WO1993014970A1 - Improvements in or relating to anti-fouling coatings - Google Patents
Improvements in or relating to anti-fouling coatings Download PDFInfo
- Publication number
- WO1993014970A1 WO1993014970A1 PCT/GB1993/000205 GB9300205W WO9314970A1 WO 1993014970 A1 WO1993014970 A1 WO 1993014970A1 GB 9300205 W GB9300205 W GB 9300205W WO 9314970 A1 WO9314970 A1 WO 9314970A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strip
- fouling
- coating
- electrically insulating
- panel sections
- Prior art date
Links
- 230000003373 anti-fouling effect Effects 0.000 title claims abstract description 57
- 238000000576 coating method Methods 0.000 title claims abstract description 55
- 239000000463 material Substances 0.000 claims abstract description 87
- 239000011248 coating agent Substances 0.000 claims abstract description 48
- 238000004804 winding Methods 0.000 claims abstract description 23
- 230000008602 contraction Effects 0.000 claims abstract description 7
- 229920001971 elastomer Polymers 0.000 claims description 38
- 239000000806 elastomer Substances 0.000 claims description 37
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 22
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 claims description 21
- 239000000853 adhesive Substances 0.000 claims description 20
- 230000001070 adhesive effect Effects 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000004744 fabric Substances 0.000 claims description 8
- 238000005520 cutting process Methods 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 239000012777 electrically insulating material Substances 0.000 claims 1
- 238000005260 corrosion Methods 0.000 abstract description 11
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 238000004073 vulcanization Methods 0.000 description 6
- 239000004568 cement Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 241000237536 Mytilus edulis Species 0.000 description 3
- 235000020638 mussel Nutrition 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B59/00—Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
- B63B59/04—Preventing hull fouling
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B17/0017—Means for protecting offshore constructions
- E02B17/0026—Means for protecting offshore constructions against corrosion
Definitions
- This invention relates generally to coatings or coverings for protecting tubular subsea structures, risers, conductors and caissons from fouling by marine organisms and to processes for applying the coating or covering.
- mussels Marine fouling of offshore structures and their appurtenances by marine organisms, especially mussels, is extremely troublesome and incurs high costs.
- the major growth of mussels occurs from L.A.T. down to minus 100 ft. Growth rates vary dependent upon water temperature, tides and prevailing weather conditions. In ideal conditions mussel build up can be as high as 200 mm in a growing season.
- Offshore operators require to increase the amount of steel required to construct an offshore structure to compensate for the additional weight (many tons) of accumulated marine organisms, but more importantly to compensate for additional wave loadings due to the increased dimensions of affected members.
- Copper or copper nickel sheet must not be allowed to come into contact with the steel it is protecting, otherwise a galvanic action occurs accelerating corrosion and also making the copper ineffective as an anti-fouling material (a switching off effect).
- elastomer coatings vulcanised and bonded to the steel surfaces.
- the elastomer coatings are normally factory applied to steel members before the platform is constructed.
- the elastomer coating provides an ideal electrical insulation between the steel and the anti-fouling material.
- the coated pipe is placed into a steam autoclave where the temperature crosslinks the elastomer and forms a bond between the elastomer and steel and between the elastomer and copper nickel.
- a metallic, anti-fouling, coating material adapted for helical winding about a tubular member having an electrically insulating coating applied thereto, said material comprising an elongate, segmented strip of anti-fouling material formed from a plurality of similar panel sections connected end to end by connector elements bonded thereto by an adhesive with a predetermined gap between adjacent sections, the adjacent edges of adjacent sections extending at a predetermined angle to the lateral edges of said segmented strip; said angle being determined by the pitch angle at which the strip is to be wound about said tubular member, and said gap being determined by the differential thermal expansion and contraction characteristics of said anti-fouling material and said electrically insulating coating; said connector elements each comprising a strip of material having tensile strength at least equal to that of the anti- bonding material, said strip extending along substantially the whole length of said gap and overlapping the edges of the adjacent panel sections on either side of said gap by a predetermined distance.
