WO1993017232A1 - Method and system for controlling air-fuel ratio of internal combustion engine - Google Patents

Method and system for controlling air-fuel ratio of internal combustion engine Download PDF

Info

Publication number
WO1993017232A1
WO1993017232A1 PCT/JP1991/000650 JP9100650W WO9317232A1 WO 1993017232 A1 WO1993017232 A1 WO 1993017232A1 JP 9100650 W JP9100650 W JP 9100650W WO 9317232 A1 WO9317232 A1 WO 9317232A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
correction amount
learning
area
Prior art date
Application number
PCT/JP1991/000650
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Furuya
Original Assignee
Junichi Furuya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junichi Furuya filed Critical Junichi Furuya
Priority to US07/784,395 priority Critical patent/US5193339A/en
Publication of WO1993017232A1 publication Critical patent/WO1993017232A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • F02D41/248Methods of calibrating or learning characterised by the method used for learning using a plurality of learned values

Definitions

  • the present invention relates to a method and an apparatus for controlling an air-fuel ratio of an intake air-fuel mixture to a target air-fuel ratio in an internal combustion engine mounted on an automobile, and in particular, an air-fuel ratio sensor is provided for each of an exhaust system on an upstream side and a downstream side of an exhaust purification catalyst.
  • the present invention relates to a method and an apparatus for performing feedback control of the air-fuel ratio with high accuracy based on the detection values of these two air-fuel ratio sensors.
  • an air-fuel ratio sensor oxygen sensor
  • the air-fuel ratio sensor detects the rich air-fuel ratio of the actual air-fuel ratio with respect to the stoichiometric air-fuel ratio based on the oxygen concentration in the exhaust gas detected by the air-fuel ratio sensor.
  • Feedback control is performed on the fuel supply amount in a direction to bring the air-fuel ratio closer to the theoretical air-fuel ratio.
  • the air-fuel ratio sensor provided in the exhaust system relatively close to the combustion chamber as described above is exposed to high-temperature exhaust, there is a problem that its characteristics are liable to change due to thermal deterioration or the like.
  • the exhaust manifold provided in the air-fuel ratio sensor has a problem that it is difficult to accurately detect the average air-fuel ratio of all cylinders due to insufficient mixing of exhaust gas for each cylinder. It was hot. Therefore, in the above-described conventional air-fuel ratio feedback control, responsiveness is ensured, but it is difficult to stably perform high-precision air-fuel ratio control. I got it. .
  • an air-fuel ratio sensor is also provided on the downstream side of the catalyst, and the feedback value of the air-fuel ratio is controlled using the detection values of these two air-fuel ratio sensors.
  • the air-fuel ratio sensor on the downstream side has poor responsiveness because it is far from the combustion chamber, but has little thermal effect because it is on the downstream side of the catalyst, and the poisoning amount due to toxic components in the exhaust gas is low. It is possible to detect the average air-fuel ratio of all the cylinders because the air-fuel ratio is small and the exhaust gas mixture is good, so that high-accuracy and stable detection performance can be obtained compared to the air-fuel ratio sensor provided on the upstream side.
  • two air-fuel ratio feedback correction coefficients independently set based on the detection values of the two air-fuel ratio sensors are used in combination, or the air-fuel ratio feedback set by the upstream air-fuel ratio sensor is used.
  • the control amount of the feedback correction coefficient proportional constant or integral constant
  • the comparison voltage used to determine the output voltage of the upstream air-fuel ratio sensor, and the detection result of the upstream air-fuel ratio sensor are used for actual control.
  • the delay time is corrected based on the detection result of the air-fuel ratio sensor on the downstream side.
  • the required level of the air-twist ratio correction amount during the feedback control is increased during non-feedback control (at open loop).
  • the following problems occur especially at the start of feedback control when shifting from non-feedback control to feedback control. That is, since the detection of the air-fuel ratio by the downstream air-fuel ratio sensor is delayed as compared with the upstream-side air-fuel ratio sensor, the speed of the air-fuel ratio correction control by the downstream air-fuel ratio sensor is reduced by the air-fuel ratio correction using the upstream air-fuel ratio sensor. If the speed is set to be almost the same, the control overshoot will increase.
  • the control speed is lower than the speed of the air-fuel ratio control by the air-fuel ratio sensor on the upstream side. You have set.
  • the air-fuel ratio correction amount controlled based on the downstream air-fuel ratio sensor (for example, the proportional correction amount in the proportional-integral control of the air-fuel ratio feedback correction amount based on the upstream air-fuel ratio sensor) reaches the required value. It takes a long time to reach the target air-fuel ratio, which may lead to deterioration of fuel efficiency, drivability, and exhaust properties.
  • an average value of the air-fuel ratio correction amount based on the air-fuel ratio sensor on the downstream side is sequentially calculated as a learning correction amount and stored for each operating region, and the learning correction amount is used together with the air-fuel ratio correction amount to perform air-fuel ratio correction.
  • the control speed of the air-fuel ratio correction based on the downstream air-fuel ratio sensor is set relatively low to suppress overshoot.
  • the required value of the air-fuel ratio correction amount varies greatly depending on the operating conditions. It is desirable to secure the learning accuracy by dividing the area to be finely divided.However, if the area is divided finely, the time spent staying in each area is shortened, and the frequency with which the actual operating conditions correspond to each area is also reduced. Less will further hinder learning progress.
  • the present invention has invented an air-fuel ratio control method and apparatus for an internal combustion engine that can achieve both the promotion of the air-fuel ratio control learning by the air-fuel ratio sensor on the downstream side of the catalyst and the improvement of the learning accuracy.
  • the learning correction amount for the wide operating area is added and updated.
  • all the subdivided operating regions included in this wide region are controlled by the updated learning correction amount. Therefore, it is necessary to subtract and update the learning correction amount in each of the subdivided operation regions by the update amount to prevent the correction based on the learning correction amount from becoming excessive.
  • the present invention has been made in view of the above-described problems.
  • uniform learning in a wide driving range for promoting the progress of learning and divided into different driving ranges for maintaining improved learning accuracy.
  • the air-fuel ratio control of the internal combustion engine achieves both the advancement of the air-fuel ratio learning control by the air-fuel ratio sensor on the downstream side of the catalyst and the improvement of the learning accuracy. It is an object to provide a method and an apparatus.
  • the learning opportunities in the area-based learning are reduced, and the convergence in the operation area is improved. It aims to improve.
  • the method and apparatus for controlling the air-fuel ratio of an internal combustion engine basically comprises: an upstream side and a downstream side of a catalytic exhaust purification device provided in an exhaust system of an internal combustion engine.
  • First and second air-fuel ratio sensors whose output values change in response to the concentration of specific components in the exhaust gas that change according to the air-fuel ratio of the engine intake air-fuel mixture are provided.
  • a first air-fuel ratio correction amount is calculated based on the output value of the first air-fuel ratio sensor
  • a second air-fuel ratio correction amount is calculated based on the output value of the second air-fuel ratio sensor.
  • Air-fuel ratio correction amount The final air-fuel ratio correction amount is calculated based on this, and the air-fuel ratio of the engine intake air-fuel mixture is controlled.
  • the second air-fuel ratio correction amount is set as follows.
  • the learning correction amount for each area recorded for each of the plurality of operating regions is corrected and rewritten based on the output value of the second air-fuel ratio sensor, it is based on the average level of the learning correction amount for each area.
  • the stored value of the uniform learning correction amount used uniformly in the entire operation region by the correction amount is added and corrected and rewritten.
  • the correction amount is subtracted and corrected from the error correction amount for each area for each operating region, and the learning correction amount for each error is rewritten.
  • the second air-fuel ratio correction amount is set based on the learning correction amount for each area corresponding to the corresponding operation region and the uniform learning correction amount uniformly used for all operation regions.
  • the second air-fuel ratio correction amount based on the output value of the second air-fuel ratio sensor is calculated based on the area-specific learning correction amount applied to each area and the uniform learning used uniformly in all operation areas. If learning is set separately for the correction amount, learning and correction of the air-fuel ratio based on the output value of the second air-fuel ratio sensor will ensure uniform learning and promote the progress of learning. Learning accuracy can be maintained by separate learning.
  • the degree of learning progress is determined for each driving area in which the learning correction amount for each area is stored, and for the driving area where the learning progress degree is equal to or less than a predetermined value, the amount obtained by adding and correcting the uniform learning correction amount is used. It is preferable to prohibit the process of subtraction correction.
  • the number of times the output value of the second air-fuel ratio sensor has crossed the target air-fuel ratio equivalent value is calculated as It is preferable that the learning correction amount for each area is obtained for each driving area where the learning correction amount is stored, and the degree of learning progress is determined for each driving area based on the number of times of experience.
  • the optimum value for matching the air-fuel ratio detected by the second air-fuel ratio sensor to the target is used.
  • the air-fuel ratio correction amount has not been confirmed at all, and conversely, if the number of times of crossing the target air-fuel ratio equivalent value is large, the air-fuel ratio correction amount can be brought closer to the optimum level. Therefore, it is possible to determine the degree of learning progress for each driving area by using the above-mentioned experience count as it is to indicate the degree of learning progress.
  • sensors provided respectively on the upstream and downstream of the exhaust gas purifying catalyst, sensors whose output values change in response to the oxygen concentration in the exhaust gas can be used.
  • the second air-fuel ratio correction amount may be configured to be calculated as a value for correcting the control operation amount of the first air-fuel ratio correction amount.
  • the exhaust gas purification catalyst is a three-way catalyst, and the first air-fuel ratio correction amount and the first air-fuel ratio correction amount are adjusted so that the air-fuel ratio detected by the first air-fuel ratio sensor and the second air-fuel ratio sensor approaches the stoichiometric air-fuel ratio. It is possible to configure so that the air-fuel ratio correction amounts of 2 are calculated respectively. With this configuration, the conversion efficiency of oxidation and reduction in the three-way catalyst is kept at the best.
  • an average value of the learning correction amount for each area when the output value of the second air-fuel ratio sensor crosses a value corresponding to the target air-fuel ratio is obtained, and the uniform learning correction amount is corrected based on the average value. It is good to configure. Since the uniform learning correction amount is a correction amount used uniformly in all the operation regions, it should be given as an average value of the required correction levels in each operation region. Therefore, it is assumed that the learning correction amount for each area when the output value of the second air-fuel ratio sensor crosses a value corresponding to the target air-fuel ratio roughly indicates the optimum correction level in that region. The uniform learning correction amount is corrected based on the average value of the optimum correction level.
  • FIG. 1 is a block diagram showing a basic configuration of an air-fuel ratio control device according to the present invention.
  • FIG. 2 is a diagram showing a system configuration in one embodiment of the present invention.
  • FIG. 3 is a flowchart showing a fuel injection amount setting routine in the embodiment.
  • FIG. 4 is a flowchart showing an air-fuel ratio feedback correction coefficient setting routine in the embodiment.
  • Figs. 5 (A) and (B) are diagrams showing the operating regions of the uniform learning correction amount map and the area-specific learning correction amount map, respectively.
  • FIG. 6 and FIG. 7 are diagrams for explaining how the uniform learning correction value and the learning correction value for each area are updated.
  • FIG. 1 A schematic configuration of an air-fuel ratio control apparatus for an internal combustion engine according to the present invention is as shown in FIG. 1, and an embodiment of the air-fuel ratio learning control apparatus and method for such an internal combustion engine is shown in FIGS. 2 to 7. It is.
  • an intake passage 12 of an engine 11 has an air flow meter 13 for detecting an intake air flow rate Q and a throttle for controlling the intake air flow rate Q in conjunction with an accelerator pedal (not shown).
  • a valve 14 is provided.Each branch of the downstream intake manifold is provided with electromagnetic fuel injection for each cylinder. Valve 15 is provided.
  • the fuel injection valve 15 is driven to open by an injection pulse signal from a control unit 16 incorporating a microcomputer, is pressure-fed from a fuel pump (not shown), and is controlled to a predetermined pressure by a pressure regulator. The injected fuel is supplied.
  • a water temperature sensor 17 for detecting a cooling water temperature Tw in the cooling jacket of the engine 11 is provided.
  • the exhaust passage 18 is provided with a first air-fuel ratio sensor 19 for detecting the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust at the exhaust manifold collecting section, and the exhaust pipe on the downstream side thereof is provided.
  • the exhaust gas is provided with a three-way catalyst 20 as an exhaust gas purification catalyst for purifying exhaust gas by oxidizing C ⁇ and HC in the exhaust gas and reducing NO x, and further comprises a first empty space downstream of the three-way catalyst 20.
  • a second air-fuel ratio sensor 21 having the same function as the fuel ratio sensor is provided.
  • the first air-fuel ratio sensor 19 and the second air-fuel ratio sensor 21 are known oxygen concentration sensors whose output voltage changes in response to the oxygen concentration in the exhaust gas. By utilizing the sudden change in the oxygen concentration of the air, the rich / lean of the actual air-fuel ratio, which is the stoichiometric air-fuel ratio, can be detected.
  • a crank angle sensor 24 is built in the distribution unit (not shown in FIG. 2), and a crank unit angle signal output from the crank angle sensor 22 in synchronization with the engine rotation is counted for a certain period of time.
  • the engine speed N is detected by measuring the cycle of the crank reference angle signal.
  • the air-fuel ratio control by the control unit 16 will be described with reference to the flowcharts of FIGS.
  • the outline of the air-fuel ratio control of the present embodiment will be described.
  • the air-fuel ratio feedback correction coefficient ⁇ is proportionally integrated based on the output value of the first air-fuel ratio sensor 19
  • the control of the correction coefficient The manipulated variable (proportional component) is corrected based on the output value of the second air-fuel ratio sensor 21.
  • uniform learning that is used uniformly in all operation regions, and learning by region in each of the plurality of divided operation regions is performed. Is used together.
  • the functions of the uniform learning correction amount correction means, the second area-specific learning correction amount correction means, the air-fuel ratio correction amount calculation means based on the learning amount, the learning progress determination means, and the correction prohibition means are described in FIG.
  • the control unit 16 is provided as software, and the uniform learning correction amount storage means and the area-specific learning correction amount storage means are provided by the control unit 16. It is assumed that the RAM with the backup function built in is equivalent.
  • FIG. 3 shows a fuel injection amount setting routine, which is performed at predetermined intervals (for example, 10 ms).
  • Step 1 based on the intake air flow rate Q detected by the air flow meter 13 and the engine speed N calculated based on the signal from the crank angle sensor 24, the suction per unit rotation
  • the basic fuel injection amount Tp corresponding to the air amount is calculated by the following equation.
  • step 2 various correction coefficients C 0 EF are set based on the cooling water temperature detected by the water temperature sensor 17, and the like.
  • step 3 the air-fuel ratio feedback correction coefficient (final air-fuel ratio correction amount) set by the air-fuel ratio feedback correction coefficient setting routine described later is read.
  • step 4 a voltage correction amount Ts is set based on the battery voltage value. This is because of the change in the effective valve opening time of the fuel injector 15 due to battery voltage fluctuation. This is for correcting the change.
  • step 5 the final fuel injection amount (fuel supply amount) Ti is calculated according to the following equation.
  • the function of step 5 of setting the fuel injection amount Ti while correcting with the air-fuel ratio feedback correction coefficient as shown in the following equation corresponds to the air-fuel ratio control means.
  • T i T p x C O E F x ⁇ + T s
  • step 6 the calculated fuel injector Ti is set in an output register.
  • a drive pulse signal having a pulse width of the calculated fuel injection amount Ti is given to the fuel injection valve 15 to perform fuel injection.
  • step 11 the operating conditions for performing feedback control of the air-fuel ratio (the operating conditions for learning the uniform learning correction amount P H0SM and the learning correction amount for each area PHOSSx, which will be described later, match.
  • the engine steady operation is added to the control conditions. It is preferable to improve the accuracy by determining whether or not. If the above operating conditions are not satisfied, this routine ends. In this case, the feedback correction coefficient ⁇ is clamped to the value at the end of the previous feedback control or a fixed reference value, and the feedback control is stopped.
  • step 12 the signal voltage V 02 (output value) from the first air-fuel ratio sensor 19 and the signal voltage V ′ 0 2 (output value) from the second air-fuel ratio sensor 21 are input.
  • step 13 (in this example the stoichiometric air-fuel ratio) the first air signal voltage V 02 of the fuel ratio sensor 19 and the target air-fuel ratio input in step 12 is compared with the reference value S equivalent, Ritsuchi air-fuel ratio from the lean Or when reversing from rich to lean It is determined whether or not.
  • step 14 the process proceeds to step 14, and the uniform learning correction amount PH0SM for uniformly correcting the proportional correction amount PH0S of the air-fuel ratio feedback correction coefficient (air-fuel ratio correction amount) is uniformly corrected.
  • the area-based learning correction amount PHOSSx of the proportional component correction amount PH0S is also read out from the amount map (stored in the RAM of the microcomputer built in the control unit 16). From the area-based learning correction amount map (also stored in RAM), the area-based learning correction amount PHOSSx stored in the corresponding operating area is searched and found.
  • the uniform learning correction amount map stores one uniform learning correction amount PH0SM in the entire operation region where learning is performed, and the engine-specific learning correction amount map includes The learning correction amount PHOSSx for each area is recorded in each of the nine operating regions divided into three by the rotation speed N and the basic fuel injection amount Tp.
  • step 15 the second air-fuel ratio signal voltage V '02 and the target air-fuel ratio from the sensor 21 (the stoichiometric air-fuel ratio) is compared with the corresponding reference value SL, the air-fuel ratio from the lean or al-liter or Ritsuchi to lean Judgment is made as to whether or not the vehicle has been reversed (whether or not the vehicle has crossed the standard ⁇ SL equivalent to the target air-fuel ratio).
  • step 16 the process proceeds to step 16, and the value PHOSP that uses the area-based learning correction amount PHOSSx retrieved in step 14 this time. After that, the process proceeds to step 17, where the uniform learning correction amount PHOSM correction amount DPHOSP is calculated by the following equation.
  • PHOSP-! Is area-based learning correction amount PHOSSx when the output V '02 of the previous second air-fuel ratio sensor 21 has been inverted
  • M is a positive constant ( ⁇ 1) Ru der. That is, the correction amount DPHOSP is calculated every time the output of the second air-fuel ratio sensor 21 is inverted.
  • the area-based learning correction amount P HOSSx is set as a value corresponding to a predetermined ratio of the averaged value, and the uniform learning correction amount P H0SM sets the average level of the learning-based learning correction amount P HOSSx for all operating area variers. Make them learn.
  • step 18 the uniform learning correction amount PH0SM is corrected by the value obtained by adding the correction amount DPH0SP calculated in step 17 to the uniform learning correction amount PH0SM searched in step 14, and the corrected value is stored in the RAM. Update the uniform learning correction amount PH0 SM.
  • step 17.18 corresponds to uniform learning correction amount correcting means.
  • the count value CONTROx obtained by integrating the number of times of output reversal (the number of times of rich / lean reversal) of the second air-fuel ratio sensor 21 is compared with the predetermined value RC0NT for each operation region of the learning correction amount map for each area. Then, the learning progress degree is determined for each area. If the output of the second air-fuel ratio sensor 21 is inverted many times in the same area, the learning in that area progresses accordingly, and the air-fuel ratio correction amount required in the operation area is learned. Therefore, when the count value CONTROx is equal to or less than the predetermined value, it can be determined that the learning progress is slow in the area.
  • the predetermined value may be set, for example, from the average of the count values CONTROx for each operation region.
  • the inversion of the output means that the output V ′ 02 of the second air-fuel ratio sensor 21 has crossed the reference value SL corresponding to the stoichiometric air-fuel ratio, and the count value CONTROx is This indicates the number of times the air-fuel ratio has crossed the reference value SL.
  • step 19 it is determined that the count value CONTROx is equal to or greater than the predetermined value RCONT, and the learning correction amount P HOSSx for each operating region in which the degree of learning progress is high is corrected in step 20 by the uniform learning correction amount P H0SM.
  • the map is rewritten by subtracting and correcting the amount DPH0SP, but the count value CONTROx Is determined to be less than the predetermined value RCONT, and the correction rewriting of the area-based learning correction amount P HOSSx in step 20 is not executed in the operation region where the learning progress is low.
  • the uniform learning correction amount P H0SM when the uniform learning correction amount P H0SM is added and corrected, the correction amount as the uniform learning correction amount P H0SM + area-specific learning correction amount P HOSSx in the entire area increases by the rewriting correction amount DPH0SP. Therefore, the learning correction amount P HOSSx for each area needs to be subtracted and corrected by that amount.In this embodiment, however, learning is sufficiently advanced instead of subtracting and correcting the learning correction amount P HOSSx for each area for all areas. It is performed only in the operation area that is determined to be in operation.
  • the area that has not been subjected to the subtraction correction is set in the excessive correction direction, but the learning is not sufficiently advanced and the learning correction for each area is in the stage before converging to the required amount in the operation area.
  • the above-described setting of the excessive correction direction is set in a direction approaching the required amount, and the learning convergence in an area where learning opportunities are small and learning progresses slowly can be accelerated.
  • the steps 19 and 20 correspond to the learning progress determining means, the second area-specific learning correction amount correcting means, and the correction prohibiting means.
  • step 21 the area-based learning correction amount P HOSSx corresponding to the end of the current driving state error corrected in step 20 or kept at the previous map value is calculated in the next step 17. Therefore, it is set as P HOSP-i, and then the process proceeds to step 22.
  • step 15 If it is determined in step 15 that the second air-fuel ratio sensor 21 is not in the inverting state, the process jumps from step 16 to step 21 and proceeds to step 22.
  • step 22 determine Ritsuchi, the lean output V '02 of the second air-fuel ratio sensor 21 as compared to the target air-fuel ratio phase in question reference value SL with respect to the target of the actual air-fuel ratio Separate.
  • the learning correction amount P HOSSx for each error of the pertinent area is searched and read out, and is read out in the direction where the actual air-fuel ratio approaches the target air-fuel ratio based on the output of the second air-fuel ratio sensor 21.
  • the steps 22 and 23 correspond to the first error correction amount correcting means.
  • step 25 the area-based learning correction amount P HOSSx stored in the corresponding operation area of the error-based learning correction amount map is rewritten with the learning correction amount for each area P HOSSx corrected in step 23 or 24. Accordingly, the learning correction amount P HOSSx for each error is sequentially corrected in a direction in which the air-fuel ratio detected by the second air-fuel ratio sensor 21 approaches the target, and the map data is rewritten based on the correction result. It has become.
  • step 26 the uniform learning correction amount P HOSM updated as described above and the learning correction amount P HOSSx for each area are added, and the second air-fuel ratio based on the output value of the second air-fuel ratio sensor 21 is added.
  • the proportional correction amount P HOS corresponding to the second air-fuel ratio correction amount is used to correct the control operation amount in the first air-fuel ratio correction amount setting control based on the output value of the first air-fuel ratio sensor 19. This is the value used.
  • Step 26 corresponds to the air-fuel ratio correction amount calculating means based on the learning amount.
  • the routine proceeds to step 27, where rich / lean determination is performed by the first air-fuel ratio sensor 19, and when lean-rich is reversed, the routine proceeds to step 28, where the air-fuel ratio feedback correction coefficient ⁇ in the decreasing direction given when the rich is reversed for ⁇ setting is reversed.
  • the proportional component P R from the reference value P R0 is updated by the air-fuel ratio control correction amount PH0S reduced value. Then updated with the value obtained by subtracting the proportional part P R, the air-fuel ratio feedback correction coefficient from the current value in step 29.
  • step 30 the process proceeds to step 30, and the proportional amount in the increasing direction given when the air-fuel ratio feedback correction coefficient is set to the air reversal is set to the reference value P L 0 by the air-fuel ratio control correction amount P L0. Update with the value obtained by adding H0S.
  • step 31 the air-fuel ratio feedback correction coefficient is updated with a value obtained by adding the proportional component ⁇ ⁇ ⁇ to the current value.
  • step 13 If it is determined in step 13 that the output of the first air-fuel ratio sensor 19 is not at the time of inversion, the process proceeds to step 32, where rich / lean determination based on the output of the first air-fuel ratio sensor 19 is performed. If so, proceed to step 33 to update the air-fuel ratio feedback correction coefficient a with the value obtained by reducing the integral I ⁇ from the current value. If lean, proceed to step 34 to update with the value obtained by adding the integral.
  • the function of setting the air-fuel ratio feedback correction coefficient excluding the correction by steps 28 and 30 in the steps 27 to 34 is the first air-fuel ratio correction amount calculation by the first air-fuel ratio sensor 19. Steps 27 to 34 including step 28 and step 30 correspond to the air-fuel ratio correction amount calculating means.
  • the learning is advanced in the entire driving range where the learning is performed with the uniform learning correction amount P H0SM, and the output value of the second air-fuel ratio sensor 21 is adjusted to the reference value (target air-fuel ratio equivalent value).
  • the convergence can be promoted, and the learning correction amount P H0SS x for each area enables high-precision learning corresponding to the different correction requests for each operation area.
  • the second air-fuel ratio sensor 21 controls the air-fuel ratio learning control. Progress Both line promotion and improvement of learning accuracy are compatible.
  • FIGS. 6 and 7 show how the uniform learning correction amount P H0SM and the area-specific learning correction amount P HOSSx are updated, respectively.
  • the proportion of the air-fuel ratio feedback correction coefficient is calculated based on the detection value of the second air-fuel ratio sensor.
  • the air-fuel ratio feedback correction coefficient obtained by combining the two values with the air-fuel ratio feedback correction coefficient set by correcting the integral component instead of the proportional component It may be used for correcting the injection amount.
  • the reference value SL for rich / lean judgment based on the output value of the first air-fuel ratio sensor 19 and the output value of the first air-fuel ratio sensor 19 The delay time for setting the air-fuel ratio feedback correction coefficient LMD based on the above is also applicable to the correction of the delay time by the detection of the second air-fuel ratio sensor 21.
  • the control accuracy to the target air-fuel ratio deteriorates. Since it can be self-corrected and the accuracy and convergence of such self-correction can be obtained at a high level, it is most suitable for air-fuel ratio control of an electronically controlled fuel injection gasoline internal combustion engine. It is extremely effective in raising.

Abstract

An air-fuel ratio control system provided with air-fuel ratio sensors across a three-way catalyst, for performing air-fuel ratio feedback control, wherein, in controlling an air-fuel ratio feedback correction coefficient on the basis of an output value from the air-fuel sensor on the upstream side, a control operation value is corrected on the basis of an output value of the air-fuel ratio sensor on the downstream side. Here, the correction value on the basis of the output from the air-fuel ratio sensor on the downstream side is calculated from a uniform learning correction value uniformly used in the whole of operational regions and an area-by-area learning correction value specific to each of separate operational regions. Further, when the uniform learning correction value is added for correction, a process for subtracting for correction from the area-by-area learning correction value the corrected value is performed only in a region where learning progresses beyond a predetermined value among the respective operational regions in which area-by-area learning correction values are stored. With the above-described arrangement, the promotion of progress of the air-fuel ratio learning control by the air-fuel ratio sensor on the downstream side can be compatible with an improvement in accuracy of learning, and furthermore, the progress of learning can be promoted in the region where the chance of learning is little and learning in separate operational regions is required.

Description

明 糸田 書  Akira Itoda
内燃機関の空燃比制御方法及び装置  Method and apparatus for controlling air-fuel ratio of an internal combustion engine
く技術分野〉  Technology field>
本発明は、 自動車に搭載される内燃機関における吸入混合気の空燃比 を目標空燃比に制御する方法及び装置に関し、 特に空燃比センサを排気 浄化用触媒の上流側及び下流側の排気系にそれぞれ備え、 これら 2つの 空燃比センサの検出値に基づいて空燃比を高精度にフィードバック制御 する方法及び装置に関する。  The present invention relates to a method and an apparatus for controlling an air-fuel ratio of an intake air-fuel mixture to a target air-fuel ratio in an internal combustion engine mounted on an automobile, and in particular, an air-fuel ratio sensor is provided for each of an exhaust system on an upstream side and a downstream side of an exhaust purification catalyst. The present invention relates to a method and an apparatus for performing feedback control of the air-fuel ratio with high accuracy based on the detection values of these two air-fuel ratio sensors.
〈背景技術〉  <Background technology>
従来から、 排気浄化用に排気系に設けられる三元触媒における転換効 率を良好に維持するために、 機関吸入混合気の空燃比を理論空燃比にフ ィ一ドバック制御することが行われている。  Conventionally, in order to maintain good conversion efficiency in a three-way catalyst provided in an exhaust system for exhaust gas purification, feedback control of the air-fuel ratio of an engine intake air-fuel mixture to a stoichiometric air-fuel ratio has been performed. I have.
具体的には、 まず、 排気中の酸素濃度を介して機関吸入混合気の空燃 比を検出する空燃比センサ (酸素 "trンサ) を、 検出応答性を確保するた めに燃焼室に比較的近い排気マ二ホールドの集合部などに設ける。 そし て、 この空燃比センサで検出される排気中酸素濃度に基づいて理論空燃 比に対する実際の空燃比のリッチ . リーンを検出し、 実際の空燃比を理 論空燃比に近づける方向に燃料供給量をフィ一ドバック制御するように している。  Specifically, first, an air-fuel ratio sensor (oxygen sensor) that detects the air-fuel ratio of the engine intake air-fuel mixture via the oxygen concentration in the exhaust gas is compared with the combustion chamber to ensure detection responsiveness. The air-fuel ratio sensor detects the rich air-fuel ratio of the actual air-fuel ratio with respect to the stoichiometric air-fuel ratio based on the oxygen concentration in the exhaust gas detected by the air-fuel ratio sensor. Feedback control is performed on the fuel supply amount in a direction to bring the air-fuel ratio closer to the theoretical air-fuel ratio.
しかしながら、 上記のように燃焼室に比較的近い排気系に設けられる 空燃比センサは、 高温排気に曝されることになるため、 熱劣化などによ り特性が変化し易いという問題がある。 また、 空燃比センサで設けられ る排気マ二ホル一ドの集合部では、 気筒毎の排気の混合が不十分である ため、 全気筒の平均的な空燃比を精度良く検出し難いという問題もあつ た。 このため、 上記従来の空燃比フィードバック制御では、 応答性は確 保されるものの高精度な空燃比制御を安定して行わせることが困難であ つた。 . However, since the air-fuel ratio sensor provided in the exhaust system relatively close to the combustion chamber as described above is exposed to high-temperature exhaust, there is a problem that its characteristics are liable to change due to thermal deterioration or the like. In addition, the exhaust manifold provided in the air-fuel ratio sensor has a problem that it is difficult to accurately detect the average air-fuel ratio of all cylinders due to insufficient mixing of exhaust gas for each cylinder. It was hot. Therefore, in the above-described conventional air-fuel ratio feedback control, responsiveness is ensured, but it is difficult to stably perform high-precision air-fuel ratio control. I got it. .
この点に鑑み、 触媒上流側となる前記空燃比センサに加え、 触媒の下 流側にも空燃比センサを設け、 これら 2つの空燃比センサの検出値を用 いて空燃比をフィ一ドバック制御するものが提案されている (特開昭 5 8 - 4 8 7 5 6号公報等参照).。  In view of this point, in addition to the air-fuel ratio sensor on the upstream side of the catalyst, an air-fuel ratio sensor is also provided on the downstream side of the catalyst, and the feedback value of the air-fuel ratio is controlled using the detection values of these two air-fuel ratio sensors. Some have been proposed (see JP-A-58-48757, etc.).
即ち、 下流側の空燃比センサは、 燃焼室から離れているために応答性 は悪いが、 触媒の下流側であるために熱的影響が少なく、 また、 排気中 の毒性成分による被毒量も少なく、 更に、 排気の混合状態が良いため全 気筒の平均的な空燃比を検出できるなど、 上流側に設けられる空燃比セ ンサに比較して高精度で安定した検出性能が得られる。  In other words, the air-fuel ratio sensor on the downstream side has poor responsiveness because it is far from the combustion chamber, but has little thermal effect because it is on the downstream side of the catalyst, and the poisoning amount due to toxic components in the exhaust gas is low. It is possible to detect the average air-fuel ratio of all the cylinders because the air-fuel ratio is small and the exhaust gas mixture is good, so that high-accuracy and stable detection performance can be obtained compared to the air-fuel ratio sensor provided on the upstream side.
そこで、 2つの空燃比センサの検出値に基づいてそれぞれ独立に設定 される 2つの空燃比フィ―ドバック補正係数を組み合わせて用いたり、 或いは、 上流側の空燃比センサにより設定される空燃比フィ一ドバック 補正係数の制御操作量 (比例定数や積分定数) や、 上流側の空燃比セン ザの出力電圧の判別に用いる比較電圧や、 上流側の空燃比センサの検出 結果を実際の制御に用いるに当たつての遅延時間を、 下流側の空燃比セ ンサの検出結果に基づいて補正したりしている。 かかる 2つの空燃比セ ンサを用いた空燃比制御により、 上流側空燃比センサの出力特性のばら つきを下流側の空燃比センサによって補償して高精度な空燃比フィード バック制御が行える。  Therefore, two air-fuel ratio feedback correction coefficients independently set based on the detection values of the two air-fuel ratio sensors are used in combination, or the air-fuel ratio feedback set by the upstream air-fuel ratio sensor is used. The control amount of the feedback correction coefficient (proportional constant or integral constant), the comparison voltage used to determine the output voltage of the upstream air-fuel ratio sensor, and the detection result of the upstream air-fuel ratio sensor are used for actual control. The delay time is corrected based on the detection result of the air-fuel ratio sensor on the downstream side. With the air-fuel ratio control using the two air-fuel ratio sensors, variations in the output characteristics of the upstream air-fuel ratio sensor can be compensated for by the downstream air-fuel ratio sensor, and highly accurate air-fuel ratio feedback control can be performed.
しかし、 上記のような 2つの空燃比センサ (一般には酸素センサ) を 用いた空燃比制御においては、 フィードバック制御時の空撚比補正量の 要求レベルが、 非フィードバック制御時 (オープンループ時) に対して 大きな格差を有する場合があり、 特に非フィ―ドバック制御時からフィ ―ドバック制御時に移行する際のフィードバック制御開始時点では次の ような問題が発生する。 即ち、 下流側の空燃比センサによる空燃比検出は、 上流側に比べて遅 れるから、 下流側の空燃比センサによる空燃比補正制御の速度を、 上流 側の空燃比センサを用いた空燃比補正速度と同程度に設定すると、 制御 のオーバーシュートが大きくなつてしまう。 そこで、 前記制御のオーバ ーシユートを抑止すべく、 上流側の空燃比センサによる空燃比制御の速 度に比較して、 下流側の空燃比センサを用いた空燃比制御においては、 その制御速度を低く設定している。 However, in the air-fuel ratio control using two air-fuel ratio sensors (generally, oxygen sensors) as described above, the required level of the air-twist ratio correction amount during the feedback control is increased during non-feedback control (at open loop). In particular, there may be a large gap, and the following problems occur especially at the start of feedback control when shifting from non-feedback control to feedback control. That is, since the detection of the air-fuel ratio by the downstream air-fuel ratio sensor is delayed as compared with the upstream-side air-fuel ratio sensor, the speed of the air-fuel ratio correction control by the downstream air-fuel ratio sensor is reduced by the air-fuel ratio correction using the upstream air-fuel ratio sensor. If the speed is set to be almost the same, the control overshoot will increase. Therefore, in order to suppress the overshooting of the control, in the air-fuel ratio control using the air-fuel ratio sensor on the downstream side, the control speed is lower than the speed of the air-fuel ratio control by the air-fuel ratio sensor on the upstream side. You have set.
従って、 下流側空燃比センサに基づいて制御される空燃比補正量 (例 えば上流側空燃比センサに基づく空燃比フィードバック補正量の比例積 分制御における比例分の補正量) が要求値に達するまでに時間を要し、 引いては目標空燃比に達するのに時間を要して、 燃費, 運転性, 排気性 状の悪化などを招くことがあった。  Therefore, until the air-fuel ratio correction amount controlled based on the downstream air-fuel ratio sensor (for example, the proportional correction amount in the proportional-integral control of the air-fuel ratio feedback correction amount based on the upstream air-fuel ratio sensor) reaches the required value. It takes a long time to reach the target air-fuel ratio, which may lead to deterioration of fuel efficiency, drivability, and exhaust properties.
また、 空燃比フィードバック制御中でも機関の運転状態が異なる領域 に遷移したときには、 運転領域間における空燃比補正の要求レベルの違 いによって、 やはり空燃比が目標空燃比から大きくずれることがあり、 この場合にも燃費, 運転性, 排気性状の悪化などを招くことになる。 そこで、 下流側の空燃比センサに基づく空燃比補正量の平均的な値を 逐次学習補正量として演算し運転領域毎に記憶しておき、 該学習補正量 を前記空燃比補正量と共に用いて空燃比を制御することにより、 常に安 定した空燃比制御を行えるようにしたものが先に提案されている (特開 昭 6 3 - 9 7 8 5 1号公報等参照) 。  In addition, when the engine operating state transitions to a different area during the air-fuel ratio feedback control, the air-fuel ratio may still deviate significantly from the target air-fuel ratio due to the difference in the required level of the air-fuel ratio correction between the operating areas. This also leads to deterioration of fuel efficiency, drivability, and exhaust characteristics. Therefore, an average value of the air-fuel ratio correction amount based on the air-fuel ratio sensor on the downstream side is sequentially calculated as a learning correction amount and stored for each operating region, and the learning correction amount is used together with the air-fuel ratio correction amount to perform air-fuel ratio correction. There has been previously proposed a device that can always perform stable air-fuel ratio control by controlling the fuel ratio (see Japanese Patent Application Laid-Open No. 63-97851, etc.).
しかしながら、 前述のように下流側の空燃比センサに基づく空燃比補 正の制御速度は、 オーバーシュート抑止のために比較的低く設定されて いるから、 上記のように下流側センサに基づく空燃比補正量を運転領域 毎に学習させるときになかなか学習が進行しないことになる。 また、 前 記空燃比補正量の要求値は、 運転条件によって大きく異なるため、 学習 させる領域を細かく区分することで学習精度を確保することが望まれる が、 領域を細かく区分すると、 各領域に留まっている時間が短くなり、 また、 実際の運転条件が各領域に該当する頻度も少なくなるから、 更に、 学習の進行が妨げられることになる。 However, as described above, the control speed of the air-fuel ratio correction based on the downstream air-fuel ratio sensor is set relatively low to suppress overshoot. When the amount is learned for each driving region, the learning does not easily progress. In addition, the required value of the air-fuel ratio correction amount varies greatly depending on the operating conditions. It is desirable to secure the learning accuracy by dividing the area to be finely divided.However, if the area is divided finely, the time spent staying in each area is shortened, and the frequency with which the actual operating conditions correspond to each area is also reduced. Less will further hinder learning progress.
従って、 従来は、 学習の進行促進と学習の精度向上との 2つの目標を 高い次元で両立させることが困難であり、 ある妥協点を見出して前記学 習補正量を記億する運転領域を比較的大きく区分しており、 排気性状の 悪化や空燃比のばらつきによる運転性の悪化を招いていた。  Therefore, it has conventionally been difficult to achieve the two goals of accelerating learning and improving learning accuracy at a high level, and a certain compromise was found to compare operating areas where the learning correction amount was recorded. And the driving performance was deteriorated due to the deterioration of the exhaust properties and the variation of the air-fuel ratio.
そこで、 後述するように、 学習の進行促進を図るための広い運転領域 における一律学習と、 学習の精度向上を維持するための細分化された運 転領域別のェリァ别学習とをマッチングさせつつ同時に行うよう構成す ることで、 触媒下流側の空燃比センサによる空燃比制御学習の進行促進 と学習の精度向上とを両立させることが可能な内燃機関の空燃比制御方 法及び装置を発明した。  Therefore, as will be described later, uniform learning in a wide driving area to promote the progress of learning, and subdivided learning in each driving area to maintain the improvement of learning accuracy are simultaneously performed while matching. The present invention has invented an air-fuel ratio control method and apparatus for an internal combustion engine that can achieve both the promotion of the air-fuel ratio control learning by the air-fuel ratio sensor on the downstream side of the catalyst and the improvement of the learning accuracy.
しかしながら、 かかる 2つの学習を用いた空燃比制御においても、 更 に次のような改善すべき問題があることが分かつた。  However, it has been found that the air-fuel ratio control using these two types of learning has the following problems to be further improved.
即ち、 -上記のように広い運転領域における一律学習と細分化された運 転領域別のェリァ別学習とを同時に行うようにする場合には、 広い運転 領域の学習補正量を加算更新した場合には、 この広い領域に含まれる細 分化された運転領域全てがこの更新後の学習補正量で制御されることに なる。 従って、 細分化された各運転領域における学習補正量を前記更新 分だけ減算更新して、 学習補正量に基づく補正が過剰になつてしまうこ とを防止することが必要になる。  In other words, when the uniform learning in the wide operating area and the learning for each of the subdivided operating areas are simultaneously performed as described above, the learning correction amount for the wide operating area is added and updated. In other words, all the subdivided operating regions included in this wide region are controlled by the updated learning correction amount. Therefore, it is necessary to subtract and update the learning correction amount in each of the subdivided operation regions by the update amount to prevent the correction based on the learning correction amount from becoming excessive.
しかしながら、 上記のようにェリァ别学習値を、 一律学習値の加算更 新時に全て減算更新させる構成では、 細分化された運転領域において学 習機会の少ない領域については、 収束する前に一律学習補正量の更新分 だけ減算更新されることになる。 このため、 かかる更新によって収束レ ベルから更に遠のいて、 学習機会が少ない領域についてはますます収束 が遅くなつてしまうという問題があり、 一律学習とエリァ別学習とを同 時に行うことで学習の進行促進と学習の精度向上との両立を図ろうとし ても、 検出応答遅れのある触媒下流側の空燃比センサによる学習では充 分な効果を上げることができなかった。 However, as described above, in the configuration in which the entire learning value is subtracted and updated when the uniform learning value is added and updated, in the subdivided driving region, in the region where the learning opportunity is small, the uniform learning correction is performed before convergence. Quantity update Only the subtraction will be updated. For this reason, there is a problem that the convergence becomes slower in an area that is farther from the convergence level and has less learning opportunities due to such an update, and the learning progresses by performing uniform learning and area-specific learning simultaneously. Even if we tried to achieve both the promotion and the improvement of the learning accuracy, learning with the air-fuel ratio sensor downstream of the catalyst, which had a detection response delay, could not achieve a sufficient effect.
本発明は上記問題点に鑑みなされたものであり、 まず、 学習の進行促 進を図るための広い運転領域における一律学習と、 学習の精度向上を維 持するための細分化された運転領域別のエリア別学習とをマッチングさ せつつ同時に行うよう構成することで、 触媒下流側の空燃比センサによ る空燃比学習制御の進行促進と学習の精度向上とを両立した内燃機関の 空燃比制御方法及び装置を提供することを目的とする。  The present invention has been made in view of the above-described problems. First, uniform learning in a wide driving range for promoting the progress of learning, and divided into different driving ranges for maintaining improved learning accuracy. The air-fuel ratio control of the internal combustion engine achieves both the advancement of the air-fuel ratio learning control by the air-fuel ratio sensor on the downstream side of the catalyst and the improvement of the learning accuracy. It is an object to provide a method and an apparatus.
また、 上記のような一律学習とェリァ別学習とを行わせる触媒下流側 の空燃比センサを用いた空燃比学習制御において、 エリア別学習におけ る学習機会の少なレ、運転領域における収束性を改善することを目的とす る。  In addition, in the air-fuel ratio learning control using the air-fuel ratio sensor on the downstream side of the catalyst that performs the uniform learning and the area-specific learning as described above, the learning opportunities in the area-based learning are reduced, and the convergence in the operation area is improved. It aims to improve.
更に、 エリア別学習において学習機会の少ない運転領域を、 確実かつ 簡便に判別できるようにすることを目的とする。  Further, it is another object of the present invention to be able to reliably and easily determine a driving area where learning opportunities are small in area-specific learning.
<発明の開示〉  <Disclosure of the Invention>
上記目的達成のため本発明にかかる内燃機関の空燃比制御方法及び装 置では、 まず、 基本的に、 内燃機関の排気系に設けられた触媒式排気浄 化装置の上流側及び下流側に、 機関吸入混合気の空燃比によって変化す る排気中の特定成分の濃度に感応して出力値が変化する第 1及び第 2の 空燃比センサをそれぞれ設ける。 そして、 第 1の空燃比センサの出力値 に基づいて第 1の空燃比補正量を演算し、 第 2の空燃比センサの出力値 に基づいて第 2の空燃比補正量を演算し、 これら 2つの空燃比補正量に 基づいて最終的な空燃比補正量を演算して、 機関吸入混合気の空燃比を 制御する。 In order to achieve the above object, the method and apparatus for controlling the air-fuel ratio of an internal combustion engine according to the present invention basically comprises: an upstream side and a downstream side of a catalytic exhaust purification device provided in an exhaust system of an internal combustion engine. First and second air-fuel ratio sensors whose output values change in response to the concentration of specific components in the exhaust gas that change according to the air-fuel ratio of the engine intake air-fuel mixture are provided. Then, a first air-fuel ratio correction amount is calculated based on the output value of the first air-fuel ratio sensor, and a second air-fuel ratio correction amount is calculated based on the output value of the second air-fuel ratio sensor. Air-fuel ratio correction amount The final air-fuel ratio correction amount is calculated based on this, and the air-fuel ratio of the engine intake air-fuel mixture is controlled.
ここで、 本発明にかかる特徴的な構成として、 第 2の空燃比補正量は 以下のようにして設定される。  Here, as a characteristic configuration according to the present invention, the second air-fuel ratio correction amount is set as follows.
即ち、 複数に区分された運転領域別に記億されたエリァ別学習補正量 を、 第 2の空燃比センサの出力値に基づいて修正して書き換える一方、 前記ェリァ別学習補正量の平均レベルに基づく修正量だけ全運転領域で 一律に用いる一律学習補正量の記憶値を加算修正して書き換える。 ここ で、 一律学習補正量を加算修正したときには、 かかる修正分を各運転領 域別のェリァ別学習補正量からそれぞれ減算修正して各ェリァ別学習補 正量を書き換える。  That is, while the learning correction amount for each area recorded for each of the plurality of operating regions is corrected and rewritten based on the output value of the second air-fuel ratio sensor, it is based on the average level of the learning correction amount for each area. The stored value of the uniform learning correction amount used uniformly in the entire operation region by the correction amount is added and corrected and rewritten. Here, when the uniform learning correction amount is added and corrected, the correction amount is subtracted and corrected from the error correction amount for each area for each operating region, and the learning correction amount for each error is rewritten.
そして、 該当運転領域に対応する前記エリア別学習補正量と、 全運転 領域で一律に用いる一律学習補正量と、 に基づいて第 2の空燃比補正量 を設定させる。  Then, the second air-fuel ratio correction amount is set based on the learning correction amount for each area corresponding to the corresponding operation region and the uniform learning correction amount uniformly used for all operation regions.
上記のように、 第 2の空燃比センサの出力値に基づく第 2の空燃比補 正量を、 エリア別に適用されるエリア別学晋補正量と、 全運転領域で一 律に用いられる一律学習補正量とに分けて学習設定させれば、 第 2の空 燃比センサの出力値に基づいて空燃比を学習補正させるに当たつて、 一 律学習で学習の進行促進が確保され、 また、 エリア別学習によって学習 精度を維持させることができる。  As described above, the second air-fuel ratio correction amount based on the output value of the second air-fuel ratio sensor is calculated based on the area-specific learning correction amount applied to each area and the uniform learning used uniformly in all operation areas. If learning is set separately for the correction amount, learning and correction of the air-fuel ratio based on the output value of the second air-fuel ratio sensor will ensure uniform learning and promote the progress of learning. Learning accuracy can be maintained by separate learning.
ここで、 前記ェリァ別学習補正量が記憶される各運転領域別に学習進 行の程度を判別し、 学習進行の程度が所定以下である運転領域について は、 一律学習補正量を加算修正した分を減算修正する処理を禁止するこ とが好ましい。  Here, the degree of learning progress is determined for each driving area in which the learning correction amount for each area is stored, and for the driving area where the learning progress degree is equal to or less than a predetermined value, the amount obtained by adding and correcting the uniform learning correction amount is used. It is preferable to prohibit the process of subtraction correction.
かかる減算修正の禁止処理によって、 学習の機会が少なく学習進行が 遅い運転領域においても、 その運転領域における要求レベルに速やかに 収束させることができるようになる。 By such a subtraction correction prohibition process, even in an operating region where learning opportunities are small and learning progress is slow, the required level in the operating region can be quickly adjusted. It can be made to converge.
前述のように学習機会の少ない運転領域において、 一律学習補正量の 加算修正分を減算修正させないようにするときには、 第 2空燃比センサ の出力値が目標空燃比相当値を横切った経験回数を、 エリア別学習補正 量が記憶される各運転領域別に求め、 前記経験回数に基づいて各運転領 域別に学習進行の程度を判別するよう構成すると良い。  As described above, in the driving region where learning opportunities are small, when the addition and correction of the uniform learning correction amount is not to be subtracted and corrected, the number of times the output value of the second air-fuel ratio sensor has crossed the target air-fuel ratio equivalent value is calculated as It is preferable that the learning correction amount for each area is obtained for each driving area where the learning correction amount is stored, and the degree of learning progress is determined for each driving area based on the number of times of experience.
即ち、 第 2の空燃比センサの出力値が、 目標空燃比相当値を横切った 経験がない運転領域においては、 第 2の空燃比センサで検出される空燃 比を目標に一致させるための最適空燃比補正量が全く確認されていない ことになり、 逆に目標空燃比相当値を横切った経験回数が多ければ、 そ れだけ空燃比補正量を最適レベルに近づけることができる。 従って、 前 記経験回数をそのまま学習進行の程度を示すものとして、 各運転領域別 の学習進行の程度を判別させることができる。  In other words, in an operating region where the output value of the second air-fuel ratio sensor has no experience of crossing the target air-fuel ratio equivalent value, the optimum value for matching the air-fuel ratio detected by the second air-fuel ratio sensor to the target is used. This means that the air-fuel ratio correction amount has not been confirmed at all, and conversely, if the number of times of crossing the target air-fuel ratio equivalent value is large, the air-fuel ratio correction amount can be brought closer to the optimum level. Therefore, it is possible to determine the degree of learning progress for each driving area by using the above-mentioned experience count as it is to indicate the degree of learning progress.
また、 前記排気浄化用触媒の上下流それぞれ設けられる空燃比センサ は、 排気中の酸素濃度に感応して出力値が変化するセンサを用いること ができる。  Further, as the air-fuel ratio sensors provided respectively on the upstream and downstream of the exhaust gas purifying catalyst, sensors whose output values change in response to the oxygen concentration in the exhaust gas can be used.
更に、 第 2の空燃比補正量は、 前記第 1の空燃比補正量の制御操作量 を補正するための値として演算されるよう構成しても良い。  Furthermore, the second air-fuel ratio correction amount may be configured to be calculated as a value for correcting the control operation amount of the first air-fuel ratio correction amount.
また、 排気浄化用触媒が三元触媒であって、 第 1の空燃比センサ, 第 2の空燃比センサで検出される空燃比が理論空燃比に近づく方向に第 1 の空燃比補正量及び第 2の空燃比補正量がそれぞれ演算されるよう構成 することができる。 かかる構成とすれば、 三元触媒における酸化 ·還元 の転換効率が最良に維持される。  Further, the exhaust gas purification catalyst is a three-way catalyst, and the first air-fuel ratio correction amount and the first air-fuel ratio correction amount are adjusted so that the air-fuel ratio detected by the first air-fuel ratio sensor and the second air-fuel ratio sensor approaches the stoichiometric air-fuel ratio. It is possible to configure so that the air-fuel ratio correction amounts of 2 are calculated respectively. With this configuration, the conversion efficiency of oxidation and reduction in the three-way catalyst is kept at the best.
更に、 第 2の空燃比センサの出力値が目標空燃比に相当する値を横切 つたときのエリァ別学習補正量の平均値を求め、 この平均値に基づいて 一律学習補正量を修正するよう構成すると良い。 前記一律学習補正量は、 全運転領域において一律に用いられる補正量 であるから、 各運転領域での要求補正レベルの平均的な値として与えら れるべきである。 そこで、 第 2の空燃比センサの出力値が目標空燃比に 相当する値を横切つたときのエリァ別学習補正量がその領域での最適補 正レベルを略示すものとし、 かかる各領域での最適補正レベルの平均値 に基づいて一律学習補正量を修正させるようにした。 Further, an average value of the learning correction amount for each area when the output value of the second air-fuel ratio sensor crosses a value corresponding to the target air-fuel ratio is obtained, and the uniform learning correction amount is corrected based on the average value. It is good to configure. Since the uniform learning correction amount is a correction amount used uniformly in all the operation regions, it should be given as an average value of the required correction levels in each operation region. Therefore, it is assumed that the learning correction amount for each area when the output value of the second air-fuel ratio sensor crosses a value corresponding to the target air-fuel ratio roughly indicates the optimum correction level in that region. The uniform learning correction amount is corrected based on the average value of the optimum correction level.
く図面の簡単な説明〉  Brief description of drawings>
第 1図は本発明にかかる空燃比制御装置の基本構成を示すプロック図 である。  FIG. 1 is a block diagram showing a basic configuration of an air-fuel ratio control device according to the present invention.
第 2図は本発明の一実施例におけるシステム構成を示す図である。 第 3図は同上実施例における燃料噴射量設定ルーチンを示すフローチ ヤートである。  FIG. 2 is a diagram showing a system configuration in one embodiment of the present invention. FIG. 3 is a flowchart showing a fuel injection amount setting routine in the embodiment.
第 4図は同上実施例における空燃比フィードバック補正係数設定ルー チンを示すフローチヤ一トである。  FIG. 4 is a flowchart showing an air-fuel ratio feedback correction coefficient setting routine in the embodiment.
第 5図 (A), (B ) はそれぞれ一律学習捕正量マップとエリア別学 習補正量マップの運転領域を示す図である。  Figs. 5 (A) and (B) are diagrams showing the operating regions of the uniform learning correction amount map and the area-specific learning correction amount map, respectively.
第 6図及び第 7図はそれぞれ一律学習補正値とェリァ別学習補正値と が更新される様子を説明するための線図である。  FIG. 6 and FIG. 7 are diagrams for explaining how the uniform learning correction value and the learning correction value for each area are updated.
〈発明の実施例〉  <Example of the invention>
本発明にかかる内燃機関の空燃比制御装置の概略構成は、 第 1図に示 すとおりであり、 かかる内燃機関の空燃比学習制御装置及び方法の実施 例は第 2図〜第 7図に示される。  A schematic configuration of an air-fuel ratio control apparatus for an internal combustion engine according to the present invention is as shown in FIG. 1, and an embodiment of the air-fuel ratio learning control apparatus and method for such an internal combustion engine is shown in FIGS. 2 to 7. It is.
一実施例の構成を示す第 2図において、 機関 11の吸気通路 12には吸入 空気流量 Qを検出するエアフローメータ 13及び図示しないアクセルぺダ ルと連動して吸入空気流量 Qを制御するスロッ トル弁 14が設けられ、 下 流の吸気マ二ホールドの各ブランチ部分には気筒毎に電磁式の燃料噴射 弁 15が設けられる。 2, an intake passage 12 of an engine 11 has an air flow meter 13 for detecting an intake air flow rate Q and a throttle for controlling the intake air flow rate Q in conjunction with an accelerator pedal (not shown). A valve 14 is provided.Each branch of the downstream intake manifold is provided with electromagnetic fuel injection for each cylinder. Valve 15 is provided.
前記燃料噴射弁 15は、 マイクロコンピュータを内蔵したコント□ール ュニッ ト 16からの噴射パルス信号によって開弁駆動し、 図示しない燃料 ポンプから圧送されてプレツシャレギュレー夕により所定圧力に制御さ れた燃料を噴射供給する。  The fuel injection valve 15 is driven to open by an injection pulse signal from a control unit 16 incorporating a microcomputer, is pressure-fed from a fuel pump (not shown), and is controlled to a predetermined pressure by a pressure regulator. The injected fuel is supplied.
更に、 機関 11の冷却ジャケッ ト内の冷却水温度 Twを検出する水温セ ンサ 17が設けられる。  Further, a water temperature sensor 17 for detecting a cooling water temperature Tw in the cooling jacket of the engine 11 is provided.
一方、 排気通路 18には排気マ二ホールド集合部に排気中酸素濃度を検 出することによって吸入混合気の空燃比を検出する第 1の空燃比センサ 19が設けられ、 その下流側の排気管には排気中の C〇, H Cの酸化と N O x の還元を行って排気を浄化する排気浄化用触媒としての三元触媒 20 が設けられ、 更に該三元触媒 20の下流側に第 1空燃比センサと同一の機 能を持つ第 2の空燃比センサ 21が設けられる。  On the other hand, the exhaust passage 18 is provided with a first air-fuel ratio sensor 19 for detecting the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust at the exhaust manifold collecting section, and the exhaust pipe on the downstream side thereof is provided. The exhaust gas is provided with a three-way catalyst 20 as an exhaust gas purification catalyst for purifying exhaust gas by oxidizing C〇 and HC in the exhaust gas and reducing NO x, and further comprises a first empty space downstream of the three-way catalyst 20. A second air-fuel ratio sensor 21 having the same function as the fuel ratio sensor is provided.
尚、 前記第 1の空燃比センサ 19及び第 2の空燃比センサ 21は、 排気中 の酸素濃度に感応して出力電圧が変化する公知の酸素濃度センサであり、 理論空燃比に境に排気中の酸素濃度が急変することを利用して、 理論空 燃比に する実際の空燃比のリツチ · リーンを検出できるものである。 また、 第 2図で図示しないディストリビュー夕には、 クランク角セン サ 24が内蔵されており、 該クランク角センサ 22から機関回転と同期して 出力されるクランク単位角信号を一定時間カウントして、 又は、 クラン ク基準角信号の周期を計測して機関回転数 Nを検出する。  The first air-fuel ratio sensor 19 and the second air-fuel ratio sensor 21 are known oxygen concentration sensors whose output voltage changes in response to the oxygen concentration in the exhaust gas. By utilizing the sudden change in the oxygen concentration of the air, the rich / lean of the actual air-fuel ratio, which is the stoichiometric air-fuel ratio, can be detected. In addition, a crank angle sensor 24 is built in the distribution unit (not shown in FIG. 2), and a crank unit angle signal output from the crank angle sensor 22 in synchronization with the engine rotation is counted for a certain period of time. Alternatively, the engine speed N is detected by measuring the cycle of the crank reference angle signal.
次に、 コントロールュニッ ト 16による空燃比制御を第 3図及び第 4図 のフローチャートに従って説明する。 ここで、 本実施例の空燃比制御の 概略を述べると、 第 1の空燃比センサ 19の出力値に基づいて空燃比フィ -ドバック補正係数 αを比例積分制御する一方、 かかる補正係数ひの制 御操作量 (比例分) を第 2の空燃比センサ 21の出力値に基づいて補正す るようになつており、 かかる第 2の空燃比センサ 21の出力値に基づく補 正制御において、 全運転領域で一律に用いる一律学習と、 複数に区分さ れた運転領域別のェリァ別学習とが併用されるようにしてある。 Next, the air-fuel ratio control by the control unit 16 will be described with reference to the flowcharts of FIGS. Here, the outline of the air-fuel ratio control of the present embodiment will be described. While the air-fuel ratio feedback correction coefficient α is proportionally integrated based on the output value of the first air-fuel ratio sensor 19, the control of the correction coefficient The manipulated variable (proportional component) is corrected based on the output value of the second air-fuel ratio sensor 21. In the correction control based on the output value of the second air-fuel ratio sensor 21, uniform learning that is used uniformly in all operation regions, and learning by region in each of the plurality of divided operation regions is performed. Is used together.
尚、 本実施例において、 第 1の空燃比捕正量演算手段, 第 2の空燃比 補正量演算手段, 空燃比補正量演算手段, 空燃比制御手段, 第 1エリア 別学習補正量修正手段, 一律学習補正量修正手段, 第 2エリア別学習補 正量修正手段, 学習量に基づく空燃比捕正量演算手段, 学習進行判別手 段, 修正禁止手段としての機能は、 前記第 3図及び第 4図のフローチヤ ートに示すようにコントロールュ二ッ ト 16がソフトウエア的に備えてお り、 また、 一律学習補正量記憶手段, エリア別学習捕正量記億手段は、 コントロールュニット 16に内蔵されたバックアップ機能付 R AMが相当 するものとする。  In this embodiment, the first air-fuel ratio correction amount calculating means, the second air-fuel ratio correction amount calculating means, the air-fuel ratio correction amount calculating means, the air-fuel ratio control means, the first area learning correction amount correcting means, The functions of the uniform learning correction amount correction means, the second area-specific learning correction amount correction means, the air-fuel ratio correction amount calculation means based on the learning amount, the learning progress determination means, and the correction prohibition means are described in FIG. As shown in the flow chart of Fig. 4, the control unit 16 is provided as software, and the uniform learning correction amount storage means and the area-specific learning correction amount storage means are provided by the control unit 16. It is assumed that the RAM with the backup function built in is equivalent.
第 3図は燃料噴射量設定ルーチンを示し、 このルーチンは所定周期 ( 例えば 10ms) 毎に行われる。  FIG. 3 shows a fuel injection amount setting routine, which is performed at predetermined intervals (for example, 10 ms).
ステップ (図では Sと記す) 1では、 エアフローメータ 13によって検 出された吸入空気流量 Qとクランク角センサ 24からの信号に基づいて算 出した機関回転数 Nとに基づき、 単位回転当たりの吸入空気量に相当す る基本燃料噴射量 T pを次式によつて演算する。  Step (denoted by S in the figure) In step 1, based on the intake air flow rate Q detected by the air flow meter 13 and the engine speed N calculated based on the signal from the crank angle sensor 24, the suction per unit rotation The basic fuel injection amount Tp corresponding to the air amount is calculated by the following equation.
T p =K x QXN (Kは定数)  T p = K x QXN (K is a constant)
ステップ 2では、 水温センサ 17によつて検出された冷却水温度 等 に基づいて各種補正係数 C 0 E Fを設定する。  In step 2, various correction coefficients C 0 EF are set based on the cooling water temperature detected by the water temperature sensor 17, and the like.
ステップ 3では、 後述する空燃比フィ一.ドバック補正係数設定ルーチ ンにより設定された空燧比フィ一ドバック補正係数 (最終的な空燃比 捕正量) を読み込む。  At step 3, the air-fuel ratio feedback correction coefficient (final air-fuel ratio correction amount) set by the air-fuel ratio feedback correction coefficient setting routine described later is read.
ステップ 4では、 バッテリ電圧値に基づいて電圧補正分 T sを設定す る。 これは、 バッテリ電圧変動による燃料噴射弁 15の有効開弁時間の変 化を補正するためのものである。 In step 4, a voltage correction amount Ts is set based on the battery voltage value. This is because of the change in the effective valve opening time of the fuel injector 15 due to battery voltage fluctuation. This is for correcting the change.
ステップ 5では、 最終的な燃料噴射量 (燃料供給量) T iを次式に従 つて演算する。 下式のように空燃比フィードバック補正係数 で補正し つつ燃料噴射量 T iを設定するステップ 5の機能が空燃比制御手段に相 当する。  In step 5, the final fuel injection amount (fuel supply amount) Ti is calculated according to the following equation. The function of step 5 of setting the fuel injection amount Ti while correcting with the air-fuel ratio feedback correction coefficient as shown in the following equation corresponds to the air-fuel ratio control means.
T i = T p x C O E F x α + T s  T i = T p x C O E F x α + T s
ステップ 6では、 演算された燃料噴射弁 T iを出力用レジスタにセッ 卜する。  In step 6, the calculated fuel injector Ti is set in an output register.
これにより、 予め定められた機関回転同期の燃料噴射タイミングにな ると、 演算した燃料噴射量 T iのパルス巾をもつ駆動パルス信号が燃料 噴射弁 15に与えられて燃料噴射が行われる。  Thus, at a predetermined fuel injection timing synchronized with the rotation of the engine, a drive pulse signal having a pulse width of the calculated fuel injection amount Ti is given to the fuel injection valve 15 to perform fuel injection.
次に、 空燃比フィードバック補正係数設定ルーチンを第 4図のフロー チヤ一卜に従って説明する。 このルーチンは機関回転に同期して実行さ れる。  Next, the air-fuel ratio feedback correction coefficient setting routine will be described with reference to the flowchart of FIG. This routine is executed in synchronization with the engine speed.
ステップ 11では、 空燃比のフィードバック制御を行う運転条件 (後述 する一律学習補正量 P H0SM及びェリァ別学習補正量 PHOSSx の学習を行 う運転条件と一致する。 但し、 機関定常運転を制御条件に加味して精度 向上を図ることが好ましい。 ) であるか否かを判定する。 前記運転条件 を満たしていないときには、 このルーチンを終了する。 この場合、 フィ 一ドバック補正係数 αは前回のフィ一ドバック制御終了時の値若しくは 一定の基準値にクランプされ、 フィ一ドバック制御は停止される。  In step 11, the operating conditions for performing feedback control of the air-fuel ratio (the operating conditions for learning the uniform learning correction amount P H0SM and the learning correction amount for each area PHOSSx, which will be described later, match. However, the engine steady operation is added to the control conditions. It is preferable to improve the accuracy by determining whether or not. If the above operating conditions are not satisfied, this routine ends. In this case, the feedback correction coefficient α is clamped to the value at the end of the previous feedback control or a fixed reference value, and the feedback control is stopped.
ステップ 12では、 第 1の空燃比センサ 19からの信号電圧 V 02 (出力値) 及び第 2の空燃比センサ 21からの信号電圧 V' 0 2 (出力値) を入力する。 ステップ 13では、 ステップ 12で入力した第 1の空燃比センサ 19の信号 電圧 V02と目標空燃比 (本実施例では理論空燃比) 相当の基準値 S と を比較し、 空燃比がリーンからリツチ又はリツチからリーンへの反転時 か否かを判定する。 In step 12, the signal voltage V 02 (output value) from the first air-fuel ratio sensor 19 and the signal voltage V ′ 0 2 (output value) from the second air-fuel ratio sensor 21 are input. In step 13, (in this example the stoichiometric air-fuel ratio) the first air signal voltage V 02 of the fuel ratio sensor 19 and the target air-fuel ratio input in step 12 is compared with the reference value S equivalent, Ritsuchi air-fuel ratio from the lean Or when reversing from rich to lean It is determined whether or not.
反転時と判定されたときはステツプ 14へ進み、 空燃比フィ一ドバック 補正係数 (空燃比補正量) の比例分補正量 PH0S を、 一律に補正する ための一律学習補正量 PH0SMを、 一律学習補正量マップ (コントロール ュニット 16内蔵のマイクロコンピュータの RAMに記憶) から読み出す 共に、 機関回転速度 Nと基本燃料噴射量 T pとに基づいて同じく比例分 補正量 PH0S のエリア別学習補正量 PHOSSx を記憶させたエリア別学習 補正量マップ (同じく RAMに記憶) から、 該当する運転領域に記憶さ れたエリア別学習補正量 PHOSSx を検索して求める。  If it is determined that the reversal is being performed, the process proceeds to step 14, and the uniform learning correction amount PH0SM for uniformly correcting the proportional correction amount PH0S of the air-fuel ratio feedback correction coefficient (air-fuel ratio correction amount) is uniformly corrected. Based on the engine speed N and the basic fuel injection amount Tp, the area-based learning correction amount PHOSSx of the proportional component correction amount PH0S is also read out from the amount map (stored in the RAM of the microcomputer built in the control unit 16). From the area-based learning correction amount map (also stored in RAM), the area-based learning correction amount PHOSSx stored in the corresponding operating area is searched and found.
尚、 第 5図に示すように、 前記一律学習補正量マップには、 学習を行 う全運転領域で 1個の一律学習捕正量 PH0SMが記憶され、 ェリァ別学習 補正量マップには、 機関回転速度 Nと基本燃料噴射量 Tpとによってそ れぞれ 3分され計 9個に区分された各運転領域にそれぞれェリァ別学習 捕正量 PHOSSx が記億される。  As shown in FIG. 5, the uniform learning correction amount map stores one uniform learning correction amount PH0SM in the entire operation region where learning is performed, and the engine-specific learning correction amount map includes The learning correction amount PHOSSx for each area is recorded in each of the nine operating regions divided into three by the rotation speed N and the basic fuel injection amount Tp.
ステップ 15では、 第 2の空燃比センサ 21からの信号電圧 V' 02と目標 空燃比 (理論空燃比) 相当の基準値 SLとを比較し、 空燃比がリーンか らリッ 又はリツチからリーンへの反転時か否か (目標空燃比相当の基 準值 SLを横切ったか否か) を判定する。 In step 15, the second air-fuel ratio signal voltage V '02 and the target air-fuel ratio from the sensor 21 (the stoichiometric air-fuel ratio) is compared with the corresponding reference value SL, the air-fuel ratio from the lean or al-liter or Ritsuchi to lean Judgment is made as to whether or not the vehicle has been reversed (whether or not the vehicle has crossed the standard 值 SL equivalent to the target air-fuel ratio).
反転時と判定された時にはステップ 16へ進み、 ステップ 14で検索され たエリア別学習補正量 PHOSSx を今回用いる値 PHOSP。 としてセットし た後ステップ 17へ進み、 一律学習補正量 PHOSMの修正量 DPHOSPを次式に より演算する。  When it is determined to be the time of reversal, the process proceeds to step 16, and the value PHOSP that uses the area-based learning correction amount PHOSSx retrieved in step 14 this time. After that, the process proceeds to step 17, where the uniform learning correction amount PHOSM correction amount DPHOSP is calculated by the following equation.
DPHOSP=M (PHOSP。 +PHOSP ) / 2  DPHOSP = M (PHOSP. + PHOSP) / 2
ここで、 PHOSP-!は前回第 2の空燃比センサ 21の出力 V' 02が反転し た時のエリア別学習補正量 PHOSSx であり、 Mは正の定数 (< 1 ) であ る。 つまり、 該修正量 DPHOSPは第 2の空燃比センサ 21の出力反転時毎に エリア別学習補正量 P HOSSx を、 平均化演算した値の所定割合分の値と して設定され、 前記一律学習補正量 P H0SMが運転領域全ェリァにおける ェリァ別学習補正量 P HOSSx の平均レベルを学習するようにする。 Here, PHOSP-! Is area-based learning correction amount PHOSSx when the output V '02 of the previous second air-fuel ratio sensor 21 has been inverted, M is a positive constant (<1) Ru der. That is, the correction amount DPHOSP is calculated every time the output of the second air-fuel ratio sensor 21 is inverted. The area-based learning correction amount P HOSSx is set as a value corresponding to a predetermined ratio of the averaged value, and the uniform learning correction amount P H0SM sets the average level of the learning-based learning correction amount P HOSSx for all operating area variers. Make them learn.
ステップ 18では、 ステップ 14で検索した一律学習補正量 PH0SMに前記 ステツプ 17で演算した修正量 DPH0SPを加算した値で一律学習補正量 PH0 SMを修正し、 該修正された値で R A Mに記憶される一律学習補正量 PH0 SMを更新する。  In step 18, the uniform learning correction amount PH0SM is corrected by the value obtained by adding the correction amount DPH0SP calculated in step 17 to the uniform learning correction amount PH0SM searched in step 14, and the corrected value is stored in the RAM. Update the uniform learning correction amount PH0 SM.
従って、 ステップ 17. 18の部分が一律学習補正量修正手段に相当する。 次いで、 ステップ 19では、 各エリア別学習補正量マップの各運転領域 毎に第 2の空燃比センサ 21の出力反転回数 (リッチ ' リーン反転回数) を積算したカウント値 CONTROx と所定値 RC0NT とを比較することによつ て、 各エリア別に学習進行度合いを判別する。 同一エリア内において第 2の空燃比センサ 21の出力が何回も反転すれば、 それだけ当該ェリァに おける学習が進行し、 当該運転領域で必要とされる空燃比補正量が学習 されていることになるから、 カウント値 CONTROx が所定値以下であると きには、 そのエリアについては学習の進行が遅いと判別できる。 前記所 定値としては、 例えば各運転領域毎のカウント値 CONTROx の平均などか ら設定すると良い。  Therefore, step 17.18 corresponds to uniform learning correction amount correcting means. Next, in step 19, the count value CONTROx obtained by integrating the number of times of output reversal (the number of times of rich / lean reversal) of the second air-fuel ratio sensor 21 is compared with the predetermined value RC0NT for each operation region of the learning correction amount map for each area. Then, the learning progress degree is determined for each area. If the output of the second air-fuel ratio sensor 21 is inverted many times in the same area, the learning in that area progresses accordingly, and the air-fuel ratio correction amount required in the operation area is learned. Therefore, when the count value CONTROx is equal to or less than the predetermined value, it can be determined that the learning progress is slow in the area. The predetermined value may be set, for example, from the average of the count values CONTROx for each operation region.
尚、 本実施例において、 前記出力の反転とは、 第 2の空燃比センサ 21 の出力 V' 02が理論空燃比相当の基準値 S Lを横切ったことを示すもの であり、 前記カウント値 CONTROx は、 前記基準値 S Lを横切る空燃比変 化の経験回数を示すことなる。 In the present embodiment, the inversion of the output means that the output V ′ 02 of the second air-fuel ratio sensor 21 has crossed the reference value SL corresponding to the stoichiometric air-fuel ratio, and the count value CONTROx is This indicates the number of times the air-fuel ratio has crossed the reference value SL.
ステップ 19でカウント値 CONTROx が所定値 RCONT以上であると判別さ れ学習進行の程度が高い運転領域のェリァ別学習補正量 P HOSSx につい ては、 ステップ 20において、 前記一律学習補正量 P H0SMの修正量 DPH0SP だけ減算して修正しマップの書き換えを行わせるが、 カウント値 CONTROx が所定値 RCONT未満であると判別され、 学習進行の程度が低い運転領域 については、 ステップ 20でのエリア別学習補正量 P HOSSx の修正書き換 えを実行させない。 In step 19, it is determined that the count value CONTROx is equal to or greater than the predetermined value RCONT, and the learning correction amount P HOSSx for each operating region in which the degree of learning progress is high is corrected in step 20 by the uniform learning correction amount P H0SM. The map is rewritten by subtracting and correcting the amount DPH0SP, but the count value CONTROx Is determined to be less than the predetermined value RCONT, and the correction rewriting of the area-based learning correction amount P HOSSx in step 20 is not executed in the operation region where the learning progress is low.
即ち、 一律学習補正量 P H0SMが加算修正されたときには、 その書き換 え修正分 DPH0SPだけ、 全エリアにおける一律学習補正量 P H0SM+エリァ 別学習補正量 P HOSSx としての補正量が増大することになるから、 その 分だけ各エリア別学習補正量 P HOSSx を減算修正する必要があるが、 本 実施例では、 全エリアのエリア別学習補正量 P HOSSx を減算修正するの ではなく、 学習が充分進行していると判別された運転領域についてのみ 行わせるようにした。  That is, when the uniform learning correction amount P H0SM is added and corrected, the correction amount as the uniform learning correction amount P H0SM + area-specific learning correction amount P HOSSx in the entire area increases by the rewriting correction amount DPH0SP. Therefore, the learning correction amount P HOSSx for each area needs to be subtracted and corrected by that amount.In this embodiment, however, learning is sufficiently advanced instead of subtracting and correcting the learning correction amount P HOSSx for each area for all areas. It is performed only in the operation area that is determined to be in operation.
これにより、 減算修正されなかったエリアについては、 過剰補正方向 に設定されることになるが、 学習が充分に進行してなくその運転領域の 要求量に収束する前の段階にあるエリァ別学習補正量 P H0SSx について は上記の過剰補正方向の設定が要求量に近づく方向の設定となり、 学習 機会が少なく学習の進行が遅いェリアにおける学習の収束を速めること ができる。 As a result, the area that has not been subjected to the subtraction correction is set in the excessive correction direction, but the learning is not sufficiently advanced and the learning correction for each area is in the stage before converging to the required amount in the operation area. With respect to the quantity P H0SS x , the above-described setting of the excessive correction direction is set in a direction approaching the required amount, and the learning convergence in an area where learning opportunities are small and learning progresses slowly can be accelerated.
上記 テツプ 19及びステップ 20の部分が、 学習進行判別手段, 第 2ェ リア別学習補正量修正手段, 修正禁止手段に相当する。  The steps 19 and 20 correspond to the learning progress determining means, the second area-specific learning correction amount correcting means, and the correction prohibiting means.
ステップ 21では、 前記ステツプ 20で修正されるか又は前回までのマッ プ値のままとされる今回の運転伏態ェリ了に該当するエリア別学習補正 量 P HOSSx を次回のステップ 17での演算のため P HOSP- iとしてセットし、 次いでステップ 22に進む。  In step 21, the area-based learning correction amount P HOSSx corresponding to the end of the current driving state error corrected in step 20 or kept at the previous map value is calculated in the next step 17. Therefore, it is set as P HOSP-i, and then the process proceeds to step 22.
ステツプ 15で第 2の空燃比センサ 21の非反転時と判定された時は、 ス テップ 16〜ステツプ 21をジヤンプしてステツプ 22へ進む。  If it is determined in step 15 that the second air-fuel ratio sensor 21 is not in the inverting state, the process jumps from step 16 to step 21 and proceeds to step 22.
ステップ 22では、 第 2の空燃比センサ 21の出力 V' 02を目標空燃比相 当の基準値 S Lと比較して実空燃比の目標に対するリツチ, リーンを判 別する。 In step 22, determine Ritsuchi, the lean output V '02 of the second air-fuel ratio sensor 21 as compared to the target air-fuel ratio phase in question reference value SL with respect to the target of the actual air-fuel ratio Separate.
そして、 空燃比がリッチ (V, 0 2 > S L ) と判定されたときにはステ ップ 23へ進み、 ステツプ 14で検索されたェリァ別学習補正量 P HOSSx か ら所定値 DPH0SRを差し引いた値でェリァ別学習補正量 P HOSSx を修正演 算する。 また、 空燃比がリーン (V ' 02く S L ) と判定されたときには ステップ 24へ進み、 検索されたエリア別学習補正量 P HOSSx に所定値 DP HOSLを加算した値でエリア別学習補正量 P HOSSx を修正演算する。 When the air-fuel ratio is determined to rich (V, 0 2> SL) goes to stearyl-up 23, Eria a value obtained by subtracting the Eria based learning correction amount P HOSSx or al a predetermined value DPH0SR retrieved in step 14 Correction calculation of separate learning correction amount P HOSSx is performed. Further, the process proceeds to step 24 when the air-fuel ratio is determined to lean (V '02 rather SL), the retrieved area-specific learning correction amount P HOSSx a predetermined value DP HOSL the added area-based learning correction amount by the value P HOSSx Is corrected.
即ち、 本ルーチン実行毎にマップから当該ェリァのェリァ別学習補正 量 P HOSSx を検索して読み出し、 これを第 2の空燃比センサ 21の出力に 基づいて実空燃比が目標空燃比に近づく方向に修正するものである。 従って、 ステツプ 22及びステップ 23の部分が第 1ェリァ別学習補正量 修正手段に相当する。  That is, each time this routine is executed, the learning correction amount P HOSSx for each error of the pertinent area is searched and read out, and is read out in the direction where the actual air-fuel ratio approaches the target air-fuel ratio based on the output of the second air-fuel ratio sensor 21. To correct. Therefore, the steps 22 and 23 correspond to the first error correction amount correcting means.
ステツプ 25では、 ステツプ 23又は 24で修正されたェリァ別学習補正量 P HOSSx でェリァ別学習補正量マップの対応する運転領域に記憶された エリア別学習補正量 P HOSSx を書き換える。 従って、 第 2の空燃比セン サ 21で検出される空燃比が目標に近づく方向に逐次ェリァ別学習補正量 P HOSSx が修正され、 かかる修正結果に基づいてマップデータの書き換 えが行われるようになつている。  In step 25, the area-based learning correction amount P HOSSx stored in the corresponding operation area of the error-based learning correction amount map is rewritten with the learning correction amount for each area P HOSSx corrected in step 23 or 24. Accordingly, the learning correction amount P HOSSx for each error is sequentially corrected in a direction in which the air-fuel ratio detected by the second air-fuel ratio sensor 21 approaches the target, and the map data is rewritten based on the correction result. It has become.
ステツプ 26では、 以上のようにして更新演算された一律学習補正量 P HOSMとエリア別学習補正量 P HOSSx とを加算して、 第 2の空燃比センサ 21の出力値に基づく第 2の空燃比補正量に相当する比例分補正量 P HOS を演算する。 前記第 2の空燃比補正量に相当する比例分補正量 P HOS は、 第 1の空燃比センサ 19の出力値に基づく第 1の空燃比補正量の設定制御 における制御操作量の補正のために用いられる値である。  In step 26, the uniform learning correction amount P HOSM updated as described above and the learning correction amount P HOSSx for each area are added, and the second air-fuel ratio based on the output value of the second air-fuel ratio sensor 21 is added. Calculate the proportional correction amount P HOS corresponding to the correction amount. The proportional correction amount P HOS corresponding to the second air-fuel ratio correction amount is used to correct the control operation amount in the first air-fuel ratio correction amount setting control based on the output value of the first air-fuel ratio sensor 19. This is the value used.
上記ステップ 26の部分が学習量に基づく空燃比補正量演算手段に相当 する。 次にステップ 27へ進み、 第 1の空燃比センサ 19によるリッチ, リーン 判定を行い、 リーン—リッチの反転時にはステップ 28へ進んで、 空燃比 フィードバック補正係数 α設定用のリツチ反転時に与える減少方向の比 例分 P R を基準値 P R0から前記空燃比制御補正量 PH0S を減少した値で 更新する。 次いで、 ステップ 29で空燃比フィードバック補正係数 を現 在値から前記比例分 P R を減じた値で更新する。 Step 26 corresponds to the air-fuel ratio correction amount calculating means based on the learning amount. Next, the routine proceeds to step 27, where rich / lean determination is performed by the first air-fuel ratio sensor 19, and when lean-rich is reversed, the routine proceeds to step 28, where the air-fuel ratio feedback correction coefficient α in the decreasing direction given when the rich is reversed for α setting is reversed. the proportional component P R from the reference value P R0 is updated by the air-fuel ratio control correction amount PH0S reduced value. Then updated with the value obtained by subtracting the proportional part P R, the air-fuel ratio feedback correction coefficient from the current value in step 29.
又、 リッ千→リ一ンの反転時にはステップ 30へ進み、 空燃比フィード バック補正係数 設定用のリ一ン反転時に与える増加方向の比例分 Ρ を基準値 P L 0に空燃比制御補正量 P H0S を加算した値で更新する。 次い で、 ステップ 31で空燃比フィードバック補正係数 を現在値に前記比例 分 Ρ ι· を加算した値で更新する。 When the air-fuel ratio is reversed, the process proceeds to step 30, and the proportional amount in the increasing direction given when the air-fuel ratio feedback correction coefficient is set to the air reversal is set to the reference value P L 0 by the air-fuel ratio control correction amount P L0. Update with the value obtained by adding H0S. Next, in step 31, the air-fuel ratio feedback correction coefficient is updated with a value obtained by adding the proportional component 分 ι · to the current value.
また、 ステップ 13で第 1の空燃比センサ 19の出力が反転時でないと判 定された時には、 ステップ 32へ進んで第 1の空燃比センサ 19の出力に基 づくリッチ, リーン判定を行い、 リッチ時はステップ 33へ進んで空燃比 フィードバック補正係数 aを現在値から積分分 I κ を減少した値で更新 し、 リーン時はステップ 34へ進んで積分分 を加算した値で更新する。 ここで、 ステツプ 27〜ステップ 34の部分でステップ 28, ステツプ 30に よる補正を除いて空燃比フィ一ドバック補正係数 を設定する機能が第 1の空燃比センサ 19による第 1の空燃比補正量演算手段に相当し、 ステ ップ 28, ステツプ 30を含めてステツプ 27〜ステツプ 34の部分が空燃比補 正量演算手段に相当する。 If it is determined in step 13 that the output of the first air-fuel ratio sensor 19 is not at the time of inversion, the process proceeds to step 32, where rich / lean determination based on the output of the first air-fuel ratio sensor 19 is performed. If so, proceed to step 33 to update the air-fuel ratio feedback correction coefficient a with the value obtained by reducing the integral I κ from the current value. If lean, proceed to step 34 to update with the value obtained by adding the integral. Here, the function of setting the air-fuel ratio feedback correction coefficient excluding the correction by steps 28 and 30 in the steps 27 to 34 is the first air-fuel ratio correction amount calculation by the first air-fuel ratio sensor 19. Steps 27 to 34 including step 28 and step 30 correspond to the air-fuel ratio correction amount calculating means.
かかる構成とすれば、 一律学習補正量 P H0SMによって学習を行う全運 転領域での学習を進行させて、 第 2の空燃比センサ 21の出力値の基準値 (目標空燃比相当値) への収束を促進できると共に、 エリア別学習補正 量 P H0SSx によつて運転領域別に異なる補正要求に対応した高精度な学 習を行うことができ、 第 2の空燃比センサ 21による空燃比学習制御の進 行促進と学習の精度向上とが両立される。 With this configuration, the learning is advanced in the entire driving range where the learning is performed with the uniform learning correction amount P H0SM, and the output value of the second air-fuel ratio sensor 21 is adjusted to the reference value (target air-fuel ratio equivalent value). The convergence can be promoted, and the learning correction amount P H0SS x for each area enables high-precision learning corresponding to the different correction requests for each operation area.The second air-fuel ratio sensor 21 controls the air-fuel ratio learning control. Progress Both line promotion and improvement of learning accuracy are compatible.
尚、 第 6図及び第 7図は、 それぞれ一律学習補正量 P H0SM及びエリア 別学習補正量 P HOSSx が更新されていく様子を示したものである。  FIGS. 6 and 7 show how the uniform learning correction amount P H0SM and the area-specific learning correction amount P HOSSx are updated, respectively.
本実施例では第 1の空燃比センサ 19の検出値に基づく空燃比フィード バック制御を基調としつつ、 その空燃比フィ一ドバック補正係数の比例 分を第 2の空燃比センサの検出値に基づいて補正するものに適用した例 を示したが、 これに限定されるものでないことは明らかである。 例えば、 比例分の代わりに積分分を補正したり、 それぞれの空燃比センサによつ て空燃比フィードバック補正係数を設定し、 双方の値を合成して得た空 燃比フィ一ドバック補正係数を燃料噴射量の補正に用いるようにしても 良い。 更に、 第 1の空燃比センサによる空燃比フィードバック制御を行 いつつ、 第 1の空燃比センサ 19の出力値に基づく リッチ, リーン判定の 基準値 S Lや、 第 1の空燃比センサ 19の出力値に基づく空燃比フイード バック補正係数 L MD設定の遅延時間を、 第 2の空燃比センサ 21の検出 で補正したりするようなものにも適用できる。  In this embodiment, based on the air-fuel ratio feedback control based on the detection value of the first air-fuel ratio sensor 19, the proportion of the air-fuel ratio feedback correction coefficient is calculated based on the detection value of the second air-fuel ratio sensor. Although an example in which the present invention is applied to the correction is shown, it is obvious that the present invention is not limited to this. For example, the air-fuel ratio feedback correction coefficient obtained by combining the two values with the air-fuel ratio feedback correction coefficient set by correcting the integral component instead of the proportional component, It may be used for correcting the injection amount. Further, while performing the air-fuel ratio feedback control by the first air-fuel ratio sensor, the reference value SL for rich / lean judgment based on the output value of the first air-fuel ratio sensor 19 and the output value of the first air-fuel ratio sensor 19 The delay time for setting the air-fuel ratio feedback correction coefficient LMD based on the above is also applicable to the correction of the delay time by the detection of the second air-fuel ratio sensor 21.
く産業上の利用可能性〉  Industrial applicability>
以上のように本発明による内燃機関の空燃比制御方法及び装置による と、 機関吸入混合気の空燃比を目標空燃比に制御する空燃比制御におい て、 目標空燃比への制御精度の悪化をき己修正できると共に、 かかる自 己修正の精度及び収束性を高次元に得ることができるので、 電子制御燃 料噴射式ガソリン内燃機関の空燃比制御に最も適しており、 内燃機関の 品質 ·性能を高める上で極めて有効なものである。  As described above, according to the method and apparatus for controlling the air-fuel ratio of an internal combustion engine according to the present invention, in the air-fuel ratio control for controlling the air-fuel ratio of the engine intake air-fuel mixture to the target air-fuel ratio, the control accuracy to the target air-fuel ratio deteriorates. Since it can be self-corrected and the accuracy and convergence of such self-correction can be obtained at a high level, it is most suitable for air-fuel ratio control of an electronically controlled fuel injection gasoline internal combustion engine. It is extremely effective in raising.

Claims

言青求の範囲 Scope of word blue
(1)内燃機関の排気通路に備えられた排気浄化甩触媒の上流側及び下流 側にそれぞれ設けられ、 空燃比によつて変化する排気中特定気体成分の 濃度に感応して出力値が変化する第 1及び第 2の空燃比センサとを備え て構成され、  (1) Exhaust gas purification provided in the exhaust passage of the internal combustion engine Provided on the upstream side and downstream side of the catalyst, respectively, the output value changes in response to the concentration of the specific gas component in the exhaust that changes depending on the air-fuel ratio And a first and a second air-fuel ratio sensor.
複数に区分された運転領域別に記憶されたエリア別学習補正量と第 2 の空燃比センサの出力値とに基づいて該当運転領域のエリア別学習補正 量を修正して書き換えるステップと、  Correcting and rewriting the learning correction amount for each area in the corresponding operating region based on the learning correction amount for each area stored for each of the plurality of operating regions and the output value of the second air-fuel ratio sensor;
前記ェリァ別学習補正量の平均レベルに基づく修正量だけ全運転領域 で一律に用レ、られる一律学習補正量の記憶値を加算修正して書き換える ステップと、  Adding and correcting and rewriting the stored value of the uniform learning correction amount that is uniformly used in the entire operation region by the correction amount based on the average level of the learning correction amount for each area;
一律学習補正量の加算修正分を各運転領域のェリァ別学習補正量それ ぞれから減算して修正するステップと、  Subtracting and correcting the added correction amount of the uniform learning correction amount from each of the learning correction amounts for each area in each operation region, and
該当運転領域のェリァ別学習補正量と一律学習補正量とに基づいて第 2の空燃比センサの出力値に基づく第 2の空燃比補正量を演算するステ ップと、  Calculating a second air-fuel ratio correction amount based on the output value of the second air-fuel ratio sensor based on the learning correction amount for each area and the uniform learning correction amount in the corresponding operation region;
第 1 空燃比センサの出力値に基づき第 1の空燃比補正量を演算する ステップと、  Calculating a first air-fuel ratio correction amount based on an output value of the first air-fuel ratio sensor;
前記第 1の空燃比補正量と第 2の空燃比補正量とに基づいて最終的な 空燃比補正量を設定するステップと、  Setting a final air-fuel ratio correction amount based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount;
前記最終的な空燃比補正量に基づいて機関吸入混合気の空燃比を制御 するステップと、  Controlling the air-fuel ratio of the engine intake air-fuel mixture based on the final air-fuel ratio correction amount;
を含んで構成される内燃機関の空燃比制御方法。  An air-fuel ratio control method for an internal combustion engine comprising:
(2)前記ェリァ別学習補正量が記憶される各運転領域別に学習進行の程 度を判別するステップと、  (2) determining the degree of learning progress for each driving region in which the learning correction amount for each area is stored;
前記学習進行の程度が所定以下であると判別された運転領域について 一律学習補正量の加算修正分を減算修正することを禁止するステップと、 を設けた請求項 1記載の内燃機関の空燃比制御方法。 About the driving region where the degree of the learning progress is determined to be equal to or less than a predetermined value 2. The air-fuel ratio control method for an internal combustion engine according to claim 1, further comprising a step of prohibiting subtraction and correction of the addition and correction of the uniform learning correction amount.
(3)第 2空燃比センサの出力値が目標空燃比相当値を横切った経験回数 を、 エリア別学習補正量が記憶される各運転領域別に求め、 前記経験回 数に基づいて各運転領域別に学習進行の程度を判別するよう構成された 請求項 2記載の内燃機関の空燃比制御方法。  (3) The number of times that the output value of the second air-fuel ratio sensor has crossed the target air-fuel ratio equivalent value is determined for each operating region in which the learning correction amount for each area is stored, and for each operating region based on the number of experiences. 3. The method for controlling an air-fuel ratio of an internal combustion engine according to claim 2, wherein the degree of learning progress is determined.
(4)前記第 1及び第 2の空燃比センサが、 排気中の酸素濃度に感応して 出力値が変化するセンサである請求項 1記載の内燃機関の空燃比制御方 法 o  (4) The air-fuel ratio control method for an internal combustion engine according to claim 1, wherein the first and second air-fuel ratio sensors are sensors whose output values change in response to oxygen concentration in exhaust gas.
(5)前記第 2の空燃比補正量が、 前記第 1の空燃比補正量の制御操作量 を補正するための値である請求項 1記載の内燃機関の空燃比制御方法。  (5) The air-fuel ratio control method for an internal combustion engine according to claim 1, wherein the second air-fuel ratio correction amount is a value for correcting a control operation amount of the first air-fuel ratio correction amount.
(6)前記排気净化用触媒が三元触媒であって、 第 1の空燃比センサ, 第 2の空燃比センサで検出される空燃比が理論空燃比に近づく方向に第 1 の空燃比補正量及び第 2の空燃比補正量がそれぞれ演算されるよう構成 された請求項 1記載の内燃機関の空燃比制御方法。  (6) The exhaust gas purification catalyst is a three-way catalyst, and the first air-fuel ratio correction amount is set so that the air-fuel ratio detected by the first air-fuel ratio sensor and the second air-fuel ratio sensor approaches the stoichiometric air-fuel ratio. 2. The air-fuel ratio control method for an internal combustion engine according to claim 1, wherein the second air-fuel ratio correction amount is calculated.
(7)第 2の空燃比センサの出力値が目標空燃比に相当する値を横切った ときのエリア別学習補正量の平均値を求め、 該平均値に基づいて一律学 習補正量を修正するよう構成された請求項 1記載の内燃機関の空燃比制 御方法。  (7) The average value of the learning correction amount for each area when the output value of the second air-fuel ratio sensor crosses a value corresponding to the target air-fuel ratio is obtained, and the uniform learning correction amount is corrected based on the average value. 2. The method for controlling an air-fuel ratio of an internal combustion engine according to claim 1, which is configured as described above.
(8)内燃機関の排気通路に備えられた排気浄化用触媒の上流側及び下流 側にそれぞれ設けられ、 空燃比によって変化する排気中特定気体成分の 濃度に感応して出力値が変化する第 1及び第 2の空燃比センサと、 前記第 1の空燃比センサの出力値に基づいて第 1の空燃比補正量を演 算する第 1の空燃比補正量演算手段と、  (8) The first type, which is provided upstream and downstream of the exhaust purification catalyst provided in the exhaust passage of the internal combustion engine, and whose output value changes in response to the concentration of the specific gas component in the exhaust that changes depending on the air-fuel ratio. A first air-fuel ratio correction amount calculating means for calculating a first air-fuel ratio correction amount based on an output value of the first air-fuel ratio sensor; and
前記第 2の空燃比センサの出力値に基づいて第 2の空燃比補正量を演 算する第 2の空燃比補正量演算手段と、 前記第 1の空燃比補正量と第 2の空燃比補正量とに基づいて最終的な 空燃比補正量を演算する空燃比補正量演算手段と、 Second air-fuel ratio correction amount calculating means for calculating a second air-fuel ratio correction amount based on an output value of the second air-fuel ratio sensor; Air-fuel ratio correction amount calculating means for calculating a final air-fuel ratio correction amount based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount;
該空燃比補正量演算手段で演算された最終的な空燃比補正量に基づい て機関吸入混合気の空隳比を制御する空燃比制御手段と、  Air-fuel ratio control means for controlling the air-fuel ratio of the engine intake air-fuel mixture based on the final air-fuel ratio correction amount calculated by the air-fuel ratio correction amount calculation means;
を含んで構成される内燃機関の空燃比制御装置であって、  An air-fuel ratio control device for an internal combustion engine, comprising:
前記第 2の空燃比補正量演算手段が、  The second air-fuel ratio correction amount calculating means,
全運転領域で一律に用いられる一律学習補正量を書き換え可能に記憶 する一律学習補正量記憶手段と、  A uniform learning correction amount storage means for rewritably storing a uniform learning correction amount uniformly used in all operation regions;
複数に区分された運転領域毎にェリァ別学習補正量を書き換え可能に 記憶するエリァ別学習補正量記憶手段と、  An area-specific learning correction amount storage means for rewritably storing an area-specific learning correction amount for each of a plurality of divided operation regions;
該ェリァ別学習補正量記憶手段から検索したェリァ別学習補正量と第 2の空燃比センサの出力値とに基づいて前記ェリァ別学習補正量記憶手 段の対応する運転領域のェリァ別学習補正量を修正して書き換える第 1 ェリァ別学習補正量修正手段と、  On the basis of the learning correction amount for each area retrieved from the learning correction amount storage for each area and the output value of the second air-fuel ratio sensor, the learning correction amount for each area of the operating region corresponding to the learning correction amount storing means for each area. Means for correcting the learning correction amount for each first error that corrects and rewrites
前記ェリァ別学習補正量の平均レベルに基づく修正量だけ前記一律学 習補正量記憶手段に記憶されている一律学習補正量を加算修正して書き 換える 律学習補正量修正手段と、  Adding and correcting the uniform learning correction amount stored in the uniform learning correction amount storage unit by a correction amount based on the average level of the area-specific learning correction amount, and rewriting;
該一律学習補正量修正手段によつて一律学習補正量を加算修正した修 正量だけ前記ェリァ別学習補正量記憶手段に記憶された全ての運転領域 のェリァ別学習補正量それぞれを減算修正する第 2ェリァ別学習補正量 修正手段と、  Subtracting and correcting each of the learning correction amounts for each of the operating ranges stored in the learning correction amount for each area by the correction amount obtained by adding and correcting the uniform learning correction amount by the uniform learning correction amount correcting means. (2) Learning correction amount for each area
前記ェリァ別学習補正量記憶手段から検索した対応する運転領域のェ リァ別学習補正量と一律学習補正量記憶手段に記憶された一律学習補正 量とに基づいて第 2の空燃比捕正量を演算する学習量に基づく空燃比捕 正量演算手段と、  The second air-fuel ratio correction amount is calculated based on the learning correction amount for each area of the corresponding operating region retrieved from the learning correction amount storing means for each area and the uniform learning correction amount stored in the uniform learning correction amount storing means. Air-fuel ratio correction amount calculating means based on the learning amount to be calculated;
を含んで構成されることを特徵とする内燃機関の空燃比制御装置。 An air-fuel ratio control device for an internal combustion engine, comprising:
(9)前記ェリァ別学習補正量記憶手段の各運転領域毎の学習進行の程度 をそれぞれに判別する学習進行判別手段と、 (9) learning progress discriminating means for discriminating the degree of learning progress for each operation area of the learning-specific learning correction amount storage means,
該学習進行判別手段で学習進行の程度が所定以下であると判別された 領域について前記第 2ェリァ別学習補正量修正手段によるエリァ別学習 補正量の修正を禁止する修正禁止手段と、  Correction prohibiting means for prohibiting correction of the learning correction amount for each area by the second learning correction amount correcting means for the area in which the degree of learning progress is determined to be equal to or less than a predetermined value by the learning progress determining means;
を設けた請求項 8記載の内燃機関の空燃比制御装置。  9. The air-fuel ratio control device for an internal combustion engine according to claim 8, wherein:
(10)学習進行判別手段が、 第 2空燃比センサの出力値が目標空燃比相当 値を横切った経験回数を、 ェリァ別学習補正量記憶手段の各運転領域別 に求め、 前記経験回数に基づいて各運転領域別に学習進行の程度を判別 するよう構成された請求項 9記載の内燃機関の空燃比制御装置。  (10) The learning progress determining means obtains the number of times that the output value of the second air-fuel ratio sensor has crossed the value corresponding to the target air-fuel ratio for each operation area of the learning correction amount storage means for each area, and based on the number of times of experience. 10. The air-fuel ratio control device for an internal combustion engine according to claim 9, wherein the degree of learning progress is determined for each operation region.
(11)前記第 1及び第 2の空燃比センサが、 排気中の酸素濃度に感応して 出力値が変化するセンサである請求項 8記載の内燃機関の空燃比制御装  (11) The air-fuel ratio control device for an internal combustion engine according to claim 8, wherein the first and second air-fuel ratio sensors are sensors whose output values change in response to oxygen concentration in exhaust gas.
(13前記第 2の空燃比補正量演算手段で演算される第 2の空燃比補正量 が、 前記第 1の空燃比補正量演算手段による第 1の空燃比補正量の制御 操作量を補正するための値である請求項 8記載の内燃機関の空燃比制御 (13) The second air-fuel ratio correction amount calculated by the second air-fuel ratio correction amount calculating means corrects the control operation amount of the first air-fuel ratio correction amount by the first air-fuel ratio correction amount calculating means. The air-fuel ratio control for an internal combustion engine according to claim 8, which is a value for
(13前記排気浄化用触媒が三元触媒であって、 前記第 1の空燃比補正量 演算手段及び第 2の空燃比補正量演算手段が、 第 1の空燃比センサ, 第 2の空燃比センサで検出される空燃比が理論空燃比に近づく方向に第 1 の空燃 it補正量及び第 2の空燃比補正量をそれぞれ演算するよう構成さ れる請求項 8記載の内燃機関の空燃比制御装置。 (13) The exhaust purification catalyst is a three-way catalyst, and the first air-fuel ratio correction amount calculating means and the second air-fuel ratio correction amount calculating means are a first air-fuel ratio sensor and a second air-fuel ratio sensor. 9. The air-fuel ratio control device for an internal combustion engine according to claim 8, wherein the first air-fuel ratio correction amount and the second air-fuel ratio correction amount are calculated in a direction in which the air-fuel ratio detected in the step approaches the stoichiometric air-fuel ratio. .
(14)前記一律学習補正量修正手段が、 第 2の空燃比センサの出力値が目 標空燃比に相当する値を横切ったときのエリア別学習補正量の平均値を 求め、 該平均値に基づいて一律学習補正量を修正するよう構成された請 求項 8記載の内燃機関の空燃比制御装置。  (14) The uniform learning correction amount correction means obtains an average value of the learning correction amount for each area when the output value of the second air-fuel ratio sensor crosses a value corresponding to the target air-fuel ratio, and calculates the average value. 9. The air-fuel ratio control device for an internal combustion engine according to claim 8, wherein the air-fuel ratio control device is configured to correct the uniform learning correction amount based on the correction amount.
PCT/JP1991/000650 1990-05-16 1991-05-16 Method and system for controlling air-fuel ratio of internal combustion engine WO1993017232A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/784,395 US5193339A (en) 1990-05-16 1991-05-16 Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2124184A JP2757064B2 (en) 1990-05-16 1990-05-16 Air-fuel ratio control device for internal combustion engine
JP2/124184 1990-05-16

Publications (1)

Publication Number Publication Date
WO1993017232A1 true WO1993017232A1 (en) 1993-09-02

Family

ID=14879062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000650 WO1993017232A1 (en) 1990-05-16 1991-05-16 Method and system for controlling air-fuel ratio of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2757064B2 (en)
WO (1) WO1993017232A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337557A (en) * 1992-02-29 1994-08-16 Suzuki Motor Corporation Air-fuel ratio control device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397851A (en) * 1986-10-13 1988-04-28 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JPS63179155A (en) * 1987-01-21 1988-07-23 Japan Electronic Control Syst Co Ltd Air-fuel ratio learning control device for internal combustion engine
JPH01285635A (en) * 1988-05-09 1989-11-16 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397851A (en) * 1986-10-13 1988-04-28 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JPS63179155A (en) * 1987-01-21 1988-07-23 Japan Electronic Control Syst Co Ltd Air-fuel ratio learning control device for internal combustion engine
JPH01285635A (en) * 1988-05-09 1989-11-16 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JP2757064B2 (en) 1998-05-25
JPH0422726A (en) 1992-01-27

Similar Documents

Publication Publication Date Title
US5193339A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
JP2917173B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07229439A (en) Air-fuel ratio control device of internal combustion engine
JPH03134241A (en) Air-fuel ratio controller of internal combustion engine
JP3203440B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH09310636A (en) Air-fuel ratio controller for internal combustion engine
JP3596011B2 (en) Air-fuel ratio control device for internal combustion engine
WO1993017232A1 (en) Method and system for controlling air-fuel ratio of internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JP2757065B2 (en) Air-fuel ratio control device for internal combustion engine
JP2757062B2 (en) Air-fuel ratio control device for internal combustion engine
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JP3446421B2 (en) Engine air-fuel ratio control device
JPH04112939A (en) Air-fuel ratio control device for internal combustion engine
JPS62107251A (en) Air fuel ratio learning control device for internal combustion engine
JPS603443A (en) Method of controlling air-fuel ratio of internal combustion engine
JPH0423099B2 (en)
JPS61190141A (en) Learning control device of internal-combustion engine
JPS61190140A (en) Learning control device of air-fuel ratio of internal-combustion engine
JPS62101862A (en) Learning control device for air-fuel ratio in electronically controlled fuel-injection type internal combustion engine
JPH0544540A (en) Air-fuel ratio learning control device for internal combustion engine
JPS62218636A (en) Air-fuel ratio learning control device for internal combustion engine
JPS61152940A (en) Air-fuel ratio controlling device of electronic-controlled fuel injection-type internal-combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US