WO1993009451A1 - Plastic optical waveguide - Google Patents

Plastic optical waveguide Download PDF

Info

Publication number
WO1993009451A1
WO1993009451A1 PCT/DE1992/000890 DE9200890W WO9309451A1 WO 1993009451 A1 WO1993009451 A1 WO 1993009451A1 DE 9200890 W DE9200890 W DE 9200890W WO 9309451 A1 WO9309451 A1 WO 9309451A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction resin
core
resin
coating
acrylate
Prior art date
Application number
PCT/DE1992/000890
Other languages
German (de)
French (fr)
Inventor
Nikolaos Douklias
Wolfgang Rogler
Original Assignee
Siemens Aktiengesellschaft
Microquartz Gesellschaft Für Quarzglaskomponenten Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Microquartz Gesellschaft Für Quarzglaskomponenten Mbh filed Critical Siemens Aktiengesellschaft
Publication of WO1993009451A1 publication Critical patent/WO1993009451A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/105Organic claddings
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • G02B1/046Light guides characterised by the core material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • G02B1/048Light guides characterised by the cladding material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Definitions

  • the invention relates to a method for producing plastic optical waveguides.
  • Plastic optical fibers have a core / cladding structure, the core being made of the best possible light-conducting, i.e. polymer material which dampens as little as possible and the jacket consists of a polymer material which adheres well to the core and has a refractive index which is smaller than that of the core material.
  • thermoplastic polymers which are produced in a complex polymerization process which leads to a material which is as homogeneous as possible. These thermoplastic polymers are processed - under high purity conditions - in an extrusion or melt spinning process into thin threads which form the core (see: "Chemtronics", Vol. 1 (1986), pages 98 to 106) ).
  • the jacket is also made of thermoplastic material; it is usually applied to the core in a coextrusion process. However, application from a solution is also described (DE-OS 36 07 301).
  • the core material used in plastic optical waveguides is predominantly thermoplastic (meth) acrylic ester polymers or copolymers; it is also the use 'of DEU- terated and fluorinated (meth) acrylates described (DE-OS 28 44 754). Furthermore, polystyrene, styrene copolymers and polycarbonate are used as the core material (see: "Kunststoffe", Vol. 79 (1989), pages 1040 to 1044). Partly fluorinated acrylate or methacrylate polymers or fluorinated polyolefins are usually used as the covering materials (DE-OS 36 07 301). In addition, plastic optical waveguides with a silicone sheath material are also known (DE-OS 38 14 298).
  • plastic optical waveguides - compared to optical waveguides in the form of optical glass fibers - lie above all in the easier handling, and in fact due to the greater flexibility, even with larger fiber diameters.
  • a serious disadvantage is the limited thermal stability. Due to the thermoplastic character, plastic optical fibers can only be used below the glass transition temperature of the core materials. In the coming for this purpose in question polymers but this means an upper temperature limit of about 120 ⁇ C. As the demands on the Temperatur ⁇ resistance of plastic optical fibers, however zu ⁇ taking are higher, for example when used in the automotive sector, is the provision of higher temperature-resistant plastic optical fibers is urgently required.
  • thermosetting resin compositions which are used to manufacture the core, contain a (meth) acrylic acid esters with a tricyclodecanyl group, a (meth) acrylic acid ester with an alkyl, cycloalkyl or aryl group and a multifunctional monomer which is used for crosslinking.
  • the mixture of these three components is pressed through a heated tube, where it is poly erized and a fiber is formed.
  • the fiber product is then hardened, and a coating is then applied to the resulting core.
  • such a procedure is not very suitable for practical use, particularly in economic terms.
  • the object of the invention is to provide a method which makes it possible to use plastic optical waveguides with high temperature resistance in an economical, i.e. procedurally simple to produce.
  • a first coating of a reaction resin is applied to a carrier material in the form of a glass or plastic fiber or a bundle of such fibers, which in the hardened state is light-conducting and has the required strength properties, that this reaction resin is hardened to a core of thermosetting material, that a second coating of a reaction resin is applied to the hardened reaction resin, which adheres well to the core material in the hardened state and has a refractive index that is at least 1% smaller than that of the core material, and that this reaction resin is hardened into a jacket made of thermosetting material.
  • the fibers are made of glass or plastic essentially a carrier function, ie they are a processing aid for the applied reactive resins. However, these fibers can also contribute to the light conduction.
  • the glass fibers preferably consist of quartz, the plastic fibers preferably of polyester or of ara id, ie special polyamide.
  • a single fiber can serve as the carrier, but a fiber bundle can also be used which consists of two or more thin fibers. For this purpose, for example, several glass fibers are drawn in a double crucible process and these are then subjected to a coating process together.
  • the process according to the invention is carried out in such a way that a thin glass or quartz fiber is drawn in a fiber drawing system, which is then coated with one of the core or cladding materials listed below. Thicker core or sheath dimensions can be achieved by multiple coating. Depending on the type of plastic, electric furnaces or UV light sources can be used for curing the plastics.
  • reaction resins are used in the process according to the invention, i.e. curable or cross-linkable
  • thermosets Resins. Hardening these resins creates plastics that are referred to as thermosets.
  • the process is suitable for all reactive resins which are sufficiently transparent on the one hand and those which are suitable for such a coating process on the other hand Viscosity, adhesion and hardening characteristics and - in the hardened state - have the necessary strength properties.
  • many of the materials that are used for coating glass fibers with a step or gradient index profile are therefore suitable for this purpose.
  • Acrylate and methacrylate resins have proven to be particularly suitable for the process according to the invention; Such resins usually represent mixtures of mono- and di- or polyfunctional components.
  • (Meth) acrylate resins are esters of (meth) acrylic acid with mono- and di- or polyfunctional alcohols. Aliphatic and cycloaliphatic as well as aromatic alcohols are possible. Fluorinated and deuterated (meth) acrylate resins are also suitable for the production of core materials. Silico ⁇ - (meth) acrylates can also advantageously be used, in particular dimethylpolysiloxane (meth) acrylates.
  • the resins can be cured thermally, both with and without the addition of suitable peroxides, or — with the addition of suitable photosensitizers — by UV radiation.
  • Thermal addition-crosslinking silicones are also suitable for the production of the core materials.
  • reaction resins used in the second coating process must first of all lead to a cladding material with a refractive index that is at least 1% smaller than the underlying core material. In principle, all thermally or
  • UV-curable reactive resins that meet this requirement.
  • Suitable starting materials are in particular (meth) acrylate resins, which can be fluorinated in whole or in part. NEN, as well as silicone (meth) acrylates. These resins can be curable both thermally and by UV radiation. Addition-crosslinking silicones can also be used. In individual cases, the reaction resin used for the cladding material must be matched to the underlying core material with respect to the refractive index.
  • the operating temperature of the plastic optical waveguide according to the invention is -40 to 150 ⁇ C or above.
  • a further coating to the jacket.
  • a suitable reaction resin can be applied, which is subsequently cured, or - by means of an extrusion process - a thermoplastic polymer .
  • a fiber drawing system is used to produce a plastic optical waveguide according to the invention.
  • a rod made of glass or quartz is continuously lowered into an HF or electric furnace (made of graphite) with the aid of a motor.
  • a thin glass fiber is drawn from the rod end in the heating zone, which serves as a carrier material.
  • This glass fiber is then passed through a coating device for the core material and a first electric furnace or a first UV source and subsequently through a coating device for the cladding material and a second electric oven or a second UV source.
  • the coated glass fiber is then wound onto a drawing drum.
  • the thickness of the glass fiber or the plastic optical waveguide is expediently checked with a fiber strength measuring device.
  • a 90 ⁇ m thick fiber is drawn from a quartz rod.
  • This fiber is coated in a first coating device with a reaction resin for the core material.
  • a POF core with a diameter of 160 ⁇ m is obtained.
  • This core is then immediately coated in a second coating device with a reaction resin for the cladding material, and curing is subsequently carried out.
  • the respective cladding material is applied with a thickness such that a plastic optical waveguide with an outer diameter of approximately 225 ⁇ m is present after hardening.
  • the drawing speed is approx. 0.2 m / s.
  • Table 1 The values given in Table 1 show that the method according to the invention can be used to produce plastic optical waveguides with technically useful attenuation in a rational manner.
  • UV UV therm UV therm.
  • Sheath material fluorine-fluorine-fluorine-fluorine-silicone acrylate acrylate acrylate

Abstract

In order to produce plastic optical waveguides having a high thermal resistance, a first coating of a reaction resin which is photoconductive in its cured state and which has the required mechanical properties is applied on a substrate material shaped as a glass or plastic fibre or as a bunble of such fibres. This reaction resin is cured to form a core of duroplastic material, a second coating made of a reaction resin which adheres well to the core material in its cured state and which has a refractive index at least 1 % lower than that of the core material is applied onto the first cured reaction resin, and the second reaction resin is cured to form a cladding made of duroplastic material.

Description

KunststofflichtwellenleiterPlastic optical fiber
Die Erfindung betrifft ein Verfahren zur Herstellung von Kunststofflichtwellenleitern.The invention relates to a method for producing plastic optical waveguides.
Während sich für den Telekommunikationsbereich Lichtwel¬ lenleiter, d.h. Lichtleitfasern, aus Quarzglas durchge¬ setzt haben, stellen für den Nahbereich Lichtwellenleiter aus Kunststoffen, d.h. polymere Lichtwellenleiter (polymer optical fiber, POF), eine kostengünstige Alternative dar. Kunststofflichtwellenleiter weisen eine Kern/Mantel-Struk¬ tur auf, wobei der Kern aus einem möglichst gut lichtlei¬ tenden, d.h. möglichst niedrig dämpfenden, Polymermaterial besteht und der Mantel aus einem gut am Kern haftenden Polymermaterial mit einem Brechungsindex, der kleiner ist als derjenige des Kernmaterials.While optical waveguides, i.e. Optical fibers, made of quartz glass, are used for short-range optical fibers made of plastics, i.e. Polymer optical fibers (POF) represent a cost-effective alternative. Plastic optical fibers have a core / cladding structure, the core being made of the best possible light-conducting, i.e. polymer material which dampens as little as possible and the jacket consists of a polymer material which adheres well to the core and has a refractive index which is smaller than that of the core material.
Bei der Herstellung von Kunststofflichtwellenleitern wird von thermoplastischen Polymeren ausgegangen, die in einem aufwendigen Polymerisationsprozeß, der zu einem möglichst homogenen Material führt, hergestellt werden. Diese ther¬ moplastischen Polymere werden - unter hohen Reinheits¬ bedingungen - in einem Extrusions- bzw. Schmelzspinnprozeß zu dünnen Fäden verarbeitet, die den Kern darstellen (sie- he dazu: "Chemtronics" , Vol. 1 (1986), Seiten 98 bis 106). Auch der Mantel besteht aus thermoplastischem Material; er wird meistens in einem Coextrusionsprozeß auf den Kern aufgebracht. Beschrieben ist aber auch das Aufbringen aus einer Lösung (DE-OS 36 07 301).The manufacture of plastic optical waveguides is based on thermoplastic polymers which are produced in a complex polymerization process which leads to a material which is as homogeneous as possible. These thermoplastic polymers are processed - under high purity conditions - in an extrusion or melt spinning process into thin threads which form the core (see: "Chemtronics", Vol. 1 (1986), pages 98 to 106) ). The jacket is also made of thermoplastic material; it is usually applied to the core in a coextrusion process. However, application from a solution is also described (DE-OS 36 07 301).
Als Kernmaterial dienen in Kunststofflichtwellenleitern überwiegend thermoplastische (Meth)acrylester-Poly ere oder -Copolymere; dabei ist auch die Verwendung' von deu- terierten und fluorierten (Meth)acrylaten beschrieben (DE-OS 28 44 754). Ferner werden Polystyrol, Styrol- Copolymere und Polycarbonat als Kernmaterial verwendet (siehe dazu: "Kunststoffe", Bd. 79 (1989), Seiten 1040 bis 1044). Als Mantelmaterialien werden meistens teilfluorier¬ te Acrylat- bzw. Methacrylat-Polymere oder fluorierte Polyolefine eingesetzt (DE-OS 36 07 301). Daneben sind auch Kunststofflichtwellenleiter mit einem Silicon-Mantel¬ material bekannt (DE-OS 38 14 298).The core material used in plastic optical waveguides is predominantly thermoplastic (meth) acrylic ester polymers or copolymers; it is also the use 'of DEU- terated and fluorinated (meth) acrylates described (DE-OS 28 44 754). Furthermore, polystyrene, styrene copolymers and polycarbonate are used as the core material (see: "Kunststoffe", Vol. 79 (1989), pages 1040 to 1044). Partly fluorinated acrylate or methacrylate polymers or fluorinated polyolefins are usually used as the covering materials (DE-OS 36 07 301). In addition, plastic optical waveguides with a silicone sheath material are also known (DE-OS 38 14 298).
Neben der kostengünstigen Herstellung liegen die Vorteile von Kunststofflichtwellenleitern - im Vergleich zu Licht¬ wellenleitern in Form optischer Glasfasern - vor allem in der einfacheren Handhabbarkeit, und zwar aufgrund der hö- heren Flexibilität, auch bei größeren Faserdurchmessern. Ein gravierender Nachteil besteht aber in der begrenzten thermischen Stabilität. Aufgrund des thermoplastischen Charakters sind Kunststofflichtwellenleiter nämlich nur unterhalb der Glasübergangstemperatur der Kernmaterialien einsetzbar. Bei den für diesen Zweck in Frage kommenden Polymeren bedeutet dies aber eine obere Temperaturgrenze von ca. 120βC. Da die Anforderungen an die Temperatur¬ beständigkeit von Kunststofflichtwellenleitern jedoch zu¬ nehmend höher werden, beispielsweise beim Einsatz im Auto- mobilsektor, ist die Bereitstellung von höher temperatur¬ beständigen Kunststofflichtwellenleitern dringend erfor¬ derlich.In addition to the cost-effective production, the advantages of plastic optical waveguides - compared to optical waveguides in the form of optical glass fibers - lie above all in the easier handling, and in fact due to the greater flexibility, even with larger fiber diameters. A serious disadvantage is the limited thermal stability. Due to the thermoplastic character, plastic optical fibers can only be used below the glass transition temperature of the core materials. In the coming for this purpose in question polymers but this means an upper temperature limit of about 120 β C. As the demands on the Temperatur¬ resistance of plastic optical fibers, however zu¬ taking are higher, for example when used in the automotive sector, is the provision of higher temperature-resistant plastic optical fibers is urgently required.
Zur Erhöhung der Temperaturbeständigkeit ist bereits ver- sucht worden, Kunststofflichtwellenleiter aus duro¬ plastischen Harzzusammensetzungen herzustellen (EP-OS 0 246 613). Diese Harzzusammensetzungen, die zur Herstel¬ lung des Kerns dienen, enthalten einen (Meth)acrylsäure- ester mit einer Tricyclodecanylgruppe, einen (Meth)acryl- säureester mit einer Alkyl-, Cycloalkyl- oder Arylgruppe und ein multifunktionelles Monomer, das zur Vernetzung dient. Das Gemisch aus diesen drei Komponenten wird durch eine erwärmte Röhre gepreßt, wobei es poly erisiert und eine Faser gebildet wird. Das Faserprodukt wird anschlie¬ ßend gehärtet, und auf den dabei entstandenen Kern wird dann noch eine Beschichtung aufgebracht. Eine derartige Vorgehensweise ist aber aus verfahrenstechnischen Gründen für die Praxis wenig geeignet, insbesondere in wirtschaft¬ licher Hinsicht.To increase the temperature resistance, attempts have already been made to produce plastic optical waveguides from thermosetting resin compositions (EP-OS 0 246 613). These resin compositions, which are used to manufacture the core, contain a (meth) acrylic acid esters with a tricyclodecanyl group, a (meth) acrylic acid ester with an alkyl, cycloalkyl or aryl group and a multifunctional monomer which is used for crosslinking. The mixture of these three components is pressed through a heated tube, where it is poly erized and a fiber is formed. The fiber product is then hardened, and a coating is then applied to the resulting core. However, for procedural reasons, such a procedure is not very suitable for practical use, particularly in economic terms.
Aufgabe der Erfindung ist es, ein Verfahren anzugeben, das es erlaubt, Kunststofflichtwellenleiter mit hoher Tempera- turbeständigkeit in wirtschaftlicher, d.h. verfahrenstech¬ nisch einfacher Weise herzustellen.The object of the invention is to provide a method which makes it possible to use plastic optical waveguides with high temperature resistance in an economical, i.e. procedurally simple to produce.
Dies wird erfindungsgemäß dadurch erreicht, daß auf ein Trägermaterial in Form einer Glas- oder Kunststoff-Faser oder eines Bündels aus derartigen Fasern eine erste Be¬ schichtung aus einem Reaktionsharz aufgebracht wird, das im gehärteten Zustand lichtleitend ist und die erforder¬ lichen Festigkeitseigenschaften aufweist, daß dieses Reaktionsharz zu einem Kern aus duroplastischem Material gehärtet wird, daß auf das gehärtete Reaktionsharz eine zweite Beschichtung aus einem Reaktionsharz aufgebracht wird, das im gehärteten Zustand gut am Kernmaterial haftet und einen um mindestens 1 % kleineren Brechungsindex auf¬ weist als das Kernmaterial, und daß dieses Reaktionsharz zu einem Mantel aus duroplastischem Material gehärtet wird.This is achieved according to the invention in that a first coating of a reaction resin is applied to a carrier material in the form of a glass or plastic fiber or a bundle of such fibers, which in the hardened state is light-conducting and has the required strength properties, that this reaction resin is hardened to a core of thermosetting material, that a second coating of a reaction resin is applied to the hardened reaction resin, which adheres well to the core material in the hardened state and has a refractive index that is at least 1% smaller than that of the core material, and that this reaction resin is hardened into a jacket made of thermosetting material.
Beim erfindungsgemäßen Verfahren haben die Fasern aus Glas bzw. Kunststoff im wesentlichen eine Trägerfunktion, d.h. sie sind eine Verarbeitungshilfe für die applizierten Reaktionsharze. Diese Fasern können jedoch auch zur Licht¬ leitung beitragen. Die Glasfasern bestehen vorzugsweise aus Quarz, die Kunststoff-Fasern vorzugsweise aus Poly¬ ester oder aus Ara id, d.h. speziellem Polyamid. Als Trä¬ ger kann beim erfindungsgemäßen Verfahren eine einzige Faser dienen, es kann aber auch ein Faserbündel verwendet werden, das aus zwei oder mehreren dünnen Fasern besteht. Dazu werden beispielsweise in einem Doppeltiegelverfahren mehrere Glasfasern gezogen und diese dann zusammen einem Beschichtungsprozeß unterworfen.In the method according to the invention, the fibers are made of glass or plastic essentially a carrier function, ie they are a processing aid for the applied reactive resins. However, these fibers can also contribute to the light conduction. The glass fibers preferably consist of quartz, the plastic fibers preferably of polyester or of ara id, ie special polyamide. In the method according to the invention, a single fiber can serve as the carrier, but a fiber bundle can also be used which consists of two or more thin fibers. For this purpose, for example, several glass fibers are drawn in a double crucible process and these are then subjected to a coating process together.
Im allgemeinen wird beim erfindungsgemäßen Verfahren in der Weise vorgegangen, daß in einer Faserziehanlage eine dünne Glas- oder Quarzfaser gezogen wird, die anschließend mit einem der nachfolgend aufgeführten Kern- bzw. Mantel¬ materialien beschichtet wird. Durch Mehrfachbeschichtung können dabei dickere Kern- bzw. Mantelabmessungen erreicht werden. Zur Aushärtung der Kunststoffe kommen, abhängig von der Art des Kunststoffes, Elektroofen oder UV-Licht¬ quellen in Betracht.In general, the process according to the invention is carried out in such a way that a thin glass or quartz fiber is drawn in a fiber drawing system, which is then coated with one of the core or cladding materials listed below. Thicker core or sheath dimensions can be achieved by multiple coating. Depending on the type of plastic, electric furnaces or UV light sources can be used for curing the plastics.
Beim erfindungsgemäßen Verfahren werden sogenannte Reak- tionsharze eingesetzt, d.h. härtbare bzw. vernetzbareSo-called reaction resins are used in the process according to the invention, i.e. curable or cross-linkable
Harze. Durch Härtung dieser Harze entstehen Kunststoffe, die als Duroplaste bezeichnet werden.Resins. Hardening these resins creates plastics that are referred to as thermosets.
Für den ersten Beschichtungsvorgang, d.h. zur Herstellung des lichtleitenden Kerns, sind beim erfindungsgemäßenFor the first coating process, i.e. for the production of the light-guiding core are in the invention
Verfahren prinzipiell alle Reaktionsharze geeignet, die einerseits ausreichend transparent sind und andererseits, die für einen derartigen Beschichtungsprozeß passenden Viskositäts-, Haftungs- und Härtungscharakteristika sowie - im gehärteten Zustand - die notwendigen Festigkeits¬ eigenschaften aufweisen. Grundsätzlich eignen sich für diesen Zweck deshalb auch viele derjenigen Materialien, die zum Beschichten von Glasfasern mit Stufen- bzw. Gra- dientenindexprofil verwendet werden.In principle, the process is suitable for all reactive resins which are sufficiently transparent on the one hand and those which are suitable for such a coating process on the other hand Viscosity, adhesion and hardening characteristics and - in the hardened state - have the necessary strength properties. In principle, many of the materials that are used for coating glass fibers with a step or gradient index profile are therefore suitable for this purpose.
Als besonders geeignet für das erfindungsgemäße Verfahren haben sich Acrylat- und Methacrylatharze erwiesen; der- artige Harze stellen üblicherweise Mischungen aus mono- und di- bzw. polyfunktionellen Komponenten dar. (Meth)- acrylatharze sind Ester der (Meth)acrylsäure mit mono- und di- bzw. polyfunktionellen Alkoholen. Dabei kommen sowohl aliphatische und cycloaliphatische als auch aromatische Alkohole in Frage. Ferner sind auch fluorierte und deute- rierte (Meth)acrylatharze zur Herstellung von Kernmate¬ rialien geeignet. Vorteilhaft können auch Silicoπ-(meth)- acrylate eingesetzt werden, insbesondere Dimethylpolysil- oxan-(meth)acrylate. Zur Herstellung der Kernmaterialien können die Harze thermisch, sowohl mit als auch ohne Zu¬ satz von geeigneten Peroxiden, oder - bei Zusatz geeigne¬ ter Photosensibilisatoren - durch UV-Bestrahlung gehärtet werden. Auch thermisch additionsvernetzende Silicone sind zur Herstellung der Kernmaterialien geeignet.Acrylate and methacrylate resins have proven to be particularly suitable for the process according to the invention; Such resins usually represent mixtures of mono- and di- or polyfunctional components. (Meth) acrylate resins are esters of (meth) acrylic acid with mono- and di- or polyfunctional alcohols. Aliphatic and cycloaliphatic as well as aromatic alcohols are possible. Fluorinated and deuterated (meth) acrylate resins are also suitable for the production of core materials. Silicoπ- (meth) acrylates can also advantageously be used, in particular dimethylpolysiloxane (meth) acrylates. To produce the core materials, the resins can be cured thermally, both with and without the addition of suitable peroxides, or — with the addition of suitable photosensitizers — by UV radiation. Thermal addition-crosslinking silicones are also suitable for the production of the core materials.
Die beim zweiten Beschichtungsvorgang eingesetzten Reak¬ tionsharze müssen nach der Härtung in erster Linie zu ei¬ nem Mantelmaterial mit einem um mindestens 1 % kleineren Brechungsindex als das darunterliegende Kernmaterial füh- ren. Geeignet sind daher prinzipiell alle thermisch bzw.After curing, the reaction resins used in the second coating process must first of all lead to a cladding material with a refractive index that is at least 1% smaller than the underlying core material. In principle, all thermally or
UV-härtbaren Reaktionsharze, die diese Forderung erfüllen. Geeignete Ausgangsmaterialien sind insbesondere (Meth)- acrylatharze, die ganz oder teilweise fluoriert sein kön- nen, sowie Silicon-(meth)acrylate. Diese Harze können so¬ wohl thermisch als auch durch UV-Bestrahlung härtbar sein. Außerdem sind additionsvernetzende Silicone einsetzbar. Im Einzelfall muß das für das Mantelmaterial verwendete Reak- tionsharz bezüglich des Brechungsindex auf das darunter¬ liegende Kernmaterial abgestimmt werden.UV-curable reactive resins that meet this requirement. Suitable starting materials are in particular (meth) acrylate resins, which can be fluorinated in whole or in part. NEN, as well as silicone (meth) acrylates. These resins can be curable both thermally and by UV radiation. Addition-crosslinking silicones can also be used. In individual cases, the reaction resin used for the cladding material must be matched to the underlying core material with respect to the refractive index.
Die Einsatztemperatur der Kunststofflichtwellenleiter nach der Erfindung beträgt -40 bis 150βC oder darüber. Zum Schutz der Kunststofflichtwellenleiter kann es zweckmäßig sein, auf den Mantel eine weitere Beschichtung aufzubrin¬ gen. Dazu kann entweder - durch einen weiteren Beschich¬ tungsprozeß - ein geeignetes Reaktionsharz aufgebracht werden, das nachfolgend gehärtet wird, oder - durch einen Extrusionsprozeß - ein thermoplastisches Polymer.The operating temperature of the plastic optical waveguide according to the invention is -40 to 150 β C or above. To protect the plastic optical waveguide, it can be expedient to apply a further coating to the jacket. For this purpose, either - by means of a further coating process - a suitable reaction resin can be applied, which is subsequently cured, or - by means of an extrusion process - a thermoplastic polymer .
Anhand von Ausführungsbeispielen soll die Erfindung noch näher erläutert werden.The invention will be explained in more detail using exemplary embodiments.
Zur Herstellung eines Kunststofflichtwellenleiters nach der Erfindung dient eine Faserziehanlage. In dieser Zieh¬ anlage wird ein Stab aus Glas bzw. Quarz mit Hilfe eines Motors kontinuierlich in einen HF- oder Elektroofen (aus Graphit) abgesenkt. Dabei wird aus dem in der Heizzone befindlichen Stabende eine dünne Glasfaser gezogen, die als Trägermaterial dient. Diese Glasfaser wird anschlie¬ ßend durch eine Beschichtungsvorrichtung für das Kern¬ material sowie einen ersten Elektroofen bzw. eine erste UV-Quelle geführt und nachfolgend durch eine Beschich- tungsvorrichtung für das Mantelmaterial sowie einen zweiten Elektroofen bzw. eine zweite UV-Quelle. Die be¬ schichtete Glasfaser wird dann auf eine Ziehtrommel ge¬ wickelt. Vor der Beschichtungsvorrichtung für das Kern- material und nach dem zweiten Elektroofen bzw. der zweiten UV-Quelle wird die Dicke der Glasfaser bzw. des Kunst- stofflichtwellenleiters zweckmäßigerweise mit einem Faser¬ stärke-Meßgerät kontrolliert.A fiber drawing system is used to produce a plastic optical waveguide according to the invention. In this drawing system, a rod made of glass or quartz is continuously lowered into an HF or electric furnace (made of graphite) with the aid of a motor. A thin glass fiber is drawn from the rod end in the heating zone, which serves as a carrier material. This glass fiber is then passed through a coating device for the core material and a first electric furnace or a first UV source and subsequently through a coating device for the cladding material and a second electric oven or a second UV source. The coated glass fiber is then wound onto a drawing drum. Before the coating device for the core material and after the second electric furnace or the second UV source, the thickness of the glass fiber or the plastic optical waveguide is expediently checked with a fiber strength measuring device.
Beispiele 1 bis 5Examples 1 to 5
Aus einem Quarzstab wird eine 90 μm dicke Faser gezogen. Diese Faser wird in einer ersten Beschichtungsvorrichtung mit einem Reaktionsharz für das Kernmaterial beschichtet. Nach der Härtung, die thermisch in einem Elektroofen (500 W) oder durch UV-Bestrahlung mittels einer Queck¬ silberdampflampe (80 W/cm) erfolgt, wird ein POF-Kern mit einem Durchmesser von 160 μm erhalten. Dieser Kern wird unmittelbar anschließend in einer zweiten Beschichtungs¬ vorrichtung mit einem Reaktionsharz für das Mantelmaterial beschichtet, und nachfolgend wird gehärtet. Das jeweilige Mantelmaterial wird dabei in einer Stärke aufgebracht, daß nach der Härtung ein Kunststofflichtwellenleiter mit einem Außendurchmesser von ca. 225 μm vorliegt. Die Ziehge¬ schwindigkeit beträgt ca. 0,2 m/s.A 90 μm thick fiber is drawn from a quartz rod. This fiber is coated in a first coating device with a reaction resin for the core material. After curing, which takes place thermally in an electric furnace (500 W) or by UV radiation using a mercury vapor lamp (80 W / cm), a POF core with a diameter of 160 μm is obtained. This core is then immediately coated in a second coating device with a reaction resin for the cladding material, and curing is subsequently carried out. The respective cladding material is applied with a thickness such that a plastic optical waveguide with an outer diameter of approximately 225 μm is present after hardening. The drawing speed is approx. 0.2 m / s.
Bei den auf die beschriebene Weise hergestellten Kunst- stofflichtwellenleitern wurde bei 835 n das Dämpfungs- verhalten bei Raumtemperatur geprüft. Die dabei erhaltenen Ergebnisse sowie die verwendeten Kern- und Mantelmateria¬ lien sind in Tabelle 1 zusammengefaßt.The attenuation behavior at room temperature was tested at 835 n in the case of the plastic optical waveguides produced in the manner described. The results obtained and the core and shell materials used are summarized in Table 1.
Die in Tabelle 1 angegebenen Werte zeigen, daß durch das erfindungsgemäße Verfahren Kunststofflichtwellenleiter mit technisch brauchbarer Dämpfung auf rationelle Weise herge¬ stellt werden können. Tabelle 1The values given in Table 1 show that the method according to the invention can be used to produce plastic optical waveguides with technically useful attenuation in a rational manner. Table 1
Beispielexample
Kernmaterial; Fluor- Fluor- Acrylat Silicon Acrylat acrylat acrylatCore material; Fluoro-fluoro-acrylate silicone acrylate acrylate acrylate
Viskosität bei 25βC (in mPa.s): 2000 2000 8000 4000 8000Viscosity at 25 β C (in mPa.s): 2000 2000 8000 4000 8000
Brechungsindex: 1,416 1,416 1,518 1,41 1,518Refractive index: 1.416 1.416 1.518 1.41 1.518
Härtung: UV UV UV therm. UVHardening: UV UV UV therm. UV
Shore- bzw. Vickers-Härte: D70 D70 11 A40 11Shore or Vickers hardness: D70 D70 11 A40 11
Mantelmaterial: Fluor- Fluor- Fluor- Fluor- Silicon acrylat acrylat acrylat acrylatSheath material: fluorine-fluorine-fluorine-fluorine-silicone acrylate acrylate acrylate
Viskosität bei 25"C (in mPa.s) : 2000 2000 2000 2000 4000Viscosity at 25 "C (in mPa.s): 2000 2000 2000 2000 4000
Brechungsindex: 1,38 1,35 1,38 1,38 1,41Refractive index: 1.38 1.35 1.38 1.38 1.41
Härtung: UV UV UV UV therm.Hardening: UV UV UV UV therm.
Shore-Härte: A82 D43 A82 A82 A40Shore hardness: A82 D43 A82 A82 A40
POF-Dämpfung bei 835 nm (in dB/km): 3300 2900 3000 POF attenuation at 835 nm (in dB / km): 3300 2900 3000

Claims

Patentansprüche Claims
1. Verfahren zur Herstellung von Kunststofflichtwellen¬ leitern, d a d u r c h g e k e n n z e i c h n e t , daß auf ein Trägermaterial in Form einer Glas- oder Kunst¬ stofffaser oder eines Bündels aus derartigen Fasern eine erste Beschichtung aus einem Reaktionsharz aufgebracht wird, das im gehärteten Zustand lichtleitend ist und die erforderlichen Festigkeitseigenschaften aufweist, daß die- ses Reaktionsharz zu einem Kern aus duroplastischem Mate¬ rial gehärtet wird, daß auf das gehärtete Reaktionsharz eine zweite Beschichtung aus einem Reaktionsharz aufge¬ bracht wird, das im gehärteten Zustand gut am Kernmaterial haftet und einen um mindestens 1 % kleineren Brechungs- index aufweist als das Kernmaterial, und daß dieses Reak¬ tionsharz zu einem Mantel aus duroplastischem Material ge¬ härtet wird.1. A process for the production of plastic light waveguides, characterized in that a first coating of a reactive resin is applied to a carrier material in the form of a glass or plastic fiber or a bundle of such fibers, which is light-conducting in the hardened state and the required strength properties has that this reaction resin is hardened into a core made of thermoset material, that a second coating of a reaction resin is applied to the hardened reaction resin, which adheres well to the core material in the hardened state and has a refraction that is at least 1% smaller - index than the core material, and that this reac tion ge ¬ is hardened resin to a casing made of duroplastic material.
2. Verfahren nach Anspruch 1, d a d u r c h g e - k e n n z e i c h n e t , daß als Reaktionsharz für das Kernmaterial ein Acrylat- bzw. Methacrylatharz oder ein Silicon-(meth)acrylat verwendet wird.2. The method of claim 1, d a d u r c h g e - k e n n z e i c h n e t that an acrylate or methacrylate resin or a silicone (meth) acrylate is used as the reaction resin for the core material.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß als Reaktionsharz für das Mantelmaterial ein Acrylat- bzw. Methacrylatharz oder ein Silicon-(meth)acrylat verwendet wird.3. The method according to claim 1 or 2, d a d u r c h g e k e n n z e i c h n e t that an acrylate or methacrylate resin or a silicone (meth) acrylate is used as the reaction resin for the jacket material.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a - d u r c h g e k e n n z e i c h n e t , daß auf den4. The method according to any one of claims 1 to 3, d a - d u r c h g e k e n n z e i c h n e t that on the
Mantel aus duroplastischem Material eine Beschichtung aus einem Reaktionsharz aufgebracht und das Reaktionsharz ge¬ härtet wird. Coat made of thermosetting material, a coating of a reaction resin is applied and the reaction resin is cured.
5. Verfahren nach einem der Ansprüche 1 bis 3, d a ¬ d u r c h g e k e n n z e i c h n e t , daß auf den Mantel aus duroplastischem Material ein thermoplastisches Polymer aufgebracht wird. 5. The method according to any one of claims 1 to 3, that a thermic polymer is applied to the jacket made of thermosetting material.
PCT/DE1992/000890 1991-10-28 1992-10-23 Plastic optical waveguide WO1993009451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4135523.7 1991-10-28
DE4135523A DE4135523A1 (en) 1991-10-28 1991-10-28 PLASTIC LIGHTWAVE GUIDE

Publications (1)

Publication Number Publication Date
WO1993009451A1 true WO1993009451A1 (en) 1993-05-13

Family

ID=6443595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000890 WO1993009451A1 (en) 1991-10-28 1992-10-23 Plastic optical waveguide

Country Status (2)

Country Link
DE (1) DE4135523A1 (en)
WO (1) WO1993009451A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10214533B4 (en) * 2002-04-02 2004-11-25 Deutsche Telekom Ag Method and device for producing an optical polymer fiber
FR2854956B1 (en) * 2003-05-16 2005-11-04 Nexans PHOTORETICULAR LIQUID COMPOSITION FOR PLASTIC FIBER
US7095941B2 (en) * 2004-10-27 2006-08-22 Schott Corporation Fused optical fiber optical device system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575188A (en) * 1982-04-12 1986-03-11 Sumitomo Electric Industries, Ltd. Heat resistant plastic optical fiber
EP0269223A2 (en) * 1986-10-02 1988-06-01 Toray Industries, Inc. Heat resisting plastic optical fibre and method for its manufacture
JPH01261603A (en) * 1988-04-13 1989-10-18 Furukawa Electric Co Ltd:The Optical fiber
EP0376292A2 (en) * 1988-12-28 1990-07-04 Sumitomo Electric Industries, Ltd. Optical fiber
EP0421387A2 (en) * 1989-10-06 1991-04-10 Mitsubishi Rayon Co., Ltd. Heat-resistant plastic optical fiber and process for the production thereof
JPH04191707A (en) * 1990-11-27 1992-07-10 Mitsubishi Rayon Co Ltd Plastic optical fiber and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575188A (en) * 1982-04-12 1986-03-11 Sumitomo Electric Industries, Ltd. Heat resistant plastic optical fiber
EP0269223A2 (en) * 1986-10-02 1988-06-01 Toray Industries, Inc. Heat resisting plastic optical fibre and method for its manufacture
JPH01261603A (en) * 1988-04-13 1989-10-18 Furukawa Electric Co Ltd:The Optical fiber
EP0376292A2 (en) * 1988-12-28 1990-07-04 Sumitomo Electric Industries, Ltd. Optical fiber
EP0421387A2 (en) * 1989-10-06 1991-04-10 Mitsubishi Rayon Co., Ltd. Heat-resistant plastic optical fiber and process for the production thereof
JPH04191707A (en) * 1990-11-27 1992-07-10 Mitsubishi Rayon Co Ltd Plastic optical fiber and its manufacture

Also Published As

Publication number Publication date
DE4135523A1 (en) 1993-04-29

Similar Documents

Publication Publication Date Title
DE2512312C2 (en) Process for coating an optical fiber glass fiber
EP0140415B1 (en) Optical glass fibre with a double layer coating
DE2628393C2 (en)
DE3843310C2 (en)
EP0213680B1 (en) Optical fibre with a synthetic coating, and process for making such an optical fibre
EP0178736B1 (en) Process for making an optical fibre with a synthetic coating
DE3724749C2 (en) Optical fiber, fiber optic element and image viewing device
EP0236881B1 (en) Light wave guide with core cladding structure
DE60310862T2 (en) Process for producing an optical fiber with coatings of different nature
DE2921338C2 (en) Optical fiber for use in optical communications
WO1993009451A1 (en) Plastic optical waveguide
EP0454107B1 (en) Method for the production of an optical coupler for polymer light-guides
DE3147137C2 (en)
KR870001600B1 (en) Plastic filoers making method
DE60034372T2 (en) PLASTIC FIBER OPTIC FIBER
EP0403896B1 (en) Method for fabrication of a star coupler from polymeric optical fibres
EP0287016A2 (en) Optical waveguide with three plastic protective coatings and method of its manufacture
DE3737930A1 (en) METHOD FOR PRODUCING AN OPTICAL COUPLER FOR POLYMER LIGHTWAVE GUIDE
DE3319536C1 (en) Plastic optical fiber
DE3320072A1 (en) Optical fibre cable and method for producing it
DE2836314A1 (en) Optical fibre telecommunication cable - has central plastics fibre cord abutted by silicone rubber covered optical fibre conductors held apart by glass fibre rovings
DE3219455A1 (en) Optical fibre having a multilayer fibre buffer
WO2008074700A1 (en) Optical transmission element having high temperature stability
EP0247246B1 (en) Process for producing an optical cable
EP0171757A2 (en) Process for making an optical fibre with high tensile strength

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

122 Ep: pct application non-entry in european phase