- US-A-49877036 shows a segmented strip of copper anti-fouling material, for application to a tubular structure by helical winding or in cigarette wrap fashion.
- the panels of the strip are connected by continuous narrow strips or a continuous mesh extending along the full longitudinal length of the segmented strip.
- the use of discrete, narrow connector strips spaced across the width of the panels, or of a mesh results in non-uniform application of tensile forces during winding, causing buckling of the panels.
- the connector strips or mesh are of a material having greater yield than the panels, it is not possible for the panels to be bent by tensile force applied to conform to the curvature of the tubular during winding. Accordingly, the panels have to be pre-formed to the required curvature or else made sufficiently narrow (in the longitudinal direction of the segmented strip) that the flat panels do not deviate significantly from the curve of the tubular.
- said anti-fouling material is copper or copper nickel.
- said anti-fouling material is between 0.5 mm and 2 mm in thickness.
- said connector elements are of the same material as said panel sections, and are substantially equal to or greater than the thickness thereof.
- said adhesive is a supercyanoacrylate adhesive.
- said adhesive is an acrylic tape adhesive.
- each panel section is between 25 per cent and 50 per cent of the circumference of the tubular structure to which the material is to be applied.
- said segmented strip is between 100 mm and 200 mm in width.
- said predetermined gap between adjacent panel sections is between 2 mm and 6 mm.
- the gap might be 3 mm and the connector strips 20 mm wide, overlapping the adjacent panel sections by about 8 mm each.
- a method of fabricating a segmented strip of anti-fouling material as defined above comprising the steps of cutting a continuous strip of said anti-fouling material at said predetermined angle, at predetermined intervals, to- form a plurality of panel sections of predetermined length, establishing said predetermined gap between successive panel sections, and securing said connector elements across said gaps.
- a method of applying an anti-fouling coating to a tubular structure having an electrically insulating coating applied thereto comprises helically winding a segmented strip of anti-fouling material, in accordance with the first aspect of the invention, about and along said coated tubular member, and processing the resulting assembly to cure the electrically insulating coating and/or to bond the anti-fouling material thereto, wherein sufficient tensile force is applied to said segmented strip during winding so as to cause said panel sections to conform to the curvature of the tubular structure as they are wound thereon.
- the connector elements are removed after the final processing step.
- the electrically insulating coating is of plastic or resin material.
- the electrically insulating coating is of elastomer material.
- a suitable bonding compound or adhesive is applied to the inner surface of the panel sections of the segmented strip and/or to the surface of the electrically insulating coating prior to winding the strip about the coated tubular member.
- a temporary fabric wrap is preferably wound about the assembly after winding of the segmented strip, the processing of the fabric-wrapped assembly comprising heating the assembly to vulcanise the elastomer and bond the anti-fouling material thereto.
- an alternative method of applying an anti-fouling material to a tubular structure having an electrically insulating coating applied thereto comprising the steps of helically winding a continuous strip of anti-fouling material about and along said coated tubular member, slitting said anti-fouling material along the length of said tubular member and substantially parallel to the long axis thereof, at a plurality of equispaced locations around the circumference of the tubular member, so as to divide said continuous, helically wound strip into a helically arranged series of panel sections and to form predetermined gaps between serially adjacent edges of the adjacent panel sections thereof, and processing the resulting assembly to cure the electrically insulating coating and/or to bond the anti-fouling material thereto.
- Bonding compounds or adhesive may be applied, and in the case of an elastomer electrically insulating coating, fabric wraps may be employed, as for the method defined above.
- Fig. 1 is a schematic perspective view of apparatus in use in fabricating anti-fouling material in accordance with the present invention
- Fig. 2 is a schematic side view of the apparatus of Fig . 1
- Fig. 2(a) is a side view of two adjacent panels of anti-fouling material connected by a connector element in accordance with the invention
- Fig. 3 is a perspective view of an elastomer-coated subsea tubular having applied thereon an anti-fouling covering in accordance with the present invention
- Fig. 4 is a perspective view of a part of a subsea tubular having applied thereon an anti-fouling covering in accordance with an alternative embodiment of the invention
- Fig. 5 is a side view of the tubular of Fig. 4 illustrating a method of preparation of said alternative embodiment.
