WO1993016835A1 - Plasma torch for cutting - Google Patents

Plasma torch for cutting Download PDF

Info

Publication number
WO1993016835A1
WO1993016835A1 PCT/JP1993/000225 JP9300225W WO9316835A1 WO 1993016835 A1 WO1993016835 A1 WO 1993016835A1 JP 9300225 W JP9300225 W JP 9300225W WO 9316835 A1 WO9316835 A1 WO 9316835A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
cutting
torch
plasma
passage
Prior art date
Application number
PCT/JP1993/000225
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Yamaguchi
Hitoshi Sato
Toshiya Shintani
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4072109A external-priority patent/JP2640707B2/en
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Publication of WO1993016835A1 publication Critical patent/WO1993016835A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3436Hollow cathodes with internal coolant flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3457Nozzle protection devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3468Vortex generators

Definitions

  • the present invention relates to an improvement of a cutting torch for use in a plasma cutting machine.
  • the electrodes are attached to the torch main body, and the nozzles are attached via gas outlets for turning around the axis of the torch and ejecting the working gas.
  • the nozzle is fixed to the torch body by screwing it to the torch body, excluding the tip of the torch body, excluding the tip that holds the orifice's orifice.
  • the cooling water that has cooled the electrodes passes through the cooling water passage formed inside the main torch, cools the nozzles through the space formed by the torch body, the nozzle, and the torch cap. configuration and Tsu have to return to the cooling water passage formed in the torch body 0
  • a metal nozzle protection cap that is electrically insulated from the nozzle is attached around the nozzle, and a secondary gas flows between the nozzle and the nozzle protection cap.
  • a secondary gas flows between the nozzle and the nozzle protection cap.
  • the front side of the kerf (cut groove) is generally wide and the back side is narrow. Therefore, the cut surface is not vertical but has a tapered shape.
  • the first to fourth prior arts include (1) protection of a nozzle, (2) contraction of a plasma arc by a secondary gas, (3) an increase in the temperature of a nozzle protection cap, and (4) a swirling airflow. Adjustment of effects, (5) There are the following problems with electrical corrosion of cooling water surface.
  • the nozzle may be damaged when piercing a thick plate or when the nozzle comes into contact with the workpiece.
  • the beading is performed at the maximum speed at which the main arc shifts. After the hole has penetrated, the torch is lowered to a height suitable for cutting, and cutting is started.
  • this method inevitably complicates torch height control at the start of cutting.
  • the material to be cut may spring up depending on the state of thermal deformation or instruction, and it is difficult to avoid this. Therefore, the nozzle and the material to be cut are in contact with each other. Doing so avoids the risk of damaging the nozzle due to double marks It is not possible.
  • the second conventional technique is applied to an air-cooled nozzle type plasma torch, and such a nozzle cannot be applied to a water-cooled plasma torch because the shape of the tip of the torch is different. .
  • a plasma arc is applied to the nozzle protection cab.
  • a plurality of openings are provided in addition to the openings for passing through. As a result, a large amount of cooling gas is blown out to the surface of the material to be cut, increasing disturbance to the plasma mark and adversely affecting cutting.
  • a protective cap is applied to water-cooled nozzles, but its function is to prevent contact between the workpiece and the nozzles, but to perform welding using a secondary gas. It is for isolating the part from the atmosphere. Therefore, the opening of the nozzle protection cap is wide open, and does not have the function of protecting the nozzle from blowing up during dosing.
  • a high-temperature, high-speed arc plasma is obtained by narrowing the arc with a nozzle. If more current can flow through a nozzle with a small nozzle diameter, high-speed cutting can be performed with a narrow cutting groove width. However, when the current is increased, a phenomenon called a double arc that flows through the metal part of the nozzle without passing the current through the nozzle is generated, which not only reduces the cutting ability but also damages the nozzle. ⁇ Then 0
  • the working gas is strongly swirled around the electrode to squeeze the arc narrowly, and at the same time, the nozzle is cooled with water to prevent double arcs. . Since the plasma arc ejected from the nozzle expands, the width of the cut groove becomes wider.
  • Nozzle protection cap The secondary gas supplied to surround the two plasma arcs can be used to further inject the arc ejected from the nozzle.
  • there is an opening for increasing the gas flow rate for cooling the nozzle and it is not possible to independently control only the secondary gas surrounding the arc . For this reason, it is difficult to obtain a flow rate or pressure of the secondary gas that is sufficient to further incorporate the plasma arc.
  • the plate of the material to be cut! In order to adjust the degree of inclination of the cut surface according to the cutting speed, the intensity of the swirling airflow, that is, the working gas flow rate must be reduced. However, the working gas flow rate has an optimal value to keep the arc stable. If the working gas flow rate is increased or decreased, the arc becomes unstable, and it is difficult to adjust the degree of inclination of the cut surface.
  • the electrode and the nozzle are fixed to the metal parts of the torch body, which are separated from each other. Power is supplied from the DC power supply.
  • a cooling water passage is provided in the metal part on the electrode side and the metal part on the nozzle side for connecting them; and the electrode and the nozzle are cooled by the combined water.
  • the electrode side metal part, the nozzle side metal part, and o K Has a potential difference.
  • the torch body is configured in a state where each metal is electrically insulated, and each metal part is connected by the cooling water passage, and the cooling water flows there Because, 'weak current flows through the water flow. Since this current is weak, there is no hindrance to the occurrence of arc, but the metal part of the torch body is gradually corroded by electrochemical action. Both torches with water-cooled electrodes and nozzles become unusable. Disclosure of the invention
  • the present invention can effectively exert the function of protecting the nozzle even when the nozzle has a water-cooled torch structure, greatly improving the life of the nozzle and reducing the time required for nozzle replacement. Loss can be reduced.
  • the insulator is interposed in the secondary gas passage, the secondary gas is rectified, and the plasma arc ejected from the nozzle 2 is narrowed down again by the secondary gas, and the cut groove width is reduced. Fine and precise cutting can be performed.
  • the secondary gas flow can be swirled in the same direction as the spiral flow of the plasma arc by the rectifying passage of the insulation layer, the inclination of the cut surface of the extruded cutting material can be made vertical.
  • nozzle protection cap can be separated into a distal end portion and a proximal end portion, only the tip portion can be replaced as a consumable item.
  • the base end is cooled by cooling water, so that it can be handled without paying attention to the torch during maintenance and inspection.
  • another object of the present invention is to provide a cutting plasma torch that can reduce electrochemical corrosion caused by cooling water.
  • the present invention uses a water-cooled electrode, and connects the plasma arc to the electrode through a nozzle orifice arranged so as to cover the electrode with a plasma gas passage therebetween.
  • the plasma torch for cutting that is produced between the workpieces has an opening on the tip side opposite the nozzle orifice outside the nozzle hole and communicates with the two openings.
  • a nozzle protection cap which forms an annular secondary gas passage between the nozzle cap and the nozzle cap, is electrically insulated and fixed to the electrode and the nozzle. It is composed of electric steel material and has a rectifying passage that rectifies the gas flow flowing through the secondary gas passage.
  • the second nozzle protection cap is made of a metal material having good heat conductivity, and the cross section of the insulator is made rectangular, and this insulator is also used as the nozzle protection cap.
  • ⁇ periphery are ⁇ the stepped portion provided respectively on the inner peripheral surface and a box e
  • the nozzle protection cap includes a tip portion for protecting the tip portion of the nozzle and a base end portion fixed to the torch main body side, and these components are movably connected.
  • a flange that fits each other is provided at the leading end portion and the base end portion, or a screw is provided at a portion to be connected to each other, and fitted or screwed.
  • the tip portion is made of a metal material having good heat conductivity
  • the base end portion is made of a metal material having mechanical strength.
  • the dimension h of the gear so between the tip surface of the nozzle and the opening ⁇ the side surface of the nozzle protection gap is set to 0.5 to 1.5 mm.
  • Roh nozzle Oh Li off office diameter to be on the ratio z Z i ⁇ i It 1.0 ⁇ 5.0 of the Nozzle Ho ⁇ Kiyabbu opening of ⁇ Holy "5 2.
  • annular cooling water chamber is provided inside the base of the nozzle protection cap, and this cooling water chamber communicates with the cooling water chamber provided in the electrode.
  • the nozzle protection cap may have a bag-shaped double structure, and the space formed by this may be used as a cooling water chamber.
  • the plasma gas inflow path for injecting the plasma gas into the plasma gas path provided around the electrode is inclined with respect to the center of the torch so as to give the plasma gas a jewelry flow.
  • the rectifying passage of the rotor is spirally formed so as to give the secondary gas passing therethrough a spiral flow in the same direction as the spiral direction of the plasma gas, and the nozzle has an orifice diameter of The relation of the length L is made to satisfy L ⁇ 2.
  • the inflow path communicating with the cooling water chamber on the electrode side and the cooling water chamber passage on the nozzle side is a tube made of an electrically insulating material.
  • the plasma arc erupted along with the plasma gas is erupted through the nozzle and orifice.
  • a secondary force is ejected from the gap toward the plasma arc, which is rectified by the CD secondary gas insulator, and the nozzle cap and the nozzle protection cap are rectified by the CD insulator.
  • Aligned and packed c Nozzle protection key ' :, ⁇ , ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , , ⁇ ⁇ , ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • a swirling flow is given by the plasma gas and the plasma gas inflow passage, and a swirling flow of the secondary gas is given by the insulator in the same direction as the plasma gas.
  • the corrosion of the cooling water chamber is prevented by fitting a tube made of an electric material into the flow path through which the cooling water flows.
  • FIG. 1 is a sectional view of a plasma torch showing a first embodiment of the present invention
  • FIGS. 2A to 2E are explanatory diagrams of various insulators
  • FIG. 3 is a sectional view of a plasma torch showing a second embodiment
  • FIG. 4 is a sectional view of a plasma torch showing a third embodiment
  • FIG. 5 is a sectional view of a plasma torch showing a fourth embodiment
  • FIG. 6 is a sectional view of a plasma torch showing a fifth embodiment
  • FIG. FIG. 7B is a cross-sectional view illustrating the operation of the plasma torch according to the sixth embodiment
  • FIG. 7B is a perspective view of a plasma gas inflow path according to the sixth embodiment.
  • 1 is an electrode
  • 2 is a nozzle held by a nozzle holding member 3 at a position facing the tip of the electrode
  • 4 is a nozzle cover that covers other portions except the lower end portion of the nozzle 1.
  • a nozzle protection cap 5 covers the outside of the nozzle cap 4.
  • a plasma gas passage 6 communicating from the periphery to the orifice 16 of the nozzle 2 is provided, and cooling is provided between the nozzle 2 and the nozzle cap 4.
  • a water passage 7 is provided.
  • a secondary gas passage 8 is provided between the nozzle cap 4 and the nozzle protection tank 5 and the nozzle 5. The secondary gas passage 8 is open to the leading end of the nozzle 2.
  • the nozzle protection cap 5 is electrically isolated from the nozzle cap 4 in the shape of a j, and the nozzle 2 is also supported by the tip of the nozzle cap 4.
  • C There is a drainage chamber 9 inside the electrode 1. ': ⁇ ; Is communicated to.
  • the cooling water chamber 9 is connected to a recirculating water inflow passage 10 and the other cooling water passage is connected to a cooling water outflow passage 10a.
  • the plasma gas passage 6 is connected to the plasma gas inflow passage 11, and the secondary gas passage 8 is connected to the secondary gas inflow passage 12.
  • Reference numeral 13 denotes a torch main body for supporting each of the above members, which is insulated from the electrode 1 and the nozzle 2.
  • the nozzle protection cap 5 is screwed to the torch body 13.
  • the secondary gas passage 8 formed between the nozzle cap 4 and the nozzle protection cap 5 is formed in a tapered shape.
  • an insulator 14 made of an electrically insulating material and also serving as a spacer is provided in an airtight manner with respect to the wall surfaces of the nozzle cap 4 and the nozzle protection cap 5. Is equipped.
  • the insulator 14 is provided with a plurality of small holes 15 communicating with the upstream side and the downstream side thereof and serving as rectification paths in the circumferential direction.
  • the small hole 15 serving as the flow straightening passage may be replaced with the small hole 15 shown in FIG. 2A and a groove 15a provided in the axial direction on the surface (or the outer surface) as shown in FIG. 2B. Good. These small holes 15 and grooves 15a may be provided in a spiral shape around the axis.
  • the insulator 14 shown in FIGS. 2A and 2B is formed in a tapered shape in accordance with the shape of the tapered shape of the secondary gas passage 8. Instead, as shown in FIGS. 2C, 2D, and 2E, the cross section may be rectangular, and the rectified secondary gas may flow in the axial direction.
  • the insulator 14 is made of a synthetic resin such as a fluorine-based resin or a ceramic.
  • the ⁇ / ⁇ between the orifice 16 ⁇ of the nozzle 2 and the opening diameter ⁇ 5 of the nozzle protection cap 5 is 1.5 to 5.0, preferably 2.0 to 4.0. 0.
  • ⁇ / ⁇ 1.0 the tip of the nozzle protection cap 5 is deformed and damaged by the heat of the plasma arc, and disturbs the flow of the secondary gas.
  • ⁇ ⁇ > 5.0 the back of the dross adheres to the gap 17 between the lower end faces of the nozzles 1 and 2 and the nozzle protection cap 5, and a double arc is trapped. Resulting in.
  • the appropriate gap dimension h for one gap is 0.5 to 0.5 mm. If h ⁇ 0.5 mm, the flow velocity of the secondary gas jet S becomes too high, causing arcing. Tongue and one.
  • the plasma arc from the electrode 1 is ejected through the openings of the nozzle 2 and the nozzle protection cap 5 together with the plasma gas supplied to the plasma gas passage 6 provided around the electrode 1 ′. Is done. At this time, it is cooled by cooling water passing through the nozzle 2 recirculating water passage.
  • the secondary gas is ejected from the gap 17 through the secondary gas passage 8 so as to surround the periphery of the plasma.
  • the secondary gas at this time is rectified while passing through the insulator 14. That is, the secondary gas that has passed through the annular secondary gas passage 8 is rectified while passing through the rectifying passage formed by the small holes 15 or the grooves 15 a of the insulator 14.
  • the gas is injected so as to surround the plasma arc.
  • the secondary gas is supplied at a sufficient flow rate with a sufficient flow rate.
  • FIG. 3 shows a second embodiment, in which an insulator 14a is formed in a ring shape by a member having a rectangular cross-sectional shape, and the insulator 14a is a nozzle cap 4a.
  • the nozzle protection cap 5a is fitted and attached to the step formed at the opposing portion of each of the nozzle protection caps 5a.
  • a rectifying passage 18 is provided on the outer peripheral side of the insulator 14a. According to this configuration, the nozzle cap 4a and the nozzle protection cap 5a are aligned by the insulator 14a, and the positioning of the two materials is easily performed.
  • FIG. 4 shows a third embodiment, in which the distal end portion and the proximal end portion of the nozzle protection cap are formed as separate members.
  • a base end portion 19 screwed to the nozzle body 13 and a leading end portion 20 on the nozzle 2 side are different from each other.
  • An insulator 14a is supported on the distal end portion 20.
  • the coupling between the proximal end portion 19 and the distal end portion 20 is performed by connecting a flange portion 20a on the distal end portion 20 side.
  • the front end side of the base end 19 is fitted and fixed to the flange portion 20a, and the two may be fixed to each other at the flange portion 20a.
  • the tip portion 10 is made of a material having good heat conductivity, so that a high-temperature molten metal adheres. Even if it does, the molten metal is cooled in a short time and is easily separated.
  • the base end 19 is made of a material having excellent mechanical strength, the torch does not deform even when the torch comes into contact with the material to be cut.
  • FIG. 5 shows a fourth embodiment in which the nozzle protection cap can be cooled. That is, a rectangular cooling water chamber 21 is provided inside the base end 19a of the nozzle protection cabinet 5c, and the cooling water chamber on the electrode 1 side provided inside the electrode 1 is provided in the cooling water chamber 21. It is connected to 9 via passage 2. With this configuration, the base end of the nozzle protection cabinet 5c is cooled by the cooling water in the cooling water chamber 21 and the temperature rise in this portion is suppressed.
  • Fig. 6 shows a fifth embodiment, in which the cooling water chamber 21a of the nozzle protection cap 5d is formed in a vertically wide annular shape to increase its fertility, thereby cooling this part. The ability is getting bigger.
  • the cooling water chamber 21a has an inlet-side passage 22 communicating with the cooling water chamber 9 on the electrode 1 side, and an outlet-side passage communicating with the cooling water passage 7 provided around the nozzle 2. 23 are in communication.
  • FIG. 7A and 7B show a sixth embodiment.
  • the rectifying passage 18 provided in the insulator 14a is spirally wound around the center of the torch, so that the secondary gas flow spouted from the gearbox of the nozzle protection cap 5e can be reduced. It can flow.
  • a plurality of plasma gas inflow paths 6a for flowing the plasma gas into the plasma gas path 6 provided around the electrode 1 are provided at an angle to the center of the torch as shown in FIG. The swirling flow is given to the plasma gas flowing into the plasma gas passage 6.
  • the turning direction of the secondary gas and the turning direction of the plasma gas are the same, and the orifice ⁇ L of the nozzle 2 is the orifice diameter ⁇ ! L / ⁇ ⁇ 2
  • the cut wall 24 a on the upstream side of the swirling flow of the secondary gas becomes vertical and the other cut wall 24 as shown in FIG. 1] 1 1b is inclined like a groove.
  • the secondary gas is turning to the right when viewed from above, the right cut wall 24a will be vertical, and to the left if it is turning, and the left cut wall 24b if it is turning. Becomes vertical.
  • the life of the nozzle is long, the time loss associated with the replacement of the nozzle is small, precision cutting with a narrow cutting groove width is performed, the cut surface of the material to be cut is vertical, and the nozzle is Only the tip of the protective cap can be replaced as a consumable item, making it easy to maintain and inspect the torch, and is useful as a cutting plasma torch that can withstand electrochemical corrosion caused by cooling water.

Abstract

A plasma torch for cutting, wherein a nozzle (2) is protected against dross produced by piercing at the start of cutting and double arcs are prevented from occurring to improve the service life of the nozzle (2). To ensure such functions, a nozzle protecting cap (5) forming an annular secondary gas path (8) is fitted over a nozzle cap (4) in a manner of being electrically insulated from an electrode (1) and the nozzle (2), and insulators (14) made of an electrically insulating material are mounted in said secondary gas path (8), by which secondary gas is baffled and swirled.

Description

明細書 切断用プラズマ トーチ 技 術 分 野  Description Plasma torch technology for cutting
本発明は、 ブラズマ切断機に用いられる切断用ブラズマ トーチの改良に関する  The present invention relates to an improvement of a cutting torch for use in a plasma cutting machine.
背 景 技 術 Background technology
切断用ブラズマ トーチの従来技術について以下に説明する。 The prior art of a cutting torch for cutting will be described below.
第 1 の従来技術 (水冷 トーチ) : First prior art (water-cooled torch):
電極とノ ズルが冷却水により冷却される トーチでは、 トーチ本体に電極が取り つけられ、 その軸の周囲に旋面させて作動ガスを噴出させるためのガス噴出口を 介してノ ズルが取り付けられ、 そのノ ズルのォ リ フ ィ スを舍む先端部を除く他の 部分を祓 Sし、 ノ ズルを トーチ本体に固定するノ ズルキヤ ッブがトーチ本体に螺 着されている。 そして電極を冷却した冷却水は、 トーチ本休内部に形成された冷 却水通路を通り、 トーチ本体とノ ズルと トーチキヤ ッブにより形成される空間を g由してノ ズルを冷却し、 再び トーチ本体に形成された冷却水通路に戻る構成と つ い 0 In a torch in which the electrodes and nozzles are cooled by cooling water, the electrodes are attached to the torch main body, and the nozzles are attached via gas outlets for turning around the axis of the torch and ejecting the working gas. The nozzle is fixed to the torch body by screwing it to the torch body, excluding the tip of the torch body, excluding the tip that holds the orifice's orifice. The cooling water that has cooled the electrodes passes through the cooling water passage formed inside the main torch, cools the nozzles through the space formed by the torch body, the nozzle, and the torch cap. configuration and Tsu have to return to the cooling water passage formed in the torch body 0
第 2 の従来技術 (空冷ノ ズルにおけるノ ズル保護キャ ップ) : Second conventional technology (nozzle protection cap for air-cooled nozzle):
ノ ズル先端が露出している トーチでは、 切断開始時に厚板のビア ッ シング (穴 開け切断) を行う と、 ノ ズルに吹き上がった ド ロス (溶融金属) がノ ズルに付着 しノズルを溶損したり、 あるいはノ ズルと被切断材が接触するとダブルアーク と 呼ばれる不正放電を起してノ ズルを損傷する 二 とがある。 このため空冷ノ ズルの 先绡都にこのノ ズルとは電気的に絶緣された金属製のノ ズル保護キ Vブを取り 付けるとと もに、 ノ ズル冷却ガスをノ ズルとノ ズル保護キヤ ッ プの間に流す二 と て、 吹き上がって く る ド ロ スを吹き飛ばし、 ノ ズルを保護する方法が米国特許第 With a torch with an exposed tip, if the thick plate is drilled at the start of cutting, the dross (molten metal) blown up on the nozzle will adhere to the nozzle and melt the nozzle. If the nozzle is damaged or the nozzle comes into contact with the material to be cut, an irregular discharge called a double arc occurs, and the nozzle is damaged. For this reason, a metal nozzle protection valve V that is electrically isolated from this nozzle is installed in the capital city of the air-cooled nozzle, and the nozzle cooling gas is supplied to the nozzle and the nozzle protection key. A method of protecting the nozzle by blowing off the rising dross as a means of flowing between the tips is described in U.S. Pat.
4 8 5 1 9 6 2号に開示されている c 第 3 の従来技術 (溶接トーチにおけるノ ズル保護キヤ プ : C disclosed in No. 4 8 5 1 9 6 2 Third conventional technology (nozzle protection cap in welding torch:
ノ スルの周囲に、 ノ ズルと 電気的に絶縁された金属製のノ ズル保護キャ を取り付け、 ノズルとノ ズル保護キヤ ッ プの間に 2次ガスを流す構成となってい るプラ ズマ溶接ト一チが特公昭 5 3— 1 1 9 7 5 3号公報に開示されている。 第 4の従来技術 (旋面気流効果による切断面の傾斜) :  A metal nozzle protection cap that is electrically insulated from the nozzle is attached around the nozzle, and a secondary gas flows between the nozzle and the nozzle protection cap. One is disclosed in Japanese Patent Publication No. Sho 533-119753. Fourth prior art (inclination of cut surface due to swirling airflow effect):
プラズマ切断では一般的にカーフ (切断溝) の表側が広く、 裏側が狭くなつて いる。 そのため切断面は垂直とならず、 テーバ状になっている。  In plasma cutting, the front side of the kerf (cut groove) is generally wide and the back side is narrow. Therefore, the cut surface is not vertical but has a tapered shape.
ところで、 アーク安定化のために電極の軸の周囲に作動ガスを旋面させて噴出 する構成のプラズマ トーチにおいては、 その切断面が左右対称とはならず、 非対 象となることが知られている。 このことを利用すると、 表カーフ幅が広く、 裏力 ーフ幅が狭くなっている状況においても、 作劻ガスの旋面によって片側の切断面 だけであれば、 垂直な切断を行うことができることが溶接技術 1 9 8 8年 6月号 に開示されている。  By the way, it is known that in a plasma torch in which the working gas is swirled around the axis of the electrode to stabilize the arc and is ejected, the cut surface is not symmetrical and becomes untargeted. ing. By utilizing this fact, even if the front kerf width is wide and the back force is narrow, vertical cutting can be performed with only one cut surface due to the turning surface of the working gas. Is disclosed in the welding technology June 1996 issue.
しかし、 かかる第 1—第 4の従来技術には ( 1 ) ノ ズルの保護、 ( 2 ) 2次ガ スによるプラズマアークの緊縮、 (3 ) ノズル保護キャップの温度上昇、 ( 4 ) 旋面気流効果の調整、 ( 5 ) 冷却水面路の電気腐食について以下のような問題点が ある。  However, the first to fourth prior arts include (1) protection of a nozzle, (2) contraction of a plasma arc by a secondary gas, (3) an increase in the temperature of a nozzle protection cap, and (4) a swirling airflow. Adjustment of effects, (5) There are the following problems with electrical corrosion of cooling water surface.
( 1 ) ノズルの保護  (1) Nozzle protection
プラズマ切断においては、 厚板のピアツシング時に、 あるいはノ ズルと被切断 材の接触時に、 ノ ズルを損傷することがある。  In plasma cutting, the nozzle may be damaged when piercing a thick plate or when the nozzle comes into contact with the workpiece.
従って、 第 1の従来技術にあるようにノズルが II出しているプラズマトーチで は、 )ϋ板のビアッシングを行う際にメイ ンアークが移行する最髙の髙きでビアッ シングを行い、 ビアッ シング時の ドロスの吹き上がりを避けて、 穴が貫通した後 に、 トーチを切断に適した高さまで下げて切断を開始している。 しかし、 この方 法によると切断開始時の トーチの高さ制御が複雑となること 避けらない。 また 、 切断中あるいは終了時に、 被切断材が熱変形や指示の状態によっては跳ね上が つて( ることがあり、 それを避けるのは困難である。 このため、 ノズルと被切靳 材が接鲑することでダブルマークが癸生し、 ノ ズルを損傷する危険性を面避する こ とはできない。 Therefore, in the plasma torch in which the nozzle emits II as in the first prior art,) when the plate is beashed, the beading is performed at the maximum speed at which the main arc shifts. After the hole has penetrated, the torch is lowered to a height suitable for cutting, and cutting is started. However, this method inevitably complicates torch height control at the start of cutting. Also, during or at the end of cutting, the material to be cut may spring up depending on the state of thermal deformation or instruction, and it is difficult to avoid this. Therefore, the nozzle and the material to be cut are in contact with each other. Doing so avoids the risk of damaging the nozzle due to double marks It is not possible.
このようなことを考慮して、 第 2 の従来技術にあるように空冷ノ ズルを有する ト ーチにおいては、 ノ ズルへの ド コスの付着や被切断材との電気的な接触を防止 するためのノ ズル保護キャ ップの機構が開示されている。 しかしながら、 第 2 の 従来技術では、 空冷ノ ズル方式のブラズマ トーチに対して適用されており、 この ようなノズルを水冷するブラズマ トーチに適用するこ とは、 トーチ先端部の形状 が異なるためてきない。 また、 ノ ズルを空冷している冷却ガスを利用する機構と なっているので、 多量の冷却ガスを流す必要があり、 これを確保するためにノ ズ ル保護キャ ッブにはプラズマァ一クを通す開口部以外に複数の開口部が設けられ ている。 その結果、 被切断材の表面には多量の冷却ガスが噴出して、 プラ ズマァ ークへの擾乱が増加し、 切断に悪影響がでる。  In consideration of the above, in the torch having the air-cooled nozzle as in the second related art, it is necessary to prevent the attachment of the docos to the nozzle and the electrical contact with the material to be cut. Nozzle protection cap mechanism is disclosed. However, the second conventional technique is applied to an air-cooled nozzle type plasma torch, and such a nozzle cannot be applied to a water-cooled plasma torch because the shape of the tip of the torch is different. . In addition, since a mechanism that uses cooling gas that cools the nozzle air is used, a large amount of cooling gas needs to flow, and in order to secure this, a plasma arc is applied to the nozzle protection cab. A plurality of openings are provided in addition to the openings for passing through. As a result, a large amount of cooling gas is blown out to the surface of the material to be cut, increasing disturbance to the plasma mark and adversely affecting cutting.
また、 第 3の従来技術では、 水冷のノ ズルに対して保護キヤ ッブが適応されて いるが、 その機能は、 被切断材とノ ズルの接触を防止するものの、 2次ガスで溶 接部を大気から遮断するためのものである。 従って、 ノ ズル保護キャ ップの開口 部は広く開いており、 ビア ッ シング時の ド スの吹き上がりからノ ズルを守る機 能は有していない。  In the third conventional technology, a protective cap is applied to water-cooled nozzles, but its function is to prevent contact between the workpiece and the nozzles, but to perform welding using a secondary gas. It is for isolating the part from the atmosphere. Therefore, the opening of the nozzle protection cap is wide open, and does not have the function of protecting the nozzle from blowing up during dosing.
( 2 ) 2次ガスによるプラズマアークの緊縮  (2) Contraction of plasma arc by secondary gas
プラズマ切断では、 アークをノ ズルにより細く絞り込むこ とで高温高速のァー クブラズマを得ている。 小さいノ ズル径を有するノ ズルにより多く の電流を流す こ とができれば、 狭い切断溝幅で高速切断できる。 しかし、 電流を增大していく と電流がノ ズルォ リ フ ィ スを通過せずにノ ズルの金属部を流れるダブルアーク と 呼ばれる現象が起こ り、 切断能力が低下するだけてはなく ノ ズルを損^して しま つ 0 In plasma cutting, a high-temperature, high-speed arc plasma is obtained by narrowing the arc with a nozzle. If more current can flow through a nozzle with a small nozzle diameter, high-speed cutting can be performed with a narrow cutting groove width. However, when the current is increased, a phenomenon called a double arc that flows through the metal part of the nozzle without passing the current through the nozzle is generated, which not only reduces the cutting ability but also damages the nozzle. ^ Then 0
第 1 の従来技術では、 アークを細く絞り こむために、 電極の周囲に作動ガスを 強く旋回させて噴出させるとともに、 ノ ズルを水冷するこ とでダブルア一クが起 こ り に く く している。 し力、し、 ノ ズルから噴出したプラズマアーク は膨張するの で、 切断溝幅が広かって しまう。  In the first conventional technology, the working gas is strongly swirled around the electrode to squeeze the arc narrowly, and at the same time, the nozzle is cooled with water to prevent double arcs. . Since the plasma arc ejected from the nozzle expands, the width of the cut groove becomes wider.
第 2 Ο従来技術で 、 ノ ズル O冷却が不十分なためダブルマークが起こ り易く 、 電流を大幅に増大する こ とが困難である。 また、 ノ スル保護キャ ップ:二 りブ ラズマアー クを包囲するように供铪される 2次ガスを使って、 ノ ズルから噴出し たアークを更に绞り込むことができるが、 2次ガスを流すための中央の開口部以 外にノズル冷却のためにガス流量を增やすための開口部が設けられており、 ァー クを包囲する 2次ガスだけを独立して制御することができない。 そのため、 ブラ ズマアークを更に铰り込むのに十分な 2次ガスの流速あるいは圧力を得ることが 困難である。 2) With conventional technology, double marks are likely to occur due to insufficient nozzle O cooling It is difficult to greatly increase the current. Nozzle protection cap: The secondary gas supplied to surround the two plasma arcs can be used to further inject the arc ejected from the nozzle. In addition to the central opening for flowing gas, there is an opening for increasing the gas flow rate for cooling the nozzle, and it is not possible to independently control only the secondary gas surrounding the arc . For this reason, it is difficult to obtain a flow rate or pressure of the secondary gas that is sufficient to further incorporate the plasma arc.
( 3 ) ノズル保護キャップの温度上昇  (3) Nozzle protection cap temperature rise
第 2の従来技術と第 3の従来技術におけるノズル保護キヤッブは、 2次ガスに よる空冷しか行われないため、 プラズマアークあるいは切断面からの幅射により 温度が上がってしまう。 従って、 ノズルや電極などの小脳部品の交換の際には、 アーク停止後しばらく 2次ガスを流して冷却するか、 あるいは手袋をはめて交換 するかしなければならず、 交換時の作業性が悪い。  In the nozzle protection caps of the second and third prior arts, only the air cooling by the secondary gas is performed, so that the temperature rises due to the plasma arc or the radiation from the cut surface. Therefore, when exchanging cerebellar parts such as nozzles and electrodes, it is necessary to allow secondary gas to flow for a while after the arc is stopped, to cool them, or to wear gloves for replacement. bad.
( 4 ) 旋回気流効果の調整  (4) Adjustment of swirling airflow effect
第 4の従来技術に示したように、 旋回気流効果によって切断面が傾斜すること を利用して、 片 Mの切断面について垂直な切断面を得ることが可能である。 しか し、 被切断材の板!:や切断速度に合わせて、 切断面の傾斜の程度を調整しようと すると、 旋回気流の強度つまり作動ガス流量の增減が必要となる。 しかし、 作動 ガス流量にはアークを安定に保持するための最適値があり、 作動ガス流量を増減 するとアークが不安定になり、 切断面の傾斜の程度を調整することは困難である  As shown in the fourth prior art, it is possible to obtain a cut surface perpendicular to the cut surface of the piece M by utilizing the fact that the cut surface is inclined by the swirling airflow effect. However, the plate of the material to be cut! : In order to adjust the degree of inclination of the cut surface according to the cutting speed, the intensity of the swirling airflow, that is, the working gas flow rate must be reduced. However, the working gas flow rate has an optimal value to keep the arc stable.If the working gas flow rate is increased or decreased, the arc becomes unstable, and it is difficult to adjust the degree of inclination of the cut surface.
( 5 ) 冷却水通路の電気腐食 (5) Electric corrosion of cooling water passage
第 Iの従来技術における電極とノズルが水冷されるブラズマ トーチでは、 電極 とノズルはトーチ本体のそれぞれ铯縁された金属部に当節して固定されるととも に、 それぞれの金属部には、 直流電源から電力が供給されている。 そして、 電極 側金属部とノズル側金属部に 、 これらを連結する冷却水通路が設けら 、 ;合却 水により電極とノズルを冷却している。  In the plasma torch in which the electrode and the nozzle according to the first prior art are water-cooled, the electrode and the nozzle are fixed to the metal parts of the torch body, which are separated from each other. Power is supplied from the DC power supply. A cooling water passage is provided in the metal part on the electrode side and the metal part on the nozzle side for connecting them; and the electrode and the nozzle are cooled by the combined water.
ブラスママークが癸生している時には、 電極側金属部とノ ズル側金属部と o K に 電位差が発生している。 こ の時それぞれの金属 ¾ 電気的に絶緣さ riた状態 で ト ーチ本体が構成されている力、、 それぞれの金属部が冷却水通路で連結されて 、 そ こに冷却水が流れているため、 '却水を介して敏弱な電流が流れる。 この電 流は^弱なのでァ一クの発生には何等支障はないが、 トーチ本体の金属部を徐々に 電気化学的な作用によ って腐食する。 電極とノ ズルが水冷されている トーチは、 い ずれは使用不能に陥る。 発 明 の 開 示 When the brass mark is cracked, the electrode side metal part, the nozzle side metal part, and o K Has a potential difference. At this time, the torch body is configured in a state where each metal is electrically insulated, and each metal part is connected by the cooling water passage, and the cooling water flows there Because, 'weak current flows through the water flow. Since this current is weak, there is no hindrance to the occurrence of arc, but the metal part of the torch body is gradually corroded by electrochemical action. Both torches with water-cooled electrodes and nozzles become unusable. Disclosure of the invention
本 ¾明は、 ノ ズルが水冷されている トーチ構造のものに対しても有効にノ ズル 保護の機能を発揮でき、 ノ ズルの寿命が大幅に改善され、 ノ ズルの交換に伴う時 間的なロスを低減できる。 また、 2次ガス通路内にイ ンシュ レータを介装したこ とにより、 2次ガスが整流されて、 この 2次ガスによりノ ズル 2から噴出したブ ラズマアークが再度絞り込まれて、 切断溝幅の細い精密な切断を行なうこ とがで きる。 また、 イ ンシュ レー夕の整流通路により 2次ガス流をプラズマアークの旋 面流と同一方向に旋回させるこ とができるため、 祓切断材の切断面の傾斜を垂直 にすることができる。 また、 ノ ズル保護キャ ッ プは先端部と基端部とに分離できる のて、 これの先端分だけを消耗品として交換するこ とができる。 この基端部分は 冷却水で冷却されるこ とによ り、 トーチの保守点検時この部分に注意をはら う こ とな く取り扱う こ とができる。 加えて、 冷却水による電気科学的な腐食も低减す るこ とができる切断用ブラズマ トーチを提供するこ とを目的と している。  The present invention can effectively exert the function of protecting the nozzle even when the nozzle has a water-cooled torch structure, greatly improving the life of the nozzle and reducing the time required for nozzle replacement. Loss can be reduced. In addition, since the insulator is interposed in the secondary gas passage, the secondary gas is rectified, and the plasma arc ejected from the nozzle 2 is narrowed down again by the secondary gas, and the cut groove width is reduced. Fine and precise cutting can be performed. Also, since the secondary gas flow can be swirled in the same direction as the spiral flow of the plasma arc by the rectifying passage of the insulation layer, the inclination of the cut surface of the extruded cutting material can be made vertical. In addition, since the nozzle protection cap can be separated into a distal end portion and a proximal end portion, only the tip portion can be replaced as a consumable item. The base end is cooled by cooling water, so that it can be handled without paying attention to the torch during maintenance and inspection. In addition, another object of the present invention is to provide a cutting plasma torch that can reduce electrochemical corrosion caused by cooling water.
かかる目的を達成するために、 本発明は水冷された電極を用い、 この電極をプ ラ スマガス通路を隔てて被 mするように配置されたノ ズルのオ リ フ ィ スを通じて プラ ズマアークを電極と被切断材間で究生させる切断用プラズマ トーチにおいて 、 ノ スル丰ヤ ップの外側に、 先端側にノ ズルのオリ フ ィ スに対抗する開口部を有 し、 二の開口部に連通する璟状の 2次ガス通路をノ ズルキヤ ップとの間で構成す るノ スル保護キヤ ップを前記電極及 ノ ズルと電気的に絶緣して固着し、 前記 2 次カ ス通路内に、 電気铯緣材にて環状に構成され、 かつ 2次ガス通路を流れるガ ス流を整流する整流通路を有するィ :.' ュ い一々を介装している。 二のノ ズル保護キャ ッ プは熱伝導性のよい金属材料で構成している ま た、 ンシユ レータの断面形状を矩形にすると共に、 このィ ンシ ユ レ一タをノ ズル保證 キャ ·,プ©外周函と内周面にそれぞれ設けた段部に铰着している e In order to achieve this object, the present invention uses a water-cooled electrode, and connects the plasma arc to the electrode through a nozzle orifice arranged so as to cover the electrode with a plasma gas passage therebetween. The plasma torch for cutting that is produced between the workpieces has an opening on the tip side opposite the nozzle orifice outside the nozzle hole and communicates with the two openings. A nozzle protection cap, which forms an annular secondary gas passage between the nozzle cap and the nozzle cap, is electrically insulated and fixed to the electrode and the nozzle. It is composed of electric steel material and has a rectifying passage that rectifies the gas flow flowing through the secondary gas passage. The second nozzle protection cap is made of a metal material having good heat conductivity, and the cross section of the insulator is made rectangular, and this insulator is also used as the nozzle protection cap. © periphery are铰着the stepped portion provided respectively on the inner peripheral surface and a box e
また、 ノ ズル保護キヤ - ブを、 ノ ズル先嬙部を保護する先 -部と、 トーチ本体 側に固着する基端部とにて構成し、 かつこれらを着朕可能に結合している。 二れ らの先嬝部と基端部には、 互いに嵌合するフ ラ ンジを設け、 あるいはそれぞれの 互いに結合する部分にねじを設け、 篏合あるいは螺着している。 これらの中、 先 先^部は伝熱性のよい金属材料で、 基端部は機狨的強度に れた金属材料にて構 成している。  In addition, the nozzle protection cap includes a tip portion for protecting the tip portion of the nozzle and a base end portion fixed to the torch main body side, and these components are movably connected. A flange that fits each other is provided at the leading end portion and the base end portion, or a screw is provided at a portion to be connected to each other, and fitted or screwed. Among these, the tip portion is made of a metal material having good heat conductivity, and the base end portion is made of a metal material having mechanical strength.
また、 ノ ズルの先端面とノ ズル保護ギャ ッ プの開口部內側面との間のギヤ ソ プ 寸法 hは 0.5〜 1.5mm になるようにしている。 ノ ズルのオ リ フ ィス径 , とノズ ル保證キヤッブの開口 ί圣《5 2 との比 z Z i^ i It 1.0〜5.0 にしている。 The dimension h of the gear so between the tip surface of the nozzle and the opening 內 the side surface of the nozzle protection gap is set to 0.5 to 1.5 mm. Roh nozzle Oh Li off office diameter, to be on the ratio z Z i ^ i It 1.0~5.0 of the Nozzle Ho證Kiyabbu opening of ί Holy "5 2.
また、 ノ ズル保護キャ ップの基嬙部の内側に璟状の冷却水室を設け、 この冷却 水室を電極内に設けた冷却水室に連通している。 ノ ズル保護キヤ ップを袋状の 2 重構造にし、 これによる空間を冷却水室としてもよい。  In addition, an annular cooling water chamber is provided inside the base of the nozzle protection cap, and this cooling water chamber communicates with the cooling water chamber provided in the electrode. The nozzle protection cap may have a bag-shaped double structure, and the space formed by this may be used as a cooling water chamber.
また、 電極の周囲に設けられたブラズマガス通路にブラズマガスを流入するた めのプラズマガス流入路を、 プラズマガスに旌面流を与えるようにトーチの Ιέ心 に対して傾斜させると共に、 イ ンシユ レ一タの整流通路を、 これを通る 2次ガス に前記プラズマガスの旋面方向と同一方向の旋面流を与えるようにうず巻き状に し、 且つノ ズルのォ リ フ ィ ス径 , とオリ フ ィ ス县さ Lの関係を L ≤ 2を 潢足するようにしている。  In addition, the plasma gas inflow path for injecting the plasma gas into the plasma gas path provided around the electrode is inclined with respect to the center of the torch so as to give the plasma gas a jewelry flow. The rectifying passage of the rotor is spirally formed so as to give the secondary gas passing therethrough a spiral flow in the same direction as the spiral direction of the plasma gas, and the nozzle has an orifice diameter of The relation of the length L is made to satisfy L ≤ 2.
さらに、 電極側の冷却水室とノ ズル側の冷却水室通路と連通する流入路を、 電 気絶緣材料にて構成したチューブとしている。  Further, the inflow path communicating with the cooling water chamber on the electrode side and the cooling water chamber passage on the nozzle side is a tube made of an electrically insulating material.
プラズマガスと共にノ ズルょり噴出したプラ ズマアーク は、 ノ ズルとォ リ フィ スを通って噴出される。 このとき、 ギャ プより前記プラズマアークに向けて 2 次力スが噴出されるが、 こ CD 2次ガス ィ ンシユ レータにより整流される- 二 ィ ンシユ レータによりノ ズルキャップとノ ズル保護キャツプとが調心されて詰合 されている c 先端部と基嬙都とに分離して構成されたノ ズル保護キヤ ':,プ 、 先端都だけを 消耗品と して交換さ る。 この基绡部に冷却水室を設けるこ とによ り、 ノ ズル保 護キヤ ップは冷却される。 The plasma arc erupted along with the plasma gas is erupted through the nozzle and orifice. At this time, a secondary force is ejected from the gap toward the plasma arc, which is rectified by the CD secondary gas insulator, and the nozzle cap and the nozzle protection cap are rectified by the CD insulator. Aligned and packed c Nozzle protection key ':, 分離, 先端 プ 分離 分離 プ に に に に に , , だ け , 交換 交換 だ け だ け 交換. By providing a cooling water chamber in this base, the nozzle protection cap is cooled.
プラ ズマガス 、 プラ ズマガス流入路にて旋回流が与えられ、 2次ガス も イ ン シュ レータにてブラズマガスと同一方向の旋回流が与えら る。 冷却水が流れる 流路には、 電気 ½緣材料にて構成したチューブを嵌合するこ とで、 冷却水室の電気 的な腐食が防止される。 図面の簡単な説明  A swirling flow is given by the plasma gas and the plasma gas inflow passage, and a swirling flow of the secondary gas is given by the insulator in the same direction as the plasma gas. The corrosion of the cooling water chamber is prevented by fitting a tube made of an electric material into the flow path through which the cooling water flows. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明の第 1実施例を示すプラズマ トーチの断面図、 図 2 A -図 2 Eは 各種ィ ンシュ レータの説明図、 図 3 は第 2実施例を示すブラズマ トーチの断面図 、 図 4 は第 3実施例を示すブラズマ トーチの断面図、 図 5 は第 4実施例を示すプ ラズマ トーチの断面図、 図 6 は第 5実施例を示すプラズマ トーチの断面図、 図 7 Aは第 6実施例を示すプラズマ トーチその作用を示す断面図、 図 7 Bは第 6実施 例を示すブラズマガス流入路の斜視図である。  FIG. 1 is a sectional view of a plasma torch showing a first embodiment of the present invention, FIGS. 2A to 2E are explanatory diagrams of various insulators, and FIG. 3 is a sectional view of a plasma torch showing a second embodiment. 4 is a sectional view of a plasma torch showing a third embodiment, FIG. 5 is a sectional view of a plasma torch showing a fourth embodiment, FIG. 6 is a sectional view of a plasma torch showing a fifth embodiment, and FIG. FIG. 7B is a cross-sectional view illustrating the operation of the plasma torch according to the sixth embodiment, and FIG. 7B is a perspective view of a plasma gas inflow path according to the sixth embodiment.
¾明を実施するための最良の形態 Best mode for carrying out the explanation
本発明の第 1実施例を図 1 と図 2 A —図 2 Eに基づいて説明する。  First Embodiment A first embodiment of the present invention will be described with reference to FIGS. 1 and 2A to 2E.
図中 1 は電極、 2 はこの電極 1 の先端に対向する位置にノ ズル保持部材 3 にて 保持されたノ ズル、 4 はノ ズル 1 の下端部分を除いてその他の部分を被覆するノ ズルキヤ ッブ、 5 はこのノ ズルキヤ ッ プ 4の外側を被覆するノ ズル保護キャ ップ である。 そして、 電極 1 の周囲にはこの周囲からノ ズル 2のオ リ フ ィ ス 1 6 に連 通するプラズマガス通路 6が設けてあり、 ノ ズル 2 とノ ズルキャ ッ プ 4 との間に は冷却水通路 7 が設けてある。 また、 ノ ズルキャ ッ プ 4 とノ ズル保護丰や ソ プ 5 との間にはノ ズル 2 の先绡側に開放された 2次ガス通路 8が設けてある。  In the figure, 1 is an electrode, 2 is a nozzle held by a nozzle holding member 3 at a position facing the tip of the electrode 1, and 4 is a nozzle cover that covers other portions except the lower end portion of the nozzle 1. A nozzle protection cap 5 covers the outside of the nozzle cap 4. Around the electrode 1, a plasma gas passage 6 communicating from the periphery to the orifice 16 of the nozzle 2 is provided, and cooling is provided between the nozzle 2 and the nozzle cap 4. A water passage 7 is provided. In addition, a secondary gas passage 8 is provided between the nozzle cap 4 and the nozzle protection tank 5 and the nozzle 5. The secondary gas passage 8 is open to the leading end of the nozzle 2.
ノ ズル保護キ ···プ 5 は、 ノ ズルキャ ツブ 4 におして電気的に絶緣さ た状 J になっており、 また、 ノ ズル 2 はノ ズルキヤ ッ プ 4 の先嬙部で も支持されている c 電極 1 の内側に ^却水室 9が設けてあ ' 、 : 〇; 却水室 9 は前記冷却水通 ¾ 7 に連通されている。 そして、 冷却水室 9 に: 却水流入路 1 0が接続してあり、 他方の冷却水通路 に 洽却水流出路 1 0 aが接続してある。 また、 プラズマ力 ス通路 6に プラズマガス流入路 1 1 が接镜してあり、 2次ガス通路 8に: 2次 ガス流入路 1 2が接続してある。 1 3 は前記各部材を支持する トーチ本体で、 こ れは電極 1及びノ ズル 2に対して絶緣されている。 そしてノ ズル保護キヤ ッブ 5 はこの トーチ本体 1 3に螺着されている。 The nozzle protection cap 5 is electrically isolated from the nozzle cap 4 in the shape of a j, and the nozzle 2 is also supported by the tip of the nozzle cap 4. C There is a drainage chamber 9 inside the electrode 1. ': 〇; Is communicated to. The cooling water chamber 9 is connected to a recirculating water inflow passage 10 and the other cooling water passage is connected to a cooling water outflow passage 10a. Further, the plasma gas passage 6 is connected to the plasma gas inflow passage 11, and the secondary gas passage 8 is connected to the secondary gas inflow passage 12. Reference numeral 13 denotes a torch main body for supporting each of the above members, which is insulated from the electrode 1 and the nozzle 2. The nozzle protection cap 5 is screwed to the torch body 13.
ノ ズルキヤ ッブ 4 とノ ズル保護キヤ ッブ 5 との間に構成される 2次ガス通路 8 は、 テーバ瑷状に形成されている。 2次ガス通路 8内には、 電気絶緣材にて構成 され且つスぺーサをかねるイ ンシュ レータ 1 4が、 ノ ズルキャ ップ 4及びノ ズル 保護キヤップ 5の壁面に対して気密状にして介装されている。 イ ンシユレータ 1 4には、 これの上流側と下流側とを連通し且つ整流路となる小孔 1 5が円周方向 に複数個開口してある。  The secondary gas passage 8 formed between the nozzle cap 4 and the nozzle protection cap 5 is formed in a tapered shape. In the secondary gas passage 8, an insulator 14 made of an electrically insulating material and also serving as a spacer is provided in an airtight manner with respect to the wall surfaces of the nozzle cap 4 and the nozzle protection cap 5. Is equipped. The insulator 14 is provided with a plurality of small holes 15 communicating with the upstream side and the downstream side thereof and serving as rectification paths in the circumferential direction.
なお、 この整流通路となる小孔 1 5 は図 2 Aに示す小孔 1 5に替えて、 図 2 B に示すように內面 (あるいは外面) に軸方向に設けた溝 1 5 a としてもよい。 こ れらの小孔 1 5及び溝 1 5 aは、 軸心に対してうず卷き状に設けてもよい。 また 、 図 2 A , 図 2 Bに示したイ ンシュレータ 1 4は 2次ガス通路 8のテーバ璟伏の 形状にあわせてテ一バ伏に形成されているが、 このように形吠にかぎるものでは なく、 図 2 C , 図 2 D , 図 2 Eに示すように断面矩形状にして、 整流された 2次 ガスは軸心方向に流れるようにしてもよい。 このィ ンシユ レータ 1 4は、 ふつ素 系等の合成樹脂あるいはセラミ ッ クにて構成している。  In addition, the small hole 15 serving as the flow straightening passage may be replaced with the small hole 15 shown in FIG. 2A and a groove 15a provided in the axial direction on the surface (or the outer surface) as shown in FIG. 2B. Good. These small holes 15 and grooves 15a may be provided in a spiral shape around the axis. In addition, the insulator 14 shown in FIGS. 2A and 2B is formed in a tapered shape in accordance with the shape of the tapered shape of the secondary gas passage 8. Instead, as shown in FIGS. 2C, 2D, and 2E, the cross section may be rectangular, and the rectified secondary gas may flow in the axial direction. The insulator 14 is made of a synthetic resin such as a fluorine-based resin or a ceramic.
ノ ズル 2のオリ フィス 1 6 Φ , とノ ズル保護キヤップ 5の開口径《5 との Ιί Φ ι / Φ ι は 1. 5〜5. 0 が適当であり、 好ましく は 2. 0〜4. 0 である。 ここで 、 Φ / < 1.0 の場合にはノ ズル保護キャ ップ 5 の先端がプラズマアークの 熱で変形して損傷し、 且つ 2 次ガスの流れを乱してしまう。 また、 Φ Φ > 5. 0 の場合には、 ドロスの吹き返りがノ ズル 1及びノ ズル 2の下端面とノ ズル保護 キャップ 5 の間のギャップ 1 7に付着し、 ダブルァ一クを穽生してしまう。  The ΦΦι / Φι between the orifice 16 Φ of the nozzle 2 and the opening diameter 《5 of the nozzle protection cap 5 is 1.5 to 5.0, preferably 2.0 to 4.0. 0. Here, if Φ / <1.0, the tip of the nozzle protection cap 5 is deformed and damaged by the heat of the plasma arc, and disturbs the flow of the secondary gas. When Φ Φ> 5.0, the back of the dross adheres to the gap 17 between the lower end faces of the nozzles 1 and 2 and the nozzle protection cap 5, and a double arc is trapped. Resulting in.
また、 ギャ ップ 1 マのギヤ ップ寸法 hは 0. 5〜: L . 5mm が適当てある。 二 こで、 h < 0.5mm 上 した場合には、 2次ガスの噴 Sする流速が速く なりすぎてアークを 舌し 、 つ 。 Also, the appropriate gap dimension h for one gap is 0.5 to 0.5 mm. If h <0.5 mm, the flow velocity of the secondary gas jet S becomes too high, causing arcing. Tongue and one.
かかる構成において、 電極 1 からのプラズマアーク は、 この電極 1 ' 周囲に設 けられたブラズマガス通路 6に供給されたブラズマガスと共にノ ズル 2及びノ ズ ル保護キャ ップ 5の開口部を通って噴出される。 このとき、 ノ ズル 2 却水通 路了を通る冷却水にて冷却される。 また、 2次ガスは 2次ガス通路 8を通ってギ ヤ ップ 1 7 より上記ブラズマの周囲を囲镜するようにして噴出される。 このとき の 2次ガスは、 イ ンシュ レータ 1 4を通る間に整流される。 即ち、 環状の 2次ガ ス通路 8を通ってきた 2次ガスはイ ンシュ レータ 1 4 の小孔 1 5あるいは溝 1 5 a にて構成される整流通路を通る間に整流される。  In such a configuration, the plasma arc from the electrode 1 is ejected through the openings of the nozzle 2 and the nozzle protection cap 5 together with the plasma gas supplied to the plasma gas passage 6 provided around the electrode 1 ′. Is done. At this time, it is cooled by cooling water passing through the nozzle 2 recirculating water passage. The secondary gas is ejected from the gap 17 through the secondary gas passage 8 so as to surround the periphery of the plasma. The secondary gas at this time is rectified while passing through the insulator 14. That is, the secondary gas that has passed through the annular secondary gas passage 8 is rectified while passing through the rectifying passage formed by the small holes 15 or the grooves 15 a of the insulator 14.
また、 ノ ズル 2 の下端面とノ ズル保護キヤ ップ 5 の間のギヤ ップ 1 7 のギヤ ッ プ寸法 hを最適値とするこ とにより、 プラズマアークを包囲するように噴出され る 2次ガスは、 十分な流量を十分早い流速で供^される。 ノ ズル保護キヤ ッブ 5 の開口径 2 も最適値とするこ とにより、 ピア ツ シング時の ドロスの吹き上がり からノズル 2が保護される。 In addition, by optimizing the gap dimension h of the gap 17 between the lower end surface of the nozzle 2 and the nozzle protection cap 5, the gas is injected so as to surround the plasma arc. The secondary gas is supplied at a sufficient flow rate with a sufficient flow rate. By setting the opening diameter 2 of the nozzle protection cap 5 to the optimum value, the nozzle 2 is protected from the dross blow-up during piercing.
次に本発明の第 2 —第 6実施例を図 3 —図 7 Bに基づいて説明する。  Next, second to sixth embodiments of the present invention will be described with reference to FIGS. 3 to 7B.
図 3 は第 2実施例を示すもので、 イ ンシュ レータ 1 4 a は断面形状を矩形にし た部材にて環状に構成されており、 このイ ンシユ レータ 1 4 a はノ ズルキヤ ップ 4 a とノ ズル保護キヤップ 5 a のそれぞれ対向部に形成した段部に嵌合して取付 けられている。 そしてこのイ ンシュ レータ 1 4 aの外周側に整流通路 1 8が設け られている。 この構成によれば、 ノズルキャ ップ 4 a とノ ズル保護キャップ 5 a とはィ ンシュ レータ 1 4 a にて調心され、 両都材の位置決めが容易に行われる。 図 4は第 3実施例を示すもので、 ノ ズル保護キヤ ッブの先端部と基端部とを別 部材にしている。 すなわち、 ノ ズル保護キヤ ップ 5 b はノ ズル本体 1 3に螺着さ nる基端部 1 9 と、 ノ ズル 2側の先嬙部 2 0 とが別 Ιί!"になっている。 そ してこ の先端部 2 0側にイ ンシュ レータ 1 4 aが支持されている。 基端部 1 9 と先端部 2 0 との結合は、 先端部 2 0側にフラ ンジ部 2 0 a を設け、 このフラ ンジ部 2 0 a に基端都 1 9の先端側を嵌合固着する。 このフラ ンジ部 2 0 a において両者を 蝮合固着してもよい。 この構成によ ήば、 プラズマ 卜ーチの使用に際してノズル保護キャ ·>·プ 5 bの 先端側が破損しても先 ¾部 2 0だけを交換すればよく、 g済的である。 また、 ノ ズル保護キヤ ップ 5 bを基端部 1 9 と先端部 2 0 とを分割したので、 先端部 1 0 は熱伝導のよい材質て構成することで、 髙温の溶融金属が付着したとしてもこの 溶融金属が短時間で冷却されて剝離しやすくなる。 他方、 基端部 1 9は機械的強 度に優れた材 で構成することで、 トーチが被切断材と接触してもこれが変形し ないようになる。 FIG. 3 shows a second embodiment, in which an insulator 14a is formed in a ring shape by a member having a rectangular cross-sectional shape, and the insulator 14a is a nozzle cap 4a. The nozzle protection cap 5a is fitted and attached to the step formed at the opposing portion of each of the nozzle protection caps 5a. A rectifying passage 18 is provided on the outer peripheral side of the insulator 14a. According to this configuration, the nozzle cap 4a and the nozzle protection cap 5a are aligned by the insulator 14a, and the positioning of the two materials is easily performed. FIG. 4 shows a third embodiment, in which the distal end portion and the proximal end portion of the nozzle protection cap are formed as separate members. That is, in the nozzle protection cap 5b, a base end portion 19 screwed to the nozzle body 13 and a leading end portion 20 on the nozzle 2 side are different from each other. An insulator 14a is supported on the distal end portion 20. The coupling between the proximal end portion 19 and the distal end portion 20 is performed by connecting a flange portion 20a on the distal end portion 20 side. And the front end side of the base end 19 is fitted and fixed to the flange portion 20a, and the two may be fixed to each other at the flange portion 20a. According to this configuration, when the distal end side of the nozzle protection cap 5b is damaged when using the plasma torch, it is sufficient to replace only the tip 20 and the gating is completed. In addition, since the nozzle protection cap 5b is divided into a base portion 19 and a tip portion 20, the tip portion 10 is made of a material having good heat conductivity, so that a high-temperature molten metal adheres. Even if it does, the molten metal is cooled in a short time and is easily separated. On the other hand, when the base end 19 is made of a material having excellent mechanical strength, the torch does not deform even when the torch comes into contact with the material to be cut.
図 5は第 4実施例を示すもので、 ノズル保護キヤ ップを冷却できるようにして いる。 すなわち、 ノズル保護キヤッブ 5 cの基端部 1 9 aの内側に璟状の冷却水 室 2 1を設け、 この冷却水室 2 1に電極 1の内側に設けられた電極 1側の冷却水 室 9に通路 2 にて連通してある。 この構成によりノ ズル保護キヤッブ 5 cの基 端部は冷却水室 2 1内の冷却水により冷却されこの部分の昇温が抑制される。 図 6は第 5実施例を示すもので、 ノ ズル保護キヤッブ 5 dの冷却水室 2 1 aを 上下方向に幅の広い環状に構成してその容穰を大きくすることにより、 この部分 の冷却能力が更に大きくなつている。 そしてこの冷却水室 2 1 aには電極 1側の 冷却水室 9に連通する流入側の通路 2 2のほかに、 ノズル 2のまわりに設けた冷 却水通路 7に連通する出口側の通路 2 3が連通している。  FIG. 5 shows a fourth embodiment in which the nozzle protection cap can be cooled. That is, a rectangular cooling water chamber 21 is provided inside the base end 19a of the nozzle protection cabinet 5c, and the cooling water chamber on the electrode 1 side provided inside the electrode 1 is provided in the cooling water chamber 21. It is connected to 9 via passage 2. With this configuration, the base end of the nozzle protection cabinet 5c is cooled by the cooling water in the cooling water chamber 21 and the temperature rise in this portion is suppressed. Fig. 6 shows a fifth embodiment, in which the cooling water chamber 21a of the nozzle protection cap 5d is formed in a vertically wide annular shape to increase its fertility, thereby cooling this part. The ability is getting bigger. The cooling water chamber 21a has an inlet-side passage 22 communicating with the cooling water chamber 9 on the electrode 1 side, and an outlet-side passage communicating with the cooling water passage 7 provided around the nozzle 2. 23 are in communication.
図 7 A、 図 7 Bは第 6実施例を示す。 図 7 Aにおいて、 イ ンシュ レータ 1 4 a に設けた整流通路 1 8をトーチの中心に対してうず巻き状にすることにより、 ノ ズル保護キヤッブ 5 eのギヤッブから噴出する 2次ガス流を锭面流にすることが できる。 また、 電極 1 の周囲に設けられたブラズマガス通路 6にブラズマガスを 流入するための複数本のプラズマガス流入路 6 aを、 図 7 Bに示すように トーチ の ϋ心に対して傾斜させて設け、 ブラズマガス通路 6に流入するブラズマガスに 旋面流を与えている。 このとき、 2次ガスの旋面方向とプラズマガスの旋面方向 とを同一にし、 ノ ズル 2のオリ フ ィ ス县 Lはオリ フ ィ ス径 ^ ! に対して L / ^【 ≤ 2の Η係にする。  7A and 7B show a sixth embodiment. In FIG. 7A, the rectifying passage 18 provided in the insulator 14a is spirally wound around the center of the torch, so that the secondary gas flow spouted from the gearbox of the nozzle protection cap 5e can be reduced. It can flow. In addition, a plurality of plasma gas inflow paths 6a for flowing the plasma gas into the plasma gas path 6 provided around the electrode 1 are provided at an angle to the center of the torch as shown in FIG. The swirling flow is given to the plasma gas flowing into the plasma gas passage 6. At this time, the turning direction of the secondary gas and the turning direction of the plasma gas are the same, and the orifice 县 L of the nozzle 2 is the orifice diameter ^! L / ^ 【≤ 2
かかる構成のブズマトーチにより被切断材 2 4を切断すると、 図 7 Αに示すよ うに 2次ガスの旋回流の上流側の切断壁 2 4 aは垂直になり、 他方の切断壁 2 4 一 】 1 一 b は開先状に傾斜する。 例えば、 2次ガスが上からみて右方向に旋回している場 合は右側の切断壁 2 4 aが垂直状になり、 左方向に.旋回している場合は左側の切 断壁 2 4 bが垂直状になる。 When the material to be cut 24 is cut by the buzzer torch having such a configuration, the cut wall 24 a on the upstream side of the swirling flow of the secondary gas becomes vertical and the other cut wall 24 as shown in FIG. 1] 1 1b is inclined like a groove. For example, if the secondary gas is turning to the right when viewed from above, the right cut wall 24a will be vertical, and to the left if it is turning, and the left cut wall 24b if it is turning. Becomes vertical.
また、 前記各実施例において冷却水による電気科学的な腐食を低減するために は、 冷却水を介して流れる電流を減少してやらねばならない。 そのために、 冷却水 に接する トーチ本体の金属部分の面積を狭く してやる必要がある。 このこ とから 例えば図 1 に示すように、 電極 1 側の冷却水室 9 とノ ズル 2側の冷却水通路 1 0 とを連通する流入路 2 5に、 電気絶縁材料にて構成したチューブ 2 6を嵌合して いる (第 7実施例) 。 産業上の利用可能性  Further, in each of the above embodiments, in order to reduce the electrochemical corrosion caused by the cooling water, the current flowing through the cooling water must be reduced. Therefore, it is necessary to reduce the area of the metal part of the torch body that comes into contact with the cooling water. For this reason, as shown in FIG. 1, for example, a tube 2 made of an electrically insulating material is connected to an inflow passage 25 communicating the cooling water chamber 9 on the electrode 1 side and the cooling water passage 10 on the nozzle 2 side. 6 is fitted (seventh embodiment). Industrial applicability
本発明は、 ノ ズルの寿命が县く ノ ズルの交換に伴う時間的なロスが少な く、 切 断溝幅の細い精密切断を行ない、 被切断材の切断面も垂直であり、 且つノ ズル保 護キヤ ップの先端分だけを消耗品として交換でき、 トーチの保守点検が容易で、 冷却水による電気科学的な腐食にも耐え得る切断用プラズマ トーチとして有用で ある。  According to the present invention, the life of the nozzle is long, the time loss associated with the replacement of the nozzle is small, precision cutting with a narrow cutting groove width is performed, the cut surface of the material to be cut is vertical, and the nozzle is Only the tip of the protective cap can be replaced as a consumable item, making it easy to maintain and inspect the torch, and is useful as a cutting plasma torch that can withstand electrochemical corrosion caused by cooling water.

Claims

請求の範囲 The scope of the claims
1 . 水冷された電極と、 この電極をプラズマガス通路を隔てて被《するように配 置されたノズルと、 このノ ズルを トーチ本体に固定するノ ズルキヤ ップを傭え、 ノズルのォリ フ ィスを通じてブラズマアークを電極と被切断材の間で癸生させる 切断用ブラズマ トーチにおいて、 1. Using a water-cooled electrode, a nozzle arranged to cover this electrode across the plasma gas passage, and a nozzle cap for fixing this nozzle to the torch body, the nozzle alignment In a cutting torch, a plasma arc is cut between the electrode and the material to be cut through a disk.
前記ノズルキヤ ッブの外側には、 その先端側に前記ォリ フ ィ スに対向する開口 部を有し、 この開口部に連通する環状の 2次ガス通路を前記ノズルキヤッブとの 間で搆成するノズル保護キヤッブを、 前記電極及びノズルと電気的に絶緣して固 着すると共に、 前記 2次ガス通路内には、 電気絶緣材にて瑷状に構成され、 且つ On the outer side of the nozzle cap, an opening facing the orifice is provided on the tip side thereof, and an annular secondary gas passage communicating with the opening is formed between the nozzle cap and the nozzle cap. A nozzle protection cable is electrically insulated and fixed to the electrode and the nozzle, and the secondary gas passage is formed in a rectangular shape with an electrically insulating material, and
2次ガス通路を流れるガス流を整流する整流通路を有するィ ンシュ レータを介装 したことを特徴とする切断用プラズマ トーチ。 A plasma torch for cutting, comprising an insulator having a rectifying passage for rectifying a gas flow flowing through a secondary gas passage.
2 . 前記ノズル保護キヤ ッブを熱伝導性のよい金属材料で構成したことを特徴と する請求の範囲 1記載の切断用プラズマ トーチ。 2. The cutting plasma torch according to claim 1, wherein said nozzle protection cap is made of a metal material having good heat conductivity.
3 . 前記イ ン シユ レータを矩形の断面形状にすると共に、 このイ ンシュ レータを 前記ノズルキャ ッブの外周面と前記ノズル保護キヤ ッブの内周面にそれぞれ設け た段部に篏着したことを特徵とする請求の範囲 1記載の切断用ブラズマトーチ。 3. The insulator has a rectangular cross-sectional shape, and the insulator is fitted to a step provided on an outer peripheral surface of the nozzle cab and an inner peripheral surface of the nozzle protection cab. The cutting plasma torch according to claim 1, characterized in that:
4 . 前記ノ ズル保護キャ ップを、 ノズルの先嬸を保護する先嬸部と、 トーチ本体 側に固着する基端部とで構成し、 且つこれらを着朕可能に結合したことを特徴と する請求の範囲 1記載の切断用プラズマトーチ。 4. The nozzle protection cap comprises a leading end portion for protecting the leading end of the nozzle, and a base end portion fixed to the torch main body side, and these are combined so as to be detachable. The plasma torch for cutting according to claim 1.
5 . 前記先端部と前記基端部とに互いに篏合するフラ ンジを設け、 も しく は互い に詰合する部分にねじ部を設け、 これらの先端部と基嬝部とを篏合もしくは蝮着 したことを特徴とする請求の範囲 4記載の切断用ブラズマ トーチ。 5. A flange that fits into the distal end and the base end is provided, or a screw portion is provided in a portion where they are fitted to each other, and the distal end and the base are fitted or connected together. 5. The cutting torch according to claim 4, wherein the torch is worn.
6 . 前記ノ ズル保護キャ ッ プの先端部を伝熱性のよい金属材料で構成し、 基端部 を機械的強度に優れた金属材料にて構成したこ とを特徵とする請求の範囲 4記載 の切断用ブラ ズマ ト ーチ。 6. The nozzle protection cap according to claim 4, wherein the tip portion is made of a metal material having good heat conductivity, and the base portion is made of a metal material having excellent mechanical strength. Cutting torch for cutting.
7 . 前記ノ ズルの先端面と前記ノ ズル保護キャ ップの開口部内側面との間のギヤ ップの寸法 hが、 0.5〜 1 . 5mm であるこ とを特徴とする請求の範囲 1 または 4記 載の切断用プラズマ トーチ。 7. The dimension h of the gap between the tip surface of the nozzle and the inner surface of the opening of the nozzle protection cap is 0.5 to 1.5 mm, wherein the dimension h is 0.5 to 1.5 mm. The cutting plasma torch described.
8 . 前記ノ ズルのオ リ フ ィ ス径?^ と前記ノ ズル保護キャ ップの開口径 2 との比 Φ 2 / Φ 1 を、 1 . 0〜5. 0 にしたことを特徴とする請求の範囲 1 または 4記載の 切断用ブラズマ トーチ。 8. Orifice diameter of the nozzle? The cutting plasma torch according to claim 1 or 4, wherein the ratio Φ 2 / Φ 1 between ^ and the opening diameter 2 of the nozzle protection cap is set to 1.0 to 5.0.
9 . 前記ノ ズル保護キャ ップの基端部の内側に環状の冷却水室を設け、 この璟状 の冷却水室と電極内に設けた冷却水室とを、 通路で連通したこ とを特徴とする請 求の範囲 1 または 4記載の切断用プラズマ トーチ。 9. An annular cooling water chamber is provided inside the base end of the nozzle protection cap, and the annular cooling water chamber and the cooling water chamber provided in the electrode are communicated by a passage. The plasma torch for cutting according to claim 1 or 4, which is characterized by the following claims.
1 0 . 前記ノ ズル保護キャ ップを袋状の 2重構造にし、 これによる空間を冷却水 室としたことを特徴とする請求の範囲 9記載の切断用プラズマ トーチ。 10. The cutting plasma torch according to claim 9, wherein the nozzle protection cap has a bag-shaped double structure, and a space formed by the nozzle protection cap is a cooling water chamber.
1 1 . 前記プラズマガス通路にプラズマガスを流入するためのプラズマガス流入 路を、 プラズマガスに旋回流を与えるように トーチの軸心に対して傾斜させて設 けると共に、 前記ィ ンシュ レータの整流通路を、 これを通る 2次ガスに前記ブラ ズマガスの旋回方向と同一方向の旋面流を与えるようにうず卷き状にして設けた ことを特徴とする請求の範囲 1 または 4記載の切断用プラズマ トーチ。 1 1. A plasma gas inflow passage for flowing the plasma gas into the plasma gas passage is provided to be inclined with respect to the axis of the torch so as to give a swirl flow to the plasma gas, and the insulator is rectified. The cutting passage according to claim 1 or 4, wherein the passage is provided in a spiral shape so as to give a secondary gas passing through the passage a turning flow in the same direction as the turning direction of the plasma gas. Plasma torch.
1 2 . 前記プラズマガスの流出口であるノ ズルのオ リ フ ィ ス径 1 とオ リ フ ィ ス 县さ Lの関係を , ≤ 2にしたこ とを特徴とする請求の範囲 1 1記載の切断 用プラ ズマ ト ーチ。 12. The relationship between the orifice diameter 1 and the orifice length L of the nozzle, which is the outlet of the plasma gas, is set to ≤2. Plasma torch for cutting.
1 3 . 前記電極内に設けた冷却水室と前記ノ ズルとノ ズル ヤップ間の冷却水通 路とを連通する流入路を、 電気絶緣材料製のチューブにて構成したことを特徵と する請求の範囲 1または 4記載の切断用プラズマ トーチ。 13. The inflow path connecting the cooling water chamber provided in the electrode and the cooling water passage between the nozzle and the nozzle gap is constituted by a tube made of an electrically insulating material. The plasma torch for cutting according to range 1 or 4.
PCT/JP1993/000225 1992-02-24 1993-02-24 Plasma torch for cutting WO1993016835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4072109A JP2640707B2 (en) 1991-02-28 1992-02-24 Plasma torch for cutting
JP4/72109 1992-02-24

Publications (1)

Publication Number Publication Date
WO1993016835A1 true WO1993016835A1 (en) 1993-09-02

Family

ID=13479892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000225 WO1993016835A1 (en) 1992-02-24 1993-02-24 Plasma torch for cutting

Country Status (1)

Country Link
WO (1) WO1993016835A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165370U (en) * 1981-04-09 1982-10-18
JPS63154272A (en) * 1986-12-17 1988-06-27 Mitsubishi Heavy Ind Ltd Plasma torch
JPH0220667A (en) * 1988-07-06 1990-01-24 Origin Electric Co Ltd Plasma torch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165370U (en) * 1981-04-09 1982-10-18
JPS63154272A (en) * 1986-12-17 1988-06-27 Mitsubishi Heavy Ind Ltd Plasma torch
JPH0220667A (en) * 1988-07-06 1990-01-24 Origin Electric Co Ltd Plasma torch

Similar Documents

Publication Publication Date Title
US5393952A (en) Plasma torch for cutting use with nozzle protection cap having annular secondary GPS passage and insulator disposed in the secondary gas passage
US7605340B2 (en) Apparatus for cooling plasma arc torch nozzles
US4777343A (en) Plasma arc apparatus
US8575510B2 (en) Nozzle for a liquid-cooled plasma burner, arrangement thereof with a nozzle cap, and liquid-cooled plasma burner comprising such an arrangement
EP0481958B1 (en) Nozzle shield for a plasma arc torch
US5132512A (en) Arc torch nozzle shield for plasma
US7375302B2 (en) Plasma arc torch having an electrode with internal passages
KR20080005946A (en) Generating discrete gas jets in plasma arc torch applications
JP2640707B2 (en) Plasma torch for cutting
KR20090108705A (en) Plasma arc torch cutting component with optimized water cooling
JP2529986B2 (en) Cap-tack and plasma cutting arc-teach
JP7281456B2 (en) Plasma torch head, laser cutting head and nozzle for plasma laser cutting head, assembly with nozzle, plasma torch head and plasma torch, laser cutting head with nozzle and plasma laser cutting head with nozzle
KR20120032491A (en) Nozzle for a liquid-cooled plasma torch and plasma torch head having the same
CN113579429B (en) Restraint type gas metal arc welding process and nozzle structure used by process
US6096992A (en) Low current water injection nozzle and associated method
US9095037B2 (en) Nozzle for a liquid-cooled plasma cutting torch with grooves
CN113195143B (en) Gas nozzle for protecting gas flow and burner neck piece with same
WO1993016835A1 (en) Plasma torch for cutting
JP2689310B2 (en) Plasma torch for cutting and plasma cutting method
JPH0963790A (en) Nozzle for plasma torch
KR20060126307A (en) Compact-sized plasma torch with a convenience of mutual conversion between welding and cutting process
JP2997224B2 (en) Plasma cutting machine
JP2568439Y2 (en) Plasma torch
RU2802612C2 (en) Gas nozzle for release of shielding gas flow and burner with gas nozzle
JP2689310C (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase