WO1993013042A1 - Process for producing methacrylic acid and methacrolein - Google Patents

Process for producing methacrylic acid and methacrolein Download PDF

Info

Publication number
WO1993013042A1
WO1993013042A1 PCT/JP1989/000510 JP8900510W WO9313042A1 WO 1993013042 A1 WO1993013042 A1 WO 1993013042A1 JP 8900510 W JP8900510 W JP 8900510W WO 9313042 A1 WO9313042 A1 WO 9313042A1
Authority
WO
WIPO (PCT)
Prior art keywords
methacrylic acid
isobutane
reaction
producing
gas
Prior art date
Application number
PCT/JP1989/000510
Other languages
French (fr)
Japanese (ja)
Inventor
Setsuo Yamamatsu
Tatsuo Yamaguchi
Original Assignee
Setsuo Yamamatsu
Tatsuo Yamaguchi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Setsuo Yamamatsu, Tatsuo Yamaguchi filed Critical Setsuo Yamamatsu
Priority to US07/400,117 priority Critical patent/US5191116A/en
Priority to PCT/JP1989/000510 priority patent/WO1993013042A1/en
Publication of WO1993013042A1 publication Critical patent/WO1993013042A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups

Definitions

  • the present invention relates to a method for producing methacrylic acid and methacryloline in a single step by subjecting isobutane to gas phase catalytic oxidation. More specifically, the present invention relates to isobutane in the presence of molecular oxygen in the presence of a heteropolyacid and a erosion medium having a P / As-Mo-V / Cu system composition in a low temperature gas phase.
  • saturated hydrocarbons such as isobutane have been considered inert gases.
  • Japanese Patent Application Laid-Open No. 55-2619 describes that it is used as a diluent for a reaction gas in oxidation of olefins and aldehydes. Since isobutane is poor in reactivity, it is converted to isobutylene using a dehydrogenation catalyst or an oxidative dehydrogenation catalyst, and then oxidized to metacrolein or methanol. In general, a method of converting to lactic acid was used (for example, Japanese Patent Application Laid-Open No. 58-189130).
  • U.S. Pat. No. 4,260,822 is the first to show that methacrylic acid can be produced in a single step from isobutane.
  • a specific catalyst consisting of oxides of antimony, molybdenum and phosphorus is used, and methacrylic acid is obtained with high selectivity from isobutane in one step.
  • the isobutane concentration is 10 mol%
  • 10% of the isobutane will react and 50% of it will be converted to methacrylic acid.
  • the content of methacrylic acid in the reaction gas is as low as 0.5 mol%, and the productivity per unit weight of the edible medium is extremely low.
  • the isobutane strain is increased and the reaction is performed at 28 mol%, the reaction yield tends to decrease. Therefore, it is still insufficient for an industrial production method in terms of productivity per unit weight of the medium.
  • Japanese Patent Application Laid-Open No. Sho 62-1323282 discloses that heteropolyacid is used as an erosion medium, and isobutane having a low concentration of 30 to 60 mol% is reacted to produce methacrylic acid.
  • Methods have been proposed to produce with high yields and high productivity.
  • high efficiency is obtained by a very distinctive method, in which a heteropolyacid containing molybdenum is used as a catalyst with phosphorus as the central element, and isobutane and oxygen are alternately brought into contact with the erosion medium. Rate and wealth productivity.
  • a special reaction apparatus is required to alternately bring isobutane and oxygen into contact with the catalyst, and the operation is complicated. For this reason, an industrial production method may be economically disadvantageous in this point as compared with a normal production method in which a mixed gas containing isobutane and oxygen is simply brought into contact with a catalyst.
  • a mixed gas containing isobutane and oxygen is brought into gaseous phase contact with the catalyst at a reaction temperature of 350 ° C or less, more preferably 320 ° C or less, to stably produce methacrylic acid for a long time.
  • the present inventors provide a gas phase contact of a mixed gas containing isobutane and oxygen with a catalyst at a reaction temperature of 350 ° C or less, more preferably 320 ° C or less.
  • a catalyst that shows excellent reaction performance just by performing a simple reaction
  • we conducted intensive research on a heteropoly catalyst found that many elements and innumerable combinations were obtained.
  • the erosion medium containing a heteropolyacid containing P and / or As as a central element, containing Mo as a coordinating element, and having a P / As-Mo-V / Cu system composition.
  • methacrylic acid and methacrolein can be produced with high selectivity simply by bringing a mixed gas containing isobutane and oxygen into gaseous phase into contact with a catalyst.
  • the combination of at least one of alkali metals, alkaline earth metals, and T 1 as a corrosion medium makes it possible to obtain methacrylic acid and methacrylate even at low reaction temperatures below 320 ° C. It has been found that mouth lanes can be produced with high reaction yields and high productivity.
  • corrosion media containing at least one of alkali metals, alkaline earth metals, and T 1 have the effect of lowering the reaction temperature, as well as the decrease in activity over time and the selection of methacrylic acid. It has been found that the rate of decrease in the rate over time is extremely small, and that the catalyst becomes a very excellent corrosion medium with a long catalyst life. The present invention has been completed based on these findings.
  • the present invention contains a heteropolyacid containing P and / or As as a central element and containing Mo as a coordinating element, and has the following formula (1):
  • A represents P and / or As, Mo represents molybdenum, B represents V and Z or Cu.
  • C represents an alkali metal, alkaline It represents at least one of the earth metals, T 1.
  • D is Ag, Zn, T i, Z r, b.
  • the catalyst having the above composition as a catalyst, and high productivity can be achieved by bringing a mixed gas containing isobutane and oxygen into gas phase contact with the catalyst of the present invention.
  • Methacrylic acid and methacrolein can be obtained with high yield and high yield.
  • Lack of essential components in the above composition, that is, P / As-Mo-V / Cu If the composition deviates from the above range, as will be apparent from Comparative Examples 1 to 14, the reaction method in which a mixed gas containing isobutane and oxygen is brought into gaseous phase contact with the catalyst. The selectivity for methacrylic acid is significantly reduced.
  • V and / or Cu forms a stable salt with the heteropolyacid or replaces a part of the coordination element of the heteropolyacid, resulting in excessive oxidation of methacrylic acid and methacrylone. It is considered that the formation of oxygen species on the catalyst, which may cause the occurrence of oxidization, is specifically suppressed.
  • the reaction temperature can be lowered, and the reaction can be carried out at a temperature at which thermal decomposition of the heteropolyacid is difficult to occur. Further increase the activity at low temperatures, 320.
  • the catalyst contains at least one of an alkali metal, an alkaline earth metal and T 1. In this case, the effect of improving the thermal stability of the catalyst can also be obtained, and when combined with the effect of lowering the reaction temperature, at least one of the alkali metals, the alkaline earth metals, and T 1 is used.
  • a catalyst containing one or more catalysts is an erosion medium with a long catalyst life and low durability.
  • the use of at least one of the alkali metals, argali earth metals, and T1 in combination with vanadium and Z or saw increases the selectivity of metaacrylic acid. While maintaining the above values, excellent effects such as a high isobutane conversion and a low reaction temperature can be obtained. In addition, by lowering the reaction temperature, the reaction products such as methacrylic acid and methacryloline are sequentially oxidized to be effectively suppressed from being oxidized to carbon dioxide. There is also a secondary effect of improving the selectivity of combining methacrylic acid with the methacrylic acid lane.
  • the reaction product when this reaction is carried out in a fluidized-bed reactor, the reaction product is generally liable to be further excessively oxidized, and the selectivity of methacrylic acid is reduced as compared with a fixed-bed reaction. Often.
  • the reaction can be carried out at a low temperature, so that dimethacrylic acid selectivity can be obtained even in a fluidized bed reactor.
  • the catalyst used in the present invention contains P and Z or As as a central element, contains heteropolyacid containing Mo as a coordinating element, and contains V and V as catalyst constituent elements. Or contain Cu.
  • the atomic ratio of the catalyst constituent elements to each other is Mo: 12, P and / or As is 0.5 to 3, V and Z or Cu are 0.01 to 3, preferably 0.05 to 2.0. It is. More favorable results can be obtained by using at least one of alkali metal, alkaline earth metal and T1 in the above composition.
  • At least one kind selected from Li, Na, K, Rb and Cs can be used as the alkali metal. Or at least one selected from Mg, C a, S r, and B a.
  • These Al metal, Al earth metal and T1 are 0.01 to 3, Preferably, it is added in the range of 0.1 to 2.
  • Ag, Zn, Cd, Ti, Zr, N "b, Ta, Cr, W, Mn, Fe, Co, Ni, Rh, Sn, Bi When at least one selected from the group consisting of Se, Te, Y, La, Ce, Pr, and Nd is added as a catalyst element, the value should be 0.01 to 3. It is particularly preferred that the value be 0.05 to 1.
  • Heteropolyacids containing P and Z or As as central elements and containing Mo as a coordinating element include linmolybdic acid, arsenic molybdic acid, and linsenic molybdic acid. It is known to adopt various structures (Chemistry, Vol. 29, No. 853, Sasaki, Matsumoto), and the ratio of central element to coordinating element is 1/12, 1/11, 1 / Various structures such as 10, 1/9, 2/17, and 2/18 are known. Among them, those having a 1/12 structure called a Keggin structure are particularly suitable.
  • Vanadium preferably substitutes a part of the coordinating element of linmolybdic acid, arsenic molybdic acid, and arsenic molybdic acid. As such, it may exist in a state outside the heteropolyacid. ⁇ may be present as a metal salt of heteropoly acid or in the form of an oxide or oxyacid, although the chemical state is extremely complicated and the details are not clear. It may exist in a state other than heteropolyacid. Further, the constituent elements of the heteropolyacid may be partially substituted. Preferably, the oxide or heteropolyacid gold is used. It should be present as a genus salt. Alkali metals, alkaline earth metals, and T 1 exist mainly in the form of heteropolyacid salts. Also, A g, Z n, C d, T i, Z r, N b, T a,
  • Se, Te, Y, La, Ce, Pr and Nd may be present as a metal salt of a heteropolyacid like Cu, or may be an oxide or oxyacid. Thus, it may exist in a state other than the heteropolyacid. Further, the constituent elements of the heteropolyacid may be partially substituted.
  • the catalyst used in the present invention can be easily prepared by a known method (preparation operation).
  • linmolybdenic acid, limbana domolybdic acid, arsenic molybdic acid, arsenic acid When a heteropolyacid or salt thereof, such as nadomolibdenic acid, is in solution or slurry, or under conditions where these polyhedral polyacids are formed, Oxides, hydroxides, carbonates, nitrates, chlorides, oxyacids, phosphates, oxalates, acetates, organic compounds containing compounds containing the necessary elements as catalyst constituent elements After adding in the form of a compound or metal, evaporate to dryness.
  • the obtained catalyst is calcined at 250 to 500 ° C. for 2 to 24 hours in an air atmosphere to obtain a target catalyst.
  • the catalyst preparation method and starting materials for catalyst preparation are not limited to those described above, and other preparation methods and starting materials may be used.
  • salts of various nitrogen-containing compounds of heteropolyacid as starting materials Can be used.
  • Useful ⁇ include ammonium salts or organic amine salts with pyridine, quinoline, piperazine and the like.
  • such various nitrogen-containing compounds may be added.
  • a water-soluble ammonium salt such as ammonia water, ammonium chloride, or ammonium nitrate is used as an ammonium ion source.
  • ammonium salts or organic amine salts are used as an etchant after baking at 300 to 600 ° C. to remove one or all of the nitrogen-containing compounds. Firing in an inert gas is more preferable. After calcination in an inert gas, calcination with an oxygen-containing gas can also be performed.
  • erosion media can be used in the form of being supported on a carrier or diluted and mixed.
  • the carrier include silica, ⁇ -alumina, silicon carbide, titania, zircon air, silica earth, silica alumina, water-soluble silica sol, and silicon carbide.
  • a high porosity inert carrier with a large number of macropores is preferred. In the presence or absence of water on these carriers, usually up to the same weight as the carrier! : Adhere or mix.
  • the shape of the erosion medium is preferably formed into an arbitrary size and shape, such as a pellet or a granule, depending on the use state, and the erosion medium is preferably used with a certain mechanical strength.
  • a tableting machine, an extrusion molding machine, a Malmerizer (trade name of Fuji Padal Co., Japan), a rolling granulator, etc. are used. It is not clear how much the catalyst used in the present invention works in the reduced state under the reaction conditions, but the catalyst in the high reducing state shows a yellow-green color over the reaction time. The color often changes to a color close to that of a heteropolyacid, and it does not exhibit the navy blue color known as heteropoly blue. It is presumed to be in the following low reduction state. However, the degree of reduction is not limited to this range, since the reduction state changes greatly depending on the catalyst composition, reaction gas composition, reaction temperature, and the like.
  • a mixed gas containing isobutane and oxygen is used as a source gas to be supplied to the reaction.
  • the appropriate degree of isobutane is from 10 to 80 mol. If the concentration of isobutane is less than 10 moles, the production of methacrylic acid per reactor becomes extremely small, and the economics that can be implemented industrially cannot be obtained. . More preferably, it is in the range of 20 to 60 mol.
  • Isobutane used for the corrosion reaction does not need to be particularly high-purity, so paraffin-based hydrocarbons that do not affect the reaction coexist at about twice the molar amount with isobutane. Can be used.
  • isobutane in LPG butane, FCC butane or n-butane isomerization reaction product is isolated by distillation and used.
  • the olefin is mixed in about 0.1 times or more with respect to isobutane, by-products and the like are increased. Therefore, the mixing of olefins other than isobutylene should be avoided.
  • the molar ratio of oxygen to isobutane used in the present invention is preferably 0.05 to 1 to 1 to 1, more preferably 0.1 to 1 to 0.6 to 1. If the oxygen molar ratio is high, complete oxidation proceeds too much, and the generation of carbon dioxide increases.
  • the molecular oxygen used for the corrosion reaction may be pure oxygen gas, but it is generally economical to use air because it does not need to be particularly high in purity.
  • inert gases such as helium, argon, and carbon dioxide, which do not adversely affect the reaction, are used as diluents for the source gas to prevent the gas composition from entering the explosion range. Can be prevented. In this case, these inert gases are often selected in a molar ratio of 1/10 to 10/1 with respect to isobutane.
  • reaction temperature is selected from the range of 240 to 350 ° C. A range of 270 to 320 ° C is particularly preferred. If the reaction temperature is high, decomposition of the catalyst and complete oxidation of the reaction product are likely to occur.
  • the reaction temperature is 320 ° C or less, the methacrylic acid can be obtained.
  • the reaction pressure can be set widely from decompression to pressurization, but it is industrially advantageous from atmospheric pressure to about 1 MPa.
  • the contact time between the feed gas and the catalyst (the value obtained by dividing the bulk volume of the catalyst by the reaction temperature of the feed gas and the volumetric gas flow rate at the reaction pressure) varies depending on the isobutane roughness or the reaction temperature. 1 to 10 seconds, preferably 0.5 to 5 seconds is suitable.
  • a fixed bed, a fluidized bed, a moving bed and other types of reactors can be appropriately selected as a reactor to be used. Ind is separated from other oxidation products by a known series of methods such as cooling, extraction, and distillation, and can be purified by any known method.
  • Example 2 By the same catalyst preparation method as in Example 1, a catalyst having a composition of PLiMowV ⁇ : was obtained. Of the starting materials described in Example 1, -II chloride and cesium nitrate were not used. A contact reaction was performed under the same reaction conditions as in Example 1. After 20 hours, the reaction gas was analyzed by gas chromatography. As a result, 5.3% of isobutane was converted, the selectivity of methacrylic acid was 41.1%, and Was 19.2%.
  • Example 2 ⁇ the same catalyst preparation method as in Example 1 to obtain a catalyst having the composition ⁇ ⁇ 12 C u 0. 5 . ! PM o as a starting material; to Ri I or 3 V to 12-mode Li blanking drill down acid (H 3 PM 0 12 ⁇ 4-neck ⁇ 30 ⁇ 2 ⁇ : Nippon Muki Kagaku) was used.
  • cesium nitrate was not used.
  • the contact reaction was carried out under the same reaction conditions as in Example 1. After 20 hours, the reaction gas is supplied to the gas chromatograph. As a result, 5.4% of isobutane was converted, the selectivity for methacrylic acid was 42.1%, and the selectivity for methacoline was 22.5%.
  • a catalyst having a composition of P 3 M 0 12 V G - 5 AsiCu u j- 2 was obtained.
  • Na us starting materials used for catalyst preparation in other than those described in Example 1 12 mode Li blanking de-phosphate (H 3 PM o 12 0 4D -30H 2 0: manufactured by Nippon No machine Chemical) using arsenate CH 3 a s 0 4).
  • the corrosion reaction was performed under the same reaction conditions as in Example 1 except that the reaction temperature was 340 ° C. After 20 hours, the reaction gas was analyzed by gas chromatography.It was found that 10.0% of the isobutane was converted, the selectivity for methacrylic acid was 47.2%, and the selectivity for the methanol mouth lane was 19.3. %.
  • Comparative Examples 2 to 14 By the same catalyst preparation method as in Example 1, a catalyst having a composition shown in Table 1 having a catalyst composition outside the scope of the present invention was produced, and a part of the reaction temperature was shown in Table 1. The contact reaction was carried out under the same reaction conditions as in Example 1 except that the temperature was changed to the described temperature. Table 1 shows the reaction growth after the reaction for 20 hours.
  • the reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. Six hours later, the reaction gas was analyzed by gas chromatography, and it was found that 8.8% of isobutane was converted, the selectivity for methacrylic acid was 46.2%, and the selectivity for methanol mouth lane was 25.1%. %Met. After the reaction, the catalyst was yellowish blue.
  • Example 5 instead of adding arsenic acid, add antimony trioxide and, instead of adding pyridine, add 13 g of quinoline.
  • the reaction was carried out in the same manner as in Example 1 except that the reaction temperature was set to 340 ° C using this etching medium. As a result, 9.1% of isobutane was converted, and the selectivity for methacrylic acid was 42.3%, and the selectivity for methacrolein was 19.4%.
  • Catalysts having the catalyst composition shown in Table 2 were prepared in the same manner as in Example 1 except that the reaction temperature was 340 ° C, and the reaction was carried out in the same manner as in Example 1. The reaction cable after a reaction for 20 hours is shown. No.
  • a solution prepared by dissolving 0.48 g in 20 ml of water was added, and 1.17 g of ammonium metavanadate was further added.
  • an aqueous solution in which 6.4 g of ammonium nitrate was dissolved in 100 ml of water was added to the solution, and the resulting slurry solution was heated, shrunk while stirring, and then evaporated to dryness on an evaporating dish.
  • the solidified product was further dried at 120 ° C. for 12 hours to obtain a solid.
  • This solid was pulverized to select particles of 10 to 20 mesh. This was calcined at 450 ° C for 3 hours in a nitrogen stream to obtain a catalyst.
  • the composition of this catalyst was P] M o 12 V ⁇ C u Q. 2 K 1.
  • Example 2 8 Water 200 ml 12-Mo Li Budo-phosphate (H 3 PM o 12 0 4 D'30H 2 0: Nippon Muki Kagaku) was dissolved 23.5 g, while stirring this, main Tabanajin Sanna Application Benefits um 0.37g and 3 A s 2 ⁇ 5 ⁇ 5H 2 0 1.15g was added, and the mixture was stirred for 12 hours at 60 ° C. Further, a solution obtained by dissolving 0.5 g of rubidium nitrate and 1.33 g of sodium nitrate in 20 ml of water was added, and then an aqueous solution of 12.8 g of ammonium nitrate dissolved in 100 ml of water was added and stirred. .
  • the resulting slurry solution was concentrated while heating and stirring, then evaporated to dryness on an evaporating dish, and further dried at 120 ° C. for 12 hours to obtain a solid.
  • the solid was formed into a pellet at a pressure of about 100 kg / cm 2 and crushed to select particles of 10 to 20 mesh. This was fired at 450 ° C for 3 hours in a nitrogen stream to obtain a bowing medium.
  • the composition of this erosion medium is
  • Water 200Pai 12-mode Li blanking de-phosphate dissolving ( ⁇ 3 ⁇ ⁇ ⁇ 12 ⁇ 4 ⁇ 30 ⁇ 2 ⁇ . Nippon Muki Kagaku) 23.5 g, arsenic acid (H 3 A s ⁇ 4) 0.85 g And stirred at 60 ° C for 12 hours. Then, after adding 0.24 g of copper nitrate, a solution of 2.66 g of sodium nitrate and 1.31 g of barium nitrate dissolved in 40 ml of water was added. Further, an aqueous solution in which 13.7 g of pyridine was dissolved in 100 ml of water was added and stirred.
  • the obtained slurry was heated and shrunk while stirring, then evaporated to dryness on an evaporating dish, and further dried at 120 ° C for 12 hours to obtain a solid.
  • the solid was formed into a pellet at a pressure of about 100 kg / cm 2 and crushed to select particles of 10 to 20 mesh. This was calcined at 450 for 3 hours in a nitrogen stream to obtain a catalyst.
  • the composition of the catalyst was P] M o] 2 A s a. EC u o . I 1 ] B a 0. 5.
  • Example 3 Using the same method for preparing the convergent medium as in Example 1, the erosion medium having the catalyst composition shown in Table 3 was prepared, and the reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. The reaction growth after 100 hours of reaction is shown.
  • a catalyst having the composition shown in Table 4 was prepared and reacted in the same manner as in Example 1. Table 4 shows the reaction after 100 hours.
  • An erosion medium having the composition shown in Table 5 was prepared, and an erosion reaction was performed under the same conditions as in Example 1.
  • Table 5 shows the reaction after 100 hours.
  • Example 6 The catalyst prepared in 9 (PM o:... I2 V; l C u CI; I C e 0 5 C s ⁇ 5 1 5) Use, 1000 under the same reaction conditions as in Example 1 The catalytic reaction was continued for a continuous time, but no catalyst deterioration was observed. At that time, the conversion of isobutane was 10.9 $, the selectivity for methacrylic acid was 56.3, and the The selectivity of the application was 15.3.
  • Example 5 4 The catalyst prepared in Example 5 4 ( ⁇ ⁇ ⁇ :. .. 2 V a C u 0. 2 A s ⁇ i B D jR b o 5) , and was charged into a SUS U-shaped tube having an inner diameter of 6 mm, the reaction At a pressure of 0.3 MPa and a reaction temperature of 280 ° C, a mixed gas of 25 mol% of isobutane, 55 mol% of air, and 20 mol% of steam was reacted with a contact time of 3.6 seconds. After 100 hours, when the reaction gas was analyzed by gas chromatography, 6.2% of the isobutane was converted, the selectivity for methacrylic acid was 50.3%, and the selectivity for methacrolein.
  • This edible medium was reacted at 320 ° C in a fluidized bed reactor with a 400 ml internal volume. I let you. A mixed gas of 30 mol% of isobutane, 50 mol% of air and 20 mol% of steam was supplied at a gas linear velocity of 20 cm / sec and a contact time of 3.6 seconds.
  • Example 6 9 The catalyst prepared in Example 6 9 ( ⁇ ⁇ ⁇ ⁇ , ⁇ ⁇ ⁇ . ⁇ ⁇ ⁇ C s D. 5 ⁇ 1 D. 5) as same, press Catering diameter lmm ⁇ in molding machine length After adjusting the diameter to 5 mm, it was packed in a SUS fixed-bed reactor with an inner diameter of 15 mm and a height of 1.8 ⁇ . A heating medium of 320 ° C was circulated in the jacket of the reactor. A mixed gas of 30 mol% of isobutane, 15 mol% of oxygen, 20 mol% of water vapor, and 35 mol% of nitrogen was supplied to the reactor with a contact time of 3.6 seconds. The reaction pressure was maintained at 0.4 MPa.
  • the reaction gas was analyzed by gas chromatography and found that 10.3% of the isobutane was converted, the selectivity for methacrylic acid was 55.2%, and the The selectivity was 17.3%. Then, a mixed gas of 30 mol% of isobutane, 0.6 mol% of methacrolein, 15 mol% of oxygen, 20 mol% of steam, and 34.4 mol% of nitrogen was reacted. It should be noted that the methacrolein guides the product gas obtained by this reaction to a quenching tower and then to a methachlorine absorption tower, and from the obtained condensate and absorption liquid to a mechano-rerain area. Was purified by separation and used. Although the conversion of isobutane was reduced to 9.0% compared to the case where no methanol mouth lane was supplied, the selection of methacrylic acid was 65.2%. Approximately 60 of methacrolein have been converted to methacrylic acid.
  • the process of the present invention uses abundant and inexpensive isobutane as a raw material, can produce methacrylic acid and methacrylone from isobutane in a single step at low cost, and furthermore, the catalytic activity of the catalyst used is high This is an industrially superior method for producing methacrylic acid because it can be maintained for a long period of time.

Abstract

The invention relates to a process for producing methacrylic acid and methacrolein, which comprises catalytically oxidizing isobutane in a gas phase in the presence of molecular oxygen to produce methacrylic acid and methacrolein in one step with a high productivity in a high yield using a catalyst containing a heteropoly acid and having a composition of P/As-Mo-V/Cu at temperatures up to 350 °C, preferably up to 320 °C, at which said heteropoly acid difficulty decomoses, to thereby maintain the catalytic activity for a long time.

Description

明細香  Incense
メ タ ク リル酸およびメ タ ク ロ レイ ンの製造法  Method for producing methacrylic acid and methacrolein
技術分野 Technical field
本発明は、 イ ソブタ ンを気相接触酸化 して一段でメ タ ク リ ル酸およびメ タ ク 口 レイ ンを製造する方法に関するものであ る。 更に詳し く は、 本発明は分子状酸素の存在下にイ ソブタ ンをヘテロ ポリ酸を含有しかつ P /A s -M o - V/ C u系組成 を有する蝕媒と髙温気相で接触反応させて、 一段でメ タ ク リ ル酸およびメ タ ク 口 レイ ンを高い選択率および高い収率で製 造する方法に関する  TECHNICAL FIELD The present invention relates to a method for producing methacrylic acid and methacryloline in a single step by subjecting isobutane to gas phase catalytic oxidation. More specifically, the present invention relates to isobutane in the presence of molecular oxygen in the presence of a heteropolyacid and a erosion medium having a P / As-Mo-V / Cu system composition in a low temperature gas phase. A method for producing methacrylic acid and methacryloline with high selectivity and high yield in one step by catalytic reaction
背景技術 Background art
従来、 イ ソブタ ンのよ う な飽和炭化水素は不活性ガスと考 え られていた。 例えば、 特開眧 5 5 — 2 6 1 9号公報にはォ レフ イ ンやアルデヒ ドの酸化に際し、 反応ガスの希釈剤と し て用い られるこ とが記載されている。 このよ う に ィ ソブタ ン は反応性に乏しいため、 脱水素触媒ま たは酸化脱水素触媒を 用いてイ ソブチ レンに変換したのち、 これを酸化 しメ タ ク ロ レイ ンあるいはメ タ ク リ ル酸とする方法が一般的であった (例えば、 特開昭 5 8 — 1 8 9 1 3 0号公報) 。  Traditionally, saturated hydrocarbons such as isobutane have been considered inert gases. For example, Japanese Patent Application Laid-Open No. 55-2619 describes that it is used as a diluent for a reaction gas in oxidation of olefins and aldehydes. Since isobutane is poor in reactivity, it is converted to isobutylene using a dehydrogenation catalyst or an oxidative dehydrogenation catalyst, and then oxidized to metacrolein or methanol. In general, a method of converting to lactic acid was used (for example, Japanese Patent Application Laid-Open No. 58-189130).
近年、 イ ソブタ ンを酸化 してメ タ ク ロ レイ ンあるいはメ タ ク リル孿などの有用化合物に一段で変換する研究が行なわれ るよ う になってき た。 英国特許第 1 34 0 8 9 1号明細書に は、 アンチモ ンおよびモ リ ブデンなどか らなる酸化物にィ ソ ブタ ンと酸素の混合ガスを気相で接触させ、 きわめて低い収 率ではあるが、 メ タク ロ レイ ンがイ ソブタ ンか ら一段で得ら れることが示されている。 しかしながら、 この方法ではメ タ ク リル酸は得られない。 In recent years, research has been conducted to oxidize isobutane and convert it into useful compounds such as methachlorin or methacrylyl II. British Patent 1,340,891 states that oxides composed of antimony, molybdenum, etc. It has been shown that a mixture of butane and oxygen is brought into contact in the gaseous phase, but with very low yields, methacrolein can be obtained in a single step from isobutane. However, this method does not yield methacrylic acid.
イ ソブタ ンからメ タ ク リル酸が一段で製造できる ことを初 めて示したのは米国特許第 4 2 6 0 8 2 2号明細書である。 これによると、 アンチモン、 モ リ ブデンおよびリ ンの酸化物 からなる特定の触媒を使用 し、 イ ソブタ ンから一段でメ タ ク リル酸を高い選択率で得ている。 例えば、 イ ソブタ ン濂度が 1 0モル%の場合、 イ ソブタ ンの 1 0 %が反応し、 そのう ち 5 0 %がメ タ ク リル酸に変換する。 しかしながら、 この条件 では反応ガス中のメ タ ク リル酸漢度が 0 . 5 モル% と希薄で あ り、 蝕媒単位重童当 り生産性はきわめて低い。 また、 イ ソ ブタン漉度を高く し 2 8 モル%で反応させた場合には、 反応 収率が低下する傾向がある。 従って工業的製法と しては、 媒単位重重当 り の生産性という点で未だ不十分である。  U.S. Pat. No. 4,260,822 is the first to show that methacrylic acid can be produced in a single step from isobutane. According to this, a specific catalyst consisting of oxides of antimony, molybdenum and phosphorus is used, and methacrylic acid is obtained with high selectivity from isobutane in one step. For example, if the isobutane concentration is 10 mol%, 10% of the isobutane will react and 50% of it will be converted to methacrylic acid. However, under these conditions, the content of methacrylic acid in the reaction gas is as low as 0.5 mol%, and the productivity per unit weight of the edible medium is extremely low. Also, when the isobutane strain is increased and the reaction is performed at 28 mol%, the reaction yield tends to decrease. Therefore, it is still insufficient for an industrial production method in terms of productivity per unit weight of the medium.
その後、 特開昭 6 2 — 1 3 2 8 3 2号公報に、 ヘテロ ポリ 酸を蝕媒と し、 3 0乃至 6 0モル%の髙濃度のイ ソブタ ンを 反応させメ タ ク リル酸を高い収率および高い生産性で製造す る方法が提案された。 即ち、 リ ンを中心元素と しモリ ブデン を含むヘテロポリ酸を触媒と し、 しかも、 イ ソブタ ンと酸素 を交互に蝕媒に接蝕させると いう きわめて特徴のある及応方 法によ り高取率および富生産性を実現している。 しかしなが ら、 ィ ソブタ ンと酸素を交互に触媒に接蝕させるためには特 殊な反応装置が必要であ り 、 運転操作も煩雑である。 このた め、 工業的製法と してはイ ソブタ ンと酸素を含む混合ガスを 触媒に接触させるだけの通常の製法と較べて、 この点では経 済的に不利と なる場合もある。 Then, Japanese Patent Application Laid-Open No. Sho 62-1323282 discloses that heteropolyacid is used as an erosion medium, and isobutane having a low concentration of 30 to 60 mol% is reacted to produce methacrylic acid. Methods have been proposed to produce with high yields and high productivity. In other words, high efficiency is obtained by a very distinctive method, in which a heteropolyacid containing molybdenum is used as a catalyst with phosphorus as the central element, and isobutane and oxygen are alternately brought into contact with the erosion medium. Rate and wealth productivity. However Further, a special reaction apparatus is required to alternately bring isobutane and oxygen into contact with the catalyst, and the operation is complicated. For this reason, an industrial production method may be economically disadvantageous in this point as compared with a normal production method in which a mixed gas containing isobutane and oxygen is simply brought into contact with a catalyst.
また、 モ リ ブデン系のへテロ ポ リ酸は 35 0 °Cを上回る温度で は徐々 にではあるがヘテロ ポリ酸構造が分解する こ とが知 ら れている。 それにもかかわ らず、 この方法では反応が 350乃 至 370 °Cの温度で実施されている。 これは、 未だ触媒性能が 十分でないため反応温度を低く する と、 反応収率が大幅に低 下するためである。 実際には、 反応条件下では 330 °C程度で もへテロ ポリ酸が熱分解するためよ り 好ま し く は 320 °C以下 の反応温度で、 優れた反応収率を示す触媒が求め られていた 即ち、 350°C以下、 よ り 好ま し く は 3 20 °C以下の反応温度で イ ソブタ ンと酸素を含む混合ガスを、 触媒に気相接触させ、 長期安定にメ タ ク リル酸を高い生産性および高い収率で製造 する方法が切望されていた。 It is also known that molybdenum-based heteropolyacids gradually decompose the heteropolyacid structure at temperatures exceeding 350 ° C, albeit gradually. Nevertheless, in this method the reaction is carried out at temperatures between 350 and 370 ° C. This is because if the reaction temperature is lowered because the catalytic performance is not yet sufficient, the reaction yield is greatly reduced. In fact, a catalyst that exhibits an excellent reaction yield at a reaction temperature of preferably 320 ° C or less, because the heteropolyacid is thermally decomposed even at about 330 ° C under the reaction conditions, is required. That is, a mixed gas containing isobutane and oxygen is brought into gaseous phase contact with the catalyst at a reaction temperature of 350 ° C or less, more preferably 320 ° C or less, to stably produce methacrylic acid for a long time. There has been an eager need for a method of producing with high productivity and high yield.
発明の開示 Disclosure of the invention
本発明者 らは、 上述の技術的背景にあって、 350 °C以下、 よ り 好ま し く は 320 °C以下の反応温度でィ ソブタ ンと酸素を 含む混合ガス を、 触媒に気相接触させるだけで優れた反応成 績を示す触媒を見いだすべ く 、 ヘテ ロ ポ リ 酸触媒について鋭 意研究を重ねた結果、 多数の元素および無数に近い組み合わ せの中から、 Pおよび または A s を中心元素に含み、 M o を配位元素と して含むヘテロポリ酸を含有しかつ P / A s - M o -V/C u系組成の蝕媒が、 後述するよ う に、 イ ソブタ ン と酸素を含む混合ガスを、 触媒に気相接触させるだけで高い 選択率でメ タ ク リル酸およびメ タ ク ロ レイ ンを製造でき、 ま た上述の蝕媒にさ らに、 アルカ リ金属、 アルカ リ土類金属、 T 1 の内の少な く とも一種を組み合わせる ことによ り 320°C ¾下の低い反応温度でもメ タク リル酸およびメ タ ク 口 レイ ン を高い反応収率および高い生産性で製造できる こ とを見いだ した。 特に、 アルカ リ金属、 アルカ リ土類金属、 T 1 の内の 少な く とも一種を含む蝕媒は反応温度を下げられる という効 杲のほかに、 経時的な活性低下およびメ タ ク リル酸選択率の 経時的な低下がきわめて少な く 、 触媒寿命の長いきわめて優 れた蝕媒となる ことを見いだした。 本発明はこれらの知見に 基づいて完成したものである。 In the technical background described above, the present inventors provide a gas phase contact of a mixed gas containing isobutane and oxygen with a catalyst at a reaction temperature of 350 ° C or less, more preferably 320 ° C or less. In order to find a catalyst that shows excellent reaction performance just by performing a simple reaction, we conducted intensive research on a heteropoly catalyst and found that many elements and innumerable combinations were obtained. Among the pitting agents, the erosion medium containing a heteropolyacid containing P and / or As as a central element, containing Mo as a coordinating element, and having a P / As-Mo-V / Cu system composition. As will be described later, methacrylic acid and methacrolein can be produced with high selectivity simply by bringing a mixed gas containing isobutane and oxygen into gaseous phase into contact with a catalyst. The combination of at least one of alkali metals, alkaline earth metals, and T 1 as a corrosion medium makes it possible to obtain methacrylic acid and methacrylate even at low reaction temperatures below 320 ° C. It has been found that mouth lanes can be produced with high reaction yields and high productivity. In particular, corrosion media containing at least one of alkali metals, alkaline earth metals, and T 1 have the effect of lowering the reaction temperature, as well as the decrease in activity over time and the selection of methacrylic acid. It has been found that the rate of decrease in the rate over time is extremely small, and that the catalyst becomes a very excellent corrosion medium with a long catalyst life. The present invention has been completed based on these findings.
即ち、 本発明は Pおよび/または A s を中心元素に含み、 M o を配位元素と して含むヘテロポリ酸を含有しかつ、 次式 ( 1 ) :  That is, the present invention contains a heteropolyacid containing P and / or As as a central element and containing Mo as a coordinating element, and has the following formula (1):
A aM o 12B bC cD dO e - ( 1 ) A aM o 12 B bC cD dO e-(1)
(式中、 Aは Pおよび または A s をあ らわ し、 M o はモ リ ブデンをあ らゎ し、 Bは Vおよび Zまたは C uをあ らわす。 Cはアルカ リ金属、 アルカ リ土類金属、 T 1 のう ち少なく と も'一種をあ らわす。 Dは A g、 Z n、 T i 、 Z r、 b . T a 、 C r 、 W、 M n、 F e 、 C o N B、 A 1 、 G e 、(Wherein A represents P and / or As, Mo represents molybdenum, B represents V and Z or Cu. C represents an alkali metal, alkaline It represents at least one of the earth metals, T 1. D is Ag, Zn, T i, Z r, b. T a, C r, W, M n, F e, C o NB, A 1, G e,
R h 、 S n、 S b B S e 、 T e 、 Y、 L a . C eR h, S n, S b B S e, T e, Y, L a .C e
P r 、 N d の う ち少な く と も一種をあ らわす。 〇は酸素をあ らわす。 a、 b、 c、 d、 eは各々の元素の原子比をあ らわ し、 a = 0.5-3. b= 0.01-3、 c= 0-3, d= 0-3である。 eは各元素の 原子価および原子比によ り 決ま る数値である。 ) であ らわさ れる組成を含む触媒に、 イ ソブタ ンと分子状酸素を含む混合 ガスを気相で 240乃至 350°Cで接触させる こ と を特徴とするメ タ ク リル酸およびメ タ ク 口 レイ ンを製造する方法に関するも のである。 It represents at least one of Pr and Nd. 〇 stands for oxygen. a, b, c, d, and e represent the atomic ratio of each element, a = 0.5-3. b = 0.01-3, c = 0-3, and d = 0-3. e is a numerical value determined by the valence and atomic ratio of each element. (B) contacting a mixed gas containing isobutane and molecular oxygen at 240 to 350 ° C in the gas phase with a catalyst having the composition represented by the formula (1). It relates to the method of manufacturing the Kuguchi Rain.
この発明では上記組成のものを触媒と して使用する こ とが 重要であ り、 イ ソブタ ンと酸素を含む混合ガスを、 本発明の 触媒に気相接触させる こ と によ り 、 高い生産性および高い収 率でメ タ ク リル酸およびメ タ ク ロ レイ ンを得る こ とができ る, 上記組成中の必須成分、 すなわち P /A s -M o -V /C u が欠 如 した り 、 組成が上記範囲をはずれた り する と、 後記比較例 1 〜 1 4 か ら明 らかであるよ う に、 イ ソブタ ンと酸素を含む 混合ガスを触媒に気相接触させる反応方式ではメ タ ク リル酸 の選択率が著し く 低 く なる。  In the present invention, it is important to use the catalyst having the above composition as a catalyst, and high productivity can be achieved by bringing a mixed gas containing isobutane and oxygen into gas phase contact with the catalyst of the present invention. Methacrylic acid and methacrolein can be obtained with high yield and high yield. Lack of essential components in the above composition, that is, P / As-Mo-V / Cu If the composition deviates from the above range, as will be apparent from Comparative Examples 1 to 14, the reaction method in which a mixed gas containing isobutane and oxygen is brought into gaseous phase contact with the catalyst. The selectivity for methacrylic acid is significantly reduced.
特開昭 6 2 — 1 3 2 8 3 2号公報による と、 酸素共存下で の反応では過剰酸化の原因と なる酸素種が蝕媒表面上に生成 しゃすい。 このため、 メ タ ク リル酸およびメ タ ク ロ レイ ンが さ らに酸化され、 これ らの選択率が低下する。 と ころが、 本 発明の蝕媒では酸素共存下の反応で意外にもメ タ ク リル酸が 富い選択率で得られる ことを見いだした。 この予想外の効果 が得られる理由については不 な点が多いが、 ヘテロ ポリ酸 を含有しかつ P /A s - M o系組成を有する触媒に Vおよび/ または C u を組み合わせる ことによ り 、 Vあるいは C uがへ テロポリ酸と安定な塩を形成した り、 ヘテロポリ酸の配位元 素の一部を置換する ことで、 メ タ ク リル酸およびメ タ ク ロ レ イ ンの過剰酸化の原因となるよ う な酸素種が触媒上に形成さ れるのを特異的に抑制しているものと考え られる。 According to Japanese Unexamined Patent Publication No. Sho 62-132328, in a reaction in the presence of oxygen, oxygen species that cause excessive oxidation are generated on the surface of the erosion medium. This further oxidizes methacrylic acid and methacrolein, reducing their selectivity. Here is the book It has been found that in the eclipse medium of the invention, methacrylic acid can be unexpectedly obtained with a high selectivity by a reaction in the presence of oxygen. There are many disadvantages about why this unexpected effect can be obtained, but the combination of V and / or Cu with a catalyst containing a heteropolyacid and having a P / As-Mo system composition is , V or Cu forms a stable salt with the heteropolyacid or replaces a part of the coordination element of the heteropolyacid, resulting in excessive oxidation of methacrylic acid and methacrylone. It is considered that the formation of oxygen species on the catalyst, which may cause the occurrence of oxidization, is specifically suppressed.
また、 本発明の蝕媒を使用すると反応温度を低 く でき、 へ テロポリ酸の熱分解がおこ り に く い温度で反応を実施するこ とができるよ う になる。 低温での反応活性をさ らに高め、 320。C以下の温度で反応を実施するためには、 アルカ リ金属、 アルカ リ土類金属、 T 1 のう ちの少な く とも一種以上を触媒 に含むことが好ま しい。 この場合には触媒の熱安定性が向上 する という効果も得られるため、 反応温度を低 く できた効果 と併せると、 アルカ リ金属、 アルカ リ土類金属、 T 1 のう ち の少な く とも一種以上を含む触媒は、 触媒寿命の長い耐久性 に倭れた蝕媒となる。 このよ う に、 アルカ リ金属、 アルガリ 土類金属、 T 1 のう ちの少な く とも一種以上をバナジウムお よび Zまたは鋸と組み合わせて使用する ことによ り メ タク リ ル酸の選択率を高い値に維持しつつ、 ィ ソブタ ン転化率を高 く でき、 反応温度も低 く でき るなどの優れた効果が得られる。 また、 反応温度を下げた こ と によ り メ タ ク リル酸、 メ タ ク 口 レイ ンなどの反応生成物が逐次的に酸化され二酸化炭素な どになるのが効果的に抑制され、 メ タ ク リ ル酸にメ タ ク 口 レ イ ンを併せた選択率が向上する と い う 副次的な効果も得 られ る。 特に、 この反応を流動床反応器で実施する場合には、 一 般的に反応生成物がさ らに過剰酸化されやす く 、 固定床反応 に比べてメ タ ク リル酸の選択率が低下する場合が多い。 しか しなが ら、 本発明の方法では、 低い温度で反応が可能なため 流動床反応器でも髙ぃメ タ ク リ ル酸選択率が得 られる。 Further, when the edible medium of the present invention is used, the reaction temperature can be lowered, and the reaction can be carried out at a temperature at which thermal decomposition of the heteropolyacid is difficult to occur. Further increase the activity at low temperatures, 320. In order to carry out the reaction at a temperature of not more than C, it is preferable that the catalyst contains at least one of an alkali metal, an alkaline earth metal and T 1. In this case, the effect of improving the thermal stability of the catalyst can also be obtained, and when combined with the effect of lowering the reaction temperature, at least one of the alkali metals, the alkaline earth metals, and T 1 is used. A catalyst containing one or more catalysts is an erosion medium with a long catalyst life and low durability. Thus, the use of at least one of the alkali metals, argali earth metals, and T1 in combination with vanadium and Z or saw increases the selectivity of metaacrylic acid. While maintaining the above values, excellent effects such as a high isobutane conversion and a low reaction temperature can be obtained. In addition, by lowering the reaction temperature, the reaction products such as methacrylic acid and methacryloline are sequentially oxidized to be effectively suppressed from being oxidized to carbon dioxide. There is also a secondary effect of improving the selectivity of combining methacrylic acid with the methacrylic acid lane. In particular, when this reaction is carried out in a fluidized-bed reactor, the reaction product is generally liable to be further excessively oxidized, and the selectivity of methacrylic acid is reduced as compared with a fixed-bed reaction. Often. However, in the method of the present invention, the reaction can be carried out at a low temperature, so that dimethacrylic acid selectivity can be obtained even in a fluidized bed reactor.
以下、 本発明についてさ らに詳細に説明する。 本発明にお いて用いる触媒は Pおよび Zま たは A s を中心元素に含み、 M o を配位元素と して含むヘテロ ポ リ酸を含有し、 かつ触媒 構成元素と して Vおよび ま たは C u を含むこ とが重要であ る。 触媒構成元素の互いの原子比は M o :12に対して Pおよ び/または A s は 0.5乃至 3、 Vおよび Zま たは C u は 0.01乃 至 3、 好ま し く は 0.05乃至 2.0である。 上記組成にアルカ リ金 属、 アルカ リ土類金属、 T 1 の う ち少な く と も一種を組み合 わせて使用する と よ り好ま しい結果が得 られる。  Hereinafter, the present invention will be described in more detail. The catalyst used in the present invention contains P and Z or As as a central element, contains heteropolyacid containing Mo as a coordinating element, and contains V and V as catalyst constituent elements. Or contain Cu. The atomic ratio of the catalyst constituent elements to each other is Mo: 12, P and / or As is 0.5 to 3, V and Z or Cu are 0.01 to 3, preferably 0.05 to 2.0. It is. More favorable results can be obtained by using at least one of alkali metal, alkaline earth metal and T1 in the above composition.
この場合にはアルカ リ金属と しては L i 、 N a、 K , R b 及び C s か ら選ばれた少な く と も一種を使用する こ とができ ま たアルカ リ土類金属と しては M g、 C a 、 S r 、 及び B a か ら選ばれた少な く と も一種を使用する こ とができ る。 これ らのアル力 リ 金属、 アル力 リ土類金属及び T 1 は 0.01乃至 3, 好ま し く は 0.1乃至 2の範囲で加える とよい。 また、 A g、 Z n、 C d、 T i、 Z r、 N" b、 T a、 C r、 W , M n、 F e、 C o、 N i、 R h、 S n、 B i 、 S e、 T e、 Y、 L a、 C e、 P rおよび N dからなる群か ら選ばれた少な く とも一種を触媒搆成元素と して加える場合は 0.01乃至 3とす るのが好ま し く、 0.05乃至 1とするのが特に好ま しい。 In this case, at least one kind selected from Li, Na, K, Rb and Cs can be used as the alkali metal. Or at least one selected from Mg, C a, S r, and B a. These Al metal, Al earth metal and T1 are 0.01 to 3, Preferably, it is added in the range of 0.1 to 2. Also, Ag, Zn, Cd, Ti, Zr, N "b, Ta, Cr, W, Mn, Fe, Co, Ni, Rh, Sn, Bi, When at least one selected from the group consisting of Se, Te, Y, La, Ce, Pr, and Nd is added as a catalyst element, the value should be 0.01 to 3. It is particularly preferred that the value be 0.05 to 1.
Pおよび Zまたは A s を中心元素に含み、 M o を配位元素 と して含むヘテロポリ酸は リ ンモ リ ブデン酸、 ヒ素モ リ ブデ ン酸, リ ンヒ素モ リ ブデン酸などであ り、 種々の構造をとる ことが知られており (化学の領域、 第 29卷 12号 853頁、 佐佐 木、 松本) 、 中心元素と配位元素の比が 1/12、 1/11、 1/10、 1/9、 2/17、 2/18などの各種の構造をとるものが知 られてい る。 中でもケギン構造と呼ばれる 1/12の構造をと るものが特 に好適である。  Heteropolyacids containing P and Z or As as central elements and containing Mo as a coordinating element include linmolybdic acid, arsenic molybdic acid, and linsenic molybdic acid. It is known to adopt various structures (Chemistry, Vol. 29, No. 853, Sasaki, Matsumoto), and the ratio of central element to coordinating element is 1/12, 1/11, 1 / Various structures such as 10, 1/9, 2/17, and 2/18 are known. Among them, those having a 1/12 structure called a Keggin structure are particularly suitable.
バナジウムは リ ンモリ ブデン酸、 ヒ素モ リ ブデン酸、 リ ン ヒ素モ リ ブデン酸の配位元素の—部を置換しているのが好適 であるが、 一部は酸化物あるいは酸素酸などのよ う にへテロ ポリ酸 外の状態で存在していそもよい。 鋦は化学的な存在 状態はきわめて複雑であって、 詳細は明 らかではないが、 へ テロポリ酸の金属塩と して存在してもよい し、 酸化物あるい は酸素酸などのよう にヘテ ロポリ酸以外の状態で存在してい てもよい。 また、 ヘテロポリ酸の構成元素を一部、 置換して いてもよい。 好ま し く は、 酸化物あるいはヘテロポリ酸の金 属塩と して存在するのがよい。 アルカ リ金属、 アルカ リ土類 金属、 T 1 は主と してへテロ ポリ酸の塩の状態で存在 してい る。 また、 A g、 Z n 、 C d 、 T i 、 Z r 、 N b 、 T a 、 Vanadium preferably substitutes a part of the coordinating element of linmolybdic acid, arsenic molybdic acid, and arsenic molybdic acid. As such, it may exist in a state outside the heteropolyacid.鋦 may be present as a metal salt of heteropoly acid or in the form of an oxide or oxyacid, although the chemical state is extremely complicated and the details are not clear. It may exist in a state other than heteropolyacid. Further, the constituent elements of the heteropolyacid may be partially substituted. Preferably, the oxide or heteropolyacid gold is used. It should be present as a genus salt. Alkali metals, alkaline earth metals, and T 1 exist mainly in the form of heteropolyacid salts. Also, A g, Z n, C d, T i, Z r, N b, T a,
C r 、 W、 M n 、 F e 、 C o 、 N R h 、 S n 、 B i 、  C r, W, M n, F e, C o, N R h, S n, B i,
S e 、 T e 、 Y、 L a 、 C e 、 P r および N d などは C u と 同 じ く ヘテロ ポリ酸の金属塩と して存在 してもよい し、 酸化 物あるいは酸素酸などのよ う にヘテロ ポリ酸以外の状態で存 在 していてもよい。 ま た、 ヘテロ ポリ酸の構成元素を一部、 置換していてもよい  Se, Te, Y, La, Ce, Pr and Nd may be present as a metal salt of a heteropolyacid like Cu, or may be an oxide or oxyacid. Thus, it may exist in a state other than the heteropolyacid. Further, the constituent elements of the heteropolyacid may be partially substituted.
本発明において用いる触媒は、 公知の方法 (調製操作) に よって容易に調製する こ とができ、 一般には、 リ ンモ リ ブデ ン酸、 リ ンバナ ドモ リ ブデン酸、 ヒ素モ リ ブデン酸、 ヒ素バ ナ ドモ リ ブデン酸などのへテロ ポリ酸ま たはその塩が溶液状 態あるいはスラ リ ー状態にある と ころ、 あるいは これ らへテ 口ポリ酸が形成される条件下のと こ ろに、 触媒構成元素と し て必要な元素を含む化合物を酸化物、 水酸化物、 炭酸塩、 硝 酸塩、 塩化物、 酸素酸、 リ ン酸塩、 し ゅ う 酸塩、 酢酸塩、 有 機錯化合物ま たは金属などのかたちで加えた後、 蒸発乾固す る。 得 られた阖形物を空気雰囲気下で 250乃至 500°Cで 2乃至 24時間焼成する と 目的とする触媒が得 られる。 しかしなが ら、 触媒調製法や触媒調製の出発原料などが上記のものに限定さ れる こ と はな く 、 他の調製法や出発原料を用 いてもよい。 例 えば出発原料と してへテ ロ ポ リ 酸の各種の含窒素化合物の塩 を用いることができる。 有効な^と しては、 アンモニゥム塩 あるいはピリ ジン、 キノ リ ン、 ピぺラ ジンなどとの有機ア ミ ン塩がある。 触媒調製の過程で、 このよ う な各種の含窒素化 合物を加えても良く 、 アンモニゥム塩の場合、 アンモニア水、 塩化アンモニゥム、 硝酸アンモニゥムなどの水溶性のアンモ ニゥム塩などをアンモニゥムイ オン源と して加える ことがで きる。 これらのアンモニゥム塩あるいは有機ア ミ ン塩などは、 300乃至 600°Cで焼成する ことによ り 含窒素化合物を一都また は全部を除去した後、 蝕媒と して使用する。 不活性ガス中で 焼成する と、 よ り好ま しい。 不活性ガス中で焼成した後、 酸 素含有ガスで焼成することもできる。 The catalyst used in the present invention can be easily prepared by a known method (preparation operation). Generally, linmolybdenic acid, limbana domolybdic acid, arsenic molybdic acid, arsenic acid When a heteropolyacid or salt thereof, such as nadomolibdenic acid, is in solution or slurry, or under conditions where these polyhedral polyacids are formed, Oxides, hydroxides, carbonates, nitrates, chlorides, oxyacids, phosphates, oxalates, acetates, organic compounds containing compounds containing the necessary elements as catalyst constituent elements After adding in the form of a compound or metal, evaporate to dryness. The obtained catalyst is calcined at 250 to 500 ° C. for 2 to 24 hours in an air atmosphere to obtain a target catalyst. However, the catalyst preparation method and starting materials for catalyst preparation are not limited to those described above, and other preparation methods and starting materials may be used. For example, salts of various nitrogen-containing compounds of heteropolyacid as starting materials Can be used. Useful ^ include ammonium salts or organic amine salts with pyridine, quinoline, piperazine and the like. In the process of preparing the catalyst, such various nitrogen-containing compounds may be added.In the case of an ammonium salt, a water-soluble ammonium salt such as ammonia water, ammonium chloride, or ammonium nitrate is used as an ammonium ion source. Can be added. These ammonium salts or organic amine salts are used as an etchant after baking at 300 to 600 ° C. to remove one or all of the nitrogen-containing compounds. Firing in an inert gas is more preferable. After calcination in an inert gas, calcination with an oxygen-containing gas can also be performed.
これらの蝕媒は、 担体に担持または希釈混合した形で用い る ことができ る。 担体と して、 シ リ カ、 α -アルミ ナ、 シリ コンカーバイ ド、 チタニア、 ジルコエア、 ケイ ソゥ土、 シ リ 力アルミ ナ、 水溶性シ リ カ ゾル、 炭化ゲイ素などを挙げる こ とができる。 マク ロポアを多く もつ高気孔率の不活性担体が 好ま しい。 これらの担体の上に水存在下あるいは非存在下で、 通常は担体と等重量までの!:を付着あるいは混合する。  These erosion media can be used in the form of being supported on a carrier or diluted and mixed. Examples of the carrier include silica, α-alumina, silicon carbide, titania, zircon air, silica earth, silica alumina, water-soluble silica sol, and silicon carbide. A high porosity inert carrier with a large number of macropores is preferred. In the presence or absence of water on these carriers, usually up to the same weight as the carrier! : Adhere or mix.
蝕媒の形状は使用状態に応じて例えばペレツ ト状、 粒状な どの任意の大きさおよび形状に成型して蝕媒に一定の機械的 強度をもたせて使用するのがよい。 成型には打錠機、 押しだ し成型機、 マルメ ライ ザ一 (日本国、 不二パゥ ダル社商品名) 、 転動式造粒機などを用いる。 本発明において用いる触媒が、 反応条件下で、 どの程度の 還元状態で働いているのかすべては明かではないが、 高い還 元状態にある触媒でも、 反応'時間の経過と と もに、 黄緑色に 近い色に変化 して く る こ とが多 く 、 ヘテロ ポリ ブルーと して 知 られる濂紺色を呈 していないこ とか ら、 反応条件下ではへ テロ ポリ酸当 り一乃至二電子還元相当以下の低い還元状態に あるものと推察される。 しか しなが ら、 触媒組成、 反応ガス 組成、 反応温度などによって還元状態が大き く 変化するため、 還元度はこの範囲に限定されるものではない。 The shape of the erosion medium is preferably formed into an arbitrary size and shape, such as a pellet or a granule, depending on the use state, and the erosion medium is preferably used with a certain mechanical strength. For molding, a tableting machine, an extrusion molding machine, a Malmerizer (trade name of Fuji Padal Co., Japan), a rolling granulator, etc. are used. It is not clear how much the catalyst used in the present invention works in the reduced state under the reaction conditions, but the catalyst in the high reducing state shows a yellow-green color over the reaction time. The color often changes to a color close to that of a heteropolyacid, and it does not exhibit the navy blue color known as heteropoly blue. It is presumed to be in the following low reduction state. However, the degree of reduction is not limited to this range, since the reduction state changes greatly depending on the catalyst composition, reaction gas composition, reaction temperature, and the like.
反応に供給する原料ガスは、 イ ソブタ ンおよび酸素を含む 混合ガスが用い られる。 イ ソブタ ンの濂度は 10乃至 80モル が適切である。 ィ ソブタ ンの濃度が 10モル よ り低いと反応 器あた り に生成するメ タ ク リ ル酸の生産童がきわめて小さ く な り 、 工業的に実施でき るほどの経済性が得られない。 さ ら に好ま し く は 20乃至 60モル の範囲である。 接蝕反応に使用 するイ ソブタ ンは特に髙純度のものを必要と しないため、 パ ラフ ィ ン系の炭化水素でかつ反応に影響しないものがィ ソブ タ ンに対して約 2倍モル程度共存する混合物でも使用でき る。 好ま し く は L P Gブタ ン中、 F C Cブタ ン中あるいは n—ブ タ ンの異性化反応生成物中のイ ソブタ ンを蒸留によ り 単離 し て使用するのがよい。 ォ レフ ィ ンがィ ソブタ ンに対して約 0 . 1倍モル以上混入する と副生成物などが多 く なるためィ ソ ブチ レン以外のォ レフ ィ ンの混入は避けたほ う がよい。 本発明で使用される酸素とィ ソブタ ンとのモル比は 0 . 05对 1乃至 1対 1のモル比、 好ま し く は 0 . 1対 1乃至 0 .6対 1の範囲が よい。 酸素モル比が高いと完全酸化が進行し過ぎ二酸化炭素 の生成が多く なる。 逆に、 酸素モル比が小さいとイ ソブタ ン 酸化に十分な量の酸素が供袷されないため、 イ ソブタンの ¾ 化率が低下する。 さ らに酸素モル比が小さいと、 反応の進行 にともない触媒が還元されすぎ、 好ま し く ない。 As a source gas to be supplied to the reaction, a mixed gas containing isobutane and oxygen is used. The appropriate degree of isobutane is from 10 to 80 mol. If the concentration of isobutane is less than 10 moles, the production of methacrylic acid per reactor becomes extremely small, and the economics that can be implemented industrially cannot be obtained. . More preferably, it is in the range of 20 to 60 mol. Isobutane used for the corrosion reaction does not need to be particularly high-purity, so paraffin-based hydrocarbons that do not affect the reaction coexist at about twice the molar amount with isobutane. Can be used. Preferably, isobutane in LPG butane, FCC butane or n-butane isomerization reaction product is isolated by distillation and used. When the olefin is mixed in about 0.1 times or more with respect to isobutane, by-products and the like are increased. Therefore, the mixing of olefins other than isobutylene should be avoided. The molar ratio of oxygen to isobutane used in the present invention is preferably 0.05 to 1 to 1 to 1, more preferably 0.1 to 1 to 0.6 to 1. If the oxygen molar ratio is high, complete oxidation proceeds too much, and the generation of carbon dioxide increases. Conversely, when the oxygen molar ratio is small, a sufficient amount of oxygen is not supplied for isobutane oxidation, so that the conversion ratio of isobutane decreases. Further, if the oxygen molar ratio is too small, the catalyst is excessively reduced as the reaction proceeds, which is not preferable.
酸素濃度、 ィ ソブタ ン濃度の選定にあたっては混合ガス組 成が爆発範囲に入 らぬよ う に考慮するのが好ま しい。 接蝕反 応に使用する分子状酸素と しては、 純酸素ガスでもよいが、 特に高純度である必要もないので一般には空気を使用するの が経済的である。 また、 窒素のほかに反応に悪影 Sを及ぼさ ないヘ リ ウム、 アルゴン、 二酸化炭素などの不活性ガスを供 給原科ガスの希釈剤と して用い、 ガス組成が爆発範囲に入る のを防ぐことができる。 この場合これらの不活性ガスはイ ソ ブタ ンに対して 1/ 10乃至 10 /1のモル比の範囲で選ばれること が多い。  When selecting the oxygen concentration and isobutane concentration, it is preferable to consider that the mixed gas composition does not enter the explosion range. The molecular oxygen used for the corrosion reaction may be pure oxygen gas, but it is generally economical to use air because it does not need to be particularly high in purity. In addition to nitrogen, inert gases such as helium, argon, and carbon dioxide, which do not adversely affect the reaction, are used as diluents for the source gas to prevent the gas composition from entering the explosion range. Can be prevented. In this case, these inert gases are often selected in a molar ratio of 1/10 to 10/1 with respect to isobutane.
また、 反応生成物であるメ タ ク リル酸が蝕媒上でさ らに酸 化されて二酸化炭素などになるのを防ぐために、 分子状酸素 およびイ ソブタンと ともに、 水蒸気をイ ソブタ ンに対して 1/ 5乃至 5/1のモル比の範囲で添加するのが有効であ り 、 メ タ ク リル酸の選択率が高 く なる。 好ま し く は 1/3乃至 3 / 1のモル比 の範囲である。 反応温度は 24 0乃至 350 °Cの範囲か ら選ばれる。 270乃至 3 20 °Cの範囲が特に好ま しい。 反応温度が高いと触媒の分解およ び反応生成物の完全酸化が起こ り やすい。 特に、 アルカ リ 金 属、 アルカ リ土類金属、 T 1 の う ち少な く と も一種を触媒構 成元素と して含む触媒を用いる と 320 °C以下の反応温度でも メ タ ク リ ル酸を高い反応収率および髙ぃ生産性で製造でき る , 反応圧力は減圧か ら加圧まで幅広 く 設定でき るが、 大気圧 から 1 M P a 程度ま でが工業的には有利である。 In addition, in order to prevent the reaction product, methacrylic acid, from being further oxidized on the corrosion medium to form carbon dioxide, etc., together with molecular oxygen and isobutane, water vapor is applied to isobutane. Therefore, it is effective to add them in a molar ratio of 1/5 to 5/1, and the selectivity of methacrylic acid is increased. It is preferably in a molar ratio of 1/3 to 3/1. The reaction temperature is selected from the range of 240 to 350 ° C. A range of 270 to 320 ° C is particularly preferred. If the reaction temperature is high, decomposition of the catalyst and complete oxidation of the reaction product are likely to occur. In particular, when a catalyst containing at least one of alkali metal, alkaline earth metal, and T1 as a catalyst constituent element is used, even if the reaction temperature is 320 ° C or less, the methacrylic acid can be obtained. Can be produced with high reaction yield and high productivity. The reaction pressure can be set widely from decompression to pressurization, but it is industrially advantageous from atmospheric pressure to about 1 MPa.
供給原料ガス と触媒の接触時間 (触媒のかさ容積を供給原 料ガスの反応温度、 反応圧力における体積ガス流量で除 した 値) は、 イ ソブタ ン濂度あるいは反応温度などによって変わ るが、 0 . 1乃至 1 0秒、 好ま し く は 0 . 5乃至 5秒が適当である。 本発明を実施するに当た り 、 用い られる反応器と して固定 床、 流動床、 移動床その他の型式の反応器を適宜選択でき る, 生成したメ タ ク リル酸と メ タ ク ロ レ イ ンは冷却、 抽出、 蒸 留などの公知の一連の方法で他の酸化生成物か ら分雜 し、 そ して任意の既知の方法で精製でき る。 未反応のイ ソブタ ンを 回収 して再び反応器に循環する場合には、 反応に影饗しない 程度であれば一酸化炭素、 二酸化炭素、 その他の反応生成物 が混入してもかまわない。 特に、 メ タ ク ロ レ イ ンをイ ソブタ ンを含む供給原料ガス と一緒に反応器に供給する こ と でメ タ ク ロ レイ ンを有効にメ タ ク リ ル酸に変換する こ と ができ る 発明を実施するための最良の形態 The contact time between the feed gas and the catalyst (the value obtained by dividing the bulk volume of the catalyst by the reaction temperature of the feed gas and the volumetric gas flow rate at the reaction pressure) varies depending on the isobutane roughness or the reaction temperature. 1 to 10 seconds, preferably 0.5 to 5 seconds is suitable. In carrying out the present invention, a fixed bed, a fluidized bed, a moving bed and other types of reactors can be appropriately selected as a reactor to be used. Ind is separated from other oxidation products by a known series of methods such as cooling, extraction, and distillation, and can be purified by any known method. When unreacted isobutane is recovered and recycled to the reactor, carbon monoxide, carbon dioxide, and other reaction products may be mixed as long as the reaction is not affected. In particular, the supply of methacrolein together with a feed gas containing isobutane to the reactor can effectively convert methacrolein to methacrylic acid. it can BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよ り詳細に記述するために実施例によ り 説明する が、 本発明の範囲はこれらの実施例にのみ限定されるもので はない。  EXAMPLES The present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited to these examples.
[実施钶]  [Implementation 钶]
実施例 1  Example 1
三酸化モ リ ブデン 144.0g、 五酸化バナジウム 8.27gおよ びリ ン酸 (85重 S! 12.5gをパイ レッ ク ス製三つ口フラスコ に水 1000mlとともに加え、 24時間、 加熱還流した。 ついで、 水溶液の不溶成分を 口別後濃縮し、 赤褐色の結晶を得た。 こ の結晶は: X線回折、 原子吸光分折および31 P -N M Rで調べ たと ころ、 P :M o : Vの原子比が 1:11:1のモ リ ブ ドバナ ド リ ン酸 (P M o „V) であった。 得られた結晶の結晶水!:は約 30水であった。 この結晶 23.2εと塩化第一鋇 O.lgを 80°Cに加 滠した 200mlの水に溶解した。 ついで 50mlの水に溶解した硝 酸セシウム 2.0gを加え、 さ らに水 lOOnlに溶解した 23.8gのピ リ ジンを加えて得られたス ラ リ ー溶液を濃縮後、 120°Cで 12 時間乾燥した。 得 られた固形物を粉碎し、 10から 20メ ッ シュ の粒子を選別した。 これを窒素気流中 450eCで 3時間焼成した . P 1. iM o izV 1. iC u D. llC s 1. 1 (酸素を除く 原子比;以下 同様) の組成をもつ斂媒が得られた。 144.0 g of molybdenum trioxide, 8.27 g of vanadium pentoxide and 12.5 g of phosphoric acid (85 double S!) Were added together with 1000 ml of water to a pyrex three-necked flask, and the mixture was heated under reflux for 24 hours. The insoluble components of the aqueous solution were concentrated by extraction and concentrated to give reddish-brown crystals, which were analyzed by X-ray diffraction, atomic absorption analysis and 31 P-NMR. The ratio was 1: 11: 1 Molybdovanadolinic acid (PM o „V) The crystal water of the obtained crystal was about 30. The crystal 23.2ε and the chloride First, O.lg was dissolved in 200 ml of water heated to 80 ° C. Then, 2.0 g of cesium nitrate dissolved in 50 ml of water was added, and 23.8 g of pyridine dissolved in water were added. The resulting slurry solution was concentrated and dried for 12 hours at 120 ° C. The obtained solid was pulverized to select particles of 10 to 20 mesh. . Was calcined for 3 hours in a nitrogen stream 450 e C P 1. iM o izV 1. iC u D. llC s 1. 1; is斂媒having the composition (atomic ratio excluding oxygen hereinafter the same) was obtained .
この截媒 5gを内径 6miaのパイ レク ッス製 U字管に充填して 恒温槽にセ 'グ ト した。 恒温槽の温度を 320°Cに設定し、 イ ソ ブタ ン 30モル。/。、 酸素 15モル%、 水蒸気 20モル%、 窒素 35モ ル%の混合ガスを接触時間 3.6秒で供給 した。 100時間後に反 応ガスをガス ク ロマ ト グラフ ィ ーで分析 した と こ ろ、 イ ソブ タ ンの 10.3%が転化し、 メ タ ク リル酸の選択率は 55.7%、 メ タ ク ロ レイ ンの選択率は 16.3%であった。 イ ソブチ レンは検 出されなかった。 同一条件で 1000時間反応を行なった。ィ ソ ブタ ンの 10.1%が転化し、メ タ ク リル酸の選択率は 56.3%、メ タ ク 口 レイ ンの選択率は 15.9%であった。 5 g of this medium was filled into a U-tube made of Pyrex having an inner diameter of 6 mia, and set in a thermostat. Set the temperature of the water bath to 320 ° C and Butane 30 mol. /. A mixed gas of 15 mol% of oxygen, 20 mol% of steam and 35 mol% of nitrogen was supplied with a contact time of 3.6 seconds. After 100 hours, the reaction gas was analyzed by gas chromatography and found that 10.3% of the isobutane was converted, the selectivity for methacrylic acid was 55.7%, and the metachlorin Was 16.3%. Isobutylene was not detected. The reaction was performed under the same conditions for 1000 hours. 10.1% of the isobutane was converted, the selectivity for methacrylic acid was 56.3%, and the selectivity for methacrylic acid was 15.9%.
実施例 2  Example 2
実施例 1 と 同様の触媒調製法で P L iM o wV ^ :の組成を もつ触媒を得た。 実施例 1 に記載した出発原料のう ち塩化第 —鋇および硝酸セシウムは使用 しなかった。 実施例 1 と 同様 の反応条件で接触反応を行なった。 20時間後に反応ガスをガ ス ク ロ マ ト グラフ ィ 一で分析した と こ ろ、 イ ソブタ ンの 5.3 %が転化し、 メ タ ク リル酸の選択率は 41.1 %、 メ タ ク ロ レイ ンの選択率は 19.2 %であった。  By the same catalyst preparation method as in Example 1, a catalyst having a composition of PLiMowV ^: was obtained. Of the starting materials described in Example 1, -II chloride and cesium nitrate were not used. A contact reaction was performed under the same reaction conditions as in Example 1. After 20 hours, the reaction gas was analyzed by gas chromatography. As a result, 5.3% of isobutane was converted, the selectivity of methacrylic acid was 41.1%, and Was 19.2%.
実施例 3  Example 3
実施例 1 と 同様の触媒調製法で Ρ ,Μ ο 12C u 0.5の組成を もつ触媒を得た。 出発原料と して P M o ; !3Vのかわ り に 12- モ リ ブ ド リ ン酸 (H3P M 0 124口 ·30Η2〇:日本無機化学製) を使用 した。 実施例 1 に記載した出発原料の う ち硝酸セ シゥ ムは使用 しなかった。 実施例 1 と 同様の反応条件で接触反応 を行なった。 20時間後に反応ガスをガス ク ロ マ ト グラフ ィ 一 で分折したところ、 イ ソブタンの 5.4%が転化 し、 メ タ ク リ ル酸の選択率は 42.1%、 メ タ ク 口 レイ ンの選択率は 22.5%で あった。 Ρ the same catalyst preparation method as in Example 1 to obtain a catalyst having the composition Μ ο 12 C u 0. 5 . ! PM o as a starting material; to Ri I or 3 V to 12-mode Li blanking drill down acid (H 3 PM 0 124-neck · 30Η 2 ○: Nippon Muki Kagaku) was used. Of the starting materials described in Example 1, cesium nitrate was not used. The contact reaction was carried out under the same reaction conditions as in Example 1. After 20 hours, the reaction gas is supplied to the gas chromatograph. As a result, 5.4% of isobutane was converted, the selectivity for methacrylic acid was 42.1%, and the selectivity for methacoline was 22.5%.
実施例 4  Example 4
実施例 1 と同様の触媒調製法で  The same catalyst preparation method as in Example 1 was used.
P 3M 0 12VG-5A s iC u £j-2の組成をもつ触媒を得た。 な お、 触媒調製に使用 した出発原料は実施例 1 に記載のもの以 外に 12-モ リ ブ ド リ ン酸 (H3P M o 1204D-30H 20:日本無 機化学製) 、 ヒ酸 CH3A s 04) を使用 した。 反応温度を 340°Cと したほかは実施例 1 と同様の反応条件で接蝕反応を 行なった。 20時間後に反応ガスをガスク ロマ ト グラフ ィ 一で 分析したと ころ、 イ ソブタ ンの 10.0%が転化し、 メ タ ク リル 酸の選択率は 47.2%、 メ タク 口 レイ ンの選択率は 19.3%であ つた。 A catalyst having a composition of P 3 M 0 12 V G - 5 AsiCu u j- 2 was obtained. Na us, starting materials used for catalyst preparation in other than those described in Example 1 12 mode Li blanking de-phosphate (H 3 PM o 12 0 4D -30H 2 0: manufactured by Nippon No machine Chemical) using arsenate CH 3 a s 0 4). The corrosion reaction was performed under the same reaction conditions as in Example 1 except that the reaction temperature was 340 ° C. After 20 hours, the reaction gas was analyzed by gas chromatography.It was found that 10.0% of the isobutane was converted, the selectivity for methacrylic acid was 47.2%, and the selectivity for the methanol mouth lane was 19.3. %.
比較例 1  Comparative Example 1
12-モ リ ブド リ ン酸 (H3PMo12(U。'30ii20:日本無機化学) 23.2gを水 100mlに溶解し、 他の成分を用いないで実施例 1 と 同様に して蝕媒を繭製し、 実施例 1 と同 じ条件で反応を行な つた。 20時間後に反応ガスをガスク ロマ ト グラフ ィ 一で分析 したところ、 イ ソブタ ンの 4.3%が転化し、 メ タ ク リル酸の 選択率は 18.3%、 メ タ ク ロ レイ ンの選択率は 21.1%であつ た。 比齩例 2 〜 1 4 実施例 1と同様の触媒調製法で、 触媒組成がこの発明の範囲外の 第 1表に記載の組成の触媒を 製し、 反応温度の一部を第 1表に記 載の温度に変えたほかは、 実施例 1と同様の反応条件で接触反応を 行なった。 20時間反応後の反応成緣を第 1表に示す。 Dissolve 23.2 g of 12- molybdolinic acid (H 3 PMo 12 (U. '30ii 20 : Nippon Inorganic Chemical)) in 100 ml of water, and treat as in Example 1 without using other components. A medium was made of cocoon, and the reaction was carried out under the same conditions as in Example 1. After 20 hours, the reaction gas was analyzed by gas chromatography, and 4.3% of isobutane was converted. The selectivity for lylic acid was 18.3%, and the selectivity for methacrolein was 21.1%. Comparative Examples 2 to 14 By the same catalyst preparation method as in Example 1, a catalyst having a composition shown in Table 1 having a catalyst composition outside the scope of the present invention was produced, and a part of the reaction temperature was shown in Table 1. The contact reaction was carried out under the same reaction conditions as in Example 1 except that the temperature was changed to the described temperature. Table 1 shows the reaction growth after the reaction for 20 hours.
0  0
比 反応 イソフ "タン メタタリ Λ酸 メタク Pレイン Specific reaction isophthalane methacrylic acid
触媒組成 ΐιπι度 転化率 選択率 選択率 例 °c % % % Catalyst composition ΐιπι degree Conversion rate Selectivity Selectivity example ° c%%%
2 P 340 10.5 18.3 21.12 P 340 10.5 18.3 21.1
3 P- ι.3M012K2 340 7.3 34.3 15.33 P-ι.3M012K2 340 7.3 34.3 15.3
4 Ρ· 340 8.0 30.2 17.24 340 8.0 30.2 17.2
5 Ρ: ι.3M012し i 1 340 6.9 27.2 25.35 Ρ: ι.3M012 i 1 340 6.9 27.2 25.3
6 Ρ: I.3MO12AS0.2Mgi 340 8.3 32.5 18.96 Ρ: I.3MO12AS0.2Mgi 340 8.3 32.5 18.9
7 Ρ〕 340 6.2 29.6 18.27 Ρ] 340 6.2 29.6 18.2
8 Ρ: .3Moi2Cro.5 340 7.8 26.2 23.28 Ρ: .3Moi2Cro.5 340 7.8 26.2 23.2
9 Ρ】 340 7.4 31.3 16.39 Ρ] 340 7.4 31.3 16.3
10 Ρコ .3Mo12Sn0.4 340 7.6 32.2 18.310 Mo. 3 Mo 12 Sn 0.4 340 7.6 32.2 18.3
11 Ρ: .3Moi2TeD.2SrD.5 340 8.4 34.5 18.911 story : .3 Moi 2 Te D. 2 Sr D .5 340 8.4 34.5 18.9
12 Ρ] .3Moi2Vo. ODJCS 1 320 5.9 38.2 19.312 Ρ] .3Moi2Vo. ODJCS 1 320 5.9 38.2 19.3
13 Ρ] .3M0 i2Cua. iK 1 320 6.2 36.3 20.113 Ρ] .3M0 i2Cua.iK 1 320 6.2 36.3 20.1
14 Ρ3 Moi2R j 320 5.8 30.1 24.5 実施例 5 14 Ρ 3 Moi2R j 320 5.8 30.1 24.5 Example 5
12-モ リ ブ ド リ ン酸 (Η3ΡΜο1204。·30Η20:日本無機化学) の 結晶 23,6g、 塩化第一鋦 O.lgおよびヒ酸 0.85g (H3As04) を 200m:iの水に溶解した後、 この溶液に、 ピリ ジン 8. Ogおよび 水 100mlを加え、 よ く かき まぜた。 得られたスラ リー溶液を 澳縮し、 ついで 120Τで 12時間乾燥したのち、 粉砕し、 10か ら 20メ ッ シュの粒子を選別した。 これを窒素気流中 450°Cで 3 時間、 さ らに空気中 350°Cで 2時間、 焼成した。 P M o 12A s ci-sC u c^ :の組成をもつ蝕媒が得られた。 12 mode Li blanking de-phosphate (Η 3 ΡΜο 12 0 4 · 30Η 2 0:. Nippon Muki Kagaku) crystal 23,6G, chloride first鋦O.lg and arsenate 0.85g (H 3 As0 4) Was dissolved in 200 m: i of water, and to this solution was added 8.Og of pyridine and 100 ml of water, and the mixture was stirred well. The resulting slurry solution was compressed, then dried at 120 ° C. for 12 hours, and then pulverized to select particles of 10 to 20 mesh. This was calcined at 450 ° C for 3 hours in a nitrogen stream and for 2 hours at 350 ° C in air. An erosion medium having a composition of PM o 12 As ci-sC uc ^: was obtained.
反応温度を 340°Cと したほかは実施例 1 と 同じよ う に して 反応を行なった。 6時間後に反応ガスをガスク ロマ ト グラフ ィ 一で分析したところ、 イ ソブタ ンの 8.8%が転化し、 メ タ ク リル酸の選択率は 46.2%、 メ タ ク 口 レイ ンの選択率は 25.1 %であった。 反応後、 触媒は黄緣色を呈していた。  The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. Six hours later, the reaction gas was analyzed by gas chromatography, and it was found that 8.8% of isobutane was converted, the selectivity for methacrylic acid was 46.2%, and the selectivity for methanol mouth lane was 25.1%. %Met. After the reaction, the catalyst was yellowish blue.
実施例 6  Example 6
実施树 5 でヒ酸を加えるかわ り に、 三酸化アンチモ ンを加 え、 ピリ ジンを加えるかわ り にキノ リ ン 13gを加えて  In Example 5, instead of adding arsenic acid, add antimony trioxide and, instead of adding pyridine, add 13 g of quinoline.
P 3M o 32C u α.5S b D_ 5の組成をもつ蝕媒を調製した。 The蝕媒having the composition P 3 M o 32 C u α . 5 S b D _ 5 was prepared.
この蝕媒を用いて反応温度を 340°Cと したほかは実施例 1 と同様に して反応を行なった。 その結果、 イ ソブタ ンの 9.1 %が転化し、 メ タ ク リル酸の選択率は 42.3%、 メ タ ク ロ レイ ンの選択率は 19.4%であった。  The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was set to 340 ° C using this etching medium. As a result, 9.1% of isobutane was converted, and the selectivity for methacrylic acid was 42.3%, and the selectivity for methacrolein was 19.4%.
実施例 7 12-モ リ ブ ド リ ン酸 236.5g、 3 A s 2 O 5 · 5 H 2〇 11.5gを水 に溶解し、 60°Cで 12時間かき まぜ全容量を 1000mlと した。 こ の溶液 150mlに、 実施例 1 で調製 したモ リ ブ ドバナ ド リ ン酸 の結晶 14.5g、 85 リ ン酸水溶液 0.18 gおよび水 100 mlを加え 2 時間かき まぜた。 つぎに 6.4重量 $の硝酸アンモニゥム水溶液 100gを加え、得られたス ラ リ ーを濃縮 した。 ついで 120°Cで 12 時間乾燥したのち、 粉砕し、 10か ら 20メ ッ シュの粒子を選別 ' した。 これを窒素気流中 450°Cで 3時間、 さ らに空気中 350eC で 2時間焼成した。 P uM o ^sV 0. 3D S 84の組成をもつ 触媒が得 られた。 この触媒を用いて反応温度を 340°Cと した ほかは実施例 1 と 同 じよ う に して反応を行なった。 6時間後 に反応ガスをガス ク ロ マ ト グラフ ィ ーで分析した と ころ、 ィ ソブタ ンの 8.3%が転化し、 メ タ ク リル酸の選択率は 46.8%、 メ タ ク 口 レイ ンの選択率は 22.5%であった。 Example 7 12 mode Li blanking de-phosphate 236.5G, 3 a A s 2 O 5 · 5 H 2 〇 11.5g was dissolved in water, the total volume mixed oysters 12 hours at 60 ° C was 1000 ml. To 150 ml of this solution, 14.5 g of the crystals of molybdovanadic acid prepared in Example 1, 0.18 g of an aqueous solution of 85 phosphoric acid, and 100 ml of water were added and stirred for 2 hours. Next, 100 g of a 6.4 wt% aqueous ammonium nitrate solution was added, and the obtained slurry was concentrated. Then, after drying at 120 ° C for 12 hours, the particles were pulverized, and particles of 10 to 20 mesh were selected. This was calcined at 450 ° C for 3 hours in a nitrogen stream and for 2 hours at 350 eC in air. A catalyst having a composition of PuM o ^ sV 0.3D S84 was obtained. The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was set to 340 ° C using this catalyst. Six hours later, the reaction gas was analyzed by gas chromatography.It was found that 8.3% of isobutane was converted, the selectivity of methacrylic acid was 46.8%, and the The selectivity was 22.5%.
実施例 8〜 2 6  Examples 8 to 26
実施例 1 と 同様の触媒繭製法で、 触媒組成が第 2表に記載 の触媒を調製し、 反応温度を 340°Cと したほかは実施例 1 と 同様に して反応させた。 20時間反応後の反応成纜を示す。 第 Catalysts having the catalyst composition shown in Table 2 were prepared in the same manner as in Example 1 except that the reaction temperature was 340 ° C, and the reaction was carried out in the same manner as in Example 1. The reaction cable after a reaction for 20 hours is shown. No.
イソフ"タン ヌタクリル酸 メタク Bレイン 施 触媒組成 転化率 選択率 選択率 例 % % % 8 Pi. srioiaVo. eAgQ. 7.5 48.3 22.3  Isophthalene methacrylic acid Methac-Brain application Catalyst composition Conversion rate Selectivity Selectivity example%%% 8 Pi. SrioiaVo. EAgQ. 7.5 48.3 22.3
9 Pi. sno J2 D. sZno. i 7.6 50.2 15.6 10 PiMo12Vi.5FeD. 7.0 46.0 15.0 11 P2H012V1C00. 7.0 46.8 14.5 12 Pi.3Hoi2ViNio. 7.1 48.2 10.5 13 D.2 6.8 46.2 9.5 14 Pi. sMoisViGea. sFeo. 8.0 49.3 16.4 15 Ρϊ.3Μοι2νιΖΓ0. 7.1 8.2 12.9 16 PiHoizCuo.5W0. 8.9 40.3 16.1 17 Pi.3M012CU0-】Taa. 7.4 42.2 12.5 18 8.1 43.2 14.3 19 PiMoi2CuD. iRho. 7.2 44.2 16.3 20 Pifioi2Cuo. iSea. 6.9 46.3 13.5 21 PjMoi2CuD. iHna.3 7.4 41.5 16.3 22 PjHdsAso.eCuo. iNba.s 7.7 46.3 15.4 23 PIMOI2VICUD. iCeo.5 9.2 54.6 17.1 24 P1M012V1.9CuD. iNdo. 8.6 55.6 18.2 25 PiMoizViCua. iAsD.3BD.1 8.8 56.2 19.2 26 PiMoi2ViCuo. jBia. 8.2 51.1 18.3 実施例 2 7 9 Pi.sno J2 D. sZno.i 7.6 50.2 15.6 10 PiMo 12 Vi. 5 Fe D. 7.0 46.0 15.0 11 P2H012V1C00. 7.0 46.8 14.5 12 Pi. 3 Hoi 2 ViNio. 7.1 48.2 10.5 13 D.2 6.8 46.2 9.5 14 Pi.sMoisViGea.sFeo. 8.0 49.3 16.4 15 Ρϊ.3Μοι 2 νιΖΓ 0. 7.1 8.2 12.9 16 PiHoizCuo.5W0.8.9 40.3 16.1 17 Pi.3M012CU0-】 Taa.7.4 42.2 12.5 18 8.1 43.2 14.3 19 PiMoi 2 Cu D .iRho ISea. 6.9 46.3 13.5 21 PjMoi 2 Cu D .iHn a .3 7.4 41.5 16.3 22 PjHdsAso.eCuo.iNba.s 7.7 46.3 15.4 23 PIMOI 2 VICUD.iCeo.5 9.2 54.6 17.1 24 P1M012V1. 9 Cu D. iNdo. 8.6 55.6 18.2 25 PiMoizViCua. iAs D. 3 B D .1 8.8 56.2 19.2 26 PiMoi 2 ViCuo. jBia. 8.2 51.1 18.3 Example 2 7
水 200ralを 80°Cに加温し、 これに 12 -モ リ ブ ト' リ ン酸 (H 3 P M o 12·30Η 2〇:日本無機化学製) 23.5gを溶解させ、 これをかき まぜながら、 硝酸カ リ ウムを 1. Ogおよび硝酸銅 Water 200ral warmed to 80 ° C, this 12 - motor Li Bed preparative '-phosphate (H 3 PM o 12 · 30Η 2 ○: Nippon Muki Kagaku) was dissolved 23.5 g, oyster this While mixing, add potassium nitrate to 1.Og and copper nitrate.
0.48gを水 20mlに溶解させた溶液を加え、 さ らに メ タバナジ ン酸アンモニゥム 1.17gを加えた。 次いでこの溶液に 6.4 g の 硝酸アンモ -ゥムを 100mlの水に溶解した水溶液を加え、 得 られたスラ リ ー溶液を加熱、 かき まぜなが ら澳縮した後、 蒸 発皿上で蒸発乾固し、 さ らに 120°Cで 12時間乾燥して固形物 を得た。 こ の固形物を粉砕して 10乃至 20メ ッ シュの粒子を選 別した。 これを窒素気流中で 450°Cで 3時間焼成して触媒と し た。 この触媒の組成は P 】M o 12V Ϊ C u Q.2K 1であった。 A solution prepared by dissolving 0.48 g in 20 ml of water was added, and 1.17 g of ammonium metavanadate was further added. Next, an aqueous solution in which 6.4 g of ammonium nitrate was dissolved in 100 ml of water was added to the solution, and the resulting slurry solution was heated, shrunk while stirring, and then evaporated to dryness on an evaporating dish. The solidified product was further dried at 120 ° C. for 12 hours to obtain a solid. This solid was pulverized to select particles of 10 to 20 mesh. This was calcined at 450 ° C for 3 hours in a nitrogen stream to obtain a catalyst. The composition of this catalyst was P] M o 12 V Ϊ C u Q. 2 K 1.
この触媒 5gを内径 6ramのパイ レク ッ ス製 U字管に充塡して 恒温槽にセ ッ ト した。 恒温槽の温度を 300°Cに設定し、 イ ソ ブタ ン 25モル%、 空気 55モル%、 水蒸気 20モル%の混合ガス を接触時間 3.6秒で供給した。 100時間後に反応ガスをガス ク ロマ ト グラフ ィ 一で分析した と ころ、 ィ ソブタ ンの 7.8%が ¾化し、 メ タ ク リル酸の選択率は 53.4%、 メ タ ク ロ レイ ンの 選択率は 20.8 %であった。 ィ ソブチ レンは検出されなかった。 同一条件で 1000時間反応を行なった .イ ソ ブ タ ンの 7.5 %が 転化し、メ タ ク リル酸の選択率は 54.4%、メ タ ク 口 レイ ンの選 択率は 21.1%であった。  5 g of this catalyst was filled into a U-tube made of Pyrex having an inner diameter of 6 ram, and set in a thermostat. The temperature of the thermostat was set at 300 ° C, and a mixed gas of 25 mol% of isobutane, 55 mol% of air, and 20 mol% of steam was supplied for a contact time of 3.6 seconds. After 100 hours, the reaction gas was analyzed by gas chromatography. As a result, 7.8% of isobutane was degraded, the selectivity of methacrylic acid was 53.4%, and the selectivity of methacrolein was Was 20.8%. Isobutylene was not detected. The reaction was carried out for 1000 hours under the same conditions; 7.5% of isobutane was converted, the selectivity for methacrylic acid was 54.4%, and the selectivity for methacrylate was 21.1%. .
実施例 2 8 水 200mlに 12-モ リ ブド リ ン酸 (H 3P M o 1204D'30H 20: 日本無機化学製) 23.5gを溶解し、 これをかきまぜながら、 メ タバナジン酸ナ ト リ ウム 0.37gおよび 3 A s 2〇 5 · 5H 20 1.15g加え、 60°Cで 12時間かきまぜた。 さ らに、 硝酸ルビジ ゥム 0.5gおよび硝酸タ リ ウム 1.33gを水 20mlに溶解させた溶 液を加え、 次いで 12.8gの硝酸アンモニゥムを 100mlの水に溶 解した水溶液を加えてかき まぜた。 得られたスラ リ ー溶液を 加熱、 かきまぜながら濃縮した後、 蒸発皿上で蒸発乾固し、 さ らに 120°Cで 12時 W乾燥して固形物を得た。 この固形物を 約 100kg/cm2の圧力でペレツ ト状に成型したものを粉砕して 10乃至 20メ ッ シュの粒子を選別した。 これを窒素気流中で 450°Cで 3時 ffi焼成して舳媒と した。 この蝕媒の組成は Example 2 8 Water 200 ml 12-Mo Li Budo-phosphate (H 3 PM o 12 0 4 D'30H 2 0: Nippon Muki Kagaku) was dissolved 23.5 g, while stirring this, main Tabanajin Sanna Application Benefits um 0.37g and 3 A s 2 〇 5 · 5H 2 0 1.15g was added, and the mixture was stirred for 12 hours at 60 ° C. Further, a solution obtained by dissolving 0.5 g of rubidium nitrate and 1.33 g of sodium nitrate in 20 ml of water was added, and then an aqueous solution of 12.8 g of ammonium nitrate dissolved in 100 ml of water was added and stirred. . The resulting slurry solution was concentrated while heating and stirring, then evaporated to dryness on an evaporating dish, and further dried at 120 ° C. for 12 hours to obtain a solid. The solid was formed into a pellet at a pressure of about 100 kg / cm 2 and crushed to select particles of 10 to 20 mesh. This was fired at 450 ° C for 3 hours in a nitrogen stream to obtain a bowing medium. The composition of this erosion medium is
P iM o i2V 3A s 64- b D.5T 1 D.5であった 0 P iM oi 2 V 3 A s 64- b D. 5 T 1 D. 5 a was the 0
この蝕媒 5gを内径 6mmのパイ レク ッ ス製 U字管に充填して 恒温槽にセッ ト した。 恒温槽の温度を 340°Cに設定し、 イ ソ ブタ ン 30モル%、 空気 50モル%、 水蒸気 20モル%の混合ガス を接蝕時 W3.6秒で供給した。 100時間後に反応ガスをガスク ロマ ト グラフ ィ一で分析したと ころ、 ィ ソブタ ンの 10.8%が 転化し、 メ タ ク リル酸の選択率は 45.8%、 メ タ ク ロ レイ ンの 選択率は 1δ .2 %であった。 イ ソブチ レンは検出されなかった。 同一条件で 500時間反応を行なったと ころィ ソブタ ンの 9.9% が転化し、メ タ ク リル酸の選択率は 47.2%、メ タ ク 口 レイ ンの 選択率は 19.3%であった。 実施例 2 9 5 g of this erosion medium was filled into a P-shaped U-shaped tube having an inner diameter of 6 mm, and set in a thermostat. The temperature of the thermostat was set to 340 ° C, and a mixed gas of 30 mol% of isobutane, 50 mol% of air, and 20 mol% of steam was supplied at 3.6 W for corrosion. After 100 hours, when the reaction gas was analyzed by gas chromatography, 10.8% of isobutane was converted, and the selectivity of methacrylic acid was 45.8% and the selectivity of methacrylone was It was 1δ.2%. Isobutylene was not detected. After 500 hours of reaction under the same conditions, 9.9% of isobutane was converted, the selectivity for methacrylic acid was 47.2%, and the selectivity for methacrylate was 19.3%. Example 2 9
水 200π に 12-モ リ ブ ド リ ン酸 ( Η 3Ρ Μ ο 124。·30Η 2〇: 日本無機化学製) 23.5gを溶解 し、 ヒ酸 ( H 3A s 〇 4) 0.85g を加え 60°Cで 12時間かき まぜた。 次いで硝酸銅 0.24gを加え た後、 硝酸タ リ ウム 2.66gおよび硝酸バ リ ウム 1.31gを水 40ml に溶解させた溶液を加えた。 さ らに 13.7gの ピリ ジンを 100ml の水に溶解した水溶液を加えてかき まぜた。 得 られたス ラ リ 一溶液を加熱、 かき まぜなが ら濂縮した後、 蒸発皿上で蒸発 乾固し、 さ らに 120°Cで 12時間乾燥して固形物を得た。 こ の 固形物を約 100kg/cm2の圧力でペ レ ツ ト状に成型したものを 粉砕して 10乃至 20メ ッ シュの粒子を選別した。 これを窒素気 流中で 450 で 3時間焼成して触媒と した。 この触媒の組成は P 】M o 】2A s a. eC u o. i 1 】 B a 0.5であった。 Water 200Pai 12-mode Li blanking de-phosphate: dissolving (Η 3 Ρ Μ ο 124 · 30Η 2 〇. Nippon Muki Kagaku) 23.5 g, arsenic acid (H 3 A s 〇 4) 0.85 g And stirred at 60 ° C for 12 hours. Then, after adding 0.24 g of copper nitrate, a solution of 2.66 g of sodium nitrate and 1.31 g of barium nitrate dissolved in 40 ml of water was added. Further, an aqueous solution in which 13.7 g of pyridine was dissolved in 100 ml of water was added and stirred. The obtained slurry was heated and shrunk while stirring, then evaporated to dryness on an evaporating dish, and further dried at 120 ° C for 12 hours to obtain a solid. The solid was formed into a pellet at a pressure of about 100 kg / cm 2 and crushed to select particles of 10 to 20 mesh. This was calcined at 450 for 3 hours in a nitrogen stream to obtain a catalyst. The composition of the catalyst was P] M o] 2 A s a. EC u o . I 1 ] B a 0. 5.
この触媒 5gを内径 6JIDIのパイ レク ッ ス製 U字管に充填して 恒温槽にセ ッ ト した。 恒温槽の温度を 340°Cに設定し、 イ ソ ブタ ン 60モル%、 酸素 20モル%、 水蒸気 20モル%の混合ガス を接触時間 3.6秒で供耠した。 100時間後に反応ガスをガス ク ロ マ ト グラフ ィ 一で分析した と ころ、 ィ ソブタ ンの 9.5%が 転化 し、 メ タ ク リル酸の選択率は 44.2%、 メ タ ク ロ レ イ ンの 選択率は 17.4 %であった。 イ ソブチ レンは検出されなかった。 同一条件で 500時間反応を行なったと こ ろイ ソブタ ンの 9.4% が転化し、メ タ ク リル酸の選択率は 43.3%、メ タ ク 口 レイ ンの 選択率は 17.1%であった。 実施例 30〜 4 5 g of this catalyst was filled in a pipe-shaped U-shaped tube having an inner diameter of 6 JIDI, and set in a thermostat. The temperature of the thermostat was set to 340 ° C, and a mixed gas of 60 mol% of isobutane, 20 mol% of oxygen, and 20 mol% of steam was supplied for a contact time of 3.6 seconds. After 100 hours, the reaction gas was analyzed by gas chromatography.As a result, 9.5% of isobutane was converted, the selectivity for methacrylic acid was 44.2%, and the The selectivity was 17.4%. Isobutylene was not detected. When the reaction was carried out under the same conditions for 500 hours, 9.4% of isobutane was converted, and the selectivity of methacrylic acid was 43.3% and the selectivity of methacrylate was 17.1%. Examples 30 to 4
実施例 1 と同様の斂媒調製法で、 触媒組成が第 3表に記載 の蝕媒を調製し、 反応温度を 340°Cと したほかは実施例 1 と 同様にして反応させた。 100時間反応後の反応成縝を示す。  Using the same method for preparing the convergent medium as in Example 1, the erosion medium having the catalyst composition shown in Table 3 was prepared, and the reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 340 ° C. The reaction growth after 100 hours of reaction is shown.
第 3 表  Table 3
ィ、/フ "タン タクリル酸 ヌタクロレイン 触媒組成 ¾化率 選択率 選択率 例 % % %  N, N-Frothane tantacrylate Catalyst composition Degree of selectivity Selectivity Selectivity Example%%%
30 Pi.3?1012V0. Zti 11.2 45.8 15.4 31 Pi.5Mo12Va.5し s口- 2 9.5 47.4 18.2 32 P1M012V 1.5Mga.3 9.2 47.2 19.3 32 Ρ2Μ0ュ iRbi- 5Sra_ 1 10.9 46.2 17.3 33 Pi.sMoisViCsjNao. 11.6 44.3 14.8 34 Pi.2KO12 1. sCS2 9.0 46.8 16.3 35 Pi.3MOi2CuD. iRb 12.4 44.8 17.6 36 Pi.3MO I2CUD. 2TI0. sCao.5 丄 1-6 42.3 15.3 37 P IMO IZCUO. SCSQ. iRbD.5 10.0 44.3 18.9 38 Pi.3M012CU iLiD. iRbo.3 13.7 41.2 12.5 39 10.6 44.5 19.8 40 Pi.3M012CU0.3 Asa.2CS1 10.8 46.2 17.2 41 Pi.3M012CU0. sMgo. sBao.5 8 - 4 42.3 15.5 実施例 4 2 ~ 5 5 ?. 30 Pi.3 1012V0 Zti 11.2 45.8 15.4 31 Pi 5 Mo 12 Va.5 Mr s mouth -. 2 9.5 47.4 18.2 32 P1M012V 1.5Mga.3 9.2 47.2 19.3 32 Ρ2Μ0 Interview iRbi- 5Sra_ 1 10.9 46.2 17.3 33 Pi . sMoisViCsjNao.11.6 44.3 14.8 34 Pi.2KO12 1.sCS2 9.0 46.8 16.3 35 Pi.3MOi2Cu D .iRb 12.4 44.8 17.6 36 Pi.3MO I2CUD.2TI0.sCao.5 丄 1-6 42.3 15.3 37 P IMO IZCUO.SCSQ.iRb D. 5 10.0 44.3 18.9 38 Pi.3M012CU iLi D. IRbo.3 13.7 41.2 12.5 39 10.6 44.5 19.8 40 Pi.3M012CU0.3 Asa.2CS1 10.8 46.2 17.2 41 Pi.3M012CU0.sMgo.sBao.5 8-4 42.3 15.5 Example 4 2 to 5 5
第 4表に示 した組成をもつ触媒を調製し、 実施例 1 と 同様 に して反応させた。 100時間後の反応成綾を第 4表に示す。  A catalyst having the composition shown in Table 4 was prepared and reacted in the same manner as in Example 1. Table 4 shows the reaction after 100 hours.
第 4 表  Table 4
ィソ厂タン メタクリル酸 ヌタクロレイン 施 触媒組成 ¾化率 選択率 選択率 例 % % %  Nisocrolein methacrylate Natacrolein Application Catalyst composition Degree of selectivity Selectivity Selectivity Example%%%
42 Pi.2M0l2VjAgD.25K: 8.6 44.6 16.2 43 P o12Vi.5AgD. IASO. 25K 1 10.2 46.5 18.2 44 Pi- 3Moi2V】Sbd- iCs; 7.8 50.2 22.2 45 PH012VD. eZra. sCs 7.2 48.9 16.6 46 PMoi2ViTeD. zsK 7.6 50.2 18.2 47 PMo12ViTa Bo. :Rb; 8.5 50.6 22.3 48 PzMoisViGeo.5 8.2 45.6 19.8 49 Rb- 7.0 45.6 17.2 50 PMo 12CUD.2Cro. iCs 7.1 44.3 20.2 51 PMoisCu 5TID. IKD. 5 6.9 43.8 21,2 52 PMo 1 zCua_ 2FeD. iSrD_ 2 Ka 6.8 46.2 19.8 42 Pi. 2 M0l 2 VjAg D. 25 K: 8.6 44.6 16.2 43 Po 12 Vi. 5 Ag D .IASO.25K 1 10.2 46.5 18.2 44 Pi-3Moi 2 V】 Sbd- iCs ; 7.8 50.2 22.2 45 PH012VD.eZra .sCs 7.2 48.9 16.6 46 PMoi 2 ViTe D .zsK 7.6 50.2 18.2 47 PMo 12 ViTa Bo.:Rb; 8.5 50.6 22.3 48 PzMoisViGeo.5 8.2 45.6 19.8 49 Rb- 7.0 45.6 17.2 50 PMo 12CUD.2Cro.iCs 7.1 44.3 20.2 51 PMoisCu 5 TID. IKD. 5 6.9 43.8 21,2 52 PMo 1 zCu a _ 2Fe D. iSr D _ 2 K a 6.8 46.2 19.8
CsD. Cs D.
53 PMoi2Cuo. iNiD. sCaiTlo.5 6.9 43.2 18.3 54 PMoi2Cua. 1C00. IYQ. iCsi 7.2 45.6 19.6 55 Pi.2Moi2CuD- iSno. iRbo.2S 7.8 46.3 18.6 実施例 5 6 ~ 7 0 53 PMoi 2 Cuo.iNi D .sCaiTlo.5 6.9 43.2 18.3 54 PMoi 2 Cua. 1C00.IYQ.iCsi 7.2 45.6 19.6 55 Pi.2Mo i2 Cu D- iSno.iRbo.2S 7.8 46.3 18.6 Example 5 6-7 0
第 5表に示 した組成を もつ蝕媒を調製し、 実施例 1 と 同様 の条件で接蝕反応を行なっ た。 100時間後の反応成綾を第 5 表に示す  An erosion medium having the composition shown in Table 5 was prepared, and an erosion reaction was performed under the same conditions as in Example 1. Table 5 shows the reaction after 100 hours.
第 5 表  Table 5
W、、 メタクリ Λ酸 ヌタクロレイジ W ,, methacrylic acid Nutachlorage
2 & 蝕媒組成 転化率 選択率 選択率 例 % % % 2 & Eating medium composition Conversion rate Selectivity Selectivity example%%%
56 PHO!ZV!CUQ. ZT1d.5Rb。.5 11.8 56.2 15.4 57 PliOj2Va- 5CuD.2ZnD.ュ Kコ 10.9 52.4 16.8 58 PMoi2Vi.5CuD.ERhQ. iCsi 9.8 53.2 14.9 59 PH012V1Cuo.5Nb1Mno.5Tl- 10.1 53.8 17.2 60 PMOI2VICUD.2¥D. i 5 9.7 49.3 16.8 61 PHoi2Vi. ECUD. iBia.2T1D.5Ki 10.3 50.2 16.3 62 Pl-3M0l2VlCUD.2Seo. lKl.5 10.2 51.1 17.3
Figure imgf000028_0001
56 PHO! ZV! CUQ. Z T1 d . 5 Rb. . 5 11.8 56.2 15.4 57 PliOj 2 V a -..... 5 Cu D 2 Zn D Interview K co 10.9 52.4 16.8 58 PMoi2Vi 5 Cu D E RhQ iCsi 9.8 53.2 14.9 59 PH012V1Cuo.5Nb1Mno.5Tl- 10.1 53.8 17.2 60 PMOI 2 VICUD. 2 ¥ D.i 5 9.7 49.3 16.8 61 PHoi 2 Vi. ECUD.iBia. 2 T1 D. 5 Ki 10.3 50.2 16.3 62 Pl-3M0l2VlCUD.2Seo.lKl.5 10.2 51.1 17.3
Figure imgf000028_0001
64 PMoieViCuo.zAsD. iBD. iRbD.5 12.8 50.3 14.2 65 10.6 57.8 14.2 66 Pi.5Hoi2V]CuD.2Ndo.5CS: 12.8 53.8 15.9 67 PMo12VaCuD.2Lao. sCsa.sTla.5 11.9 54.4 15.3 68 P 012V1CU0. s ao.5R o. δΤΙα. s 10.8 53.4 16.9 9 PMoa2ViCuD. iCeD.5CsD.5T1D.5 11.2 54.9 15.6 0 PHoi2ViCuD.2Coa. iRbD.5 9.7 50.0 18.2 実施例 7 1 .... 64 PMo ie ViCuo.zAs D iB D iRb D 5 12.8 50.3 14.2 65 10.6 57.8 14.2 66 Pi 5 Hoi 2 V] Cu D 2 Ndo.5CS:... 12.8 53.8 15.9 67 PMo 12 VaCuD 2 Lao sCsa .sTla.5 11.9 54.4 15.3 68 P 012V1CU0. s ao.5R o. δΤΙα. s 10.8 53.4 16.9 9 PMo a2 ViCu D. iCe D. 5 Cs D. 5 T1 D .5 11.2 54.9 15.6 0 PHoi 2 ViCu D. 2 Co a .iRb D. 5 9.7 50.0 18.2 Example 7 1
実施例 6 9 で調製した触媒 ( P M o :i2V ;lC u CI. ;IC e 0.5 C s □.5 1 5) を使用 して、 実施例 1 と 同様の反応条件で 1000時間連続して接触反応を行なったが、 触媒の劣化は認め られず、 そのと きのイ ソブタ ンの転化率は 10.9$、 メ タ ク リ ル酸の選択率は 56.3 、 メ タ ク 口 レイ ンの選択率は 15.3 であ つた。 Example 6 The catalyst prepared in 9 (PM o:... I2 V; l C u CI; I C e 0 5 C s □ 5 1 5) Use, 1000 under the same reaction conditions as in Example 1 The catalytic reaction was continued for a continuous time, but no catalyst deterioration was observed. At that time, the conversion of isobutane was 10.9 $, the selectivity for methacrylic acid was 56.3, and the The selectivity of the application was 15.3.
実施例 7 2  Example 7 2
実施例 5 4 で調製した触媒 ( Ρ Μ ο : 2 V a C u 0.2A s □. i B D. jR b o.5) を、 内径 6mmの SUS製 U字管に充填し、 反応圧 力を 0.3MPa、 反応温度 280°Cでイ ソブタ ン 2 5モル%、 空気 5 5 モル%、 水蒸気 2 0 モル%の混合ガスを接触時間 3.6秒 で反応させた。 100時間後に反応ガスをガスク ロマ ト グラ フ ィ 一で分析した と ころ、 イ ソブタ ンの 6.2 %が転化 し、 メ タ ク リル酸の選択率は 50.3%、 メ タ ク ロ レイ ンの選択率は 22.4 %であった。 同一条件で 1000時間連続 して接触反応を行なつ たが、 触媒の劣化は認め られず、 そのときのイ ソブタ ンの ¾ 化率は 6.1 、 メ タ ク リ ル酸の選択率は 51.1 、 メ タ ク ロ レイ ンの選択率は 20.9《であった。 The catalyst prepared in Example 5 4 (Ρ Μ ο:. .. 2 V a C u 0. 2 A s □ i B D jR b o 5) , and was charged into a SUS U-shaped tube having an inner diameter of 6 mm, the reaction At a pressure of 0.3 MPa and a reaction temperature of 280 ° C, a mixed gas of 25 mol% of isobutane, 55 mol% of air, and 20 mol% of steam was reacted with a contact time of 3.6 seconds. After 100 hours, when the reaction gas was analyzed by gas chromatography, 6.2% of the isobutane was converted, the selectivity for methacrylic acid was 50.3%, and the selectivity for methacrolein. Was 22.4%. The catalytic reaction was carried out continuously for 1000 hours under the same conditions, but no deterioration of the catalyst was observed. At that time, the conversion of isobutane was 6.1, the selectivity of methacrylic acid was 51.1, The selectivity of tacrolein was 20.9 <<.
実施例 7 3  Example 7 3
実施例 5 1 で調製 した触媒 ( P M O V UC U Q. :  The catalyst prepared in Example 51 (PMOVUCUQ .:
B i 0.2T 1 SK -J を使用 し、 実施例 7 2 と 同様の反応条 件で接触反応を行なった。 100時間後に反応ガス をガス ク ロ マ トグラブィ 一で分析したところ、 ィ ソブタンの 6.0%が転 ィ匕し、 メ タ ク リル酸の選択率は 48.2%、 メ タ ク ロ レイ ンの選 択率は 24.5%であった。 同一条件で 3000時間連続して接蝕反 応を行なったが、 触媒の劣化は認め られず、 そのときのイ ソ ブタンの転化率は 6.0 、 メ タク リル酸の選択率は 47.1 、 メ タ ク ロ レイ ンの選択率は 23.8 であった。 Using the B i 0. 2 T 1 S K -J, it was subjected to catalytic reaction in the same reaction conditions as in Example 7 2. After 100 hours, the reaction gas is Analysis by matlabi revealed that 6.0% of the isobutane was converted, the selectivity for methacrylic acid was 48.2%, and the selectivity for methacrolein was 24.5%. The corrosion reaction was carried out continuously for 3000 hours under the same conditions, but no catalyst deterioration was observed. At that time, the conversion of isobutane was 6.0, the selectivity of methacrylic acid was 47.1, and the The selectivity of Lorain was 23.8.
実施例 74  Example 74
モ リブドバナ ド リ ン酸水溶液に塩化第一鋦および硝酸タ リ ゥム、 硝酸ルビジウムを加えて、 スラ リー状物を得、 これを 濃縮、 乾固した。 さ らに 1 3 0 °Cで 1 0時間乾燥した後、 粉 碎して M O 3sV lし U D- 2 T 1 R b 0. 5の組成を ¾つ 末 を得た。 一方、 100から 200メ ッ シュの球状シ リ カ (富士デビ ソン製:マイ ク ロ ビーズシ リ カゲノレ 1000A)を 700°Cで 3時間焼 成した後、 ホウ酸およびヒ酸を含浸する。 これを 500°Cで 2時 間焼成して Bおよび A s がそれぞれ 0.03重童 担持されたシ リ カ担体をあ らかじめ繭製した、 このシリ カ担体に少量の水 を加えて担体を湿潤させた。 湿潤させた担体 100gを転動造粒 機の回転皿に入れ、 前記粉末を 100gを散布し、 一時間混合し た。 粉末状の組成物が担体の細孔の奥深く まで進入した状態 で細孔部分に担持されている担体が得られた。 これに ピリ ジ ンを吸収させたのち 120°Cで乾燥させる。 ついで窒素気流中 450°Cで 3時間、 さ らに空気中 35ひ °Cで 1時間、 焼成した。 こ の蝕媒を内容積 400mlの流動床反応器を用いて 320°Cで反応さ せた。 イ ソ ブ タ ン 30モル%、 空気 50モル%、 水蒸気 20モル% の混合ガスをガス線速 20cm/秒、 接触時間 3 · 6秒で供給した。 To the aqueous solution of molybdovanadolinic acid, primary chloride, potassium nitrate, and rubidium nitrate were added to obtain a slurry, which was concentrated and dried. Further, after drying at 130 ° C for 10 hours, the mixture was pulverized and subjected to MO3sVl to obtain a powder having a composition of UD-2T1Rb0.5. On the other hand, 100-200 mesh spherical silica (Fuji Devison: Microbeads Silicon Age 1000A) is calcined at 700 ° C for 3 hours and then impregnated with boric acid and arsenic acid. This was calcined at 500 ° C for 2 hours to prepare a cocoon in advance with a silica carrier in which B and As were each loaded with 0.03 double babies. A small amount of water was added to this silica carrier to form a carrier. Wet. 100 g of the moistened carrier was placed in a rotating dish of a tumbling granulator, and 100 g of the powder was sprayed and mixed for one hour. In the state where the powdery composition had penetrated deep into the pores of the carrier, a carrier supported on the pores was obtained. Absorb pyridine and dry at 120 ° C. Then, it was calcined in a nitrogen stream at 450 ° C for 3 hours and further in air at 35 ° C for 1 hour. This edible medium was reacted at 320 ° C in a fluidized bed reactor with a 400 ml internal volume. I let you. A mixed gas of 30 mol% of isobutane, 50 mol% of air and 20 mol% of steam was supplied at a gas linear velocity of 20 cm / sec and a contact time of 3.6 seconds.
20時間後に反応ガス をガス ク ロ マ ト グラ フ ィ 一で分析した と ' ころ、 イ ソブタ ンの 9.8 %が ¾化 し、 メ タ ク リル酸の選択率 は 4δ.3%、 メ タ ク ロ レイ ンの選択率は 17.5%であった。 After 20 hours, the reaction gas was analyzed by gas chromatography.As a result, 9.8% of isobutane was degraded, the selectivity of methacrylic acid was 4δ.3%, and the The selectivity for lorain was 17.5%.
実施例 7 5  Example 7 5
実施例 6 9 で調製した触媒 ( Ρ Μ θ ν ,Ο ιΐ ο. Ο β ο^ C s D.5Τ 1 D.5) と 同 じものを、 押 しだし成型機で径 lmm ø 、 長さ 5mmに揃えたのち、 内径 15mm、 高さ 1.8πの SUS製の固定床 反応器に充填した。 反応器の外套には 320°Cの熱媒を循環さ せた。 この反応器にイ ソブタ ン 30モル%、 酸素 15モル%、 水 蒸気 20モル%、 窒素 35モル%の混合ガスを接触時間 3.6秒で 供給した。 反応圧力は 0.4MPaに維持した。 100時間後に反応 ガスをガス ク ロ マ ト グラフ ィ ーで分析 した と ころ、 イ ソブタ ンの 10.3%が転化 し、 メ タ ク リル酸の選択率は 55.2%、 メ タ ク ロ レ イ ンの選択率は 17.3%であった。 そのあ と、 今度はィ ソ ブ タ ン 30モル%、 メ タ ク ロ レ イ ン 0.6モル%、 酸素 15モル %、 水蒸気 20モル%、 窒素 34.4モル% の混合ガスを反応させ た。 なお、 メ タ ク ロ レイ ンはこの反応で得 られる生成ガスを 急冷塔、 ついでメ タ ク ロ レ イ ン吸収塔に導き、 得 られた凝縮 液および吸収液か らメ タ ク 口 レ イ ンを分雜精製して使用 した。 メ タ ク 口 レイ ンを供給 しないと き に比べてィ ソ ブタ ンの転化 率が 9.0 %に低下 したもののメ タ ク リ ル酸の選択.率は 65 · 2 % に向上した》 メ タ ク ロ レイ ンの約 60 がメ タ ク リ ル酸に転化 している。 The catalyst prepared in Example 6 9 (Ρ Μ θ ν, Ο ιΐ ο. Ο β ο ^ C s D. 5 Τ 1 D. 5) as same, press Catering diameter lmm ų in molding machine length After adjusting the diameter to 5 mm, it was packed in a SUS fixed-bed reactor with an inner diameter of 15 mm and a height of 1.8π. A heating medium of 320 ° C was circulated in the jacket of the reactor. A mixed gas of 30 mol% of isobutane, 15 mol% of oxygen, 20 mol% of water vapor, and 35 mol% of nitrogen was supplied to the reactor with a contact time of 3.6 seconds. The reaction pressure was maintained at 0.4 MPa. After 100 hours, the reaction gas was analyzed by gas chromatography and found that 10.3% of the isobutane was converted, the selectivity for methacrylic acid was 55.2%, and the The selectivity was 17.3%. Then, a mixed gas of 30 mol% of isobutane, 0.6 mol% of methacrolein, 15 mol% of oxygen, 20 mol% of steam, and 34.4 mol% of nitrogen was reacted. It should be noted that the methacrolein guides the product gas obtained by this reaction to a quenching tower and then to a methachlorine absorption tower, and from the obtained condensate and absorption liquid to a mechano-rerain area. Was purified by separation and used. Although the conversion of isobutane was reduced to 9.0% compared to the case where no methanol mouth lane was supplied, the selection of methacrylic acid was 65.2%. Approximately 60 of methacrolein have been converted to methacrylic acid.
産業上の利用可能性 Industrial applicability
本発明の方法は、 豊富で安価なイ ソブタ ンを原料と し、 ィ ソブタ ンから一段でメ タ ク リル酸およびメ タ ク ロ レイ ンを安 価に製造でき、 しかも用いる触媒の触媒活性が長期安定に維 持できるので工業的にきわめて優位なメ タ ク リル酸の製造方 法である。  The process of the present invention uses abundant and inexpensive isobutane as a raw material, can produce methacrylic acid and methacrylone from isobutane in a single step at low cost, and furthermore, the catalytic activity of the catalyst used is high This is an industrially superior method for producing methacrylic acid because it can be maintained for a long period of time.

Claims

請求の範囲 The scope of the claims
1 . Pおよび/または A s を中心元素に含み、 M o を配位元 素と して含むヘテロ ポ リ 酸を含有 しかつ、 次式 ( 1 ) :
Figure imgf000033_0001
1. It contains a heteropolyacid containing P and / or As as a central element and containing Mo as a coordinating element, and has the following formula (1):
Figure imgf000033_0001
(式中、 Aは Pおよびノまたは A s をあ らわ し、 M o はモ リ ブデンをあ らわ し、 Bは Vおよび/ま たは C u をあ らわす。 Cはアルカ リ金属、 アルカ リ土類金属、 T 1 の う ち少な く と も一種をあ らわす。 Dは A g、 Z n、 T i 、 Z r、 N b 、  (Where A represents P and ノ or As, Mo represents molybdenum, B represents V and / or Cu, and C represents an alkali metal. , Alkaline earth metals, and at least one of T 1. D is Ag, Zn, Ti, Zr, Nb,
T a、 C r、 W、 M n、 F e、 C o、 N i 、 B、 A 1 、 G e、 R h、 S n、 S b 、 B i 、 S e、 T e、 Y、 :L a、 C e、 Ta, Cr, W, Mn, Fe, Co, Ni, B, A1, Ge, Rh, Sn, Sb, Bi, Se, Te, Y,: L a, C e,
P r、 N d の う ち少な く と も一種をあ らわす。 0は酸素をあ らわす。 a、 b、 c、 d、 eは各々の元素の原子比をあ らわ し、 a = 0.5-3、 b= 0.01-3, c= 0-3、 d= 0-3である。 eは各元素の 原子価および原子比によ り 決ま る数値である。 ) であ らわさ れる組成を含む触媒に、 イ ソブタ ンと分子状酸素を含む混合 ガスを気相で 240乃至 350°Cで接触させる こ と を特徴とするメ タ ク リ ル酸およびメ タ ク 口 レイ ンの製造法。  It represents at least one of Pr and Nd. 0 represents oxygen. a, b, c, d, and e represent the atomic ratios of the respective elements, where a = 0.5-3, b = 0.01-3, c = 0-3, and d = 0-3. e is a numerical value determined by the valence and atomic ratio of each element. A) a gas mixture containing isobutane and molecular oxygen at 240 to 350 ° C in a gas phase with a catalyst having a composition represented by the formula: Manufacturing method for tuck mouth lanes.
2. 式 ( 1 ) において c= 0.01-3である請求の範囲第 1項に 記載のメ タ ク リル酸およびメ タ ク ロ レ イ ンの製造法。  2. The method for producing methacrylic acid and methacrolein according to claim 1, wherein in formula (1), c = 0.01-3.
3 . 式 ( 1 ) において d= 0.01-3である請求の範囲第 1 項ま たは第 2項に記載のメ タ ク リ ル酸およびメ タ ク 口 レイ ンの製 造法。 3. The method for producing methacrylic acid and methacrylic acid lane according to claim 1 or 2, wherein d = 0.01-3 in the formula (1).
4 . 式 ( 1 ) において Bが Vであ る請求の範囲第 1 項乃至第 3項のいずれかの項に記載のメ タ ク リル酸およびメ タ ク 口 レ イ ンの製造法。 4. Claims 1 to 4 in which B is V in equation (1). 3. A method for producing methacrylic acid and a metallophthalate according to any one of paragraphs 3 to 4.
5. 式 ( 1 ) において Bが C uである請求の範囲第 1項乃至 第 4項のいずれかの項に記载のメ タ ク リル酸およびメ タ ク 口 レイ ンの製造法。  5. The method for producing a methacrylic acid and a methacrylic acid lane according to any one of claims 1 to 4, wherein B in the formula (1) is Cu.
6. アルカ リ金属が L i、 N a、 K、 R b、 C s から選ばれ る少なく とも一種である請求の範西第 1項乃至第 5項のいず ' れかの項に記載のメ タ ク リル酸およびメ タ ク 口 レイ ンの製造 法。  6. The method according to any one of claims 1 to 5, wherein the alkali metal is at least one selected from Li, Na, K, Rb, and Cs. A method for producing methacrylic acid and methacrylic acid lane.
7. アルカ リ土類金属が M g、 C a、 S r、 B a から選ばれ る少な く とも一種である請求の範囲第 1項乃至第 6項のいず れかの項に記載のメ タ ク リル酸およびメ タ ク 口 レイ ンの製造 法。  7. The method according to any one of claims 1 to 6, wherein the alkaline earth metal is at least one selected from Mg, Ca, Sr, and Ba. A method for the production of acrylic acid and metal mouth lane.
8. 式 ( 1 ) において b = 0.05 -2である請求の範囲第 1項乃至 第 7項のいずれかの項に記載のメ タ ク リル酸およびメ タ ク 口 レイ ンの製造法。  8. The method for producing methacrylic acid and methacrylic acid lane according to any one of claims 1 to 7, wherein b = 0.05 -2 in the formula (1).
9 . 式 ( 1 ) において c=0.1- 2である請求の範囲第 2項乃至 第 8項のいずれかの項に記载のメ タ ク リル酸およびメ タ ク 口 レイ ンの製造法。  9. The process for producing a methacrylic acid and a methacrylic acid line according to any one of claims 2 to 8, wherein c = 0.1-2 in the formula (1).
1 0. 式 ( 1 ) において d = (K 05 - 1である請求の範囲第 3項乃 至第 9項のいずれかの項に記載のメ タ ク リル酸およびメ タ ク 口 レイ ンの製造法。 10. Production of the methacrylic acid and the methacrylic acid line according to any one of claims 3 to 9 wherein d = (K05-1) in the formula (1). Law.
Γ 1 . 反応温度が 270乃至 320°Cである請求の範囲第 2項乃至 第 1 0項のいずれかの項に記載のメ タ ク リ ル酸およびメ タ ク 口 レ イ ンの製造法。 Γ 1. The claim 2 to claim 2, wherein the reaction temperature is 270 to 320 ° C. 10. The method for producing methacrylic acid and the methacrylate mouth line according to any one of the paragraphs 10 to 10.
1 2 . 原料ガス中のィ ソブタ ンの濃度が 10乃至 80モル%であ る請求の範囲第 1 項乃至第 1 1 項のいずれかの項に記載のメ タ ク リ ル酸およびメ タ ク ロ レ イ ンの製造法。  12. The methacrylic acid and methacrylate according to any one of claims 1 to 11, wherein the concentration of isobutane in the raw material gas is 10 to 80 mol%. The manufacturing method of Lorain.
1 3 . 原料ガス中のイ ソブタ ンの漉度が 20乃至 60モル%であ る請求の範囲第 1 2項に記載のメ タ ク リ ル酸およびメ タ ク 口 レイ ンの製造法。  13. The process for producing methacrylic acid and methacrylic acid lay according to claim 12, wherein the filtration rate of isobutane in the raw material gas is 20 to 60 mol%.
1 4 . 原料ガス中の酸素と イ ソブタ ンのモル比が 0. 05対 1乃 至 1対 1である請求の範囲第 1 項乃至第 1 3項のいずれかの項 に記載のメ タ ク リル酸およびメ タ ク ロ レ イ ンの製造法。  14. The method according to any one of claims 1 to 13, wherein the molar ratio of oxygen to isobutane in the raw material gas is 0.05 to 1 to 1 to 1. A method for producing lylic acid and methacrolein.
1 5 . 原料ガス中の酸素と イ ソブタ ンのモル比が 0 . 1対 1乃至 0 . 6対 1である請求の範囲第 1 4項に記載のメ タ ク リル酸およ びメ タ ク ロ レイ ンの製造法。 15. The methacrylic acid and the metal according to claim 14, wherein the molar ratio of oxygen to isobutane in the raw material gas is from 0.1: 1 to 0.6: 1. Manufacturing method of Lorain.
1 6 . 供給原料ガス中に水蒸気が存在する請求の範囲第 1 項 乃至第 1 5項のいずれかの項に記載のメ タ ク リル酸およびメ タ ク ロ レイ ンの製造法。  16. The method for producing methacrylic acid and methachlorine according to any one of claims 1 to 15, wherein water vapor is present in the feed gas.
1 7 . 供給原料ガス中のイ ソブタ ンに対する水蒸気のモル比 が 1対 5乃至 5対 1である請求の範囲第 1 6項に記載のメ タ ク リ ル酸およびメ タ ク 口 レイ ンの製造法。  17. The methacrylic acid and methacrylic acid lantern according to claim 16, wherein the molar ratio of water vapor to isobutane in the feed gas is from 1 to 5 to 5 to 1. Manufacturing method.
1 8 . 供給原料ガス中のイ ソブタ ンに対する水蒸気のモル比 が 1対 3乃至 3対 1である請求の範囲第 1 7項に記載のメ タ ク リ ル酸およびメ タ ク 口 レイ ンの製造法。 18. The method of claim 17, wherein the molar ratio of water vapor to isobutane in the feed gas is from 1: 3 to 3: 1. Manufacturing method.
1 9 . 供給原料ガスの蝕媒との接触時間が 1乃至 10秒であ る請求の範囲第 1頊乃至第 1 8項のいずれかの項に記载のメ タ ク リル酸およびメ タ ク 口 レイ ンの製造法。 19. The methacrylic acid and metal according to any one of claims 1 to 18 wherein the contact time of the feed gas with the erosion medium is 1 to 10 seconds. Mouth ray manufacturing method.
2 0. 供給原料ガスの蝕媒との接蝕時間が 0.5乃至 5秒である 請求の範囲第 1 9項に記載のメ タ ク リル酸およびメ タ ク ロ レ ィ ンの製造法。  20. The method for producing methacrylic acid and methacrolein according to claim 19, wherein the contact time of the feed gas with the erosion medium is 0.5 to 5 seconds.
2 1. 供給原料ガス中に不活性ガスが存在する請求の範囲第 1項乃至第 2 0項のいずれかの項に記載のメ タ ク リル酸およ びメ タク ロ レイ ンの製造法。  2 1. The method for producing methacrylic acid and methachlorine according to any one of claims 1 to 20, wherein an inert gas is present in the feed gas.
2 2. 反応生成ガスからメ タ ク リル酸および不活性ガスを分 雜し、 得られるメ タ ク ロ レイ ンを未反応イ ソブタ ンと ともに 反応器に ! サイ クルする請求の範囲第 1項乃至第 2 1項のい ずれかの項に記载のメ タク リル酸およびメ タ ク 口 レイ ンの製 造法。 2 2. Methacrylic acid and inert gas are separated from the reaction product gas, and the resulting methacrylone is introduced into the reactor together with unreacted isobutane! A method for producing the methacrylic acid and the methacrylate mouth lane according to any one of claims 1 to 21 which is a cycle.
PCT/JP1989/000510 1989-05-22 1989-05-22 Process for producing methacrylic acid and methacrolein WO1993013042A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/400,117 US5191116A (en) 1989-05-22 1989-05-22 Process for the preparation of methacrylic acid and methacrolein
PCT/JP1989/000510 WO1993013042A1 (en) 1989-05-22 1989-05-22 Process for producing methacrylic acid and methacrolein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1989/000510 WO1993013042A1 (en) 1989-05-22 1989-05-22 Process for producing methacrylic acid and methacrolein

Publications (1)

Publication Number Publication Date
WO1993013042A1 true WO1993013042A1 (en) 1993-07-08

Family

ID=13958698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000510 WO1993013042A1 (en) 1989-05-22 1989-05-22 Process for producing methacrylic acid and methacrolein

Country Status (1)

Country Link
WO (1) WO1993013042A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516647B1 (en) * 1969-11-25 1976-03-01
JPS5283306A (en) * 1975-12-27 1977-07-12 Nippon Zeon Co Ltd Simultaneous preparation of 1,3-butadiene and methacrolein
JPS5562041A (en) * 1978-10-30 1980-05-10 Rohm & Haas Manufacture of methacrylic acid or acrylic acid
JPS62132832A (en) * 1985-12-03 1987-06-16 Asahi Chem Ind Co Ltd Production of methacrylic acid and/or methacrolein
JPS63145249A (en) * 1986-12-06 1988-06-17 Asahi Chem Ind Co Ltd Production of methacrylic acid and/or methacrolein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516647B1 (en) * 1969-11-25 1976-03-01
JPS5283306A (en) * 1975-12-27 1977-07-12 Nippon Zeon Co Ltd Simultaneous preparation of 1,3-butadiene and methacrolein
JPS5562041A (en) * 1978-10-30 1980-05-10 Rohm & Haas Manufacture of methacrylic acid or acrylic acid
JPS62132832A (en) * 1985-12-03 1987-06-16 Asahi Chem Ind Co Ltd Production of methacrylic acid and/or methacrolein
JPS63145249A (en) * 1986-12-06 1988-06-17 Asahi Chem Ind Co Ltd Production of methacrylic acid and/or methacrolein

Similar Documents

Publication Publication Date Title
EP0102641B1 (en) Catalyst for manufacturing methacrolein
US4438217A (en) Catalyst for oxidation of propylene
JP5808912B2 (en) Method for producing acrolein from glycerol
JP3287066B2 (en) Method for producing acrylic acid
US4341900A (en) Catalytic process for the preparation of unsaturated carboxylic acid
US4065507A (en) Preparation of methacrylic derivatives from tertiary butyl-containing compounds
WO1990014325A1 (en) Process for producing methacrylic acid and methacrolein
JP2012524105A (en) Process for producing unsaturated carboxylic acids from alkanes
JP2010517761A (en) Catalysts for the oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acids and methods for their production and use
JPH0686399B2 (en) Method for producing acrylic acid
US4258217A (en) Process for producing methacrolein
JPH0753686B2 (en) Method for producing methacrylic acid
WO2010047405A1 (en) Catalyst for production of acrolein and acrylic acid by means of dehydration reaction of glycerin, and process for producing same
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JPS6048496B2 (en) Method for producing methacrylic acid
GB2029721A (en) Catalytic oxidation of methacrolein
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP7186295B2 (en) Catalyst for producing acrylic acid, method for producing the same, and method for producing acrylic acid
JPH1135519A (en) Production of acrylic acid
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JP4950986B2 (en) Method for producing methacrolein and / or methacrylic acid
JPH05331085A (en) Production of methacrolein and/or methacrylic acid
US4803302A (en) Process for the production of methacrylic acid
WO1993013042A1 (en) Process for producing methacrylic acid and methacrolein
JPH09313943A (en) Mixed oxide type catalyst and production of methacrylic acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US