- Figs. 1 and 2 illustrate the preparation of a strip of anti-fouling material for application to tubular structures by helical winding.
- the material 1 is fed onto a preparation table 3 provided with lateral guide rails 4 for maintaining the alignment of the strip of material 1.
- the strip is cut into panel sections 15 at a cutting station 5 by any suitable cutting means (not shown), such as a guillotine.
- the sections 15 are cut at an angle to the long axis of the strip, the angle being determined by the pitch of the helical wrap as shall be discussed in greater detail below.
- the length of the sections 15 in the longitudinal direction of the strip is selected to suit the circumference of the tubular to which the material is to be applied, as shall also be discussed below.
- a predetermined gap 14 is established between adjacent sections 15 by means of temporary spacer elements (not shown) .
- the gap 14 will normally be in the range of 2 mm to 6 mm in width, the actual gap required in a particular case being determined by factors which shall be discussed in detail below.
- the spaced apart sections 15 are fastened together to form a segmented strip which may be wound onto a storage reel 7 prior to application to the tubular.
- the sections are connected together by means of connector strips 16, preferably also of copper or copper nickel, extending along substantially the whole length of the gaps 14.
- the connector strips 16 overlap the adjacent panel edges by a predetermined distance, suitably about 8 mm or more.
- the connector strips 16 are attached by degreasing and lightly abrading the surfaces of the strips 16 and panel sections 15, and securing the strips 16 with a suitable adhesive.
- Supercyanoacrylate adhesive or acrylic tape adhesive has been found to be suitable for this purpose.
- the strip material 1 is preferably 100 mm to 200 mm wide, and 0.5 mm to 2 mm in thickness (most commonly, 0.7 mm to 1.75 mm).
- the connector strips 16 connecting the sections.15 are suitably of similar material and at least equal in thickness to the strip material 1, so as to have tensile strength not less than the strip material itself.
- the segmented strip is formed in a continuous length long enough to cover the tubular to be coated.
- the segmented strip could alternatively be assembled from panel sections cut and prepared at an earlier time and/or remote location.
- Fig. 3 illustrates the application of the segmented strip 13 of Figs. 1 and 2 to a subsea tubular, comprising a pipe 11 with an electrically insulating anti-corrosion coating 12.
- the use of the strip 13 is equally applicable for the protection of other tubular structures such as legs.
- the tubular 10 is shown partially cut away for clarity.
- the segmented strip 13 is chemically or mechanically cleaned and a bonding agent is applied to the inner surface thereof prior to winding the strip 13 onto the tubular 10, under tension, in a helical fashion.
- the strip 13 may be wound either by hand or by rotating the tubular 10.
- the length of the individual panel sections 15 of the strip 13 is selected such that each section extends around between 25% and 50% of the circumference of the tubular.
- the width of the strip 13 and the circumference of the tubular 10 determines the pitch angle of the helical wrap, and the angle at which the panel sections 15 are cut is selected accordingly such that the gaps 14 extend substantially parallel to the long axis of the tubular 10 when the strip 13 is wound thereon.
- connector strips 16 having a tensile strength not less than that of the strip material means that sufficient tensile force can be applied to the panel sections 15 during winding to cause them to conform to the curvature of the tubular structure as they are wound thereon. This is not possible when the panels are connected together using material which is substantially more elastic than the panels themselves, in which case the panels have to either be pre-curved in an additional processing step or must be made sufficiently narrow (in the longitudinal direction of the segmented strip) that the flat panels do not deviate significantly from the curve of the tubular. Further, the fact that the connector strips extend substantially the full length of the gap between panel sections ensures that the tensile force is applied uniformly across the width of the panels. This avoids buckling or raised corners when the panels are wound around the tubular. The distance by which the connector strips overlap the panel edges must be great enough to allow a sufficiently strong bond to be formed.
- the anti-corrosion coat 12 is applied to the pipe 11 prior to application of the strip 13.
- the coating 12 may be an epoxy resin or plastic, but is preferably an elastomeric material.
- a temporary fabric covering (not shown) is wrapped over the wound strip 13. This may be a nylon or cotton tape applied under tension of, for example, 50 to 100 kilos to provide a restricting force over the full length of the tubular to which the strip 13 has been applied.
- the elastomer coating is vulcanised by the application of heat, typically in a steam autoclave at a temperature of 110°C to 180°C for a specified time. Following vulcanisation the fabric wraps are removed.
- the elastomer flows to fill any voids under the strip 13 and- forms a chemical bond thereto.
- the gaps 14 between the panels 15 prevent any stress between the elastomer and the panel sections 15, and subsequently accommodate any differential thermal contraction or expansion of the elastomer and the panel sections.
- the required width of the gaps 14 is thus determined by the length of the sections 15 relative to the circumference of the tubular 10, and by the thermal expansion and contraction characteristics of the material of the strip 13 and the anti-corrosion material 12.
- Fig. 4 illustrates an alternative embodiment of the invention in which a continuous strip 21 of anti-fouling material, to which a bonding agent and an elastomer cement have been applied, is helically wound under tension onto a tubular 22 similar to that of Fig. 3 (the cement could alternatively be applied to the surface of the elastomeric anti-corrosion coating of the tubular) .
- the elastomer cement may consist of the elastomer compound of the anti-corrosion coating reduced to a thixotopic solution in toluene solvent and tackifier.
- the ends are secured by banding 17 and the strip 21 is slit along the full length of the tubular at a plurality of equispaced locations 18 around the tubular circumference.
- the strip 21 is slit along the full length of the tubular at a plurality of equispaced locations 18 around the tubular circumference.
- 2 to 6 such slits are formed.
- the slitting of the strip 21 removes narrow strips of the anti-fouling material corresponding in width to the gaps 14 of the segmented strip 13 of Fig. 3, and serves the same purpose.
- the tubular After the slitting of the anti-fouling material, the tubular is wrapped in fabric and the elastomer is vulcanised as in the previous embodiment.
- the elastomer cement acts as an adhesive retaining the anti-fouling material in position after the slitting, prior to the application of the fabric wrap.
- the elastomer cement disperses within the elastomeric coating and forms an elastomer bond to the metal covering.
- Fig. 5 illustrates the slitting of the anti-fouling material of Fig. 4 using a rotary cutting tool 19 fitted with a cutting depth control plate 20 to ensure that the tool 19 cuts to a depth no greater than, for example, 1 mm more than the thickness of the applied strip material.
- the initial winding of a continuous strip of anti- bonding material also allows the strip to be pulled to conform to the curvature of the tubular during winding, without buckling.
- the invention thus provides improved materials and methods whereby improved anti-fouling coatings may be applied to tubular structures, and an improved, coated structure formed thereby. Modifications and improvements may be incorporated without departing from the scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Laminated Bodies (AREA)
- Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9415382A GB2279100B (en) | 1992-02-01 | 1993-01-29 | Improvements in or relating to anti-fouling coatings |
NO942852A NO942852L (no) | 1992-02-01 | 1994-08-01 | Belegg mot begroing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB929202185A GB9202185D0 (en) | 1992-02-01 | 1992-02-01 | Improvements in or relating to anti-fouling coatings |
GB9202185.6 | 1992-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993014970A1 true WO1993014970A1 (en) | 1993-08-05 |
Family
ID=10709682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1993/000205 WO1993014970A1 (en) | 1992-02-01 | 1993-01-29 | Improvements in or relating to anti-fouling coatings |
Country Status (4)
Country | Link |
---|---|
AU (1) | AU3456693A (enrdf_load_stackoverflow) |
GB (2) | GB9202185D0 (enrdf_load_stackoverflow) |
NO (1) | NO942852L (enrdf_load_stackoverflow) |
WO (1) | WO1993014970A1 (enrdf_load_stackoverflow) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2411620A1 (de) * | 1974-03-11 | 1975-09-18 | Dornier System Gmbh | Einrichtung gegen bewuchs von meeresorganismen an im unterwasserbetrieb eingesetzten seewasserbestaendigen staehlen |
GB2148803A (en) * | 1983-10-31 | 1985-06-05 | United Wire Group Plc | Marine antifouling |
WO1991005133A1 (en) * | 1989-09-29 | 1991-04-18 | British Pipe Coaters Limited | Anti-fouling covering for use in sub-sea structures |
-
1992
- 1992-02-01 GB GB929202185A patent/GB9202185D0/en active Pending
-
1993
- 1993-01-29 WO PCT/GB1993/000205 patent/WO1993014970A1/en active Application Filing
- 1993-01-29 GB GB9415382A patent/GB2279100B/en not_active Expired - Fee Related
- 1993-01-29 AU AU34566/93A patent/AU3456693A/en not_active Abandoned
-
1994
- 1994-08-01 NO NO942852A patent/NO942852L/no unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2411620A1 (de) * | 1974-03-11 | 1975-09-18 | Dornier System Gmbh | Einrichtung gegen bewuchs von meeresorganismen an im unterwasserbetrieb eingesetzten seewasserbestaendigen staehlen |
GB2148803A (en) * | 1983-10-31 | 1985-06-05 | United Wire Group Plc | Marine antifouling |
WO1991005133A1 (en) * | 1989-09-29 | 1991-04-18 | British Pipe Coaters Limited | Anti-fouling covering for use in sub-sea structures |
Also Published As
Publication number | Publication date |
---|---|
GB9415382D0 (en) | 1994-10-05 |
GB2279100A (en) | 1994-12-21 |
GB2279100B (en) | 1995-10-18 |
NO942852L (no) | 1994-09-30 |
AU3456693A (en) | 1993-09-01 |
NO942852D0 (enrdf_load_stackoverflow) | 1994-08-01 |
GB9202185D0 (en) | 1992-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5518568A (en) | High tensile strength composite reinforcing bands and methods for making same | |
US4780574A (en) | Lead sheathed power cable | |
US3762982A (en) | Protective wrapping for elongated member | |
US5006185A (en) | Pipe insulation and corrosion protection system | |
US5279368A (en) | Anti-fouling covering for use in sub-sea structures | |
EP2750144A1 (en) | Undersea cable, multilayer tape for water shielding layer of undersea cable, and method for improving fatigue characteristics of undersea cable | |
US4448824A (en) | Wraparound protective closure | |
CA1173377A (en) | Bending strain relief with adjustable stiffness | |
US20070181562A1 (en) | Pipe heater | |
EP0371115B1 (en) | Marine antifouling | |
JPH0245732B2 (enrdf_load_stackoverflow) | ||
WO1993014970A1 (en) | Improvements in or relating to anti-fouling coatings | |
US4119122A (en) | Pipe with an outer foam plastic covering | |
JPS59175694A (ja) | パイプ接続部の断熱方法 | |
GB2299822A (en) | Anti-fouling Coatings | |
US8796549B2 (en) | Wire bushing | |
WO1988009460A1 (en) | Anti-fouling covering for sub sea structures | |
JPS5858496B2 (ja) | 鋼管杭保護体 | |
JPH0158726B2 (enrdf_load_stackoverflow) | ||
JPH10115097A (ja) | Pc鋼材から成る被覆ケーブルならびに該ケーブル定着方法 | |
NO890272L (no) | Grohemmende dekke for undervannskonstruksjoner. | |
GB2148803A (en) | Marine antifouling | |
EP4355552B1 (en) | Manufacture of pipelines | |
IL108771A (en) | High tensile strength composite reinforcing bands and methods for making same | |
EP3446021B1 (en) | A method to produce an insulating pipe section for pipeworks and a pipe section |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU GB NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |