WO1993023976A1 - Apparatus for lighting fluorescent lamp - Google Patents

Apparatus for lighting fluorescent lamp Download PDF

Info

Publication number
WO1993023976A1
WO1993023976A1 PCT/JP1992/000613 JP9200613W WO9323976A1 WO 1993023976 A1 WO1993023976 A1 WO 1993023976A1 JP 9200613 W JP9200613 W JP 9200613W WO 9323976 A1 WO9323976 A1 WO 9323976A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
negative
preheating current
power supply
circuit
Prior art date
Application number
PCT/JP1992/000613
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Sugimori
Original Assignee
Alco Giken Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alco Giken Co., Ltd. filed Critical Alco Giken Co., Ltd.
Priority to PCT/JP1992/000613 priority Critical patent/WO1993023976A1/en
Priority to AU16965/92A priority patent/AU1696592A/en
Publication of WO1993023976A1 publication Critical patent/WO1993023976A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices
    • H05B41/044Starting switches using semiconductor devices for lamp provided with pre-heating electrodes
    • H05B41/046Starting switches using semiconductor devices for lamp provided with pre-heating electrodes using controlled semiconductor devices

Definitions

  • the present invention relates to a discharge lamp with a filament, for example, a lighting device for a discharge lamp for lighting a fluorescent lamp.
  • a glow lamp has been mainly used as a lighting device for a discharge lamp with a filament.
  • a lighting device using a glow lamp has a short life because the glow lamp is a contact type and has a long life.
  • manpower is required and the deterioration of the glow lamp leads to the deterioration of the discharge lamp. There is.
  • Japanese Patent Publication No. 56-140000 discloses an apparatus shown in FIG.
  • the lines connecting the lamp side and the lighting electronic circuit side are A, B, C and three terminals, and cannot be replaced with a global lamp.
  • the present invention solves all the problems of the prior art described above.
  • the present invention since the lamp side and the lighting circuit network are connected by two terminals, it can be used in place of a conventional glow lamp.
  • the present invention performs non-discharge detection in a negative half cycle and sets a unidirectional switching element for flowing a preheating current, for example, a thyristor in advance so that the thyristor can be turned on. Since the preheating current is supplied immediately from the zero crossing point when the power goes from negative to positive, the preheating current can be supplied as long as possible from the zero crossing point to immediately before the next non-discharge detection. Moreover, since there is always Jode despite variations preheating current I, of the supply voltage magnitude at the time of turning off the thyristor, the magnitude of the voltage V k of the kit Kuparusu is stable.
  • the most important feature that the present invention distinguishes from many prior arts is the two-terminal network connected between the two electrodes of the discharge lamp and at two terminals (P, Q). It has a negative DC power supply inside and uses this negative DC power supply to detect non-discharge during the negative half cycle of the AC power supply and control the unidirectional switching element. It is.
  • the lighting device for a lamp includes an AC power supply (1), a choke coil (2) serving as a ballast, and a reference numeral in FIG.
  • a discharge lamp with filament (3) is connected in series, and a capacitor for kick pulse generation (4) and a two-terminal network (terminals P and Q) are connected between both electrodes of the lamp (3).
  • a discharge lamp lighting device that supplies a preheating current (II) to the above-described filament when turned on, and generates a kick pulse between both electrodes of the discharge lamp (3) when turned off.
  • a directional switching element for example, a thyristor (5), which is charged during one half cycle of the two terminals (P, Q), where one terminal (Q) is negative and the other terminal (P) is negative potential And a capacitor (27), which becomes a negative DC power supply,
  • a non-discharge detection circuit that determines that the voltage between the two terminals (P, Q) is greater than a predetermined value (ed) and detects a non-discharge state of the discharge lamp;
  • the unidirectional switching element (5) is turned on to supply the filament with the preheating current (I,) and to release the non-compressed pack. It is characterized by having switching element control means for holding the off state of the unidirectional switching element (5) when the detection circuit detects the discharge state.
  • FIG. 1 shows an electric circuit diagram of one embodiment of the present invention.
  • FIG. 2 shows an equivalent circuit of the PUT 23 of FIG.
  • FIG. 3 shows a time chart of each part of the embodiment shown in FIG. 1.
  • FIG. 4 shows an electric circuit diagram of another embodiment of the present invention.
  • FIG. 5 shows a characteristic diagram of the positive characteristic thermistor 36 of FIG.
  • FIG. 6 shows a time chart of each part of the embodiment of FIG.
  • FIG. 7 is a characteristic diagram in which the discharge start time of the discharge lamp is represented by using the AC power supply voltage as a variable.
  • FIG. 8 shows a time chart when a temperature rise test is performed using an unlit lamp in the embodiment shown in FIG.
  • FIG. 9 shows a circuit diagram of a conventional example.
  • FIG. 1 shows a circuit diagram of one embodiment of the present invention.
  • a series circuit of a choke coil 2 serving as a ballast and a discharge lamp 3 having filaments 3a and 3b is connected to a commercial AC power supply 1, and a series resonance with the choke coil 2 is performed in parallel with the discharge lamp 3 to cause a high voltage.
  • the capacitor 4 for generating a kick pulse is connected.
  • a two-terminal circuit network 13 described below is connected between both terminals P and Q of the discharge lamp 3.
  • the filament preheating circuit consists of a series circuit of a thyristor 5 and a resistor 16 connected between the two terminals P and Q, and a resistor 15 that applies a control voltage to the gate electrode G of the thyristor 5. ing.
  • This thyristor 5 is a thyristor with a unidirectional control electrode.
  • the terminal P to which the anode electrode A is connected is the control side of the commercial AC power supply, and the other terminal Q is the common side.
  • the potential of the control terminal P is higher than the terminal Q in the positive half cycle of the commercial AC power supply, and the potential of the terminal P is lower than the terminal Q in the negative half cycle.
  • the resistor 16 is provided to measure the current of the thyristor 5, substantially the preheating current I 1 of the lamp, and is proportional to the preheating current I, at both ends. A voltage drop e, occurs.
  • the preheating current measuring circuit is configured by connecting a series circuit of the resistor 18 and the emitter 17 and the base 8 of the transistor 17 to both ends of the resistor 16.
  • the transistor 17 conducts while the terminal potential e, of the resistor 16 is higher than the base-emitter voltage V BB of the transistor 17, and becomes non-conductive during a period when the terminal potential e, is low.
  • the negative DC power supply circuit detects the non-discharge state during the negative half cycle, and records the non-discharge state during the non-discharge state, and supplies the preheating current from the beginning of the next positive half cycle, It is provided for memory and control means for generating a kick pulse, recording the discharge pulse in the discharge state, and suppressing the preheating current and the kick pulse.
  • This negative DC power supply circuit has a capacitor 27 connected between the common terminal Q and the negative power supply R, and a node A connected to the negative power supply R between the negative power supply and the control terminal P.
  • the non-discharge detection circuit which determines whether the electrode simple voltage of the discharge lamp 3 is greater than or less than the set value during the negative half cycle and detects whether or not the discharge is in a non-discharge state, is connected between the two terminals P and Q. It is composed of two divided voltage resistors 6 and 8 and a Zener diode 12 having an anode A connected to an intermediate connection point U between them.
  • the non-discharge detection voltage e d is set by the zener voltage of the zener diode 12 and the two voltage dividing resistors 6 and 8.
  • the memory means for storing data up to the limit is a programmable 'junction' transistor (PUT) 23 and a set circuit connecting this gate electrode G to the cathode K of the Zener diode 12.
  • PUT programmable 'junction' transistor
  • the PUT 23 is a type of thyristor in which two transistors 28 and 29 are connected in positive feedback.
  • a negative current is applied to the gate of the PUT 23, that is, the base B of the transistor 28, the transistor 29 is turned on by the collector current, and another transistor 28 is turned on by the collector current.
  • PUT 23 set the anode-to-force node to 0 volts or reverse bias voltage.
  • PUT 23 can be implemented by replacing the circuit shown in FIG.
  • the OR circuit that detects whether the current exceeds the threshold value is connected to one end of the resistor 22 of the base circuit of the NPN transistor 20 and the power source of the PUT 23 and the collector C of the transistor 17. It is constructed by touching both sides.
  • the collector C of the NPN transistor 20 is connected to the common terminal Q through the resistor 21, and the emitter E of the transistor 20 is connected to the negative power supply R.
  • the base B is connected to the collector C of the NPN transistor 20 of the OR circuit, and the emitter E is connected to the negative power supply.
  • the cathode terminal K of the PUT 23 is reversely biased to a higher potential than the anode terminal A connected to the common line Q, that is, a positive potential, so that the PUT 23 is reset. Then, it enters the standby state for the next non-discharge detection.
  • the preheating current I starts falling after a delay of the AC power supply voltage ⁇ 1 , and falls below the set value I 0 at time t 4, the transistor 17 is turned off, and the current flowing through the resistor 22 of the 0 R circuit is turned off. Then, the transistor 20 is turned off, the transistor 19 is turned on in response, the gate potential of the thyristor 5 is pulled into the negative power source R, and the thyristor 5 is turned off.
  • a kick pulse of a very low voltage V K is generated between P and Q.
  • the discharge lamp 3 is discharged due to the occurrence of kick bals.
  • the voltage between P and Q does not reach the non-discharge detection level ed even during the negative half cycle period.
  • the PUT 23 does not turn on, the transistor 20 keeps off, and the transistor 19 keeps on, so that the AC power supply 1 shifts from the negative half cycle to the positive half cycle.
  • the thyristor 5 does not fire, so that no kick pulse is generated and the discharge state is stably maintained.
  • FIG. 4 shows a circuit diagram of another embodiment of the present invention.
  • the filament preheating circuit composed of a series circuit of the thyristor 5 and the resistor 16 and the control resistor 15 is the same as in the above-described embodiment.
  • the negative DC power supply circuit composed of 27 is the same as the above-described embodiment. Is the same.
  • the non-discharge detection circuit composed of the two voltage dividing resistors 6 and 8 and the Zener diode 12 is the same as in the above-described embodiment.
  • a capacitor 31 is used as a storage element.
  • Transistor 30 is connected between the brass side terminal of capacitor 31 and common line Q to form a capacitor charging circuit, and base B of transistor 30 is connected to cathode K of Zener diode 12.
  • the transistor 35 connected in parallel with the capacitor 31 forms a discharge circuit, and when the transistor 35 is turned on, the memory is reset.
  • the base B of the transistor 35 is connected to the collector C of the preheating current detecting transistor 17 via the resistor 33.
  • the other end of the resistor 3 2, one end of which is connected to the brass side terminal of the capacitor 3 1, and the other end of the resistor 2 2, one end of which is connected to the collector C of the transistor 17 for preheating current detection, are connected to the other end.
  • the circuit in which the resistor 34 is connected to the common connection point and the base of the NPN transistor 20 is connected substantially forms an OR circuit.
  • the most important technical point of this embodiment is that when it becomes difficult to sustain the discharge at the end of the life of the discharge lamp 3 or when it becomes difficult to start the discharge, the ballast 2 by the preheating current to be continued is used. Temperature to reduce the heat generation of the That is, it is provided with ascending restraining means.
  • the temperature rise suppression means includes a positive temperature coefficient thermistor (for example, a product name Posister) 36 connected between the common line Q and the resistor 21, and a transistor for detecting a sudden increase in the resistance value of the positive temperature coefficient thermistor 36.
  • PTC Sir miss evening 3 6 for example urchin by showing a temperature characteristic diagram in FIG. 5, a desired temperature, for example, more than 6 5 'C, rapidly increases the resistance value from 1 0 2 Omega to 1 0 beta Omega
  • the heat conduction device 38 can be implemented by a thermal conductor that connects the resistor 16 and the PTC thermistor 36, or a positional relationship in which the PTC thermistor 36 is placed on the resistor 16.
  • the preheating current becomes I in a positive half cycle. Are held until the time t 3 in excess of.
  • the preheating current I is the set value I.
  • transistor evening 1 7 at time t 4 when made is turned off and the transistor 2 0 off by Tiger Njisu evening 1 9 is turned on, rhinoceros squirrel evening 5 generates a kick voltage V k with data N'ofu.
  • the calorific value of the ballast 2 due to the preheating current becomes excessive.
  • the temperature of the resistor 16 also rises. Therefore, the temperature of the positive temperature characteristic thermistor 36 rises through the heat conduction device 38, so that the resistance value sharply increases and the terminal voltage sharply increases. This causes the transistor 37 to turn on, forcing the charging transistor 30 to be kept off. As a result, the capacitor 31 is charged! : No current is supplied, the thyristor control transistor 19 is kept on, and the thyristor 5 is not fired, so that the filament current of the discharge lamp 3 is not discharged.
  • the temperature of the positive temperature coefficient thermistor 36 decreases due to the stop of the preheating current, and the transistor 37 returns to off, the lighting device starts to operate again.
  • FIG. 8 shows a time chart of the temperature of each part and the voltage between the two terminals P and Q when the discharge becomes difficult due to the failure of the discharge lamp.
  • T in FIG outside air temperature T 1 beta temperature of the resistor 1 6, T 3 e is a positive characteristic thermistor evening 3 6 temperature, T, represents a predetermined control temperature.
  • T represents a predetermined control temperature.
  • Ding 36 reaches the Seioroshi temperature Ding 5
  • transistor 3 7 preheating generation and Firame down bets kit Kuparusu stops by Tano down.
  • the temperature ⁇ 1 ⁇ of the resistor 16 decreases, and the temperature T se of the positive temperature coefficient thermistor 36 also starts to decrease with a delay.
  • the transistor 37 returns to off, and the first lighting drive is performed again.
  • Figure 7 shows the discharge start time from when the power is turned on until the discharge lamp turns on, using the commercial AC power supply voltage as a variable.
  • the solid line shows the measured values of the characteristics of the embodiment of the present invention shown in FIG. 4 and the dotted line shows the characteristics of the conventional example.
  • the frequency of the commercial AC power source was 60 Hz
  • the choke coil 2, the discharge lamp 3, and the capacitor 4 were the same
  • the room temperature and the lamp temperature immediately before the test were 25.9. Performed under the same conditions.
  • the product of the present invention illuminates in 0.36 seconds at Vl-IOOV (RMS), which is 46% compared to 0.77 seconds of the conventional product.
  • -At 90 V the product lights up in 0.59 seconds, which is 34% compared to 1.74 seconds of the conventional product.
  • the two-terminal network is connected to both electrodes of the discharge lamp, it can be implemented by replacing the conventional glow lamp, and this two-terminal network is integrated into an integrated circuit (IC).
  • IC integrated circuit

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

A lighting apparatus of an electronic circuit, which is substituted for an ordinary glow lamp, and lights a discharge lamp fitted with filament electrodes such as a fluorescent lamp by causing satisfactory preheating current to flow through the filament electrodes and by giving a stable kick pulse between them, and is easy to be made into an integrated circuit. The apparatus is characterized by the following. It is a two-terminal network connected between two electrodes (P, Q) of a lamp (3). One terminal (Q) of the two terminals is a common electrode. It has a negative DC power supply (27) which is charged in the negative half cycles of an AC power supply. When the non-discharge of the lamp is sensed in a negative half cycle of the AC power supply, this is stored in the apparatus by utilizing the negative DC power supply. Thereby, a thyristor (5) connected between the two terminals is turned on and consequently a preheating current (I1) continues to flow through the filaments on and after a zero crossing point where the AC voltage shifts to the next positive half cycle. When the preheating current (I1) decreases under preset value (I0), reverse bias current is made to flow from the negative DC power supply to turn off the thyristor (5) and thereby to generate a kick pulse (Vk).

Description

明 細 書  Specification
「放電灯の点灯装置 J  `` Discharge lamp lighting device J
【技術分野】  【Technical field】
本発明は、 フ ィ ラメ ン トつき放電灯、 例えば、 蛍光ランブを 点灯させるための放電灯の点灯装置に関する。  The present invention relates to a discharge lamp with a filament, for example, a lighting device for a discharge lamp for lighting a fluorescent lamp.
【背景技術】 [Background Art]
従来より、 フィ ラメ ン トつき放電灯の点灯装置として、 グロ 一ランプが主として用いられている。 しかし、 グローランプを 用いた点灯装置は、 グローランブが有接点型であるため寿命が あり、 これの取り替えのために人手を要するばかりでなく、 グ ローランプの劣化が放電ランブの劣化を招く等の欠点がある。  Conventionally, a glow lamp has been mainly used as a lighting device for a discharge lamp with a filament. However, a lighting device using a glow lamp has a short life because the glow lamp is a contact type and has a long life.In addition to replacing the glow lamp, manpower is required and the deterioration of the glow lamp leads to the deterioration of the discharge lamp. There is.
これに対し、 半導体スィッチ素子を用いた放電灯点灯装置が 提案されているが、 問題点が多くいまだ実用化されていない。 例えば、 特公昭 5 6 - 1 4 0 0 0号公報には、 図 9に示す装 置が開示されている。 しかし、 この従来例はランプ側と点灯用 電子回路側を結ぶラインが A, B , Cと 3端子であって、 グロ 一ランプと置換することができない。  On the other hand, a discharge lamp lighting device using a semiconductor switch element has been proposed, but it has many problems and has not been put to practical use yet. For example, Japanese Patent Publication No. 56-140000 discloses an apparatus shown in FIG. However, in this conventional example, the lines connecting the lamp side and the lighting electronic circuit side are A, B, C and three terminals, and cannot be replaced with a global lamp.
また、 非放電状憨を交流電源の正の半サイクルでランプ電極 A B間電圧が所定値に増大することにより検知してサイ リ ス夕 をターンオンさせているので、 フィラメン ト予熱電流の流れ始 める時刻が遅く、 予熱電流を流す時間のデューティが制約され て点灯開始までに長時間を要する欠点がある。  In addition, since the non-discharge state is detected when the voltage between the lamp electrodes AB increases to a predetermined value in the positive half cycle of the AC power supply and the thyristor is turned on, the filament preheating current starts flowing. However, there is a disadvantage that it takes a long time to start lighting because the duty of the time for flowing the preheating current is restricted due to the late start time.
さらに、 交流電源が正から負の半サイクルに移り、 C点の電 位がマイナスになったとき、 逆バイアス電流 1 2 を流すことに よりサイ リスタをターンオフさせているが、 一般にターンオフ 時のサイ リス夕のアノー ド電流 I , と逆バイアス電流 I 2 の関 係は、 Furthermore, transfer AC power from positive to negative half-cycle, when the electric position of point C becomes negative, although turning off more thyristor to flow a reverse bias current 1 2, rhino generally at turn-off The relationship between the anode current I, and the reverse bias current I 2 at
I 2 ^ ( 1/2〜1/3) I , であり、 ターンオフする感度にバラツキがある。 一方、 ターン オフにより発生するキッ クパルスのピーク電圧 V k は、 ターン オフ時のアノー ド電流 I , に比例するので、 キッ クパルスの電 圧 V k にもバラツキが生ずる。 そこで、 これらのバラツキを補 うため抵抗 Rの値を調整する必要がある。 抵抗 Rに可変抵抗器 を使用することは小型化の障害となり、 調整作業を必要とする という問題がある。 I 2 ^ (1/2 to 1/3) I, And the sensitivity to turn off varies. On the other hand, since the peak voltage V k of the kick pulse generated by turning off is proportional to the anode current I, at the time of turning off, the voltage V k of the kick pulse also varies. Therefore, it is necessary to adjust the value of the resistor R to compensate for these variations. The use of a variable resistor for the resistor R is an obstacle to miniaturization and requires adjustment work.
さらにまた、 不十分な予熱電流で点灯しょうとすれば、 より 高圧のキックパルスを必要とするが、 逆バイアス電流 I 2 は電 源電圧 V , に比例するため、 電源 ¾圧が低下すると予熱電流、 キッ クバルス電圧がともに低くなり、 点灯開始時間が長くかか り、 あるいは、 点灯不能になり易い。 Furthermore, if lighting is attempted with insufficient preheating current, a higher kick pulse will be required.However, since the reverse bias current I 2 is proportional to the power supply voltage V, the preheating current decreases when the power supply voltage decreases. In addition, both the kickball voltage and the lighting start time are long, or the lighting tends to be impossible.
【発明の開示】 DISCLOSURE OF THE INVENTION
これに対し、 本発明は上記した従来技術の諸問題をすベて解 決する。  On the other hand, the present invention solves all the problems of the prior art described above.
本発明は、 ランプ側と点灯回路網が 2端子で接続されている ので、 従来のグローランプに置換して用いることができる。 ま た、 本発明は負の半サイクルで非放電検知を行うとともに、 予 熱電流を流すための単方向性スィ ツチング素子、 例えばサイ リ スタをターンオンしうるよう予めセッ トしておき、 交流電源が 負から正へ移るゼロクロス時点から直ちに予熱電流を供給する ので、 ゼロクロス時点から次の非放鼋検知を行う直前まで、 許 される限り長い時問予熱電流を供給することができる。 しかも サイ リスタをターンオフするときの予熱電流 I , の大きさが電 源電圧の変動にかかわらず常に 定であるため、 キッ クパルス の電圧 V k の大きさが安定している。 In the present invention, since the lamp side and the lighting circuit network are connected by two terminals, it can be used in place of a conventional glow lamp. In addition, the present invention performs non-discharge detection in a negative half cycle and sets a unidirectional switching element for flowing a preheating current, for example, a thyristor in advance so that the thyristor can be turned on. Since the preheating current is supplied immediately from the zero crossing point when the power goes from negative to positive, the preheating current can be supplied as long as possible from the zero crossing point to immediately before the next non-discharge detection. Moreover, since there is always Jode despite variations preheating current I, of the supply voltage magnitude at the time of turning off the thyristor, the magnitude of the voltage V k of the kit Kuparusu is stable.
本発明が多くの従来技術と区別する最も重要な特徴は、 放電 灯の両電極間と 2端子 (P, Q ) で接続される 2端子回路網の 中に負の直流電源を有しており、 この負の直流電源を利用して 交流電源の負の半サイクル期間に非放 ¾の検出を行い、 単方向 性スィ ッチング素子を制御していることである。 The most important feature that the present invention distinguishes from many prior arts is the two-terminal network connected between the two electrodes of the discharge lamp and at two terminals (P, Q). It has a negative DC power supply inside and uses this negative DC power supply to detect non-discharge during the negative half cycle of the AC power supply and control the unidirectional switching element. It is.
本発明の放 ¾灯の点灯装置は、 理解を容易にするため実施例 の図 1の符号を ( ) 中に添えて記載すると、 交流電源 ( 1 ) 、 安定器となるチョークコイル (2) 、 フィ ラメン トつき放電灯 ( 3 ) が直列接梡されており、 その放鼋灯 ( 3〉 の両電極間に キッ クパルス発生用コンデンサ (4) と 2端子回路網 (端子 P, Q) が接続された放電灯点灯装置であって、 オンのとき上記フ イ ラメン トへ予熱電流 ( I I ) を供耠し、 ターンオフのとき上 記放電灯 ( 3) の両電極間にキックパルスを発生させる単方向 性スイ ッチング素子、 例えば、 サイリスタ ( 5) と、 上記 2端 子 (P, Q) の一方の端子 (Q) に対し他方の端子 (P) が負 電位になる負の半サイクル期間に充電されて負の直流電源とな るコンデンサ ( 2 7) と、 上記負の半サイクル期間における上 記 2端子 ( P, Q) 間電圧が所定値 (e d ) よりも大きいこと を判別して放電灯の非放電状態を検知する非放電検知回路と、 この非放電検知回路が非放電状態を検知したとき、 次の正の半 サイクルの初めに上記単方向性スイッチング素子 ( 5) をター ンオンして上記フイ ラメ ン トに予熱電流 ( I , ) を供铪すると ともに、 その非放罨検知回路が放電状態を検知したとき、 上記 単方向性スイ ッチング素子 ( 5) のオフ状態を保持させるスィ ッチング素子制御手段を有することにより特徴づけられる。  In order to facilitate understanding, the lighting device for a lamp according to the present invention includes an AC power supply (1), a choke coil (2) serving as a ballast, and a reference numeral in FIG. A discharge lamp with filament (3) is connected in series, and a capacitor for kick pulse generation (4) and a two-terminal network (terminals P and Q) are connected between both electrodes of the lamp (3). A discharge lamp lighting device that supplies a preheating current (II) to the above-described filament when turned on, and generates a kick pulse between both electrodes of the discharge lamp (3) when turned off. A directional switching element, for example, a thyristor (5), which is charged during one half cycle of the two terminals (P, Q), where one terminal (Q) is negative and the other terminal (P) is negative potential And a capacitor (27), which becomes a negative DC power supply, A non-discharge detection circuit that determines that the voltage between the two terminals (P, Q) is greater than a predetermined value (ed) and detects a non-discharge state of the discharge lamp; At the beginning of the next positive half cycle, the unidirectional switching element (5) is turned on to supply the filament with the preheating current (I,) and to release the non-compressed pack. It is characterized by having switching element control means for holding the off state of the unidirectional switching element (5) when the detection circuit detects the discharge state.
【図面の簡単な説明】 [Brief description of the drawings]
図 1は、 本発明の一実施例の電気回路図を示す。  FIG. 1 shows an electric circuit diagram of one embodiment of the present invention.
図 2は、 図 1の PUT 2 3の等価回路を示す。  FIG. 2 shows an equivalent circuit of the PUT 23 of FIG.
図 3は、 図 1 に示す実施例の各部のタイムチヤ一トを示す 図 4は、 本発明の他の実施例の電気回路図を示す。 図 5は、 図 4 の正特性サーミス夕 3 6の特性図を示す。 FIG. 3 shows a time chart of each part of the embodiment shown in FIG. 1. FIG. 4 shows an electric circuit diagram of another embodiment of the present invention. FIG. 5 shows a characteristic diagram of the positive characteristic thermistor 36 of FIG.
図 6は、 図 4の実施例の各部のタイムチャー トを示す。  FIG. 6 shows a time chart of each part of the embodiment of FIG.
図 7は、 放電灯の放電開始時間を交流電源電圧を変数として 表した特性図である。  FIG. 7 is a characteristic diagram in which the discharge start time of the discharge lamp is represented by using the AC power supply voltage as a variable.
図 8は、 点灯不能のランプを図 4に示す実施例に使用して温 度上昇テス トを行ったときのタイムチヤ一トを示す。  FIG. 8 shows a time chart when a temperature rise test is performed using an unlit lamp in the embodiment shown in FIG.
図 9は、 従来例の回路図を示す。  FIG. 9 shows a circuit diagram of a conventional example.
【発明を実施するための最良の形態】 BEST MODE FOR CARRYING OUT THE INVENTION
図 1 に本発明の一実施例の回路図を示す。  FIG. 1 shows a circuit diagram of one embodiment of the present invention.
商用交流電源 1 に安定器となるチョークコイル 2 とフィ ラメ ン ト 3 a、 3 bをもつ放電灯 3の直列回路が接続され、 この放 電灯 3 と並列にチョークコイル 2 と直列共振して高圧のキッ ク パルスを発生させるためのコンデンサ 4が接続されている。  A series circuit of a choke coil 2 serving as a ballast and a discharge lamp 3 having filaments 3a and 3b is connected to a commercial AC power supply 1, and a series resonance with the choke coil 2 is performed in parallel with the discharge lamp 3 to cause a high voltage. The capacitor 4 for generating a kick pulse is connected.
そして、 放電灯 3の両端子 P, Q間に以下説明する二端子回 路網 1 3が接铳されている。  Further, a two-terminal circuit network 13 described below is connected between both terminals P and Q of the discharge lamp 3.
電源が投入された後、 放電を開始する迄の間、 放電灯 3のフ イ ラメ ン ト 3 a、 3 bに予熱電流を流し、 かつ、 この予熱電流 を遮断してキッ クパルスを発生させるためのフィ ラメ ン ト予熱 回路は、 二端子 P , Q間に接続されたサイ リスタ 5 と抵抗 1 6 の直列回路、 およびサイ リス夕 5のゲート電極 Gに制御電圧を 与える抵抗 1 5により構成されている。 このサイ リスタ 5は、 一方向性制御電極付サイ リス夕である。 そのアノー ド電極 Aが 接続される端子 Pを商用交流電源の制御側とし、 もう一つの端 子 Qをコモン側とする。 したがって、 商用交流電源の正の半サ ィクルにおいて制御端子 Pの電位は端子 Qよりも高く、 負の半 サイ クルにおいて端子 Pの電位は端子 Qよりも低い。 抵抗 1 6 はサイ リスタ 5の電流、 実質的に放 ¾灯の予熱電流 I 1 を測定 するために設けられたもので、 その両端に予熱電流 I , に比例 した電圧降下 e , が生じる。 To supply a preheating current to the filaments 3a and 3b of the discharge lamp 3 and to cut off this preheating current to generate a kick pulse until the discharge starts after the power is turned on. The filament preheating circuit consists of a series circuit of a thyristor 5 and a resistor 16 connected between the two terminals P and Q, and a resistor 15 that applies a control voltage to the gate electrode G of the thyristor 5. ing. This thyristor 5 is a thyristor with a unidirectional control electrode. The terminal P to which the anode electrode A is connected is the control side of the commercial AC power supply, and the other terminal Q is the common side. Therefore, the potential of the control terminal P is higher than the terminal Q in the positive half cycle of the commercial AC power supply, and the potential of the terminal P is lower than the terminal Q in the negative half cycle. The resistor 16 is provided to measure the current of the thyristor 5, substantially the preheating current I 1 of the lamp, and is proportional to the preheating current I, at both ends. A voltage drop e, occurs.
予熱電流測定回路は、 抵抗 1 6の両端にトランジスタ 1 7の ェミ ッタ Ε、 ベース Β間と抵抗 1 8の直列回路を接铳すること により構成される。 このトランジスタ 1 7は、 抵抗 1 6の端子 電位 e , がトランジスタ 1 7のベース ' ェミ ッタ間電圧 V B Bよ り大きい期間に導通し、 小さい期間に非導通になる。 The preheating current measuring circuit is configured by connecting a series circuit of the resistor 18 and the emitter 17 and the base 8 of the transistor 17 to both ends of the resistor 16. The transistor 17 conducts while the terminal potential e, of the resistor 16 is higher than the base-emitter voltage V BB of the transistor 17, and becomes non-conductive during a period when the terminal potential e, is low.
負の直流電源回路は、 負の半サイクルの期間に非放電状態を 検知するため、 並びに、 非放電のときはそれを記億して次の正 の半サイクルの始めから予熱鼋流を流し、 鎵いてキッ クパルス を発生させ、 放電状態のときはそれを記億してその予熱電流お よびキッ クパルスを抑止する記憶および制御手段のために設け られている。 この負の直流電源回路は、 コモン端子 Qと負電源 Rの間に接挠されたコンデンサ 2 7、 負 ¾源尺と制御端子 Pの 間に、 ァノー ド Aが負電源 Rに接铳されたダイォー ド 2 6 と高 抵抗 2 4 の直列回路、 および、 そのダイオー ド 2 6の力ソー ド Kとコモン端子 Qの間に、 力ソー ド Kがコモン端子 Qに接続さ れたゼナーダイオー ド 2 5により構成されている。  The negative DC power supply circuit detects the non-discharge state during the negative half cycle, and records the non-discharge state during the non-discharge state, and supplies the preheating current from the beginning of the next positive half cycle, It is provided for memory and control means for generating a kick pulse, recording the discharge pulse in the discharge state, and suppressing the preheating current and the kick pulse. This negative DC power supply circuit has a capacitor 27 connected between the common terminal Q and the negative power supply R, and a node A connected to the negative power supply R between the negative power supply and the control terminal P. A series circuit of a diode 26 and a high resistance 24, and a Zener diode 25 with a power source K connected to the common terminal Q between the force source K and the common terminal Q of the diode 26 It consists of.
負の半サイクル期間に放電灯 3の電極簡電圧が設定値より大 きいか小さいかを判別して非放電伏態か否かを検知する非放電 検知回路は、 二端子 P , Q間に接铳された 2個の分圧抵抗 6、 8 と、 その中間接続点 Uにァノー ド Aが接铳されたゼナーダイ オー ド 1 2により構成されている。 このゼナーダイオー ド 1 2 のゼナー電圧および 2個の分圧抵抗 6、 8によって、 非放電検 知電圧 e d に設定されている。  The non-discharge detection circuit, which determines whether the electrode simple voltage of the discharge lamp 3 is greater than or less than the set value during the negative half cycle and detects whether or not the discharge is in a non-discharge state, is connected between the two terminals P and Q. It is composed of two divided voltage resistors 6 and 8 and a Zener diode 12 having an anode A connected to an intermediate connection point U between them. The non-discharge detection voltage e d is set by the zener voltage of the zener diode 12 and the two voltage dividing resistors 6 and 8.
非放電伏態が検知されたとき、 この検知情報を次の正の半サ ィクルにおいて予熱電流 I , が設定電流値 I 。 を超えるまで記 憶する記億手段は、 プログラマブル ' ュニジャ ンクショ ン ' ト ランジス夕 ( P U T ) 2 3 と、 このゲート電極 Gをゼナーダイ オー ド 1 2のカソ一-ド Kに接铙するセッ ト回路、 および P U T 2 3のカソー ド電極 Kを予熱電流検知用 トランジスタ 1 7のコ レクタ Cに接続するリセッ ト回路により構成されている。 When the non-discharge state is detected, the preheating current I, is set to the set current value I in the next positive half cycle. The memory means for storing data up to the limit is a programmable 'junction' transistor (PUT) 23 and a set circuit connecting this gate electrode G to the cathode K of the Zener diode 12. , And PUT It consists of a reset circuit that connects the cathode electrode K of 23 to the collector C of the transistor 17 for preheating current detection.
PUT 2 3は、 その等価回路を図 2に示すように、 2個のト ランジス夕 2 8、 2 9を正帰還接統したサイ リス夕の一種類で ある。 PUT 2 3のゲー ト、 すなわちトランジスタ 2 8のべ一 ス Bに負の電流を流すと、 そのコレクタ電流により トランジス 夕 2 9がオンになり、 そのコレク夕扈流によりもう一つのトラ ンジスタ 2 8をオンにする働きがある。 PUT 2 3をターンォ フするには、 アノー ド · 力ソード間を 0ボルトないし逆バイ了 ス電圧にすればよい。 PUT 2 3を図 2に示す回路に置換して 実施することができる。  As shown in Fig. 2, the PUT 23 is a type of thyristor in which two transistors 28 and 29 are connected in positive feedback. When a negative current is applied to the gate of the PUT 23, that is, the base B of the transistor 28, the transistor 29 is turned on by the collector current, and another transistor 28 is turned on by the collector current. There is a function to turn on. To turn off PUT 23, set the anode-to-force node to 0 volts or reverse bias voltage. PUT 23 can be implemented by replacing the circuit shown in FIG.
前記した記憶手段が非放電伏態の検知を記馆しているか、 あ るいは、 予熱電流 I , が設定電流値 I。 を超えているかのいず れであるこ とを検出する OR回路は、 NPN形トランジスタ 2 0のベース回路の抵抗 2 2の一端を P UT 2 3の力ソー ド と トランジスタ 1 7のコレクタ C.の双方に接銃することにより構 成されている。 この NPN形トランジスタ 2 0のコレクタ Cは, 抵抗 2 1を通してコモン端子 Qに接続され、 トランジスタ 2 0 のェミ ッ タ Eは、 負電源 Rに接統されている。  Whether the above-mentioned storage means records the detection of the non-discharge state, or the preheating current I, is the set current value I. The OR circuit that detects whether the current exceeds the threshold value is connected to one end of the resistor 22 of the base circuit of the NPN transistor 20 and the power source of the PUT 23 and the collector C of the transistor 17. It is constructed by touching both sides. The collector C of the NPN transistor 20 is connected to the common terminal Q through the resistor 21, and the emitter E of the transistor 20 is connected to the negative power supply R.
サイ リスタ 5のターンオンとターンオフを制御するサイ リス 夕制御回路は、 前記した OR回路の NPN形トランジスタ 2 0 のコレクタ Cにベース Bが接銃され、 ェミ ッタ Eが負電源尺に 接銃された NPN形トランジスタ 1 9 と、 そのトランジスタ 1 9のコレクタ Cをサイ リス夕 5のゲー ト電極 Gに接続する回路 1 4 と、 そのサイ リス夕 5に制御電圧を与えるため、 ゲー ト電 極 Gとアノー ド電極 Aに接続された抵抗 1 5により構成されて いる。 この トランジスタ 1 9がカッ トオフのときに負の半サイ クルから正の半サイクルに転ずるゼロクロス時点にサイ リス夕 5がターンオンし、 サイ リスタ 5が導通中に トランジスタ 1 9 がオンに転じたとき、 サイ リスタ 5がターンオフする。 In the thyristor control circuit for controlling the turn-on and turn-off of the thyristor 5, the base B is connected to the collector C of the NPN transistor 20 of the OR circuit, and the emitter E is connected to the negative power supply. The NPN transistor 19, the circuit 14 connecting the collector C of the transistor 19 to the gate electrode G of the thyristor 5, and the gate electrode for applying a control voltage to the thyristor 5 It consists of G and a resistor 15 connected to the anode electrode A. When the transistor 19 is cut off, the thyristor 5 is turned on at the zero crossing point when the half cycle changes from the negative half cycle to the positive half cycle, and the transistor 19 is turned on while the thyristor 5 is conducting. When turns on, thyristor 5 turns off.
次に、 図 1 に示す実施例の作用を図 3のタイムチャー トを参 考しながら説明する。  Next, the operation of the embodiment shown in FIG. 1 will be described with reference to the time chart of FIG.
交流罨源 1 から交流電圧 V , が印加されて負の半サイクル期 間になると、 抵抗 2 4、 ダイオード 2 6を通じてコンデンサ 2 7に負の充鼈電流が流れる。 しかしコンデンサ 2 7の両端子照 電圧はゼナーダイォー ド 2 5のゼナー菴圧以上にはならない。 電源印加後の初期は、 非放電状憨であって放電灯 3の電極間ィ ンピーダンスが高く、 負の半サイクル期簡において P , Q間の 電圧は電源 1 と同じように変化する。 やがて時刻 t , に非放電 検知回路の設定値 e d を超えると、 抵抗 6、 8で分圧された電 圧がゼナーダイオー ド 1 2を通じて P U T 2 3のゲー トをト リ ガーする。 P U T 2 3がターンオンすると、 抵抗 2 2を通じて ドランジスタ 2 0 もターンオンし、 P U T 2 3のオン状態を自 己保持する。 また、 このとき トランジスタ 1 9はターンオフす るので、 サイ リ スタ 5はゼロクロス点 t 2 を過ぎると直ちに点 弧しうるセッ ト状態になっている。 When the AC voltage V, is applied from the AC compress source 1 and a negative half cycle period is reached, a negative charging current flows through the capacitor 27 through the resistor 24 and the diode 26. However, the voltage at both terminals of the capacitor 27 does not exceed the Zener diode 25 Zener pressure. At the initial stage after the power supply is applied, the discharge lamp 3 is in a non-discharge state, the impedance between the electrodes of the discharge lamp 3 is high, and the voltage between P and Q changes as in the power supply 1 in the negative half cycle period. Eventually time t, the exceeds the set value e d of the non-discharge detection circuit, divided by voltage at the resistor 6, 8 is collected by re gar the gate of PUT 2 3 through Zenadaio de 1 2. When the PUT 23 is turned on, the transistor 20 is also turned on through the resistor 22 and holds the PUT 23 on state. At this time the transistor 1 9 off to Runode, reuse Star 5 is in a set state capable of immediately firing past the zero-crossing point t 2.
交流電源電圧 V , がゼロクロス点 t 2 を通過して正の半サイ クル期間に移ると、 サイ リス夕 5がオン伏態になり、 チョーク コイル 2のインダクタンス成分による位相遅れをともないなが ら電流が増大してゆく。 この電流が放電灯の電極 3 a、 3 bの 予熱電流 I , である。 この予熱電流 I 』 は抵抗 1 6 の端子電圧 e 1 として検知することができ、 その電流 I 1 が設定値 I 0 を こえる時刻 t 3 にトランジスタ 1 7がオンし、 抵抗 2 2を通じ て トランジスタ 2 0をオンし続ける。 なお、 P U T 2 3のカソ 一ド端子 Kは、 コモンライン Qに接銃されたァノ一ド端子 Aよ りも高い電位、 すなわち正の電位に逆バイアスされるため、 P U T 2 3はリセッ トされ、 次の非放電検知に対する待機状態に なる。 予熱電流 I , が交流電源電圧 ν 1 より遅れて下降に転じ、 時 刻 t 4 において設定値 I 0 より減少すると、 トランジスタ 1 7 がオフになり、 0 R回路の抵抗 2 2を通る ¾流がなくなつて ト ランジス夕 2 0がターンオフし、 それに応じてトランジスタ 1 9がターンオンし、 サイ リスタ 5のゲー ト電位が負電源 Rへ引 き込まれてサイ リス夕 5がターンオフする。 その結果、 非常に 髙ぃ電圧 V K のキックパルスが P , Q間に発生する。 AC power supply voltage V, but turning to the positive half cycle period through the zero-cross point t 2, rhinoceros squirrel evening 5 is turned on Fukutai, Do With the phase delay due to the inductance component of the choke coil 2 et current Is increasing. This current is the preheating current I, for the discharge lamp electrodes 3a and 3b. This preheating current I ”can be detected as the terminal voltage e 1 of the resistor 16, and at a time t 3 when the current I 1 exceeds the set value I 0, the transistor 17 turns on and the transistor 2 passes through the resistor 22. Keep turning on 0. Note that the cathode terminal K of the PUT 23 is reversely biased to a higher potential than the anode terminal A connected to the common line Q, that is, a positive potential, so that the PUT 23 is reset. Then, it enters the standby state for the next non-discharge detection. When the preheating current I, starts falling after a delay of the AC power supply voltage ν 1 , and falls below the set value I 0 at time t 4, the transistor 17 is turned off, and the current flowing through the resistor 22 of the 0 R circuit is turned off. Then, the transistor 20 is turned off, the transistor 19 is turned on in response, the gate potential of the thyristor 5 is pulled into the negative power source R, and the thyristor 5 is turned off. As a result, a kick pulse of a very low voltage V K is generated between P and Q.
放電灯 3のフィ ラメ ン ト 3 a、 3 bの予熱が充分でない間は、 キックバルスの発生があっても放電を開始せず、 非放電状態の 検知、 予熱電流供辁、 キックパルスの発生のプロセスが繰り返 される。 その場合、 予熱電流 I , の供給デューティは、 図 3に 示す通り となる。 この通電位相角 0は、 必ず  As long as the filaments 3a and 3b of the discharge lamp 3 are not sufficiently preheated, the discharge does not start even if a kick pulse is generated, the non-discharge state is detected, the preheat current is supplied, and the kick pulse is not generated. The process repeats. In that case, the supply duty of the preheating current I, is as shown in Fig. 3. This conduction phase angle 0 must be
7Γである。 7Γ.
放電灯 3のフィ ラメン ト 3 a、 3 bが充分予熱された後、 キ ックバルスの発生により放電灯 3は放電する。 この場合、 負の 半サイクル期間においても、 P , Q間電圧が非放電検知レベル e d に達しなくなる。 その結果、 P U T 2 3はターンオンせず, トランジスタ 2 0はオフ状態を持铳し、 トランジスタ 1 9はォ ン状態を持続するため、 交流電源 1が負の半サイクルから正の 半サイクルへ移ってもサイ リスタ 5は点弧せず、 したがってキ ッ クパルスも発生せず、 放電状態が安定に維持される。  After the filaments 3a and 3b of the discharge lamp 3 are sufficiently preheated, the discharge lamp 3 is discharged due to the occurrence of kick bals. In this case, the voltage between P and Q does not reach the non-discharge detection level ed even during the negative half cycle period. As a result, the PUT 23 does not turn on, the transistor 20 keeps off, and the transistor 19 keeps on, so that the AC power supply 1 shifts from the negative half cycle to the positive half cycle. Also, the thyristor 5 does not fire, so that no kick pulse is generated and the discharge state is stably maintained.
図 4に、 本発明の他の実施例の回路図を示す。  FIG. 4 shows a circuit diagram of another embodiment of the present invention.
サイ リ スタ 5 と抵抗 1 6の直列回路および制御用抵抗 1 5 よ り構成されるフイ ラメ ン ト予熱回路は、 前記した実施例と同じ である。  The filament preheating circuit composed of a series circuit of the thyristor 5 and the resistor 16 and the control resistor 15 is the same as in the above-described embodiment.
負電源 Rから制御端子 Pへ羝流を流すダイォー ド 2 6 と抵抗 2 4の直列回路、 負の電源電圧を規定するゼナー電圧のゼナ— ダイォー ド 2 5 とダイオード 2 6を通して充電されるコンデン サ 2 7より構成される負の直流電源回路は、 前記した実施例と 同じである。 A series circuit of a diode 26 and a resistor 24, which flow a current from the negative power source R to the control terminal P, and a zener voltage of the zener voltage defining the negative power supply voltage. A capacitor charged through the diode 25 and the diode 26. The negative DC power supply circuit composed of 27 is the same as the above-described embodiment. Is the same.
2個の分圧抵抗 6、 8 とゼナーダイオー ド 1 2より構成され る非放電検知回路は、 前記した実施例と同じである。  The non-discharge detection circuit composed of the two voltage dividing resistors 6 and 8 and the Zener diode 12 is the same as in the above-described embodiment.
前記実施例の P U T 2 3に代えて、 記億素子としてコンデン サ 3 1が用いられている。 このコンデンサ 3 1 のブラス側端子 とコモンライ ン Qの問にトランジスタ 3 0が接続されてコンデ ンサの充電回路を形成し、 この トランジスタ 3 0のベース Bは ゼナーダイオー ド 1 2のカソー ド Kに接铰されており、 負の半 サイクル期間に P , Q間電圧が非放電検知電圧 e d を超えたと き、 コンデンサ 3 1 が充電されてそのことを記憶する。 コンデ ンサ 3 1 と並列に接繞されたトランジスタ 3 5が放電回路を形 成し、 この トランジスタ 3 5がターンオンしたとき記憶はリセ ッ トされる。 このトランジスタ 3 5のベース Bは抵抗 3 3を通 じて、 予熱電流検知用 トランジスタ 1 7のコレクタ Cに接続さ れている。  Instead of the PUT 23 in the above embodiment, a capacitor 31 is used as a storage element. Transistor 30 is connected between the brass side terminal of capacitor 31 and common line Q to form a capacitor charging circuit, and base B of transistor 30 is connected to cathode K of Zener diode 12. When the voltage between P and Q exceeds the non-discharge detection voltage ed during the negative half cycle, the capacitor 31 is charged and memorized. The transistor 35 connected in parallel with the capacitor 31 forms a discharge circuit, and when the transistor 35 is turned on, the memory is reset. The base B of the transistor 35 is connected to the collector C of the preheating current detecting transistor 17 via the resistor 33.
コンデンサ 3 1 のブラス側端子に一端が接铳された抵抗 3 2 と、 予熱電流検知用 トランジスタ 1 7のコレクタ Cに一端が接 続された抵抗 2 2の 2つの抵抗の他端を共通接銃し、 その共通 接铙点に抵抗 3 4を接挠するとともに、 N P N形トラ ンジスタ 2 0のベースを接続した回路は、 実質的に O R回路を構成して いる。  The other end of the resistor 3 2, one end of which is connected to the brass side terminal of the capacitor 3 1, and the other end of the resistor 2 2, one end of which is connected to the collector C of the transistor 17 for preheating current detection, are connected to the other end. The circuit in which the resistor 34 is connected to the common connection point and the base of the NPN transistor 20 is connected substantially forms an OR circuit.
この トランジスタ 2 0のコレクタ Cに反転用 (インバー夕) となる N P N形トランジスタ 1 9が接続されていることと、 こ のトランジスタ 1 9がサイ リスタ 5の制御回路を構成している ことは、 前記実施例と同じである。  The fact that the inverting NPN transistor 19 is connected to the collector C of the transistor 20 and that the transistor 19 forms the control circuit of the thyristor 5 is as described above. This is the same as the embodiment.
この実施例が最も特徵とする技術的事項は、 放電灯 3の寿命 の末期において放電の持铙が困難になったり、 放電開始が困難 になった場合に、 継铳する予熱電流による安定器 2の発熱を抑 止するとともに、 回路網全体の温度上昇を抑えるために温度上 昇抑止手段を備えていることである。 The most important technical point of this embodiment is that when it becomes difficult to sustain the discharge at the end of the life of the discharge lamp 3 or when it becomes difficult to start the discharge, the ballast 2 by the preheating current to be continued is used. Temperature to reduce the heat generation of the That is, it is provided with ascending restraining means.
この温度上昇抑止手段は、 コモンライン Qと抵抗 2 1 の間に 接続された正特性サーミスタ (例えば、 商品名ポジスタ) 3 6、 この正特性サー ミ スタ 3 6の抵抗値の急増を検知する トランジ スタ 3 7、 このトランジスタ 3 7をコンデンサ 3 1 の充電用 ト ラ ンジス夕 3 0のエミ ッタ ' ベース間に接続して、 この トラン ジスタ 3 0を強制的にオフにさせる回路手段、 および、 予熱電 流検知用抵抗 1 6の発熱を正特性サーミスタ 3 6へ熱的に伝達 する熱伝導装置 3 8により構成されている。  The temperature rise suppression means includes a positive temperature coefficient thermistor (for example, a product name Posister) 36 connected between the common line Q and the resistor 21, and a transistor for detecting a sudden increase in the resistance value of the positive temperature coefficient thermistor 36. A circuit means for connecting the transistor 37 to the emitter of the transistor 30 for charging the capacitor 31 to the base of the transistor 30 to forcibly turn off the transistor 30; and It is composed of a heat conduction device 38 that thermally transfers the heat generated by the preheating current detection resistor 16 to the positive temperature coefficient thermistor 36.
正特性サー ミス夕 3 6は、 例えば図 5に温度特性図を示すよ うに、 所望の温度、 例えば 6 5 'Cを超えると、 抵抗値が 1 0 2 Ωから 1 0 β Ωへ急激に上昇する感熱抵抗素子である。 熱伝導 装置 3 8は、 抵抗 1 6 と正特性サーミスタ 3 6を連結する熱良 導体、 あるいは、 抵抗 1 6の上に正特性サーミスタ 3 6を載置 する位置関係等により実施することができる。 PTC Sir miss evening 3 6, for example urchin by showing a temperature characteristic diagram in FIG. 5, a desired temperature, for example, more than 6 5 'C, rapidly increases the resistance value from 1 0 2 Omega to 1 0 beta Omega This is a heat-sensitive resistance element. The heat conduction device 38 can be implemented by a thermal conductor that connects the resistor 16 and the PTC thermistor 36, or a positional relationship in which the PTC thermistor 36 is placed on the resistor 16.
続いてこの図 4 に示す実施例の作用を、 図 6のタイムチヤ一 トを参考しながら説明する。 なお、 図 1 に示す実施例の作用説 明と同じところは同じ記号、 番号を用いて表し、 その説明を省 略する。  Next, the operation of the embodiment shown in FIG. 4 will be described with reference to the time chart of FIG. The same parts as those in the operation description of the embodiment shown in FIG. 1 are represented by the same symbols and numbers, and the description thereof is omitted.
トラ ンジスタ 3 0は、 負の半サイクル期間において制御端子 Ρの電位がコモンライ ン Qの電位に対し、 非放電検知電圧 e d よりも大きい間オンになってコンデンサ 3 1 を充電する。 コン デンサ 3 1 の充¾ ¾圧により、 抵抗 3 2を通して トランジスタ 2 0のベース電流を流し、 時刻 t 1 より トランジスタ 2 0は夕 ーンオンし、 トランジスタ 1 9をカッ トオフさせる。 Tiger Njisuta 3 0, the potential of the control terminal Ρ in the negative half-cycle period relative to the potential of Komonrai down Q, to charge the capacitor 3 1 turned between on greater than the non-discharge detection voltage e d. The base current of the transistor 20 is caused to flow through the resistor 32 by the charging voltage of the capacitor 31, and the transistor 20 is turned on and the transistor 19 is cut off at time t 1.
正の半サイクルによる時刻 t 2 からサイ リス夕 5がターンォ ンして予熱電流 I , が流れ始め、 設定値 I 。 を超える時刻 t 3 から トランジスタ 1 7がターンオンする。 Preheating current I positive rhino squirrel evening 5 from time t 2 by a half cycle and Tano down, start to flow, the set value I. From time t 3, transistor 17 turns on.
トランジスタ 1 7がターンオンすることにより、 コンデンサ 3 1 の放電用 トラ ンジスタ 3 5は抵抗 3 3 によるべ一ス電流で ターンオンしてコンデンサ 3 1 の充電電圧を放電し、 トランジ ス夕 2 0 は抵抗 2 2によるベース電流でオンを維持する。 When transistor 17 is turned on, the capacitor The discharge transistor 35 of 31 is turned on by the base current by the resistor 33 to discharge the charge voltage of the capacitor 31, and the transistor 20 is kept on by the base current by the resistor 22.
すなわち、 コンデンサ 3 1 の端子蹊圧は時刻 t , において非 放電状態であることを検知してから、 正の半サイクルになって 予熱電流が I 。 を超える時刻 t 3 までホールドしている。 That is, after detecting that the terminal pressure of the capacitor 31 is in a non-discharge state at time t, the preheating current becomes I in a positive half cycle. Are held until the time t 3 in excess of.
予熱電流 I , が設定値 I 。 以下となる時刻 t 4 でトランジス 夕 1 7はターンオフし、 トランジスタ 2 0はターンオフ、 トラ ンジス夕 1 9がターンオンすることにより、 サイ リス夕 5はタ ーンオフしてキッ ク電圧 V k を発生する。 The preheating current I, is the set value I. Follows transistor evening 1 7 at time t 4 when made is turned off and the transistor 2 0 off by Tiger Njisu evening 1 9 is turned on, rhinoceros squirrel evening 5 generates a kick voltage V k with data N'ofu.
放電灯 3が劣化することにより、 キックパルス V K が継続的 に発生しても放 ¾しない状態が続く と、 予熱電流による安定器 2の発熱量が過大となる。 そのような状態においては、 抵抗 1 6 も温度上昇するから、 熱伝導装置 3 8を介して、 正特性サー ミ スタ 3 6の温度が高くなるため抵抗値が急増し、 その端子電 圧の急増により トランジスタ 3 7がターンオンして、 充電用 ト ランジス夕 3 0を強制的にオフに保持する。 その結果、 コンデ ンサ 3 1 に充電!:流が供耠されず、 サイ リスタ制御用 トランジ スタ 1 9がオン状態を保持して、 サイ リスタ 5は点弧されず、 したがって放電灯 3のフイ ラメン ト電流も耠電されなくなる。 予熱電流の停止のよって正特性サーミスタ 3 6の温度が低くな り、 トランジスタ 3 7がオフに戻ると、 点灯装置は再び活動を 開始する。 If the discharge lamp 3 deteriorates and the kick pulse V K continues to be emitted even if it is continuously generated, the calorific value of the ballast 2 due to the preheating current becomes excessive. In such a state, the temperature of the resistor 16 also rises. Therefore, the temperature of the positive temperature characteristic thermistor 36 rises through the heat conduction device 38, so that the resistance value sharply increases and the terminal voltage sharply increases. This causes the transistor 37 to turn on, forcing the charging transistor 30 to be kept off. As a result, the capacitor 31 is charged! : No current is supplied, the thyristor control transistor 19 is kept on, and the thyristor 5 is not fired, so that the filament current of the discharge lamp 3 is not discharged. When the temperature of the positive temperature coefficient thermistor 36 decreases due to the stop of the preheating current, and the transistor 37 returns to off, the lighting device starts to operate again.
図 8は、 放電灯の不良化により放霉が困難になったときの、 各部温度と二端子 P , Q間電圧のタイムチャートを示す。 図に おいて、 T , は外気温、 Τ 1 βは抵抗 1 6の温度、 T 3 eは正特性 サーミス夕 3 6の温度、 T , は所定の制御温度を表している。 電源オン後、 フイ ラメ ン ト予熱 ¾流を供耠しながらキッ クバ ルス V K を連銃的に発生させる点灯駆動が行われるにもかかわ らず放電不能状態が持続すると、 まず抵抗 1 6の温度が上昇し. やや遅れて正特性サーミス夕 3 6の温度も上昇する。 やがて、 丁36が制卸温度丁5 に達すると、 トランジスタ 3 7がターンォ ンしてキッ クパルスの発生とフィラメ ン トの予熱が停止する。 その休止期間中に抵抗 1 6の温度 Τが下がり、 遅れて正特性 サー ミ スタ 3 6の温度 Tseも下降に転する。 その後、 Τが再 び制御温度 Ts 以下に戻ると、 トランジスタ 3 7がオフに戻り、 再び最初の点灯駆動が行われる。 FIG. 8 shows a time chart of the temperature of each part and the voltage between the two terminals P and Q when the discharge becomes difficult due to the failure of the discharge lamp. , Oite, T in FIG outside air temperature, T 1 beta temperature of the resistor 1 6, T 3 e is a positive characteristic thermistor evening 3 6 temperature, T, represents a predetermined control temperature. After power-on, involved in the lighting drive for generating a continuous gun illustrating a kit Kuba pulse V K while Kyo耠the Huy lame emissions collected by preheating ¾ flow takes place If the discharge-disable state persists, the temperature of the resistor 16 first rises. The temperature of the positive characteristic thermistor 36 also rises slightly later. Eventually, Ding 36 reaches the Seioroshi temperature Ding 5, transistor 3 7 preheating generation and Firame down bets kit Kuparusu stops by Tano down. During the idle period, the temperature Τ1β of the resistor 16 decreases, and the temperature T se of the positive temperature coefficient thermistor 36 also starts to decrease with a delay. Thereafter, when {3} returns to the control temperature Ts or less again, the transistor 37 returns to off, and the first lighting drive is performed again.
図 7に、 電源オン後、 放電灯が点灯するまでの放電開始時間 を商用交流電源電圧を変数として示す。 図において、 実線は本 発明の図 4に示した実施例、 点線は従来例の特性の実測値を示 す。 このテス トには、 商用交流鼇源の周波数 6 0 Hz、 チョーク コイル 2、 放電灯 3、 コンデンサ 4は同一のものを使用し、 室 温、 テス ト直前のランプ温度とも 2 5. 9での同一条件で行つ た。 このテス ト結果によれば、 Vl - I O O V (RMS) のと き本発明品は 0. 3 6秒で点灯し、 これは従来品の 0. 7 7秒 に比べて 4 6 %であり、 VI - 9 0 Vのとき本発明品は 0. 5 9秒で点灯し、 これは従来品の 1. 7 4秒に比べて 3 4 %であ り、 さらに、 VI = 8 5 Vのとき本発明品が 0. 8 0秒で点灯 したのに対し従来品は点灯不能であった。  Figure 7 shows the discharge start time from when the power is turned on until the discharge lamp turns on, using the commercial AC power supply voltage as a variable. In the figure, the solid line shows the measured values of the characteristics of the embodiment of the present invention shown in FIG. 4 and the dotted line shows the characteristics of the conventional example. In this test, the frequency of the commercial AC power source was 60 Hz, the choke coil 2, the discharge lamp 3, and the capacitor 4 were the same, and the room temperature and the lamp temperature immediately before the test were 25.9. Performed under the same conditions. According to the test results, the product of the present invention illuminates in 0.36 seconds at Vl-IOOV (RMS), which is 46% compared to 0.77 seconds of the conventional product. -At 90 V, the product lights up in 0.59 seconds, which is 34% compared to 1.74 seconds of the conventional product. The product lit in 0.8 seconds, whereas the conventional product could not be lit.
【産業上の利用可能性】 [Industrial applicability]
本発明によれば、 放電灯の両電極に 2端子回路網が接続され た構成であるので、 従来のグローランプに置き換えて実施する ことができ、 この 2端子回路網を集積回路 ( I C) 化しグロ一 ランプのソケッ 卜と同一形伏寸法にすることにより、 既設の蛍 光ランブ点灯用グローランブに置換して使用することが可能に なる。 その場合、 本発明実施例から明らかなように、 回路組立 後、 調整を要する個所がないので生産性が高い。 また、 本発明によれば、 2端子回路網中に接点を有していな いので、 半永久的寿命があり、 従来のグローランプの交換作業 が不要となり、 グローランプの劣化が放電灯の劣化を早めるこ とがなく、 放鬵灯の寿命が長くなる。 According to the present invention, since the two-terminal network is connected to both electrodes of the discharge lamp, it can be implemented by replacing the conventional glow lamp, and this two-terminal network is integrated into an integrated circuit (IC). By making it the same shape and size as the socket of the glow lamp, it becomes possible to replace the existing glow lamp for fluorescent lamp lighting. In this case, as is clear from the embodiment of the present invention, there is no place requiring adjustment after circuit assembly, so that productivity is high. In addition, according to the present invention, since there is no contact in the two-terminal network, there is a semi-permanent life, and the replacement work of the conventional glow lamp becomes unnecessary, and the deterioration of the glow lamp reduces the deterioration of the discharge lamp. Without delay, the life of the lamp is extended.
また、 交流電源が低下しても安定して作動するとともに、 寒 冷地、 低温環境においても従来よりも安定に作動する。  In addition, it operates stably even when the AC power supply drops, and operates more stably even in cold regions and low-temperature environments.

Claims

請 求 の 範 囲 The scope of the claims
1. 交流電源 ( 1 ) 、 安定器となるチョークコイル ( 2) 、 フ イ ラメ ン トつき放電灯 ( 3) が直列接続されており、 その放 電灯 ( 3) の両鬈極間にキックパルス発生用コンデンサ ( 4 ) と、 2端子回路網 (端子 P, Q) が接続された放電灯点灯 装置であって、 オンのとき上記フィ ラメン トへ予熱電流を供 給し、 ターンオフのとき、 上記放電灯の両電極間にキックパ ルスを発生させる単方向性スイッチング素子 ( 5〉 と、 上記 2端子 (P> Q) の一方の端子 (Q) に対し他方の端子 (P ) が負電位になる負の半サイクル期問に充電されて負の直流 電源となるコンデンサ ( 27) と、 上記負の半サイ クル期間 における上記 2端子 (P, Q) 間電圧が所定値より も大きい ことを判別して、 放電灯の非放電状態を検知する非放電検知 回路と、 この非放電検知回路が非放電状態を検知したとき、 次の正の半サイクルの初めに上記単方向性スィ ッチング素子 ( 5〉 をターンオンして上記フィ ラメン トに予熱電流を供給 するとともに、 その非放電検知回路が放電状態を検知したと き上記単方向性スイッチング素子 ( 5) のオフ状態を保持さ せるスィ ツチング素子制御手段を有することを特徵とする放 電灯点灯装置。 1. An AC power supply (1), a choke coil (2) as a ballast, and a discharge lamp (3) with a filament are connected in series, and a kick pulse is applied between both poles of the discharge lamp (3). A discharge lamp lighting device to which a generating capacitor (4) and a two-terminal network (terminals P and Q) are connected. When turned on, the preheating current is supplied to the above-mentioned filament. A unidirectional switching element (5) that generates a kick pulse between both electrodes of the discharge lamp, and one terminal (Q) of the two terminals (P> Q) has a negative potential with respect to the other terminal (P) It is determined that the capacitor (27) which is charged during the negative half cycle and becomes a negative DC power supply and that the voltage between the two terminals (P, Q) during the negative half cycle is greater than a predetermined value. A non-discharge detection circuit for detecting a non-discharge state of the discharge lamp; When the detection circuit detects a non-discharge state, the unidirectional switching element (5) is turned on at the beginning of the next positive half cycle to supply a preheating current to the filament and to detect the non-discharge state. A discharge lamp lighting device characterized by having switching element control means for holding an off state of the unidirectional switching element (5) when a circuit detects a discharge state.
2. 請求の範囲第 1項に記載された発明において、 上記スイ ツ チング素子制御手段が、 上記非放電検知回路により非放電が 検知されたことを記億する記憶手段と、 上記フィ ラメ ン トの 予熱電流が所定の設定値 ( I。 ) を超えたことを検知する予 熱電流検知回路と、 その予熱鬈流検知回路によりフィ ラメ ン トの予熱電流 ( I , ) が上記設定値 ( I n ) 以下になったと き、 上記単方向性スィ ツチング素子 (5) をカツ トオフさせ るスィ ッチング素子力ッ トオフ手段を備えていることを特徵 とする放電灯点灯装置。 2. In the invention described in claim 1, the switching element control means includes a storage means for storing that non-discharge has been detected by the non-discharge detection circuit, and the filament. The preheating current detection circuit that detects that the preheating current exceeds the predetermined set value (I.), and the preheating current detection circuit detects that the preheating current (I,) of the filament is equal to the set value (I.). n) When the following conditions are reached, the unidirectional switching element (5) is cut off. A discharge lamp lighting device comprising a switching element power-off means.
3. 請求の範囲第 1項に記載された発明において、 上記単方向 性スィ ツチング素子 ( 5 ) と直列に電流測定用抵抗 ( 1 6 ) を接铳し、 その抵抗 ( 1 6 ) と並列にトランジスタ ( 1 7 ) のェミ ッタ · ベース回路を接続しそのトランジスタ ( 1 7 ) のコレクタ回路を上記負電源となるコンデンサ ( 2 7 ) の負 極側 (R) に導かれた予熱電流検知回路を備えていることを 特徴とする放電灯点灯装置。 3. In the invention described in claim 1, a current measuring resistor (16) is connected in series with the unidirectional switching element (5), and is connected in parallel with the resistor (16). The preheat current detection is conducted by connecting the emitter-base circuit of the transistor (17) and connecting the collector circuit of the transistor (17) to the negative pole (R) of the capacitor (27) serving as the negative power supply. A discharge lamp lighting device comprising a circuit.
4. 請求の範西第 2項に記載された発明において、 上記予熱電 流検知回路として、 フィ ラメン ト予熱回路に直列接铳された 予熱電流検知用抵抗 ( 1 6) と、 上記抵抗 ( 1 6 ) と熱結合 された温度センサ ( 3 6 ) と、 その温度センサの温度が所定 値を超えている間、 上記非放電検知回路の非放電検知信号を 遮断するためのスィ ッチング素子 ( 3 7) を備えていること を特徴とする放電点灯装置。 4. In the invention described in claim 2, the preheating current detection circuit includes a preheating current detection resistor (16) connected in series to the filament preheating circuit, and the preheating current detection circuit (1). A temperature sensor (36) thermally coupled with the switching element (37) for interrupting the non-discharge detection signal of the non-discharge detection circuit while the temperature of the temperature sensor exceeds a predetermined value. ). A discharge lighting device comprising:
PCT/JP1992/000613 1992-05-14 1992-05-14 Apparatus for lighting fluorescent lamp WO1993023976A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1992/000613 WO1993023976A1 (en) 1992-05-14 1992-05-14 Apparatus for lighting fluorescent lamp
AU16965/92A AU1696592A (en) 1992-05-14 1992-05-14 Apparatus for lighting fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1992/000613 WO1993023976A1 (en) 1992-05-14 1992-05-14 Apparatus for lighting fluorescent lamp

Publications (1)

Publication Number Publication Date
WO1993023976A1 true WO1993023976A1 (en) 1993-11-25

Family

ID=14042342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000613 WO1993023976A1 (en) 1992-05-14 1992-05-14 Apparatus for lighting fluorescent lamp

Country Status (2)

Country Link
AU (1) AU1696592A (en)
WO (1) WO1993023976A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027467A (en) * 1973-07-11 1975-03-20
JPS50159177A (en) * 1974-06-13 1975-12-23
JPS5916718B2 (en) * 1975-07-15 1984-04-17 松下電工株式会社 discharge lamp starting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027467A (en) * 1973-07-11 1975-03-20
JPS50159177A (en) * 1974-06-13 1975-12-23
JPS5916718B2 (en) * 1975-07-15 1984-04-17 松下電工株式会社 discharge lamp starting device

Also Published As

Publication number Publication date
AU1696592A (en) 1993-12-13

Similar Documents

Publication Publication Date Title
US6972531B2 (en) Method for operating at least one low-pressure discharge lamp
US4168453A (en) Variable intensity control apparatus for operating a gas discharge lamp
JPS61126795A (en) Lighting circuit unit for lighting low voltage discharge lamp
JPH06508475A (en) Dimmable high power factor high frequency electronic ballast control integrated circuit with automatic shutoff function when a predetermined limit outside temperature is reached
JP3440667B2 (en) Discharge lamp lighting device
JPS5871594A (en) Illuminator
US4382210A (en) Ballast circuit for direct current arc lamp
US5208515A (en) Protection circuit for stabilizer for discharge apparatus
CN1044569A (en) Electronic solid started for fluorescent lamps
US4282462A (en) Arc lamp lighting unit with means to prevent prolonged application of starting potentials
WO1993023976A1 (en) Apparatus for lighting fluorescent lamp
JP2001085185A (en) High pressure discharge lamp lighting device
JP2985047B2 (en) Power control circuit
JP2008523557A (en) Electronic ballast with high starting voltage
JP3697864B2 (en) Pulse generator
JP3316496B2 (en) Fluorescent lamp lighting device
US4982137A (en) Apparatus for igniting a discharge lamp including circuitry for preventing cataphoresis phenomenon generation
JP4100037B2 (en) Discharge lamp lighting device
JP3277511B2 (en) Discharge lamp lighting device
KR0183211B1 (en) A temperature compensation circuit for a discharge lamp
JPS61110997A (en) Discharge lamp lighting apparatus
JPH0636884A (en) Inverter lighting device
CA1153055A (en) Arc lamp lighting unit with means to prevent prolonged application of starting potentials
US6911778B1 (en) Ignition control circuit for gas discharge lamps
JPS6158958B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA