WO1993022819A1 - Generating transformer with magnetic flux deflection - Google Patents

Generating transformer with magnetic flux deflection Download PDF

Info

Publication number
WO1993022819A1
WO1993022819A1 PCT/BE1993/000020 BE9300020W WO9322819A1 WO 1993022819 A1 WO1993022819 A1 WO 1993022819A1 BE 9300020 W BE9300020 W BE 9300020W WO 9322819 A1 WO9322819 A1 WO 9322819A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic flux
poles
generator
transformer according
Prior art date
Application number
PCT/BE1993/000020
Other languages
French (fr)
Inventor
Armel Louis
Original Assignee
S.B.E.N. S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.B.E.N. S.A. filed Critical S.B.E.N. S.A.
Priority to AU39466/93A priority Critical patent/AU3946693A/en
Publication of WO1993022819A1 publication Critical patent/WO1993022819A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/18Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators
    • H02K19/20Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators with variable-reluctance soft-iron rotors without winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the usual electric generators are constituted by inductive magnetic circuits whose lines of force are cut by solenoids with a soft iron core.
  • the set of coils 1 (Fig. 1) rotates with the cores.
  • the inductor 2 is rotating.
  • the rotation of the coils requires multiple precautions to avoid insulation faults and makes manufacturing difficult and expensive.
  • the central magnetic field is the site of annoying variations in intensity, difficult to avoid with this device, each time the lateral magnetic flux is cut off.
  • the claimed invention consists of a three-pole reverse magnetic circuit in m, 11, 13, 12 (Fig. 5), between which movable magnetic sections 14, 15 (Fig. 5) move transversely and not longitudinally.
  • the magnetic flux H1 (Fig. 6) progressively passes from pole 13 to pole 11, Fig. 6 - field H2 - as the magnetic mobiles 14 and 15 advance (Fig. 6), between the poles.
  • the magnetic field passing through the mobiles always has the same direction (therefore no hysteresis) and moves at constant speed in the mobiles, a slight rounding 17 (Fig. 6) preventing the peak effect.
  • the magnetic flux from the central pole 13 is constant.
  • the variations of the magnetic fields of the outer poles 11, 12 (Fig. 5) are inverse, creating equal and opposite voltages, in the coils B1 and B2 (Fig. 5).
  • the current creates a field antagonistic to that which generated it (Law of Lens), which gives rise to a counterelectromotive force almost equal to the electromotive force of the generator.
  • Wind turbines have a rim that allows moving magnetic parts to be installed there without difficulty, which eliminates any mechanical connection between the rotor and the generator.
  • Moving parts 14, 15 (Fig. 7, 8 and 9) are arranged in a slot, on two parallel rows and can line the entire rim 24 (Fig. 7).
  • the transverse passage of the mobiles between the poles has the advantages described above: absence of hysteresis, invariable total magnetic flux, shorter mobiles, absence of inactive space allowing, with equal dimensions, to have a greater number of mobiles magnetic, therefore more flux variations, hence an increase in power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

An electrical generating transformer with magnetic flux deflection for industrial use, e.g. in wind power engines. The transformer has two magnetic circuits and three poles (11, 12, 13) with two sections (14, 15) of magnetic circuits circulating between the poles (11, 12, 13) transversally to the induction field, and passing the magnetic flux alternately from one circuit to the other. Said movable magnetic sections (14, 15) may be fitted to the rim of a wind turbine and may obviate the need for a speed multiplier and all its accessories. The back-electromotive force of the armature coil (B1, B2) is cancelled out by an additional winding (B4) around the inductive pole (13) through which the output current flows after being rectified.

