、 孔 5に貫通された状態で固定される部材は、 一体 不可分の関係にある導体 2 と絶縁体 3である。 本実施例での 特徴的な点は、 所要の弾塑性 (弾性および塑性) を有する合 成樹脂で形成された当該絶縁体 3を、 孔 5に導体 2を固定す ると共に、 この孔 5を極めて高い封止性能で封止する封止部 材と して使用することにある。
本実施例では金属ベース 4の孔 5に貫通 · 固定される部材 が導体 2でありかつ孔 5の封止部材が合成樹脂絶縁体 3であ ると して説明するが、 一般的には、 金属ベース 4の孔 5に貫 通 · 固定される部材は剛性を有する部材 (芯となる部材) で あり、 また孔 5の封止部材は前記芯部材を被覆しかつ所要の 弾塑性と軸方向長さと体積を有する合成樹脂体である。
孔 5に貫通され固定される部材と しては、 各種の部材を想 定するこ とができる。 その具体的な例については後で説明す る。 ただし他の貫通部材について、 当該貫通部材を孔 5に取 り付けかつその孔 5を封止するにあたって、 封止部材と して の合成樹脂は絶縁体 3 と実質的に同じ材質であるが、 絶縁機 能は必ずしも要求されないので、 純粋に封止部材と してのみ 機能する。
本発明による封止構造の封止性能によれば、 耐圧性能が高 く、 耐衝撃性に富み、 長期間安定して封止するこ とが可能と なる。
第 1図は、 導電体 1が貫通された状態の金属ベース 4の孔 5に本発明に係る封止構造を適用して孔 5 Aを形成し、 金属 ベース 4 の塑性変形 (メ タルフ ロ ー) 作用と絶縁体 3の弾塑 性に基づく変形作用により導電体 1を金属ベース 4の孔 5に 固定すると共に孔 5を封止する状態を示す。
金属ベース 4は、 例えば、 内部が高圧である圧力容器、 内 部が高い真空状態である真空容器、 内部に密閉状態で気体ま たは液体を封入する密封容器などの容器の壁部であり、 金属 部分である。 金属ベース 4は、 その両側の領域を隔離する隔 壁部材である。 金属ベース 4が容器の一部である場合に、 金 属ベース 4は容器の内外の領域を隔てるものである。 金属べ ース 4が圧力容器または真空容器の場合には、 金属ベース 4 の内側の領域は高圧または真空の領域であり、 外側の領域は 大気圧の領域である。 すなわち金属べ一ス 4 は、 望ま しく は、 圧力差の存在する 2つの領域の隔壁部材と して作用する。
また他の例と して、 金属ベース 4の両側の領域はほぼ同じ 圧力の、 異種の気体や液体が存在する領域と し、 金属ベース 4を 2種類の気体等の隔壁部材と して機能させることもでき る。 これを一般化すれば、 金属べ一ス 4をその両側の領域の 間において物理 (化学) 的な環境が異なる隔壁部材とするこ とができる。 その他に、 物理的な環境の相違と して、 同じ種 類の気体または液体であって両側の相 (状態や性質) が異な る場合を想定するこ とができる。
金属べ一ス 4の厚みは例えば 3〜 1 O m mの程度である。 また金属ベース 4の具体的材質と して、 銅、 軟鉄、 アルミ系 金属、 ブロ ンズ系金属、 ステンレス ( S U S ) などの塑性変 形が発生する任意の金属を使用することが可能である。
さ らに金属ベース 4を、 金属以外の材質で形成された容器 の一部に設けられた金属部材、 または金属以外の材質で形成 された容器に対し着脱自在に取り付けるこ とのできるプラグ とすることも可能である。 本発明に係る封止構造を実現する ためには、 ベース 4 自体は本来的に金属部材であるこ とが必 要であるが、 容器は必ずしも金属である必要はない。
導電体 1 は、 前述の通り、 芯材となる導体 2 と、 この導体 2を被覆して導体 2および金属ベース 4の間の絶縁を保持す る絶縁体 3 とから構成される。 絶縁体 3は封止部材と して機 能するこ とが重要である。 絶縁体 3の長さは、 金属べ一ス 4 の厚みと同等以上の長さを有することが望ま しい。 導体 2お よび絶縁体 3 は孔 5の両端開口部より も外側に突出している ことが望ま しい。
導体 2は、 剛性の高い例えば線状物またはピン状物であり、 電気信号引出し線や電気的接続部材と して機能する。 線状物 である導体 2 は例えば裸線ワイヤであり、 ピン状物である導 体 2は例えば中継端子あるいは電流供給端子等に使用される ピンである。 第 1図では、 線状物またはピン状物である導体 2の一部を示している。 導体 2の直径は例えば 0 . 5 m mで ある。
さ らに導体 2が中継端子あるいは電流供給端子等に使用さ れる ピンである場合、 これらの端子は、 内部に電気的装置を 収容する密封型ケースに設けられた電気を導通させるための 端子となり、 金属ベース 4は当該密封型ケースの一部となる。 通常において、 前記電気的装置は半導体素子等を用いて構成 されるデバイスである。
絶縁体 3は、 弾塑性を有する材質で作られ、 導体 2 と金属 ベース 4を絶縁する作用を有すると共に、 導電体 1を孔 5に 固定するときに孔 5を封止する封止部材と しての作用を有す る。 絶縁体 3の材質は望ま しく は合成樹脂材が使用される。 合成樹脂材の具体的な材質と しては、 例えば P P S (ポニフ ェニレンサルフ アイ ド) 、 P E I (ポ リ エーテルイ ミ ド) 、 P E E K (ポ リエーテル · エーテル · ケ ト ン) 、 P I (ポ リ ィ ミ ド) 等の相対的に硬質な樹脂が使用される。 封止部材と しての絶縁体 3の封止作用によって、 孔 5における封止性能 を極めて高いものと し、 導体 2を押し出そう とする力に対し て極めて高い耐性を有する。 絶縁体 3は、 例えばチューブ形 状を有し、 その中心軸部に導体 2を挿通させるための孔 3 a が形成される。 絶縁体 3の孔 3 aは、 後述する封止構造の観 点から適切な径で形成される。 絶縁体 3の孔 3 aの内径と導 体 2の直径とは、 ほぼ等しいことが望ま しい。 一般的に、 絶 縁体 3に対し別に用意された導体 2を、 チューブ形状の絶縁 体 3の孔 3 a に挿通させることにより導電体 1が作られる。 また絶縁体 3の外径は、 金属ベース 4の孔 5の内径とほぼ等 しいことが望ま しい。 換言すれば、 導電体 1を孔 5内に貫通 させた状態において、 導電体 1 と孔 5の内面との間隔が 0で あるこ とが理想的である。 数値的に、 絶縁体 3の外径 (外周 面の直径) は例えば約 1 . 6 m mである。
導電体 1の他の作り方と して、 溶融状態にある合成樹脂が 収容された容器内に線状の導体 2を入れ、 この導体 2を所定 の径を有した孔を通過させることにより、 合成樹脂が導体 2 に自然に付着し、 さ らにその後の冷却により合成樹脂が被覆 材となって導体 2の表面に付着させる方法がある。 この場合、 合成樹脂である絶縁体 3は、 導体 2の表面に密着状態で強固 に付着する。
導体 2 とこれを被覆する絶縁体 3からなる導電体 1 は、 金 属ベース 4に形成された孔 5に貫通された状態で、 孔 5の両 端の開口部近傍の金属ベース 4の膨出部 6によって加締めら れる。 この膨出部は狭窄部と して作用する。 導電体 1 は上下 の膨出部 6および絶縁体 3の変形に基づいて発生する圧迫力 (または緊迫力) で金属ベース 4の孔 5に強固に固定される と共に、 上下の膨出部 6および絶縁体 3の変形に基づいて導 電体 1を引き出すための孔 5を封止する。
本発明による封止構造についてその物理的作用をさ らに詳 しく説明する。
第 1図に示す封止構造に従えば、 孔 5に貫通させた導電体 1を加締める目的で、 孔 5の両端 (第 1図中上下) の開口部 の周囲の金属ベース 4に圧力 (押付け力) を加えると、 孔 5 の第 1図中上下の開口部近傍の金属ベースで塑性変形 (塑性 流動) が生起され、 この塑性変形で金属ベースの一部が孔 5 の中心軸側および孔軸方向の中央部側に移動して膨出部 6を 形成する。 孔 5の両端に形成される膨出部 6は、 それぞれ、 孔 5の内壁面から全周にわたってほぼ均一に内方へ膨出する 形を有し、 環形状を有している。 孔 5の両端開口部の近傍に 形成された狭窄作用を有する膨出部 6 によって、 弾塑性を有 する絶縁体 3 は全周囲から強く押し潰される。 このとき絶縁 体 3は封止部材と して作用し、 その弾塑性に基づいてそれ自 体、 膨出部 6の押込み作用で全周にわたり均一に内方へ変形 する。 かかる変形作用に基づいて絶縁体 3は、 全体形状と し て実質的に紡錘形 (または樽形) に変形し逃げ場のない状態 で保持され、 そこに発生する内圧が、 上下の膨出部 6によつ て規定される空間にその経年降伏劣化を防ぐ程度の高い圧力 状態で封じ込められる。 このよう に変形された絶縁体 3は、 導体 2を極めて強い内圧で固定し、 耐圧性能の極めて高い封 止作用を発揮する。 またかかる封止作用によつて長期間にわ たり安定して封止を行う ことができる。
上記において、 前述の通り、 金属ベース 4は、 望ま しく は 内部が高圧状態である圧力容器または内部が高い真空状態で ある真空容器の容器壁の一部であり、 導電体 1 は、 高圧環境 に配置された圧力センサ等の電気ュニッ トまたは真空環境に 配置されたその他の電気ユニッ トから供給される電気的信号 を容器の外部に取り出すための信号伝送部材または電力伝送 部材と しての機能を有する。
次に、 第 2図と第 3図を参照して、 導電体 1が金属ベース 4の孔 5に固定されかつ封止構造が形成されるプロセスを説 明する。
第 2図では、 金属ベース 4に形成された孔 5の中に導体 2 と絶縁体 3からなる導電体 1を貫通させて配置し、 導電体 1 の中心線 7に中心軸位置を一致させた状態で 2つの環状の押 付け金具 8 , 9のそれぞれを孔 5の両端の開口部の近く に配 置する。 この配置状態において、 2つの押付け金具 8 , 9を 中心線 7に沿つて金属ベース 4の側に移動させ、 金属ベース 4における孔 5の開口部周囲の部分に所要の押付け力 1 1を 加えて押し込む。 押付け金具 8, 9の押込み動作の態様は任 意である。 すなわち打圧するように短時間で押し込むこと も できる し、 時間をかけて比較的にゆっ く り と押し込むこ とも できる。 さ らに 2つの押付け金具 8, 9 は、 同時に押込み動 作を行わせてもよいし、 時間差を設けて押込み動作を行って もよい。 押付け金具 8, 9に押込み動作を行わせるための装 置の図示は省略する。
押付け金具 8, 9に押込み動作を行わせると、 第 3図に示 すごと く、 押付け金具 8, 9は、 孔 5の両端開口部の周囲の 金属ベース 4 に圧力 (押付け力) 1 1を加え、 塑性変形を生 起せしめて膨出部 6を形成する。 膨出部 6は、 孔 5の内壁面 の全周に沿って環状の形状を有する。 膨出部 6の膨出量は押 付け金具 8, 9 による押込み量に実質的に等しい。 金属べ一 ス 4の塑性変形で膨出部 6が形成されると、 導電体 1 の絶縁 体 3に対して膨出部 6に基づく狭窄圧迫力が加わる。 両端開 口部近傍の金属ベース 4の膨出部 6による狭窄圧迫力に基づ いて、 弾塑性を有する合成樹脂で形成された絶縁体 3は絞ら れ、 その経年降伏劣化を防ぐ程度の高圧状態で前記孔の中に 封じ込められ、 その結果、 絶縁体 3 は実質的に紡錘形に変形 する。 導電体 1 の導体 2 は、 狭窄圧迫力で紡錘形に変形した 絶縁体 3で生じる圧縮応力によって極めて高い強度で固定さ れ、 これによつて導電体 1を貫通させる孔 5の封止構造が形 成される。
押付け金具 8, 9によって孔 5の両端開口部の周囲の金属 ベース部分を押し込むので、 第 1図に示されるように開口部 周囲には環状の溝 1 0が形成される。
また押付け金具による押込み動作は、 2つの押付け金具 8, 9を用いて孔 5の両端開口部の 2箇所で行う ことができる し、 または一方の押付け金具を用いて孔 5の両端開口部のいずれ か一方の箇所のみで行う こともできる。 2箇所で行う場合は、 高圧の液体や気体等の封止に適している。 また比較的低圧の 流体の封止等の場合には 1箇所で行う ことも可能である。
次に、 押付け金具によって与えられる押付け力 (押込み荷 重) と、 金属ベース 4に固定された導電体 1 における導体 2 の引抜き力との関係について、 実験的に得られた具体的な数 値の一例を第 4図の表に示す。 実験に使用された試験片の寸 法に関する概要図を第 5図に示す。 第 5図における長さの単 位は m m (ミ リ) であり、 この図では少なく と も 3つの導電 体 1が金属ベース 4 に取り付けられる。 金属べ一ス 4の材質 P T 93 0746
2 1
は快削黄銅、 導体 2の材質は Fe-Ni 線である。 第 4図に示し た表では、 各押付け力に対して絶縁体 3 と して材質が異なる 2種類の絶縁体 (合成樹脂) A, Bを用いた場合の引抜き力 が示されている。 絶縁体 Aは P P Sを使用し、 絶縁体 Bは P E E Kを使用している。 第 4図の表で明らかなように、 押付 け力が大き く なると、 引抜き力も大き く なる。 また引抜き力 は、 絶縁体 3の材質に応じて異なる。
第 6図は耐圧に関するィ ンパルス試験 ( 3波イ ンパルス) の結果を示す表である。 この試験において、 ベ一ス圧は 3 5 0 kgf/cm2 、 ピーク圧は 5 2 5 kgf/cm2 であり、 試験槽およ び試験油の温度が 1 0 0 °C、 繰り返し数は 1 0 0万回 ( 1回 1秒) である。 この試験でも、 絶縁体 3に関し 2種類の合 成樹脂材 ( P P S , P E E K) が使用された。 P P Sが使用 された絶縁体では 3 0 0〜 5 0 0 kgf の押付け力について問 題なし (O K) の結果が得られ、 P E E Kが使用された絶縁 体では 3 0 0〜 6 0 0 kgf の押付け力について問題なし (0 K) の結果が得られた。
次に第 7図を参照して、 押付け金具 8を金属ベース 4に押 し込んだ後、 押付け金具 8を取り除いた状態における絶縁体 3の内周面上での半径方向の圧縮応力の分布を説明する。 こ の場合、 絶縁体 3を形成する合成樹脂には P E E Kが使用さ れ、 導体 2、 金属ベース 4の材質は前述の通りである。
第 7図の上図において 2 は導体、 3は絶縁体、 4 は金属べ ースである。 導体 2 と絶縁体 3からなる導電体 1 は、 説明の 便宜上第 7図の上図中横向きでかつ左端部分の上半分のみが 示される。 8は前述の押付け金具であり、 その半分が図示さ れる。 また二点鎖線で示された 8 Aも押付け金具であり、 こ れは押付け力 1 1の方向に押し込まれた状態の押付け金具を 示している。 7は中心線である。 押付け力 1 1によって押付 け金具 8が 8 Aの位置に押し込まれると、 金属ベース 4にお いて孔 5の開口部近傍の内壁面の全周にわたつて塑性変形が 生起され、 前述の膨出部 6が形成される。
第 7図の下図は、 押付け金具 8で孔 5の開口部周囲の金属 ベース 4を加締める加工シミ ユレーショ ンを非線形構造解析 プログラム (N I K E HZ2 D) を用いて行った結果を示す。 解析モデルは 2次元軸対称である。 拘束条件については、 中 心線 1 2 と平行な方向に各部が移動可能と した。 第 7図の下 図において、 横軸の座標は第 7図の上図における位置関係に 対応し、 絶縁体 3の左端部 (ここを原点とする) からの距離 を示し、 縦軸は絶縁体 3の内周面における径方向の圧縮応力 を示す。 得られた応力分布 1 3において、 応力値は圧縮応力 をマイナスで示す。
第 7図の応力分布 1 3に示されるように、 導体 2は絶縁体 3によって大きな締付け力で固定されている。 応力分布 1 3 に従えば、 特に、 押付け金具 8によって圧力が加えられる表 面箇所より も金属ベース内部側の位置 (点 1 4) で大きな締 付け力となる圧縮応力部分 1 3 aが発生し、 それ以外の部分 でも約 3 kgi Zmm2 の圧縮応力が発生している。 この応力分 布 1 3に示されるように、 導電体 1の芯材である導体 2は、 押付け金具 8の加圧に基づいて絶縁体 3に加えられる狭窄圧 迫力によって絶縁体 3に内圧が発生し、 強固に固定され保持 される。 なお、 前述の大きな締付け力部分 1 3 aでは約 1 6 kgf /mm2 以上のピーク値をとる。 このピーク値によって封 止性能が極めて良好な封止構造が形成される。 また応力分布 1 3は、 押付け力を調整し押込み量を変えることにより任意 に変えることが可能である。 上記の応力分布の特性は、 絶縁 体 3の右端部でも、 第 7図の下図に示された分布に対称な形 状で同様に形成される。
第 8図は、 押付け金具 8を金属ベース 4に押し込んだ後、 押付け金具 8を取り除いた状態における絶縁体 3の外周面上 での半径方向の圧縮応力の分布を示す。
第 8図の上図は第 7図の上図と同じ図であり、 第 8図の下 図は第 7図の下図と実質的に同じであり、 絶縁体外周面上で の半径方向の圧縮応力の分布を示す。 この場合にも、 非線形 構造解析プログラム (N I K E HZ 2 D) を用いて行った加 ェシ ミ ユ レーショ ン結果である。 応力分布 1 5に従えば、 絶 縁体 3の外周面においても、 押付け金具 8によって圧力が加 えられる表面箇所より も内部側位置で大きな締付け力部分 1 5 aが発生し、 それ以外の中央部分でも約 3 kgf mm2 の圧 縮応力が発生している。 この応力分布 1 5でも、 狭窄圧迫力 およびそれに伴う絶縁体 3の変形による導体 2の保持か明白 である。 また締付け力部分 1 5 aでは約 1 2 kg ί /mm2 のピ —ク値をと り、 このピーク値によつて封止性能が極めて良好 な封止構造が形成される。
上記の各加工シ ミ ュ レーショ ンの結果からも、 導体 2 と絶 縁体 (すなわち封止部材と しての合成樹脂材) 3と金属べ一 ス 4がそれぞれに圧縮応力を受けながら封止作用を働かせる ことが明らかであり、 その結果、 極めて高い耐圧性能を有す る金属製隔壁部材の部材貫通孔の封止構造が実現される。 次に、 第 9図に示した表を参照して、 温度上昇と引抜き力 との関係を説明する。 第 9図に示す温度上昇と引抜き力との 関係は、 押付け金具による押付け力を 6 0 O kgi と し、 絶縁 体と して前述の絶縁体 B (P E E K) を使用することにより 得られたものである。 導体 2および金属ベース 4の材質は前 記の場合と同じである。 第 9図に示す表によれば、 1 2 0°C の高温における引抜き力は、 一 4 0 °Cの引抜き力の半分に低 下する。 しかしながら、 導体 2の直径が小さい (実用的には 約 0. 5 ) ことを考えれば、 1 2 0°Cの引抜き力 7 kgi で 十分である。 計算上では、 内部の圧力が 3 5 0 kgf /cm2 で ある圧力容器の中から信号を取り出す場合、 安全率は 1 2で の
第 1 0図は、 本発明に係る部材貫通孔の封止構造の他の実 施例を示す。 第 1 0図は第 3図に対応し、 第 1 0図において 第 3図に示した要素と実質的に同一の要素には同一の符号を 付している。 この実施例による構造では、 金属べ一ス 4に形 成された孔 5 Aの例えば下側の開口部に最初から径方向内側 に突出した環状の突起部が形成され、 段付き孔部 4 aになつ ている。 このため、 孔 5 Aの下側開口部の直径は他の部分に 比較して小さ く なつている。 導電体 1は、 押圧前の孔 5の上 側開口部から挿入される。 導電体 1の絶縁体 3の下部には小 径部を形成して段付き部 3 aを形成する。 この段付き部 3 a は段付き孔部 4 a に係合し、 導電体 1が孔 5 Aの下側開口部 から抜け出すのを阻止する。 押付け金具は、 上側の押付け金 具 8のみが配置される。 金属ベース 4の孔 5の中に導電体 1 を配置した状態において上側の押付け金具 8を金属べ一ス 4 に押し込むと、 孔 5 Aが形成され、 第 1 0図に示される封止 構造となる。 段付き孔部 4 a は絶縁体 3の抜け出しを防止す るので、 孔 5 Aの上端開口部で、 押付け金具 8の加圧によつ て生じる金属ベース 4の塑性変形で前述の膨出部 6が形成さ れ、 狭窄圧迫力が発生し、 絶縁体 3を変形する。 このとき、 絶縁体 3の下部は段付き孔部 4 aによって変形を抑止され、 その結果、 絶縁体 3は段付き孔部 4 a と膨出部 6で決定され る空間に封じ込まれる。 本実施例の構成によれば、 押付け金 具が 1つで済むと共に、 耐圧性能が高い封止構造を作ること ができる。
第 1 1図は第 1 0図に示した実施例を変形したものである。 この実施例では、 孔 5 Aの下部に形成される段付き孔部 4 a の上面、 すなわち孔 5 Aの内部側の面がテーパー面となって いる。 その他の構成は第 1 0図で説明した構成と同じである。 この実施例によれば、 押付け金具 8で孔 5の上端開口部の周 囲の金属ベース 4を押し込むと、 上端開口部の近傍の孔内面 に塑性変形による膨出部 6が形成されると共に、 下部の段付 き孔部 4 aが変形抑止部と して作用して絶縁体 3を封じ込め 第 1 2図は、 金属べ一ス 4 に例えば 2つの孔を形成し、 こ れらの孔のそれぞれに導電体 1 を貫通し、 例えば第 1図で示 した前述の封止構造で封止した外観構成の例を示す。 説明の 便宜上、 金属ベース 4は封止構造が形成される部分の周辺を 切り出して示している。 第 1 2図で明らかなように、 押付け 金具 8で孔の開口部の周囲を加締めるので、 環状の溝 1 0が 形成される。 なおこの導電体 1では、 線状の導体 2すなわち 導線が使用される。
第 1 3図は、 前述の封止構造を適用することにより複数の 導線引出し部が形成されたプラグの実施例を示している。 こ のプラグ 2 1 は 6本の線状導体 2を引き出すための導線引出 し部 2 2が形成されている。 プラグ 2 1の材質は前記金属べ ースと同じであり、 このプラグ 2 1の周囲面は環状の凹所が 形成され、 この凹所に 0 リ ング 2 3が取り付けられる。 その 他の構成について、 第 1 3図に示した要素と同一の要素には 同一の符号を付している。
第 1 4図は、 ねじ込み式プラグに設けた導線引出し部に第 1図に示した封止構造を適用した実施例を示す。 ねじ込み式 プラグ 2 4は、 下部周囲面にねじ部 2 5を有し、 装着部のね じ孔に螺合して取り付けられ、 高い封止性能を発揮する。 第 1 4図に示すように、 少なく とも 2本の導体 2がそれぞれの 紡錘形の絶縁体 3に基づき被覆された状態で、 ねじ込み式プ ラグ 2 4に形成された孔 5 Aに固定され、 前述の封止構造が 各導電体 1 に関し形成されている。 ねじ込み式プラグ 2 4の 材質は前記金属ベース 4の材質と同じである。
第 1 5図はねじ込み式プラグの他の実施例を示す。 この実 施例のねじ込み式プラグでは、 少なく とも 2本の線状導体 2 を、 1つの孔 2 6および絶縁体 2 7を用いて前述の封止構造 を適用して孔 2 6に固定している。 この実施例によれば、 構 造が簡素になり、 製作が容易となる。
前記の各実施例で説明した封止構造では、 芯材である導体 2 とこれを被覆する封止部材と しての合成樹脂絶縁体 3 とか らなる導電体 1を、 金属ベース 4 に形成された孔 5 に固定し 封止する構造であつたが、 前述の通り、 孔 5に貫通せしめ上 記封止構造によって孔 5に固定される対象部材は導体 2に限 定されない。 当該対象部材と しては、 例えば、 気体や液体を 流すための金属製パイプ部材、 熱媒体を流すためのヒー トパ イブ、 光信号を伝送するための光ファイバ、 およびこれらに 類似する部材のように、 所定の剛性を有し、 かつ金属ベース 4の厚みより も長い適当な長さを有する部材を固定 , 封止す る構造においても適用することができる。 これらの部材は、 前記絶縁体 3に実質的に同じ合成樹脂材で被覆した状態にお いて、 前記孔 5に貫通せしめ、 前述した封止構造にて固定す ることができる。
気体や液体を流すための金属製パイプ部材の具体的な例と しては、 冷蔵庫の冷凍機に使用される冷却用媒体を流すため のパイプがある。 気体や液体を流すための金属製パイプ部材 が固定される金属べ一スは、 例えば気体または液体を封入す る密封容器の容器壁の一部である。 またヒー トパイプゃ光フ アイバ等の部材を金属ベース 4の孔 5に貫通し、 この孔 5に 前記封止構造を形成して固定する場合に、 前記絶縁体 4であ る合成樹脂材は、 その絶縁性より も封止性能が重視され、 封 止部材と して機能する。
また金属ベース 4は、 前述の通り真空容器の容器壁の場合 もあり得る。 このとき導電体 1 に設けられた封止構造は、 真 空容器内の減圧領域と真空容器外の大気圧領域と隔離するた めの構造となる。 またこの場合、 導電体 1 は真空容器内に設 けられた電気ュニッ 卜 と真空容器外に配置された電気的装置 との間を接続する電気的接続手段となる。
上記の金属製真空容器に本発明に係る封止構造を適用した 場合の真空封止性能に関し、 真空封止性の気密実験結果につ いて示すと、 次の通りである。
( 1 ) 試験方法 :
ヘリ ウム (H e ) リ ーク試験機を使用して真空外囲法 にて試験を行つた。
( 2 ) 試験結果 :
H e リ ークデテクタにて 1 X 1 0— 9 a t m · c c / s e c 以下の性能が得られた。
従って、 真空装置における例えばヘリ ゥムガスの封止構造 についても、 本発明に係る封止構造は高い真空封止性能を発 揮することができる。
次に上記の封止構造において、 金属べ一ス 4に形成された 孔 5 と、 この孔に貫通され固定される部材と、 封止部材であ る合成樹脂材におけるそれぞれの間の密着性について述べる。 貫通される部材の表面と孔 5の内周面の内の少なく ともいず れか一方に粗面加工が施されていることが望ま しい。 金属べ ース 4に塑性変形を起こ し、 封止部材である合成樹脂材を封 じ込めるとき、 前述の合成樹脂材 (封止部材) の内圧に加え、 貫通部材の表面および Zまたは孔 5の内周面の粗面の性質に 基づいて合成樹脂部材に高い密着性でもって接触する。
孔 5に貫通される部材の粗面加工の例と しては、 例えば表 面に極めて微細な凹凸 (例えばサン ドプラス ト処理) を形成 する。 また当該部材における孔 5の中に位置する部分の表面 に比較的に大きな凹凸部を形成したり、 さ らに第 1 6図に示 すように貫通部材 (芯材) 3 2における孔 5 Aの中に位置す る部分に環状の溝 3 1を例えば 2つ形成するこ と もできる。 第 1 6図に示した実施例では、 予め溝 3 1が形成された導 体 3 2を用い、 第 1図等の実施例で説明した通り、 かかる導 体 3 2を合成樹脂の絶縁体 3で被覆した状態で孔 5に貫通し、 押付け金具 8, 9を用いて前述の通り金属べ一ス 4に押付け 力を加えると、 金属ベース 4での塑性変形で絶縁体 3が封じ 込められ、 環状溝 3 1へ絶縁体 3が流動する。 こ う して導体 3 2 と絶縁体 3が強固に密着する。 この場合において、 押付 け金具による押付け量 (または押付け力) は、 環状溝 3 1の 体積量を考慮して設定する必要がある。 また他の実施例と し て、 金属ベース 4の孔に貫通させる前の段階で、 または貫通 状態で配置した段階で、 予め導体 3 2 と合成樹脂絶縁体 3を 密着状態に結合させるように構成してもよい。
第 1 7図は、 前述の導電体を貫通せしめるための孔の封止 構造を応用した例を示す。 この応用例は油圧回路中に組み込 まれる差圧セ ンサュニッ トからの信号線引出し部の封止構造 に関するものである。
第 1 7図において 4 1 はケ一シング、 4 2 はケーシンダカ バーである。 ケーシング 4 1 は油圧装置の例えば金属製容器 の壁部の一部であり、 圧油等の圧力媒体を導入するための孔 を有する本体部であるが、 こ こでは便宜上ケーシングと.呼ぶ。 ケ一シング 4 1 には、 その中心部に凹部 4 3、 下面から凹部 4 3に通じる第 1 の圧油導入路 4 4、 側面から凹部 4 3に通 じる第 2の圧油導入路 4 5が形成される。 ケーシング 4 1 の 凹部 4 3には底部に金属材で形成されたダイヤフラム基体 4 6、 上部開口部に金属ベース 4 7、 中間部にスぺ一サ 4 8力《 配置される。
ダイヤフラム基体 4 6 は支持部 4 6 a とダイヤフラム部 4 6 bから形成される。 ダイヤフラム部 4 6 bは表裏両面で異 なる圧力を受ける起歪部と して機能する。 金属ベース 4 7は 凹部 4 3の蓋と して機能し、 内部に導入された圧油を閉じ込 め、 かつ複数の導電体 5 1を固定状態で備える。 導電体 5 1 は線状導体 5 2 と絶縁体 5 3で形成される。 金属ベース 4 7 において導電体 5 1を引出して固定しその引出し孔を封止す ることにおいて、 前述の封止構造が形成される。 ダイヤフラ ム基体 4 6 と金属ベース 4 7 との間にはスぺーサ 4 8で空間 が確保される。 ダイヤフラム部 4 6 bの上面には、 絶縁膜を 形成しかっこの絶縁膜の上に歪みゲージと配線膜を形成する ことにより、 ダイヤフラム部 4 6 bの両面に加わる圧力の差 を検出するための差圧検出用成膜部 4 9が形成される。 差圧 検出用成膜部 4 9から出力される検出信号は、 F P C (フ レ キシブルプリ ン ト回路) 5 0を経由して導電体 5 1で外部に 取り出される。
ダイヤフラム部 4 6 bの下面には第 1の圧油導入路 4 4で 第 1の圧油 Cが供給され、 上面には第 2の圧油導入路 4 5で 第 2の圧油 Dが供給される。 従って、 ダイヤフラム基体 4 6 の上側空間には第 2の圧油 Dが充填されている。 差圧検出用 成膜部 4 9は、 保護膜で被覆され、 圧油から保護されている。 導電体 5 1 の導体 5 2の下端は F P C 5 0 に接続され、 導体 5 2の上端は増幅器 5 4 に接続されている。 ケーシング 4 1 とケ一シングカバ一 4 2 は複数のボル ト 5 5で結合され一体 化される。 金属ベース 4 7 は、 ケーシングカバー 4 2で押え 付けられ固定される。 なお 5 6は封止用の 0 リ ングである。
上記の構造によれば、 差圧検出用成膜部 4 9で検出された 差圧信号を、 F P C 5 0を介して金属べ一ス 4 7の導電体 5 1 に導き、 導電体 5 1を経由して増幅器 5 4に取り出す。 金 属ベース 4 7の下側の空間には第 2の圧油 Dが導入され、 高 い圧力が発生している。 金属ベース 4 7における導電体 5 1 の取付け孔の封止構造によれば、 圧油中の高圧領域に配置さ れた差圧検出用成膜部 4 9から、 増幅器 5 4の存在する大気 圧領域側に電気信号を取り出すことができる。 このとき第 2 の圧油導入路 4 5を通して 3 5 O k g f / c m 2 を越える高圧が 繰り返し導入されても、 導電体 5 1の取付け部の封止構造の 耐圧性能は十分に満足されることが実験的に確認された。
第 1 8図は、 本発明に係る封止構造を利用した導線引出し 部の他の実施例を示す。 この実施例では、 弁装置の内部に組 み込まれる変位セ ンサからの信号引出し部の封止構造を示し ている。 第 1 8図において、 6 1 はケーシングであり、 内部 に既定の空間を有する。 この空間の内部には圧油が充填され ており、 さ らに当該内部には可動部材 (スプール) 6 2がス ライ ド可能に配置される。 可動部材 (スプール) 6 2は、 圧 油の流入または流出で移動し、 弁と しての機能を有する。 6 3は変位セ ンサであり、 上記空間の端部にて圧油中に配置さ れる。 変位センサ 6 3は、 差動変圧器の機能を利用して構成 される。 6 4は、 変位センサの筒型ホルダーであり、 金属材 で製作されている。 またホルダ一 6 4の図中右端は、 閉塞壁 部 6 5 となっている。 ホルダ一 6 4の内部には、 コイル 6 6 が配設される。 可動部材 (スプール) 6 2の右端には、 ロ ッ ド状のフ ヱライ ト コア 6 7が取り付けられる。 このフヱライ ト コア 6 7 は、 可動部材 (スプール) 6 2の位置の変化に応 じて、 コイル 6 6の内部空間を移動する。 コイル 6 6におい てフヱライ ト コア 6 7が移動するこ とにより可動部材 (スプ —ル) 6 2の変位を電気信号と して取出すことができる。 変位センサ 6 3において、 コイル 6 6は励磁状態に保持さ れる。 従って、 コイル巻線に所要の電流を流す目的で導線を 介して電流が供給される。 図中 6 8 は、 変位センサ 6 3から 外部に引き出される導線である。 これらの複数本の導線 6 8 の引出しにおいて、 図示例では厳密に示されていないが、 ホ ルダ一 6 4の壁部 6 5に前述した信号線引出し部の封止構造 が適用される。 第 1 8図において 6 9 は前述した被覆合成樹 脂材を示している。 また、 ホルダー 6 4 と弁ケ一シング 6 1 との間には、 0 リ ング 7 0が設けられ、 変位セ ンサ 6 3の周 囲における圧油の封止を行っている。
上記の変位センサ 6 3において、 本発明に係る封止構造を 用いれば、 高い内部圧力に対して十分にこれを封止すること ができる。
前記実施例の他に、 本発明による部材貫通孔の封止構造は、 高圧気体の封止構造、 気体 N 2 を封入したセンサにおける類 似の封止構造、 半導体デバイスにおける同様な封止構造等に 利用するこ とができる。
前記典型的実施例では、 チュープ形状の絶縁体 3の孔に導 体 2を揷通させたが、 導体 2 と絶縁体 3の間を接着剤で結合 させるようにすることもできる。 この構造によれば封止性能 をさ らに高めることができる。
また導体 2の代わりに可撓性を有する F P C (フ レキシブ ルプリ ン ト回路) を用いることもできる。 この場合には、 導 体と しての F P Cは、 射出成型法等を利用して絶縁体 3で被 覆される。 絶縁体 3で被覆された F P Cは、 前述の封止構造 で金属ベースに固定される。
本発明によれば、 主に、 弾塑性を有する合成樹脂封止部材 で被覆された芯材部材を金属製隔壁部材に形成された孔に貫 通させこの孔を封止する封止構造であって、 封止部材に狭窄 圧迫結合部が形成され、 耐圧性能が極めて高い封止構造を形 成することができる。 特に、 孔の両端開口部近傍に加締め部 を形成する構造によれば、 封止部材は実質的に紡錘形となり、 封止性能が向上する。 この封止構造は、 簡単な構造を有し、 かつ安価にかつ簡単な工程で製作できる。 このように、 本発 明の封止構造によって導電体等の引出し部または接続部の耐 圧信頼性を向上し、 経済性を高めることができる。 産業上の利用可能性
例えば金属材で作られた圧力容器、 真空容器、 気体や液体 を収容する密封容器のように内外の領域を隔離する隔壁部材 の金属部分に形成された孔に、 例えば電気信号または電力を 伝送するための導線や導電ピン、 その他の導電体、 流体を流 すための金属製パイプ部材、 熱媒体を流すためのヒー トパイ プ、 光信号を伝送するための光ファイバなどの部材を貫通し た構造において、 超高圧に対しても高い耐圧性能を有し、 さ らに前記孔を長期間安定して封止する封止構造を実現し、 各 種部材の引出し部の封止構造と して利用される。

Claims

請求の範囲
1 . 金属製隔壁部材 U) に形成された孔(5) に、 前記金属製 隔壁部材(4) の厚みより も大きな軸方向の長さを有しかつ剛 性を有する部材(2) を貫通させ、 前記孔(5 ) を封止部材をも つて封止する封止構造において、
前記貫通された部材(2) は、 その外径が前記孔の内径とほ ぼ等しく かつその軸方向の長さが前記金属製隔壁部材( の 厚みと同等以上のより も大きい封止部材(3) を介して配置さ れ、
前記孔(5) の両端の開口部の少なく とも一方に、 前記開口 部の周囲部分での孔軸方向の加圧に基づいて、 前記金属製隔 壁部材(4) の前記開口部の近傍で前記孔(5) の内壁から全周 にわたつてほぼ均一に膨出する形の塑性変形を生起させるこ とにより、 狭窄部(6) が形成され、
前記狭窄部(6) で前記貫通部材(2) と前記封止部材(3) を 全周囲から高圧で押圧し、 かつ前記封止部材(3) をその経年 降伏劣化を防ぐ程度の高圧状態で前記孔(5) の中に封じ込め、 当該封じ込めによる内圧で前記貫通部材(2) を前記孔(5) に 固定し前記孔(5) を封止したことを特徴とする金属製隔壁部 材の部材貫通孔の封止構造。
2 . 請求の範囲第 1項において、 前記孔(5) の両端の開口部 の周囲部分に対し前記加圧を行って前記塑性変形を生起させ ることにより前記孔(5) の両端の開口部に前記狭窄部(6) を 形成し、 前記封止部材(3) を実質的に紡錘形に変形せしめて 前記孔(5) の中に高圧状態で封じ込め、 当該封じ込めによる 内圧で前記貫通部材(2) を前記孔(5) に固定し前記孔(5) を 封止したこ とを特徵とする金属製隔壁部材の部材貫通孔の封 止構造。
3. 請求の範囲第 1項において、 前記孔(5) の一端の開口部 の内側周囲部分に前記封止部材(3) が前記孔(5) の外に膨出 変形するのを妨げる変形抑止部 Ua)を設け、 前記孔(5) の他 端の開口部の周囲部分に対し前記加圧を行つて前記塑性変形 を生起させるこ とによ り前記狭窄部(6) を形成し前記封止部 材(3) を変形せしめて前記孔(5) の中に高圧状態で封じ込め、 当該封じ込めによる内圧で前記貫通部材(2) を前記孔(5) に 固定し前記孔(5) を封止したこ とを特徴とする金属製隔壁部 材の部材貫通孔の封止構造。
4. 請求の範囲第 3項において、 前記変形抑止部(4a)は、 前 記孔(5) の前記一端の開口部の直径を小さ く した段付き孔部 を形成したことで形成されるを特徴とする金属製隔壁部材の 部材貫通孔の封止構造。
5. 請求の範囲第 4項において、 前記段付き孔部(4a)の内部 側の面はテーパー面であることを特徴とする金属製隔壁部材 の部材貫通孔の封止構造。
6. 請求の範囲第 1項〜第 3項のいずれかにおいて、 前記貫 通部材(2) は電気信号または電力を伝送するための電気伝導 部材であり、 前記封止部材(3) は前記電気伝導部材を被覆す る電気絶縁部材であることを特徵とする金属製隔壁部材の部 材貫通孔の封止構造。
7. 請求の範囲第 6項において、 前記電気伝導部材(2) は、 線状部材またはピン状部材であることを特徴とする金属製隔 壁部材の部材貫通孔の封止構造。
8. 請求の範囲第 6項または第 7項において、 前記電気伝導 部材(2) は、 内部に電気的装置を収容する密封型ケースに設 けられた電気を導通させるための端子であることを特徴とす る金属製隔壁部材の部材貫通孔の封止構造。
9. 請求の範囲第 8項において、 前記電気的装置は半導体素 子を用いて構成されるデバイスであるこ とを特徵とする金属 製隔壁部材の部材貫通孔の封止構造。
1 0. 請求の範囲第 1項〜第 3項のいずれかにおいて、 前記 貫通部材(2) は、 気体または液体を伝送するためのパイプ部 材であることを特徴とする金属製隔壁部材の部材貫通孔の封 止構造。
1 1. 請求の範囲 1 0において、 前記パイプ部材は、 熱媒体 を伝送するためのヒー トパイプであるこ とを特徵とする金属 製隔壁部材の部材貫通孔の封止構造。
1 2. 請求の範囲第 1項〜第 3項のいずれかにおいて、 前記 貫通部材(2) は、 光信号を伝送するための光フ ァイバである ことを特徵とする金属製隔壁部材の部材貫通孔の封止構造。
1 3. 請求の範囲第 1項〜第 3項のいずれかにおいて、 前記 封止部材(3) は合成樹脂を用いて形成されることを特徴とす る金属製隔壁部材の部材貫通孔の封止構造。
1 4. 請求の範囲第 1 3項において、 前記合成樹脂は、 P P S、 P E I、 P E E K、 P I の内のいずれか 1つであるこ と を特徴とする金属製隔壁部材の部材貫通孔の封止構造。
1 5 . 請求の範囲第 1項〜第 3項のいずれかにおいて、 前記 金属製隔壁部材は、 その両側の領域の間で圧力差が存在する 容器の壁部であることを特徵とする金属製隔壁部材の部材貫 通孔の封止構造。
1 6 . 請求の範囲第 1 5項において、 前記容器は、 内部領域 が高圧状態であり、 外部領域が大気圧状態である圧力容器で あることを特徴とする金属製隔壁部材の部材貫通孔の封止構
1 7 . 請求の範囲第 1 5項において、 前記容器は、 内部領域 は真空状態であり、 外部領域が大気圧状態である真空容器で あることを特徴とする金属製隔壁部材の部材貫通孔の封止構 λΗ ο
1 8 . 請求の範囲第 1項〜第 3項のいずれかにおいて、 前記 金属製隔壁部材( は、 その両側の領域の間で化学的な環境 が異なる容器の壁部であることを特徵とする金属製隔壁部材 の部材貫通孔の封止構造。
1 9 . 請求の範囲第 1 8項において、 前記容器の内部領域と 外部領域に存在する気体または液体の相が異なることを特徴 とする金属製隔壁部材の部材貫通孔の封止構造。
2 0 . 請求の範囲第 1 8項において、 前記容器は密封容器で あるこ とを特徴とする金属製隔壁部材の部材貫通孔の封止構 ia o
2 1 . 請求の範囲第 1項〜第 3項のいずれかにおいて、 前記 金属製隔壁部材(4) は密封容器に装着される封止用ブラグ(2 1 , 2 4 ) であるこ とを特徵とする金属製隔壁部材の部材貫通孔 の封止構造。
2 2 . 請求の範囲第 2 1項において、 前記封止用プラグはね じ込み式構造を有し、 前記密封容器に着脱自在であるこ とを 特徴とする金属製隔壁部材の部材貫通孔の封止構造。
2 3 . 請求の範囲第 2 1項または第 2 2項において、 前記封 止用ブラグには複数の前記貫通部材(2 ) が設けられたことを 特徴とする金属製隔壁部材の部材貫通孔の封止構造。
2 4 . 請求の範囲第 2 3項において、 複数の前記貫通部材は 対応するそれぞれの前記孔に前記封止部材で封止して設けら れ、 前記の各封止部材によって個別に封止が行われることを 特徴とする金属製隔壁部材の部材貫通孔の封止構造。
2 5 . 請求の範囲第 2 3項において、 複数の前記貫通部材は
1つの前記孔(2 6 )に 1つの封止部材(2 7)で封止して設けられ、 前記封止部材(2 7 )で一括して封止が行われることを特徴とす る金属製隔壁部材の部材貫通孔の封止構造。
2 6 . 請求の範囲第 1項〜第 3項のいずれかにおいて、 前記 貫通部材(2) の表面と前記孔(5) の内周面の内の少なく とも いずれか一方に粗面加工が施されていることを特徴とする金 属製隔壁部材の部材貫通孔の封止構造。
2 7 . 請求の範囲第 1項〜第 3項のいずれかにおいて、 前記 貫通部材における前記孔の中に位置する部分の表面に凹凸部 が形成されることを特徴とする金属製隔壁部材の部材貫通孔 の封止構造。
2 8 . 請求の範囲第 2 7項において、 前記貫通部材(2) にお ける前記孔(5) の中に位置する部分に環状の溝(31)を少な く とも 1つ形成したこ とを特徴とする金属製隔壁部材の部材貫 通孔の封止構造。
2 9. 請求の範囲第 1 6項において、 前記圧力容器は内部に 高圧の作動油が存在する油圧回路機構(41, 2) の一部であり、 前記貫通部材は、 前記圧力容器の内部に配置された油圧に関 する情報を検出するための電気的センサュニッ ト (46, 49, 50) から検出信号を容器外部に取り出すため引き出される電気的 信号線(51, 52, 53)であることを特徴とする金属製隔壁部材の 部材貫通孔の封止構造。
3 0. 請求の範囲第 1 6項において、 前記金属製圧力容器は 内部に高圧の作動油が存在しかつ前記作動油中に変位セ ンサ ( 62, 63, 66, 67) を有する弁ケーシ ング(61)を形成する容器で あり、 前記貫通部材は前記変位セ ンサから検出信号を前記容 器の外部に取り出すために引き出される電気的信号線(68)で あるこ とを特徴とする金属製隔壁部材の部材貫通孔の封止構
PCT/JP1993/000746 1992-06-05 1993-06-03 Construction of sealing through-hole penetrating through metallic partitioning member WO1993025829A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69326415T DE69326415T2 (de) 1992-06-05 1993-06-03 Anordnung zur dichten durchführung durch metallische wände
KR1019940700245A KR0149896B1 (ko) 1992-06-05 1993-06-03 금속제 격벽부재의 부재관통공의 봉지구조
EP93913476A EP0598136B1 (en) 1992-06-05 1993-06-03 Construction of sealing through-hole penetrating through metallic partitioning member
JP50132994A JP3334804B2 (ja) 1992-06-05 1993-06-03 金属製隔壁部材の部材貫通孔の封止構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/171700 1992-06-05
JP17170092A JPH06180264A (ja) 1992-06-05 1992-06-05 導線引出し部の封止構造及びこの封止構造を有するプラグ

Publications (1)

Publication Number Publication Date
WO1993025829A1 true WO1993025829A1 (en) 1993-12-23

Family

ID=15928063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000746 WO1993025829A1 (en) 1992-06-05 1993-06-03 Construction of sealing through-hole penetrating through metallic partitioning member

Country Status (4)

Country Link
EP (1) EP0598136B1 (ja)
JP (2) JPH06180264A (ja)
DE (1) DE69326415T2 (ja)
WO (1) WO1993025829A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131944A (ja) * 2004-11-04 2006-05-25 Hitachi Zosen Corp 水電解水素発生装置における容器収納型水電解槽

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260242A1 (de) * 2002-12-20 2004-07-22 Siemens Ag Schaltungsmodul für Kraftfahrzeuge
SE527588C2 (sv) * 2004-11-01 2006-04-18 Abb Technology Ltd Elektrisk genomföring och sätt att tillverka en elektrisk genomföring
JP4742593B2 (ja) * 2005-01-19 2011-08-10 株式会社デンソー 圧力検出装置の製造方法
GB2425365A (en) * 2005-04-23 2006-10-25 British Engines Ltd Seal for cable gland assembly and tool therefor
NL1034500C2 (nl) * 2007-10-11 2009-04-15 Janssen Prec Engineering B V Het realiseren van een elektrische doorvoer door een wand die twee omgevingen van elkaar scheidt.
JP4756392B2 (ja) 2008-11-27 2011-08-24 トヨタ自動車株式会社 電池
EP2458658B1 (en) 2009-07-24 2014-06-18 Toyota Jidosha Kabushiki Kaisha Battery manufacturing method, press tools therefor, and batteries
DE102010064484B3 (de) 2010-09-22 2018-05-09 Sew-Eurodrive Gmbh & Co Kg Elektrogerät mit einer Anordnung zum Durchleiten von Licht durch eine Wandung
DE102010046042B4 (de) * 2010-09-22 2014-05-28 Sew-Eurodrive Gmbh & Co Kg Anordnung zum Durchleiten von Licht durch eine Wandung, insbesondere Gehäusewand, und Elektrogerät
DE102011001985C5 (de) * 2011-04-12 2016-11-03 R. Stahl Schaltgeräte GmbH Durchführungsanordnung mit hoher Sicherheit
EP3252894A1 (en) * 2016-05-30 2017-12-06 Siemens Aktiengesellschaft Penetrator device for high pressure application
SE541547C2 (en) * 2017-12-22 2019-10-29 Mct Brattberg Ab Insert block and sealing system comprising said insert block
DE102020106044A1 (de) 2020-03-05 2021-09-09 Pepperl+Fuchs Se Explosionsgeschützte Vorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116862U (ja) * 1982-02-02 1983-08-09 横河電機株式会社 ハ−メチツクシ−ル機構
JPS60240339A (ja) * 1984-05-15 1985-11-29 Daihatsu Motor Co Ltd ア−ム部材における取付用ボス部の構造
JPS6318806Y2 (ja) * 1981-06-08 1988-05-26
JPS63224822A (ja) * 1987-03-12 1988-09-19 Yamakawa Kogyo Kk 板材に有頭軸を固着する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427842A (en) * 1982-03-12 1984-01-24 Rosemount Inc. Feedthrough apparatus
US5083362A (en) * 1990-12-13 1992-01-28 Briggs & Stratton Corp. Method for making a vehicle anti-theft key with resistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318806Y2 (ja) * 1981-06-08 1988-05-26
JPS58116862U (ja) * 1982-02-02 1983-08-09 横河電機株式会社 ハ−メチツクシ−ル機構
JPS60240339A (ja) * 1984-05-15 1985-11-29 Daihatsu Motor Co Ltd ア−ム部材における取付用ボス部の構造
JPS63224822A (ja) * 1987-03-12 1988-09-19 Yamakawa Kogyo Kk 板材に有頭軸を固着する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0598136A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131944A (ja) * 2004-11-04 2006-05-25 Hitachi Zosen Corp 水電解水素発生装置における容器収納型水電解槽
JP4635567B2 (ja) * 2004-11-04 2011-02-23 日立造船株式会社 水電解水素発生装置における容器収納型水電解装置

Also Published As

Publication number Publication date
DE69326415T2 (de) 2000-05-11
EP0598136B1 (en) 1999-09-15
EP0598136A4 (en) 1994-12-07
JPH06180264A (ja) 1994-06-28
DE69326415D1 (de) 1999-10-21
JP3334804B2 (ja) 2002-10-15
EP0598136A1 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
WO1993025829A1 (en) Construction of sealing through-hole penetrating through metallic partitioning member
US5861577A (en) Seal structure for member-passing-through hole bored in metal partition member
US10329898B2 (en) High temperature downhole gauge system
US8133068B2 (en) Current connection apparatus for tanks
CN105181223B (zh) 差压传感器以及差压传感器的制造方法
CN105374475A (zh) 电馈通件及其用途
CN106198374B (zh) 一种高温高压电偶腐蚀电化学测试用电极及其应用
US10094686B2 (en) Apparatus for mounting a sensor having a hermetic seal
US5497828A (en) Solid conductor thermal feedthrough
KR20100088462A (ko) 물리량 측정용 압력 장치
US20010009059A1 (en) Method and device for manufacturing pressure detecting apparatus
KR0149896B1 (ko) 금속제 격벽부재의 부재관통공의 봉지구조
US4117720A (en) Electric measuring device having a small-bore liquid container with improved electrode sealing means
JPH09184779A (ja) 圧力センサ
US20230136617A1 (en) Sensor
US3735024A (en) High-pressure and hermetic electrical feed-through apparatus
EP2053372A2 (en) Means and method of sensing pressure using magnetostrictive electrical conductors
Timsit Formation of tubular crimp connections: Elementary considerations
US4488341A (en) Method of making a fluid pressure actuator
US3680208A (en) Method of making electrical penetrant structure
CN216361790U (zh) 一种用于岩心监测的岩心夹持装置
CN219736668U (zh) 一种六面顶压机金刚石复合片合成模压力标定装置
JP3146222B2 (ja) 封止構造
KR200491181Y1 (ko) 피드스루
RU2208856C1 (ru) Кабельный ввод

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019940700245

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1994 190177

Country of ref document: US

Date of ref document: 19940201

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1993913476

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993913476

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 946097

Country of ref document: US

Date of ref document: 19971007

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1993913476

Country of ref document: EP