Description

"Transformateur générateur à déviation de flux -magnétique" "Generator transformer with flow deflection - magnetic"
Les générateurs électriques habituels sont constitués par des circuits magnétiques inducteurs dont les lignes de force sont coupées par des solénoïdes à noyau de fer doux. L'ensemble des bobines 1 (Fig. 1) tourne avec les noyaux. Pour la machine de la Fig. 2, c'est l'inducteur 2 qui tourne. La rotation des bobines exige des précautions multiples pour éviter les défauts d'isolement et rend la fabrication difficile et coûteu¬ se.The usual electric generators are constituted by inductive magnetic circuits whose lines of force are cut by solenoids with a soft iron core. The set of coils 1 (Fig. 1) rotates with the cores. For the machine of FIG. 2, the inductor 2 is rotating. The rotation of the coils requires multiple precautions to avoid insulation faults and makes manufacturing difficult and expensive.
On a déjà envisagé de ne déplacer qu'une partie du circuit magnétique en fer, en rendant mobile une partie 4 (Fig. 3) , parallèlement au circuit magné- tique, en la fixant sur un arbre 5 (Fig. 3) perpendicu¬ laire au circuit magnétique. Cette solution provoque de fortes vibrations à cause de 1'attraction importante des pôles rompue brutalement à chaque rotation, et n'est pas utilisée. Pour y remédier, on a ajouté un troisième pôle 9 (Fig. 4) . Le pôle central 10 (Fig. 4) est l'inducteur et les pôles latéraux 9 et 10 bis (Fig. 4) sont les induits dont les bobines produisent le courant électrique. La pièce mobile 4 (fig. 4) passe succes- sivement devant les trois pôles, fermant le premier circuit magnétique, en 10 bis, puis le coupant en fermant le second circuit en 9. Les vibrations sont fortement atténuées, mais il y a une forte self-induc¬ tion et des pertes par hystérésis non négligeables dans le mobile, à l'intérieur duquel le flux magnétique s'inverse à chaque passage.We have already considered moving only part of the magnetic iron circuit, making part 4 mobile (Fig. 3), parallel to the magnetic circuit, by fixing it to a shaft 5 (Fig. 3) perpendicular. the magnetic circuit. This solution causes strong vibrations due to the significant attraction of the poles, which is suddenly broken at each rotation, and is not used. To remedy this, a third pole 9 has been added (Fig. 4). The central pole 10 (Fig. 4) is the inductor and the side poles 9 and 10 bis (Fig. 4) are the armatures whose coils produce electric current. The moving part 4 (fig. 4) passes successively in front of the three poles, closing the first magnetic circuit, in 10 bis, then cutting it by closing the second circuit in 9. The vibrations are greatly attenuated, but there is a strong self-induction and significant hysteresis losses in the mobile, inside which the magnetic flux is reversed on each pass.
Le champ magnétique central est le siège de variations d'intensité gênantes, difficiles à éviter avec ce dispositif, à chaque coupure des flux magnéti- ques latéraux. L'invention revendiquée consiste en un circuit magnétique en m renversé à trois pôles, 11, 13, 12 (Fig. 5) , entre lesquels des tronçons magnétiques mobiles 14, 15 (Fig. 5) se déplacent transversalement et non longitudinalement. Le flux magnétique Hl (Fig. 6) passe progressivement du pôle 13 au pôle 11, Fig. 6 - champ H2 - au fur et à mesure de l'avance des mobiles magnétiques 14 et 15 (Fig. 6) , entre les pôles. Le champ magnétique traversant les mobiles a toujours le même sens (donc pas d'hystérésis) et se déplace à vitesse constante dans les mobiles, un léger arrondi 17 (Fig. 6) empêchant l'effet de pointe. Le flux magnéti¬ que du pôle central 13 est constant. Les variations .des champs magnétiques des pôles extérieurs 11, 12 (Fig. 5) sont inverses, créant des tensions égales et opposées, dans les bobines Bl et B2 (Fig. 5) . Quand ces bobines débitent sur un circuit extérieur, le courant crée un champ antagoniste à celui qui l'a généré (loi de Lens) , ce qui donne naissance à une force contre-électromotrice presque égale à la force électro-motrice du générateur.The central magnetic field is the site of annoying variations in intensity, difficult to avoid with this device, each time the lateral magnetic flux is cut off. The claimed invention consists of a three-pole reverse magnetic circuit in m, 11, 13, 12 (Fig. 5), between which movable magnetic sections 14, 15 (Fig. 5) move transversely and not longitudinally. The magnetic flux H1 (Fig. 6) progressively passes from pole 13 to pole 11, Fig. 6 - field H2 - as the magnetic mobiles 14 and 15 advance (Fig. 6), between the poles. The magnetic field passing through the mobiles always has the same direction (therefore no hysteresis) and moves at constant speed in the mobiles, a slight rounding 17 (Fig. 6) preventing the peak effect. The magnetic flux from the central pole 13 is constant. The variations of the magnetic fields of the outer poles 11, 12 (Fig. 5) are inverse, creating equal and opposite voltages, in the coils B1 and B2 (Fig. 5). When these coils flow on an external circuit, the current creates a field antagonistic to that which generated it (Law of Lens), which gives rise to a counterelectromotive force almost equal to the electromotive force of the generator.
Pour l'annuler, il faut créer une force magnétique opposée et supplémentaire dans 1'inducteur, au moyen d'une bobine B4 (Fig. 5) dans laquelle passe le courant induit, redressé par une diode 22 (Fig. 5) , qui contrebalance le champ antagoniste des induits et permet à ceux-ci de débiter normalement.To cancel it, an opposite and additional magnetic force must be created in the inductor, by means of a coil B4 (Fig. 5) through which the induced current passes, rectified by a diode 22 (Fig. 5), which counterbalances the antagonistic field of armature and allows them to flow normally.
APPLICATION A UNE TURBINE EOLIENNEAPPLICATION TO A WIND TURBINE
La faible rentabilité des éoliennes à grande pales tient notamment à la faible vitesse de rotation de l'hélice, qui impose des multiplicateurs de vitesse avec leurs nombreux accessoires coûteux et de vie trop courte.The low profitability of wind turbines with large blades is due in particular to the low speed of rotation of the propeller, which imposes speed multipliers with their many expensive accessories and too short life.
Les turbines éoliennes ont une jante qui permet d'y installer les pièces magnétiques mobiles sans difficulté,ce qui supprime toute liaison mécanique entre le rotor et le générateur. Les pièces mobiles 14, 15 (Fig. 7, 8 et 9) sont disposées en créneau, sur deux files parallèles et peuvent garnir toute la jante 24 (Fig. 7).Wind turbines have a rim that allows moving magnetic parts to be installed there without difficulty, which eliminates any mechanical connection between the rotor and the generator. Moving parts 14, 15 (Fig. 7, 8 and 9) are arranged in a slot, on two parallel rows and can line the entire rim 24 (Fig. 7).
Le passage transversale des mobiles entre les pôles a les avantages décrits précédemment : absence d'hystérésis, flux magnétique total invariable, mobiles plus courts, absence d'espace inactif permet¬ tant, à dimensions égales, d'avoir un plus grand nombre de mobiles magnétiques, donc plus de variations de flux, d'où augmentation de la puissance.The transverse passage of the mobiles between the poles has the advantages described above: absence of hysteresis, invariable total magnetic flux, shorter mobiles, absence of inactive space allowing, with equal dimensions, to have a greater number of mobiles magnetic, therefore more flux variations, hence an increase in power.
Le passage transversal des mobiles entre les pôles équilibre l'attraction des pôles, ce qui diminue l'usure des paliers. En désaxant la jante, donc les mobiles vers le bas 14 (Fig. 10) , on provoque une attraction opposée, vers le haut 18 (Fig. 10) , qui diminue le poids de la turbine sur ses paliers. On peut utiliser le même procédé pour annuler une grande partie de la poussée du vent sur la turbine 33 (Fig. 12) . On peut prévoir un dispositif qui rapproche latéralement le pôle 11 du mobile 14 (Fig. 11) , en fonction de la vitesse du vent. Dans ce cas, le générateur sera fixé sur un socle à glissière 19 (Fig. 11) et sera déplacé par l'action d'une biellette 35 (Fig. 11) et d'un levier 20 (Fig. 11) mû par un panneau soumis au vent V 27 (Fig. 11) . Tout autre moyen donnant le même résultat convient. Le déplacement sera faible, car l'attraction magnétique 26 (Fig. 11) est inversement proportionnelle au carré de la distance entre les pôles et le mobile. De plus, l'attraction 25 (Fig. 11) de l'autre côté diminue et double la force due à ce désaxement.The transverse passage of the mobiles between the poles balances the attraction of the poles, which reduces wear on the bearings. By offsetting the rim, and therefore the moving parts downwards 14 (Fig. 10), an opposite attraction is caused, upwards 18 (Fig. 10), which reduces the weight of the turbine on its bearings. The same process can be used to cancel a large part of the wind thrust on the turbine 33 (Fig. 12). A device can be provided which brings the pole 11 laterally closer to the mobile 14 (FIG. 11), as a function of the wind speed. In this case, the generator will be fixed on a sliding base 19 (Fig. 11) and will be moved by the action of a link 35 (Fig. 11) and a lever 20 (Fig. 11) moved by a panel subject to wind V 27 (Fig. 11). Any other means giving the same result is suitable. The displacement will be small, because the magnetic attraction 26 (Fig. 11) is inversely proportional to the square of the distance between the poles and the mobile. In addition, the attraction 25 (Fig. 11) on the other side decreases and doubles the force due to this misalignment.
La poussée axiale étant compensée, les paliers durent encore plus longtemps. The axial thrust being compensated, the bearings last even longer.

Claims

REVENDICATIONS
1. Transformateur générateur électrique à déviation de flux magnétique à usage industriel et adaptable aux aéromoteurs, composé d'un transformateur à double circuit magnétique avec trois colonnes bobi¬ nées, dont chaque circuit magnétique est coupé et rétabli alternativement, le flux magnétique du pôle central étant dévié d'un circuit à l'autre par des tronçons magnétiques mobiles, caractérisé en ce que ces tronçons mobiles passent successivement entre les pôles et transversalement aux lignes de force du champ magné¬ tique.1. Electric generator transformer with magnetic flux deflection for industrial use and adaptable to wind engines, composed of a transformer with double magnetic circuit with three binary columns, each magnetic circuit of which is cut and re-established alternately, the magnetic flux of the central pole being deflected from one circuit to another by mobile magnetic sections, characterized in that these mobile sections pass successively between the poles and transversely to the lines of force of the magnetic field.
2. Transformateur générateur électrique suivant la revendication 1, caractérisé en ce que l'intensité du flux magnétique du pôle inducteur central est invariable.2. Electric generator transformer according to claim 1, characterized in that the intensity of the magnetic flux from the central inductor pole is invariable.
3. Transformateur générateur électrique suivant la revendication 1 ou 2, caractérisé en ce que la force contre-électromotrice créée par les bobines génératrices quand elles débitent est équilibrée par un enroulement supplémentaire autour du pôle inducteur, parcouru par le courant redressé issu des bobines génératrices.3. Electric generator transformer according to claim 1 or 2, characterized in that the counter-electromotive force created by the generator coils when they flow is balanced by an additional winding around the inductor pole, traversed by the rectified current from the generator coils.
4. Transformateur générateur électrique suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que des tronçons magnétiques mobiles peuvent être fixés en créneau, sur toute la longueur de la jante d'une turbine éolienne, alternées sur feux files parallèles, sans intervalles inactifs. 4. An electrical generator transformer according to any one of claims 1 to 3, characterized in that mobile magnetic sections can be fixed in a slot, over the entire length of the rim of a wind turbine, alternated on parallel line lights, without inactive intervals.
5. Transformateur générateur électrique suivant l'une quelconque des revendications l à 4, caractérisé en ce que les mobiles peuvent être désaxés par rapport aux axes de symétrie des pôles, de manière à créer une poussée verticale compensant au moins partiellement le poids de la turbine et une traction longitudinale compensant également au moins une partie de la pression du vent sur la turbine.5. Electric generator transformer according to any one of claims l to 4, characterized in that the mobiles can be offset with respect to the axes of symmetry of the poles, so as to create a vertical thrust at least partially compensating for the weight of the turbine and a pull longitudinal also compensating for at least part of the wind pressure on the turbine.
6. Transformateur générateur électrique suivant l'une quelconque des revendication 1 à 5, caractérisé en ce que le desaxement longitudinal du générateur peut être réglé automatiquement par un déplacement du stator du générateur fixé à une glissiè¬ re, ou par tout moyen donnant le même résultat, ce déplacement étant provoqué par un levier actionné à son extrémité par un panneau soumis à la pression du vent. 6. Electric generator transformer according to any one of claims 1 to 5, characterized in that the longitudinal displacement of the generator can be adjusted automatically by a displacement of the stator of the generator fixed to a slide, or by any means giving the same result, this displacement being caused by a lever actuated at its end by a panel subjected to the pressure of the wind.
PCT/BE1993/000020 1992-04-27 1993-04-27 Generating transformer with magnetic flux deflection WO1993022819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU39466/93A AU3946693A (en) 1992-04-27 1993-04-27 Generating transformer with magnetic flux deflection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9205169A FR2690575A1 (en) 1992-04-27 1992-04-27 Magnetic flux deflection electrical generator transformer for industrial use, adaptable to wind turbines.
FR92/05169 1992-04-27

Publications (1)

Publication Number Publication Date
WO1993022819A1 true WO1993022819A1 (en) 1993-11-11

Family

ID=9429286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BE1993/000020 WO1993022819A1 (en) 1992-04-27 1993-04-27 Generating transformer with magnetic flux deflection

Country Status (3)

Country Link
AU (1) AU3946693A (en)
FR (1) FR2690575A1 (en)
WO (1) WO1993022819A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025628A2 (en) * 1999-10-07 2001-04-12 Vestas Wind Systems A/S Wind power plant
WO2009145620A2 (en) * 2008-05-13 2009-12-03 Hydroring Capital B.V. Energy converter for flowing fluids and gases

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2464445C2 (en) * 2009-11-17 2012-10-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Wind-driven power generator stator
RU2464446C2 (en) * 2009-11-17 2012-10-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Stator of wind-driven power generator of synchronous type
RU2507413C2 (en) * 2011-10-04 2014-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Gearless wind electrical unit
RU2514379C2 (en) * 2012-02-17 2014-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Windmill stator
RU2660755C2 (en) * 2016-01-20 2018-07-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Electric generator stator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1352960A (en) * 1916-12-28 1920-09-14 Albert H Heyroth Wind-wheel electric generator
US2484197A (en) * 1948-01-28 1949-10-11 Robert W Weeks Wind-driven electric power plant
CH358481A (en) * 1958-06-09 1961-11-30 Comp Generale Electricite Installation for the power supply of an electrical device whose terminal voltage varies according to the current supplied to it
US3564313A (en) * 1969-08-08 1971-02-16 Trans Sonics Inc Self-compensating tachometer generator
US3588559A (en) * 1969-07-25 1971-06-28 North American Rockwell Inductor generator structure
FR2423907A1 (en) * 1978-04-05 1979-11-16 Bernard Serge Electrical induction motor system - has twin disc rotor with trapezoidal slots cut which match shape of pole faces and are 90 degrees out of phase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1352960A (en) * 1916-12-28 1920-09-14 Albert H Heyroth Wind-wheel electric generator
US2484197A (en) * 1948-01-28 1949-10-11 Robert W Weeks Wind-driven electric power plant
CH358481A (en) * 1958-06-09 1961-11-30 Comp Generale Electricite Installation for the power supply of an electrical device whose terminal voltage varies according to the current supplied to it
US3588559A (en) * 1969-07-25 1971-06-28 North American Rockwell Inductor generator structure
US3564313A (en) * 1969-08-08 1971-02-16 Trans Sonics Inc Self-compensating tachometer generator
FR2423907A1 (en) * 1978-04-05 1979-11-16 Bernard Serge Electrical induction motor system - has twin disc rotor with trapezoidal slots cut which match shape of pole faces and are 90 degrees out of phase

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025628A2 (en) * 1999-10-07 2001-04-12 Vestas Wind Systems A/S Wind power plant
WO2001025628A3 (en) * 1999-10-07 2001-10-11 Vestas Wind System As Wind power plant
US7068015B1 (en) 1999-10-07 2006-06-27 Vestas Wind Systems A/S Wind power plant having magnetic field adjustment according to rotation speed
WO2009145620A2 (en) * 2008-05-13 2009-12-03 Hydroring Capital B.V. Energy converter for flowing fluids and gases
WO2009145620A3 (en) * 2008-05-13 2010-12-02 Hydroring Capital B.V. Energy converter for flowing fluids and gases

Also Published As

Publication number Publication date
FR2690575A1 (en) 1993-10-29
AU3946693A (en) 1993-11-29

Similar Documents

Publication Publication Date Title
CA2480204A1 (en) Fixed-frequency electrical generation system and process for controlling the system
EP0695018B2 (en) Synchronous motor having a rotor with built-in magnets
US4644206A (en) Continuously variable torque converter
FR2916313A1 (en) ALTERNATOR OF VEHICLE
WO1993022819A1 (en) Generating transformer with magnetic flux deflection
US704574A (en) Power-transmission regulator for electromagnetic couplings.
ATE321373T1 (en) CONTINUOUSLY ELECTROMAGNETIC TRANSMISSION
EP0660494A1 (en) Synchronous permanent magnet electric machine with the possibility to change the magnetic flux in the gap
Nugraha et al. Design analysis of axial flux permanent magnet BLDC motor 5 kW for electric scooter application
Williams et al. A brushless variable-speed induction motor
FR2462806A1 (en) INDUCTOR FOR ROTATING ELECTRIC MACHINE
FR2518688A1 (en) Combined speed reduction and torque multiplying device - uses variable reluctance principle and has annular air-gaps between concentric rotors and intermediate annular element
US7696664B2 (en) Magnetic path closed electric generator
US403017A (en) wheeler
RU2680152C1 (en) Autonomous asynchronous generator with pole-switched double-layered winding of 12/10 poles stator
US1843730A (en) Engine-generator set for vehicles
EP2870684B1 (en) Rotating electric machine with compensation of armature magnetic feedback
US890299A (en) Automatic regulation for dynamo-electric machines.
KR20240087309A (en) Axial flux permanent magnet rotating machine
WO2022224011A1 (en) Magnet-comprising, self induction-neutralizing, multi-core, multi-flux and resonant-excitation generator
US273291A (en) Apparatus for regulating the transmission of electric force
US2475140A (en) Regulating generator
RU2217858C2 (en) Speed control device for dc reversing motor with two independent series-connected field windings
WO2023135388A1 (en) System for controlling the speed of movement of a sliding door and associated aircraft
CN110848093A (en) Rotating speed adjusting mechanism of small wind driven generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA