WO1993008158A1 - 2-(2,3-dicarboxycyclopropyl)glycine and method for producing the same - Google Patents

2-(2,3-dicarboxycyclopropyl)glycine and method for producing the same Download PDF

Info

Publication number
WO1993008158A1
WO1993008158A1 PCT/JP1992/001351 JP9201351W WO9308158A1 WO 1993008158 A1 WO1993008158 A1 WO 1993008158A1 JP 9201351 W JP9201351 W JP 9201351W WO 9308158 A1 WO9308158 A1 WO 9308158A1
Authority
WO
WIPO (PCT)
Prior art keywords
represented
butoxycarbonyl
following formula
give
formula
Prior art date
Application number
PCT/JP1992/001351
Other languages
French (fr)
Inventor
Yasufumi Ohfune
Keiko Shimamoto
Haruhiko Shinozaki
Michiko Ishida
Original Assignee
Suntory Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Limited filed Critical Suntory Limited
Priority to JP05507602A priority Critical patent/JP3124032B2/en
Priority to EP92921483A priority patent/EP0564658B1/en
Priority to DE69210214T priority patent/DE69210214T2/en
Publication of WO1993008158A1 publication Critical patent/WO1993008158A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/46Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Definitions

  • This invention relates to 2-(2,3-dicarboxycyclo- propyl)-glycine and a method for producing the same. More particularly, it relates to cyclopropylglycine derivatives which play an important role in studies on L-glutamate receptors.
  • L-glutamic acid widely attracts attention as an excitatory neurotransmitter in the central nervous system of mammals, as a neuroexcitation toxin destroying nerve cells and inducing various diseases in nervous and brain and as a substance playing an important role in the construction of memory and learning.
  • L-glutamate receptors which relate to the above- mentioned various physiological functions, are classified into the following three subtypes by introducing exogenous agonists:
  • AMPA ⁇ -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
  • KA kainic acid
  • AMPA o.- amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
  • NMDA type receptors are ⁇ euroexcitotoxic center. It is assumed that the excessive activation of these L-glutamate receptors causes death of nerve cells and, as a result, various nervous diseases are thus induced.
  • (2S,l'R,2'S)-2-(2-carboxycyclo- propyl)glycine is a potent agonist of the NMDA type superior to NMDA and that the folded conformation of glutamic acid activates NMDA receptors (refer to Japanese Patent Laid-Open No. 093563/1991).
  • (2S,l , R,2'R,3'R)-2-(2-carboxy- 3-methoxymethylcyclopropyl) lycine and (2S.l'R,2'R,3'R)-2- (2-carboxy-3-benzyloxy__ ⁇ ethylcyclopropyl)glycine are agonists of the non-NMDA type [refer to Tetrahedron Letters, 31 (28), 4049 - 4052 (1990); and Brain Res., 55 , 152 - 156 (1991)].
  • DGC-II (2S,1'S,2'S,3'S)-2-(2,3-dicarboxycyclopropyl)glycine
  • the present inventors examined the inhibitory activities of these compounds on the monosynaptic reflex in the newborn rat spinal cord preparation.
  • the compounds of the present invention are NMDA-type agonists and have monosynaptic reflex inhibitory activity, thus completing the present invention.
  • DCG-I which is one of the compounds of the present invention, may be synthesized, for example, in accordance with the following scheme I.
  • Boc represents a t-butoxycarbonyl group, - A - -
  • the product of the formula (5) is treated with diazomethane to thereby give a methyl ester, namely, (2S,1'R,2'R,3'R)-N-t-butoxycarbonyl-2-(2-methoxycarbonyl- 3-hydroxymethylcyclopropyl)glyci ⁇ ol of the formula (6) .
  • the compound represented by the formula (6) is further successively treated with Jones' reagent and diazomethane to thereby give a trimethyl ester, namely (2S,1'R,2'R,3'R)- N-t-butoxycarbonyl-2-(2,3-dimethoxycarbonylcyclopropyl) glycine methyl ester represented by the formula (7) .
  • the target compound represented by the formula (1) is obtained.
  • DCG-I may be highly stereo-selectively synthesized in a high yield in accordance with the following scheme Ia by using the compound 12a given in Scheme 2 in Tetrahedron Letters, 31 (28), 4051 (namely, the compound 13 in the following scheme Ia) as a starting compound.
  • TBS represents a t-butyldimethylsilyl group
  • Boc represents a t-butoxycarbonyl group
  • CSA represents ( ⁇ )-lO-camphorsulfonic acid
  • TBSC1 represents t-butyldimethylsilyl chloride
  • Im represents imidazole
  • KNTMS 2. represents potassium bistrimethylsilylamide.
  • (2S,1'S,2'S,3'R)-N- t-butoxycarbonyl-2-(3-t-butyldimethylsilyloxymethyl-2- methoxycarbonylcyclopropyl)glycinol t-butyldimethylsilyl ether represented by the formula (13) is treated with dl- camphorsulfonic acid and 2,2-dimethoxypropane.
  • the product of the formula (15) is converted into (4S,l r S,2'R,3*R)-N-t-butoxycarbonyl-2,2- dimethyl-4-[3-(t-butyldimethylsilyl)oxymethyl-2- _nethoxycarbonylcyclopropyl]--l,3-oxazolidine represented by the formula (16) by treating with potassium bistrimethylsilylamide.
  • the product of. the formula (17) is subjected to Jones' oxidation, methyl-esterification and treatment with lithium hydroxide and thus (2S,l , R,2'R,3'R)-N-t- butoxycarbonyl-2-(2,3-dimethoxycarbonylcyclopropyl)glycine methyl ester represented by the formula (7) is obtained. Then this product is hydrolyzed and thus the compound represented by the formula (1) can be highly stereo- selectively synthesized in a high yield.
  • DCG-II i.e., another compound of the present invention may be synthesized in accordance with the following scheme II, similar to the synthesis of DCG-I as described above.
  • Boc represents a t-butoxycarbonyl group.
  • (IS,7S,8S,9S)-3-aza-9-t- butyl-dimethylsilyloxymethyl-4,4-dimethyl-5- oxatricyclo[6.1.0.0 3 ' 7 ]-nonan-2-one [described in Tetrahedron Letters, 3_1 (28), 4049 - 4052 (1990)] represented by the formula (8) is used as a starting compound.
  • DCG-I which is one of the compounds of the present invention, is an agonist of the NMDA type in an electrophysiological assay with the use of a newborn rat spinal cord preparation.
  • DCG-II shows only a week agonistic activity of the NMDA type.
  • the compounds of the present invention inhibit the monosynaptic reflex at a ratio of 50% even at low concentration (DCG-I; 6.0 X 10" 8 M, DCG-II; 1.0 X 10" 6 M) .
  • DCG-1 was synthesized in accordance with the above- mentioned scheme I.
  • Step 1 Synthesis of (2S,l'R,2'R,3'R)-N-t-butoxycarbonyl-2- (2-methoxycarbonyl-3-hydroxymethylcyclopropyl) lycinol (6) : To a solution of 200 mg (0.64 mmol) of (1R,7S,8R,9R)- 3-aza-9-t-butyl-dimethylsilyloxy-methyl-4,4-dimethyl-5- oxatricyclo[6.1.0.0 3 ' 7 ]-nonan-2-one (3) in 2 ml of tetrahydrofuran (hereinafter referred to simply as THF) was added 1 ml of tetra-n-butylammonium fluoride (1M/THF solution) under ice-cooling and stirred for 10 minutes to give an alcohol (4) .
  • THF tetrahydrofuran
  • the alcohol (4) thus obtained was not purified but dissolved in 2 ml of water and 2 ml of ethanol. Then 606 mg (1.92 mmol) of barium hydroxide was added and the mixture was stirred at 80°C for 3 hours. After neutralizing with diluted sulfuric acid and removing the insoluble matters by filtration, the filtrate was adjusted to pH 9 with triethylamlne.
  • Example 2 Synthesis of (2S,l'S,2 , S.3'S)-2-(2,3- dicarboxycyclopropypgrycine (DCG-II) (2): DCG-II was synthesized in accordance with the above scheme II, similar to the synthesis performed as shown in Example 1.
  • Step 3 (4S, 1'S, 2'R, 3'R)-N-t-butoxycarbonyl-2,2-dimethyl-4- [3- ( -butyldimethylsilyl)oxymethy1-2- ethoxycarbonylcyclopropyl]-1 ,3-oxazolidine (16) : To a solution of 840 mg (1.9 mmol) of the 2'S-methyl ester (15) obtained above in 20 ml of tetrahydrofuran under a nitrogen gas stream at -78 °C was added dropwise 4.16 ml (2.08 mmol) of a 0.5 M solution of potassium bistrimethylsilylamide.
  • the physical data of the target product (1) were as follows.
  • Test Example 1 Measurement of depolarizing activity: The depolarizations induced by DCG-I and DCG-II on a newborn rat spinal cord preparation were measured in accordance with the method of Shinozaki et al. , [refer to Br. J. Pharmacol., 98_, 1213 - 1224 (1989)].
  • a newborn rat spinal cord preparation was used and extracellular records of the depolarizing activities from the anterior roots of motor nerve cells, under perfusion of an artificial physiological solution (spinal fluid) containing 0.5 ⁇ M of tetrodotoxin, of L-glutamic acid and the compounds of the present invention were measured over a concentration range of from 10" 3 to 10 ⁇ 7 M.
  • an artificial physiological solution spinal fluid
  • MEC minimum effective concentration
  • the spinal cord of a newborn Wister rat was taken out, as encircled by the spinal column, under etherization. Then it was immersed in an artificial spinal solution saturated with 95% of oxygen and 5% of carbon dioxide gas and a semi-incised spinal cord preparation having from L3 to L5 anterior roots and posterior roots adhering thereto as such was prepared under a stereomicroscope.
  • the semi- incised spinal cord preparation thus obtained was transferred into a perfusion chamber and perfused with an artificial spinal solution saturated with 95% of oxygen and 5% of carbon dioxide gas.
  • a single stimulation was applied to a posterior root via a suction electrode and the anterior root reflection potential of the corresponding anterior root was recorded.
  • the IC50 of Baclofen which is a gam a-aminobutyric acid derivative employed as a remedy for spastic palsy caused by trauma in the brain
  • DCG-I and DCG-II would inhibit (50%) monosynaptic reflex respectively at concentrations about 1/20 and twice as much as the IC50 of Baclofen.
  • the compound of the present invention are useful as a remedy for spastic palsy, an anesthetic and an analgesic.
  • DCG-I and DCG-II which are agonists for NMDA receptors, can provide valuable information relating investigations on L-glutamate receptors. Further, the development of agonists and antagonists for L-glutamate receptors would contribute to the development of remedies for various nervous disorders. Furthermore, DCG-I and DCG-II selectively inhibit monosynaptic reflex even at a low concentration, which makes them useful as a remedy for spastic palsy, an anesthetic and an analgesic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Pain & Pain Management (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

(2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)-glycine (DCG-I) and (2S,1'S,2'S,3'S)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-II), as well as methods for synthesizing these compounds are provided. Studies on L-glutamate receptors with the use of DCG-I and DCG-II, which are agonists for NMDA receptors, contribute to the development of remedies for various nervous disorders. Further, DCG-I and DCG-II selectively inhibit monosynaptic reflex even at a low concentration, which makes them useful as a remedy for spastic palsy, an anesthetic and an analgesic.

Description

DESCRIPTION
2-(2,3-DICARB0XYCYCL0PR0PYL)GLYCINE AND METHOD FOR PRODUCING THE SAME
Techincal Field
This invention relates to 2-(2,3-dicarboxycyclo- propyl)-glycine and a method for producing the same. More particularly, it relates to cyclopropylglycine derivatives which play an important role in studies on L-glutamate receptors.
It is expected that the development of the compounds of the present invention would provide a clue for the development of antagonists for L-glutamate receptors and, in its turn, contribute to the therapeutics for neuropathy and nervous disorders such as epilepsy, Huntington's chorea, Alzheimer's disease and Parkinson's disease. It is further expected that the provision of the compounds of the present invention would give information which is important in revealing the reception mechanism in molecular level through the correlation between the conformations of L-glutamic acid and its analog and activities thereof. Background Art
L-glutamic acid widely attracts attention as an excitatory neurotransmitter in the central nervous system of mammals, as a neuroexcitation toxin destroying nerve cells and inducing various diseases in nervous and brain and as a substance playing an important role in the construction of memory and learning.
L-glutamate receptors, which relate to the above- mentioned various physiological functions, are classified into the following three subtypes by introducing exogenous agonists:
(a) NMDA (N-methyl-D-aspartic acid) type,
(b) KA (kainic acid) type, and
(c) AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) type.
Alternately, the KA (kainic acid) type and the AMPA (o.- amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) type are sometimes combined together and classified as "non-NMDA type" .
It has been suggested that NMDA type receptors are πeuroexcitotoxic center. It is assumed that the excessive activation of these L-glutamate receptors causes death of nerve cells and, as a result, various nervous diseases are thus induced.
Regarding NMDA type receptors, the present inventors previously disclosed that (2S,l'R,2'S)-2-(2-carboxycyclo- propyl)glycine is a potent agonist of the NMDA type superior to NMDA and that the folded conformation of glutamic acid activates NMDA receptors (refer to Japanese Patent Laid-Open No. 093563/1991).
Regarding non-NMDA type receptors, the present inventors also disclosed that (2S,l,R,2'R,3'R)-2-(2-carboxy- 3-methoxymethylcyclopropyl) lycine and (2S.l'R,2'R,3'R)-2- (2-carboxy-3-benzyloxy__ιethylcyclopropyl)glycine are agonists of the non-NMDA type [refer to Tetrahedron Letters, 31 (28), 4049 - 4052 (1990); and Brain Res., 55 , 152 - 156 (1991)].
However, in order to develop these L-glutamate receptor agonists to pharmaceutical drugs, further investigations in novel agonists and new assay systems thereof are required. SUMMARY OF THE INVENTION
The present inventors have further conducted extensive studies on agonists of L-glutamate receptors. We synthesized (2S,1'R, 'R,3'R)-2-(2,3-dicarboxycyclo- propyl) lycine (hereinafter referred to simply as DCG-I) represented by the following formula (1) :
Figure imgf000004_0001
and (2S,1'S,2'S,3'S)-2-(2,3-dicarboxycyclopropyl)glycine (hereinafter referred to simply as DGC-II) represented by the following formula (2) :
Figure imgf000005_0001
(2) as a carboxycyclopropylglycine derivative which is fixed an extended conformation and a folded conformation in the same molecule and examined the agonistic activities of these compounds on L-glutamate receptors.
Further, the present inventors examined the inhibitory activities of these compounds on the monosynaptic reflex in the newborn rat spinal cord preparation.
As a result, the compounds of the present invention are NMDA-type agonists and have monosynaptic reflex inhibitory activity, thus completing the present invention. DETAILED DESCRIPTION OF THE INVENTION
DCG-I, which is one of the compounds of the present invention, may be synthesized, for example, in accordance with the following scheme I.
Scheme I
Figure imgf000005_0002
(3) π - TBS -, n.Bu NF
Figure imgf000005_0003
*: Jones' reagent, wherein TBS represents a t-butyldimethylsilyl group; and
Boc represents a t-butoxycarbonyl group, - A - -
In the above scheme I, the t-TBS group in (1R,7S,8R,9R)-3-aza-9-t-butyl-dimethylsilyloxymethyl-4,4- dimethyl-5-oxat icyclo-[6.1.0.03 '7]nonan-2-one [described in Tetrahedron Letters, 31 (28), 4049 - 4052 (1990)] represented by the formula (3) is first removed by a known method to thereby give an alcohol represented by the formula (4).
The alcohol thus obtained is not purified but dissolved in water and ethanol. Then it is hydrolyzed with the use of an alkali such as 3 equivalents of barium hydroxide. After neutralizing with sulfuric acid and removing the insoluble materials by filtration, the filtrate is adjusted to pH 9 with triethylamine and then butoxycarbonylated by treating with di-t-butyl dicarbonate. Thus (2S,1'R,2'R,3'R)-N-t-butoxycarbonyl-2-(2-carboxy-3- hydroxymethylcyclopropyDglycinol represented by the formula (5) is obtained.
Next, the product of the formula (5) is treated with diazomethane to thereby give a methyl ester, namely, (2S,1'R,2'R,3'R)-N-t-butoxycarbonyl-2-(2-methoxycarbonyl- 3-hydroxymethylcyclopropyl)glyciπol of the formula (6) . The compound represented by the formula (6) is further successively treated with Jones' reagent and diazomethane to thereby give a trimethyl ester, namely (2S,1'R,2'R,3'R)- N-t-butoxycarbonyl-2-(2,3-dimethoxycarbonylcyclopropyl) glycine methyl ester represented by the formula (7) . After hydrolyzing the compound of the formula (7) , the target compound represented by the formula (1) is obtained.
Alternately, DCG-I may be highly stereo-selectively synthesized in a high yield in accordance with the following scheme Ia by using the compound 12a given in Scheme 2 in Tetrahedron Letters, 31 (28), 4051 (namely, the compound 13 in the following scheme Ia) as a starting compound. Scheme Ia
Figure imgf000007_0001
Figure imgf000007_0002
1. Jones Ox.
Figure imgf000007_0003
Jones' reagent wherein TBS represents a t-butyldimethylsilyl group; Boc represents a t-butoxycarbonyl group; CSA represents (±)-lO-camphorsulfonic acid; TBSC1 represents t-butyldimethylsilyl chloride; Im represents imidazole; and
KNTMS2. represents potassium bistrimethylsilylamide. According to the above scheme Ia, (2S,1'S,2'S,3'R)-N- t-butoxycarbonyl-2-(3-t-butyldimethylsilyloxymethyl-2- methoxycarbonylcyclopropyl)glycinol t-butyldimethylsilyl ether represented by the formula (13) is treated with dl- camphorsulfonic acid and 2,2-dimethoxypropane. Thus (IS,5R,6S,4'S)-6-[N-(t-butoxycarbonyl)-2,2-dimethyl-l,3- oxazolidin-4-yl]-3-oxabicyclo[3.1.0]hexan-2-one represented by the formula (14) is obtained. Next, the product of the formula (14) is hydrolyzed with an alkali and thus converted into a methyl ester. Then the hydroxyl group is protected again with a t- butyldimethylsilyl group to thereby give (4S,1'S,2'S,3'R)-N- t-butoxycarbonyl-2,2-dimethyl-4-[3-(t-butyldimethylsilyl) oxymethyl-2-methoxycarbonylcyclopropyl]-l,3-oxazolidine represented by the formula (15) .
Subsequently, the product of the formula (15) is converted into (4S,lrS,2'R,3*R)-N-t-butoxycarbonyl-2,2- dimethyl-4-[3-(t-butyldimethylsilyl)oxymethyl-2- _nethoxycarbonylcyclopropyl]--l,3-oxazolidine represented by the formula (16) by treating with potassium bistrimethylsilylamide. After treating the obtained product with trifluoroacetic acid and di-t-butyl dicarbonate, (2S,1'S,2'R,3'R)-N-t-butoxycarbonyl-2-(2-methoxycarbonyl-3- hydroxymethylcyclopropyl) lycinol represented by the formula (17) is obtained.
Next, the product of. the formula (17) is subjected to Jones' oxidation, methyl-esterification and treatment with lithium hydroxide and thus (2S,l,R,2'R,3'R)-N-t- butoxycarbonyl-2-(2,3-dimethoxycarbonylcyclopropyl)glycine methyl ester represented by the formula (7) is obtained. Then this product is hydrolyzed and thus the compound represented by the formula (1) can be highly stereo- selectively synthesized in a high yield.
On the other hand, DCG-II, i.e., another compound of the present invention may be synthesized in accordance with the following scheme II, similar to the synthesis of DCG-I as described above.
Scheme II
Figure imgf000009_0001
*: Jones' reagent, wherein TBS represents a t-butyldimethylsilyl group; and
Boc represents a t-butoxycarbonyl group. In the above scheme II, (IS,7S,8S,9S)-3-aza-9-t- butyl-dimethylsilyloxymethyl-4,4-dimethyl-5- oxatricyclo[6.1.0.03 '7]-nonan-2-one [described in Tetrahedron Letters, 3_1 (28), 4049 - 4052 (1990)] represented by the formula (8) is used as a starting compound.
It is found out that DCG-I, which is one of the compounds of the present invention, is an agonist of the NMDA type in an electrophysiological assay with the use of a newborn rat spinal cord preparation.
It is also found out that DCG-II shows only a week agonistic activity of the NMDA type.
In a test of monosynaptic reflex inhibition in the newborn rat spinal cord preparation, furthermore, the compounds of the present invention inhibit the monosynaptic reflex at a ratio of 50% even at low concentration (DCG-I; 6.0 X 10"8 M, DCG-II; 1.0 X 10"6 M) .
To further illustrate the present invention in more detail, the following Examples will be given. However, it is to be understood that the present invention is not restricted thereto.
Example 1: Synthesis of (2S,l'R,2'R,3'R)-2-(2,3- dicarboxycyclopropyDgrycine (DCG-I) (1): DCG-1 was synthesized in accordance with the above- mentioned scheme I.
Step 1: Synthesis of (2S,l'R,2'R,3'R)-N-t-butoxycarbonyl-2- (2-methoxycarbonyl-3-hydroxymethylcyclopropyl) lycinol (6) : To a solution of 200 mg (0.64 mmol) of (1R,7S,8R,9R)- 3-aza-9-t-butyl-dimethylsilyloxy-methyl-4,4-dimethyl-5- oxatricyclo[6.1.0.03'7]-nonan-2-one (3) in 2 ml of tetrahydrofuran (hereinafter referred to simply as THF) was added 1 ml of tetra-n-butylammonium fluoride (1M/THF solution) under ice-cooling and stirred for 10 minutes to give an alcohol (4) .
The alcohol (4) thus obtained was not purified but dissolved in 2 ml of water and 2 ml of ethanol. Then 606 mg (1.92 mmol) of barium hydroxide was added and the mixture was stirred at 80°C for 3 hours. After neutralizing with diluted sulfuric acid and removing the insoluble matters by filtration, the filtrate was adjusted to pH 9 with triethylamlne.
Then 146 μl (0.64 mmol) of di-t-butyl dicarbonate and 2 ml of dioxane were added and the mixture was stirred at room temperature for 16 hours. After washing the reaction mixture with ether, the aqueous layer was adjusted to pH 1 with IN hydrochloric acid and extracted with ethyl acetate. Then the organic layer was washed with a saturated aqueous solution of sodium chloride and dried over magnesium sulfate. After distilling off the solvent under reduced pressure, the compound of the formula (5) was obtained as an amorphous solid. Then a solution of diazo ethane in ether was added to the solution of the compound (5) in ether to give a methyl ester. Thus the title compound (6) was quantitatively obtained.
The physical data of the compound (6) thus obtained were as follows. Form: amorphous solid. IR (cm"1):
3392, 2988, 2884, 1726, 1716, 1708,1696 [α]D: -38.6° (cθ.75, CHC13) H-NMR δ (ppm) (CDCI3) (100MHz):
1.44 (s, 9H) , 1.48 (m, 1H) , 1.74 (dd, 1H, J=6.9Hz), 1.96 (m, 1H) , 2.28 (s, 1H) , 2.97 (m, 1H) , 3.27 (m, 2H) , 3.57 (m, 3H) , 3.67 (s, 3H) , 5.44 (brd, 1H, J=7Hz) Step 2: Synthesis of (2S,1'R,2'R,3'R)-N-t-butoxycarbonyl-2- (2,3-dimethoxycarbonylcyclopropyl) lycine methyl ester (7):
To a solution of 70 mg (0.24 mmol) of the methyl ester (6) obtained above in 2 ml of acetone was added Jones' reagent under ice-cooling. Then the mixture was stirred under ice-cooling for 1 hour and then at room temperature for additional 3 hours. Under ice-cooling, isopropyl alcohol was added to the solution to decompose the excess reagent, which was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous solution of sodium chloride and dried over magnesium sulfate. After distilling off the solvent under reduced pressure, a solution of diazomethane in ether was added to the residue to give a methyl ester. Then the product was purified by silica gel column chromatography (methanol/chloroforiri = 3/97) and thus 75 mg of the title compound (7) was obtained (yield: 90%).
The physical data of the compound (7) thus obtained were as follows.
Form: colorless crystals. m.p.: 94.0 - 95.0°C (foaming decomp.)
IR (cm"1):
3372, 2964, 1730 [«]D: +4.0° (cθ.99, CHC13) XH-NMR δ (pp ) (CDC13) (100MHz): 1.46 (s, 9H), 1.97 (ddd, 1H, J=6, 10, 10Hz),
2.39 (dd, 1H, J=6, 10Hz) , 2.63 (t, 1H, J=6Hz) , 3.69 (s, 3H), 3.73 (s, 3H) , 3.74 (s, 3H) , 4.46 (dd, 1H, J=9, 10Hz), 5.18 (brd, 1H, J=9Hz) Step 3:- Synthesis of (2S,I'R.Σ'R.S'R)-2-(2,3- dicarboxycyclopropyl)glycine (DCG-I) (1):
To a solution of 58 mg (0.17 mmol) of the trimethyl ester (7) obtained above in 1 ml of THF was added 1 ml of a 1 M aqueous solution of sodium hydroxide. The mixture was stirred under ice-cooling for 5 hours and then at room temperature for additional 24 hours. Next, to this solution was added 1 ml of 2 N hydrochloric acid and stirred at room temperature for 18 hours. After concentration under reduced pressure, the residue was diluted with water and subjected to a column chromatography on Dowex 50 W x 4, followed by washing with water and eluting with 1 N aqueous ammonia. Then the aqueous ammonia was distilled off under reduced pressure and the residue was adjusted to pH 2 with 1 N hydrochloric acid. After crystallizing from water/ethanol, 22 mg of the title compound was obtained (yield: 65%) .
The physical data of the compound (1) thus obtained were as follows.
Form: colorless crystals. m.p.: 174 - 176ΦC (foaming decomp.)
[α]D: -20.2° (cθ.44, H20) ^-NMR δ (ppm) (D20) (270MHz) :
1.99 (ddd, 1H, J=5.9, 9.6, 10.2Hz), 2.18 (dd, 1H, J=5.0, 5.9Hz), 2.32 (dd, 1H, J=5.0, 9.6Hz), 3.89 (d, 1H, J=10.2Hz)
HR-MS (FAB):
204.0523 (calculated: 204.0508). Example 2: Synthesis of (2S,l'S,2,S.3'S)-2-(2,3- dicarboxycyclopropypgrycine (DCG-II) (2): DCG-II was synthesized in accordance with the above scheme II, similar to the synthesis performed as shown in Example 1.
Starting from 300 mg (0.96 mmol) of (1S.7S.8S,9S)-3- aza-9-t-butyldimethylsilyloxymethyl-4,4-dimethyl-5- oxatricyclo-[6.1.0.03 '7]-nonan-2-one (8), 82 mg of the trimethyl ester (12) was obtained in the same manner as the one employed in Example 1 (yield: 25%) . From 65 mg (0.19 mmol) of the trimethyl ester (12) thus obtained, 10 mg of the title compound was obtained in the same manner (yield: 26%).
The physical data of the compound (2) thus obtained were as follows.
Form colorless crystals. m.p. 153 - 157°C (foaming decomp.) [α] 'D +74.9° (cθ.57, H20) 1H-NMR δ (ppm) (D20) (270MHz) :
1.98 (ddd, 1H, J=5.5, 9.0, 10.5Hz), 2.21 (dd, 1H, J=5.0, 9.0Hz), 2.34 (dd, 1H, J=5.0,
5.5Hz), 3.93 (d, 1H, J=10.5Hz) HR-MS(FAB) :
204.0480 (calculated: 204.0508) The physical data of (2S.1'S,2'S,3'S)-N-t- butoxycarbonyl-2-(2-methoxycarbonyl-3-hydroxymethyl- cyclopropyl)glycinol (11), i.e., an intermediate in the synthesis, were as follows.
Form: amorphous solid. IR (cm"1): 3372, 2984, 2888, 1726, 1718, 1700, 1692
[«]D: -16.5° (cl.31, CHC13) H-NMR δ (ppm) (CDCI3) (100MHz):
1.44 (s, 9H), 1.80 (m, 3H) , 3.00 (br, 1H) , 3.26 (d, 1H, J=8Hz), 3.69 (s, 3H) , 3.74 (m, 3H), 4.94 (d, 1H, J=8Hz)
The physical data of (2S,1'S,2*S,3'S)-N-t- butoxycarbonyl-2-(2,3-dimethoxycarbonylcyclopropyl)glycine methyl ester, i.e., the intermediate (12) were as follows. Form: oily substance. IR (cm"1) :
3384, 2964, 1732 [α]D: +46.0' (cθ.75. CHC13) 1H-NMR δ (ppm) (CDC13) (100MHz):
1.43 (s, 9H), 2.10 (ddd, 1H, J=6, 9, 9Hz) , 2.33 (dd, 1H, J=5, 9Hz) , 2.53 (t, 1H, J=5Hz),
3.69 (s, 3H), 3.72 (s, 3H) , 3.76 (s, 3H) , 4.42 (t, 1H, J=9Hz), 5.20 (brs, 1H) Example 3: Synthesis of (2S,1'R,2'R,3'R)-2-(2,3- dicarboxycyclopropyl) lycine (DCG-I) (1) (part 2): Step 1: (IS.5R.6S,4'S)-6-[N-(t-butoxycarbonyl)-2,2- dimethyl-1.3-oxazolidin-4-yl]-3-oxabicyclo[3.1.0]hexan-2-one (14):
To a solution of 1.20 g (2.32 mmol) of (2S,1'S,2S,3'R)-N-t-butoxycarbonyl-2-(3-t- butyldimethylsilyloxymethyl-2- methoxycarbonylcyclopropyl)glycinol-t-butyldimethylsilyl ether (13) in 20 ml of methanol was added 20 mg of dl- camphorsulfonic acid. The mixture was stirred under a nitrogen gas stream at room temperature for 5 hours. After distilling off the solvent under reduced pressure, the residue was dissolved in 30 ml of methylene chloride and heated under reflux for 1 hour. Next, 15 ml of 2,2- dimethoxypropane was added to the reaction mixture, followed by heating under reflux again for 1.5 hours. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (methanol/chloroform = 5/95) to thereby give a lactone (14). Yield: 560 mg (81%) .
The physical data of this product (14) were as ollows.
Form: colorless needless. .p.: 135.5 - 136.0'°C.
[α]D: -14.4° (c0.5, CHC13)
1H-NMR (400MHz, CDCI3) δ (ppm):
1.50 (s, 9H), 1.52 (s, 3H) , 1.74 (m, 1H) , 2.24 - 2.34 (m, 2H) , 3.77 (m, 1H) , 3.89 (dd, 1H, J=1.4, 8.8Hz), 4.06 (d, 1H, J=10.4Hz), 4.07
(dd, 1H, J=6.0, 8.8Hz), 4.38 (dd, 1H, J=5.3, 10.4Hz) Step 2: (4S,1'S,2'S,3'R)-N-t-butoxycarbonyl-2,2-dimethyl-4- [3-(t-butyldimethylsilyl)oxymethyl-2- methoxycarbonylcyclopropyl]-1.3-oxazolidine (15) :
To a solution of 560 mg (1.89 mmol) of the lactone (14) in tetrahydrofuran (10 ml) was added 4.9 ml (2.45 mmol) of sodium hydroxide and the mixture was stirred at 0°C for 16 hours. Then the reaction mixture was adjusted to pH 2 with 1 N hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with a saturated aqueous solution of sodium chloride and dried over magnesium sulfate. Removal of the solvent under reduced pressure gave an amorphous compound which was then esterified with a solution of diazomethane in ether. The resulting mixture was subjected to silica gel column chromatography (ether) to give a methyl ester. To the solution of this methyl ester in 7 ml of N,N-dimethylformamide was added a solution of 257 mg (3.78 mmol) of imidazole and 428 mg (2.84 mmol) of t-butyldimethylsilyl chloride in 5 ml of N.N- dimethylformamide. Then the mixture was stirred under a nitrogen gas stream at 0 °C for 30 minutes and then at room temperature for 2 hours. The reaction mixture was poured into ice/water and extracted with ether. The organic layer was washed with an aqueous solution of sodium chloride and dried over magnesium sulfate. After distilling off the solvent, the residue was purified by silica gel column chromatography (ether/hexane = 7/93). Thus 2'S-methyl ester (15) was obtained. Yield: 865 mg (100%).
The physical data of this product (15) were as follows.
Form: oily substance. -0--D: -56.0° (cθ.5, CHC13) iH-NMR (400MHz, CDCI3 ) δ (ppm):
0.2 (s, 6H), 0.88 (s, 9H) , 1.46 (s, 9H) , 1.40 - 1.62 (m, 2H), 1.58 (s, 3H) , 1.60 (s, 3H) , 1.92 (dd, 1H, J=8.8, 8.8Hz), 3.72 (s, 3H) , 3.93 (brs, 1H) , 4.03 (dd, 1H, J=5.8, 8.8Hz),
4.10 (brs, 2H), 4.34 (brs, 1H) Step 3: (4S, 1'S, 2'R, 3'R)-N-t-butoxycarbonyl-2,2-dimethyl-4- [3- ( -butyldimethylsilyl)oxymethy1-2- ethoxycarbonylcyclopropyl]-1 ,3-oxazolidine (16) : To a solution of 840 mg (1.9 mmol) of the 2'S-methyl ester (15) obtained above in 20 ml of tetrahydrofuran under a nitrogen gas stream at -78 °C was added dropwise 4.16 ml (2.08 mmol) of a 0.5 M solution of potassium bistrimethylsilylamide. The reaction mixture was stirred at -78°C for 30 minutes, at -15°C for 1.5 hours and at -78 °C for 10 minutes. Then to the solution was added a solution of 148 mg (2.48 mmol) of acetic acid in tetrahydrofuran (2 ml). Water was added to the reaction mixture and then extracted with ether. The organic layer was washed with an aqueous solution of sodium chloride and dried over magnesium sulfate. After distilling off the solvent, the obtained residue was purified by silica gel column chromatography (ether/hexane = 1/9) to give 2'R-methyl ester (16). Yield: 719 mg (84%).
The physical data of the product (16) thus obtained were as follows.
Form: colorless crystals. m.p. : 92.0 - 92.5CC.
[α.]D: +7.5° (cθ.8, CHC13)
1H-NMR (400MHz, CDC13) δ (ppm):
0.04 (s, 3H) , 0.06 (s, 3H) , 0.88 (s, 9H) , 1.48
(s, 12H) , 1.54 (s, 3H) , 1.71 (m, 1H) , 1.80 (m, 1H) , 1.95 (m, 0.7H), 2.17 (m, 0.3H), 3.46 (dd,
1H, J=8.0, 10.5Hz), 3.66 (s, 3H) , 3.70 (m, 0.7H), 3.84 (m, 0.3H), 3.96 (dd, 1H, J=5.2, 8.5Hz), 3.98 (m, 1H) , 4.02 (dd, 1H, J=8.5, 8.5Hz) Step 4: (2S.1'S,2'R,3'R)-N-t-butoxycarbonyl-2-(3- hydroxymethyT-2-methoxycarbonylcyclopropyl) lycinol (17) :
To a solution of 480 mg (1.08 mmol) of the 2'R-methyl ester (16) in 4 ml of methylene chloride was added 4 ml of trifluoroacetic acid and the mixture was stirred at 0°C or 1 hour and then at room temperature for 30 minutes. After concentrating the reaction mixture under reduced pressure, the residue was dissolved in 4 ml of dioxane and 4 ml of water, followed by adjusting the pH value to 9 by adding triethylamine. Then 1 ml of di-t-butyl dicarbonate was added to the solution obtained above and stirred at room temperature or 4 hours. After distilling off the solvent under reduced pressure, the residue was extracted with chloroform and ethyl acetate and dried over magnesium sulfate. After distilling off the solvent, the oily substance thus obtained was purified by silica gel column chromatography (ethyl acetate) to give the glycinol product (17). Yield: 315 mg (100%). The physical data of this product were as follows.
Form: oily substance. [α]D: +19.7° (cθ.6, CHC13) XH-NMR (300MHz, CDCI3) 6 (ppm) :
1.44 (s, 9H), 1.60 (ddd, 1H, J=5.0, 9.0, 10.0Hz), 1.98 (ddt, 1H, J=5.0, 5.0, 10.0,
10.0Hz), 3.40 - 3.62 (m, 5H) , 3.68 (s, 3H) , 3.86 (1H, dd, J=4.1, 10.0Hz), 4.02 (dd, 1H, J=5.0, 12.0Hz) Step 5: (2S.1'R,2'R,3'R)-N-t-butoxycarbonyl-2-(2,3- dimethoxycarbonylcyclopropyl)-glycine methyl ester (7):
To a solution of 315 mg (1.08 mmol) of the glycinol (17) obtained above in 20 ml of acetone was added Jones' reagent under ice-cooling. Then the mixture was stirred under ice-cooling for 2 hours and at room temperature for additional 2 hours. Then isopropyl alcohol was added to decompose the excess reagent and a saturated solution of sodium chloride was added, followed by extracting with chloroform and ethyl acetate. The organic layer was washed with an aqueous solution of sodium chloride and dried over magnesium sulfate. After distilling off the solvent, the residue thus obtained was esterified by adding a solution of diazomethane in ether. After distilling off the ether, the residue was dissolved in 10 ml of methanol. To this solution was then added 10 mg of lithium hydroxide and the mixture was stirred at room temperature for 30 minutes.
Then the reaction mixture was neutralized by adding several drops of acetic acid and the solvent was distilled off under reduced pressure. After purification by silica gel column chromatography (ether/hexane = 1/1), trimethyl ester (7) was obtained. Yield: 309 mg (69%).
The physical data of this product (7) were as follows. Form: colorless crystals. m.p. 94.0 - 95.9βC (foaming decomp. ) .
IR (cm"1) :
3372, 2964, 1730 [αlD +4.0° (cθ.99, CHC13)
1H-NMR (270MHz, CDC13) δ (ppm):
1.46 (s, 9H) , 1.91 (ddd, 1H, J=6.0, 9.5, 10.5Hz), 2.33 (dd, 1H, J=5.0, 9.5Hz), 2.58 (dd, 1H, J=5.0, 6.0Hz), 3.69 (s, 3H) , 3.73 (s, 3H) , 3.75 (s, 3H) , 4.42 (dd, 1H, J=9, 10.5Hz),
5.18 (brs, 1H) Step 6: (2S,1'R.2'R,3'R)-2-(2,3- dicarboxycyclopropyl) lycine (DCG-I) (1):
To a solution of 58 mg (0.17 mmol) of the trimethyl ester (7) obtained above in 1 ml of THF was added 1 ml of a 1 M aqueous solution of sodium hydroxide. The mixture was stirred under ice-cooling for 5 hours and then at room temperature or additional 24 hours. After adding 1 ml of 2 N hydrochlσric acid, the mixture was further stirred at room temperature for 18 hours. After concentrating under reduced pressure, the residue thus obtained was diluted with water and subjected to column chromatography on Dowex 50 W x 4. Then it was washed with water and eluted with 1 N aqueous ammonia. After distilling off the aqueous ammonia under reduced pressure, the' residue was adjusted to pH 2 with 1 N hydrochloric acid. Recrystallization from water/methanol gave the target t-DCG-I (1) . Yield: 22 mg (65%) .
The physical data of the target product (1) were as follows.
Form: colorless crystals, m.p.: 174 - 176°C (foaming decomp.). [o.]D: -20.2° (c 0.44, H20) 1H-NMR (270MHz, D20) δ (ppm): 1.99 (ddd, 1H, J=5.9, 9.6, 10.2Hz), 2.18 (dd,
1H, J=5.0, 5.9Hz), 2.32 (dd, 1H, J=5.0, 9.6Hz), 3.89 (d, 1H, J=10.2Hz) HR-MS ( FAB ) :
204.0523 (calculated: 204.0508). Test Example 1: Measurement of depolarizing activity: The depolarizations induced by DCG-I and DCG-II on a newborn rat spinal cord preparation were measured in accordance with the method of Shinozaki et al. , [refer to Br. J. Pharmacol., 98_, 1213 - 1224 (1989)]. Namely, a newborn rat spinal cord preparation was used and extracellular records of the depolarizing activities from the anterior roots of motor nerve cells, under perfusion of an artificial physiological solution (spinal fluid) containing 0.5 μM of tetrodotoxin, of L-glutamic acid and the compounds of the present invention were measured over a concentration range of from 10"3 to 10 ~7 M. Thus the minimum effective concentration (MEC) of each compound was determined.
Table 1 summarizes the results.
Table 1
Compound MEC (M) Activity ratio
Figure imgf000019_0001
Next, the above procedure was repeated except that an artificial physiological solution (spinal fluid) containing 3 x 10~5 M of 3-[ (±)-2-carboxypiperazin-4-yl]- propyl-1-phosphonic acid (hereinafter referred to simply as CPP) was perfused. As a result, it was observed that the depolarization of both of DCG-I and DCG-II were completely inhibited by adding 3 x 10-s M of CPP. Thus both of DCG-I and DCG-II were regarded as agonists for NMDA receptors. Test Example 2: Determination of monosynaptic reflex inhibition activity:
Monosynaptic reflex in the newborn rat spinal cord preparation was measured by the method reported by Otsuka et al., [refer to M. Otsuka, Seitai no Kagaku, J36_ (4), 325 - 327] .
The spinal cord of a newborn Wister rat was taken out, as encircled by the spinal column, under etherization. Then it was immersed in an artificial spinal solution saturated with 95% of oxygen and 5% of carbon dioxide gas and a semi-incised spinal cord preparation having from L3 to L5 anterior roots and posterior roots adhering thereto as such was prepared under a stereomicroscope. The semi- incised spinal cord preparation thus obtained was transferred into a perfusion chamber and perfused with an artificial spinal solution saturated with 95% of oxygen and 5% of carbon dioxide gas.
A single stimulation was applied to a posterior root via a suction electrode and the anterior root reflection potential of the corresponding anterior root was recorded.
Thus a spike was observed at an early stage followed by slow depolarization accompanied by asynchronous changes in potential. The above-mentioned spike at the early stage corresponded to the monosynaptic reflex [refer to Konishi, S, Advances in Pharmacology and Therapeutics II, Pergamon, Oxford, Vol. 2, 255 - 260 (1982)].
DCG-I and DCG-II at various concentrations were added to the perfusion solution and the monosynaptic reflexes thus caused were measured. Thus the 50% inhibitory concentration (IC5o) of each test compound was determined. Table II shows the results. Table II: Monosynaptic reflex inhibition activity
Compound IC50 (M)
DCG-I 6.0 x 10-8
DCG-II 1.0 X 10 In contrast, it is reported that the IC50 of Baclofen, which is a gam a-aminobutyric acid derivative employed as a remedy for spastic palsy caused by trauma in the brain, is about 5 x 10"7 M (500 nM) . Accordingly, the results given above indicate that DCG-I and DCG-II would inhibit (50%) monosynaptic reflex respectively at concentrations about 1/20 and twice as much as the IC50 of Baclofen. Thus it is strongly suggested that the compound of the present invention are useful as a remedy for spastic palsy, an anesthetic and an analgesic.
According to the present invention, (2S,1'R,2'R,3'R)- 2-(2,3-dicarboxycyclopropyl)glycine (DCG-I) (1) and (2S,1'S, 2'S,3'S)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-II) (2) , which are both agonists for NMDA receptors, can be synthesized.
The above-mentioned DCG-I and DCG-II, which are agonists for NMDA receptors, can provide valuable information relating investigations on L-glutamate receptors. Further, the development of agonists and antagonists for L-glutamate receptors would contribute to the development of remedies for various nervous disorders. Furthermore, DCG-I and DCG-II selectively inhibit monosynaptic reflex even at a low concentration, which makes them useful as a remedy for spastic palsy, an anesthetic and an analgesic.

Claims

- 20 -
CLAIMS 1. (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)-glycine represented by the following formula (1) :
Figure imgf000022_0001
2. (2S,l'S,2'Sr3'S)-2-(2 3-dicarboxycyclopropyl)-glycine represented by the following formula (2) :
Figure imgf000022_0002
3. A method for producing (2S,l'R,2'R,3'R)-2-(2,3- dicarboxycyclopropyl) lycine represented by the following formula (1) :
Figure imgf000022_0003
which comprises:
(a) removing the t-butyldimethylsilyl group of
(IR,7S.8R,9R)-3-aza-9-t-butyldimethylsilyloxymethyl-4,4- dimethyl-5-oxatricyclo-[6.1.0.03 '7]nonan-2-one repr sented by the following formula (3) :
Figure imgf000023_0001
( 3 )
wherein TBS represents a t-butyldimethylsilyl group; to thereby give an alcohol represented by the following formula (4) :
Figure imgf000023_0002
(4)
(b) next, hydrolyzing said alcohol with an alkali and then t-butoxycarbonylating to thereby give (2S,1'R,2'R,3'R)-N-t- butoxycarbonyl-2-(2-carboxy-3- hydroxymethylcyclopropyl) lycinol represented by the following formula (5):
Figure imgf000023_0003
wherein Boc represents a t-butoxycarbonyl group; (c) next, converting the compound of the formula (5) into a methyl ester to thereby give (2S,1'R,2'R,3'R)-N-t- butoxycarbonyl-2-(2-methoxycarbonyl-3- hydroxymethylcyclopropyl) lycinol represented by the following formula (6): - 2Z -
Figure imgf000024_0001
(6)
(d) next, oxidizing said alcohol to thereby give a carboxylic acid and then converting the obtained carboxylic acid into a methyl ester to thereby give (2S,1'R,2'R,3'R)-N-t-butoxycarbonyl-2-(2,3- dimethoxycarbonylcyclopropyl)glycine methyl ester represented by the following formula (7) :
Figure imgf000024_0002
(7)
and
(e) finally, hydrolyzing said ester to thereby give the compound of the formula (1) .
4. A method for producing (2S,l*S,2'S,3'S)-2-(2,3- dicarboxycyclopropyl)glycine represented by the following formula (2) :
Figure imgf000024_0003
which comprises:
(a) removing the t-butyldimethylsilyl group of (IS, S,8S,9S)-3-aza-9-t-butyldimethylsilyloxymethyl-4,4- dimethyl-5-oxatricyclo-[6.1.0.03 '7]nonan-2-one represented by the following formula (8):
Figure imgf000025_0001
wherein TBS represents a t-butyldimethylsilyl group; to thereby give an alcohol represented by the following formula (9) :
Figure imgf000025_0002
(9)
(b) next, hydrolyzing said alcohol with an alkali and then t-butoxycarbonylating to thereby give (2S,1'S,2'S,3'S)-N-t- butoxycarbonyl-2-(2-carboxy-3- hydroxymethylcyclopropyl) lycinol represented by the following formula (10):
Figure imgf000025_0003
(10) wherein Boc represents a t-butoxycarbonyl group; (c) next, converting the compound of the formula (10) into a methyl ester to thereby give (2S,1'S,2'S,3'S)-N-t- butoxycarbonyl-2-( -methoxycarbonyl-3- hydroxymethylcyclopropyl)glycinol represented by the following formula (11): - 24
Figure imgf000026_0001
(")
(d) next, oxidizing said alcohol to thereby give a carboxylic acid and then converting the obtained carboxylic acid into a methyl ester to thereby give (2S,1'S,2'S,3'S)-N-t-butoxycarbonyl-2-(2,3- dimethoxycarbonylcyclopropyl)glycine methyl ester represented by the following formula (12):
'H.
Figure imgf000026_0002
(12) and
(e) finally, hydrolyzing said ester to thereby give the compound of the formula (2) .
5. A method for producing (2S,l'R,2,R,3'R)-2-(2.3- dicarboxycyclopropyl) lycine represented by the following ormula (1) .
Figure imgf000026_0003
(1)
which comprises:
(a) treating (2S,1'S,2'S,3'R)-N-t-butoxycarbonyl-2-(3-t- butyldimethylsilyloxymethyl-2-methoxycarbonylcyclopropyl) glycinol-t-butyldimethylsilyl ether represented by the following formula (13) :
Figure imgf000027_0001
(13) wherein TBS represents a t-butyldimethylsilyl group; and
Boc represents a t-butoxycarbonyl group; with dl- camphorsulfonic acid and 2,2-dimethoxypropane to thereby give (IS,5R,6S,4'S)-6-[N-(t-butoxycarbonyl)-2,2-dimethyl- 1,3-oxazolidin-4-yl]-3-oxabicyclo[3.1.0]hexan-2-one represented by the following formula (14):
Figure imgf000027_0002
(14)
wherein Boc represents a t-butoxycarbonyl group;
(b) next, hydrolyzing the obtained compound of the formula (14) with an alkali, converting into a methyl ester and. then protecting the hydroxyl group with a t-butyldimethylsilyl group again to thereby give (4S,l'S,2'S,3'R)-N-t- butoxycarbonyl-2,2-dimethyl-4-[3-(t-butyldimethylsilyl) oxymethyl-2-methoxycarbonyl-cyclopropyl]-1,3-oxazolidine represented by the following formula (15):
Figure imgf000027_0003
wherein TBS represents a t-butyldimethylsilyl group; and Boc represents a t-butoxycarbonyl group; (c) next, treating the compound of the formula (15) with potassium bistrimethylsilylamide to thereby convert it into (4S,1'S,2'R,3'R)-N-t-butoxycarbonyl-2,2-dimethyl-4-[3-(t- butyldimethylsilyl)oxymethyl-2-methoxycarbonylcyclopropyl]- 1,3-oxazolidine represented by the following formula (16):
Figure imgf000028_0001
(16) wherein TBS represents a t-butyldimethylsilyl group; and Boc represents a t-butoxycarbonyl group;
(d) next, treating the compound of the formula (16) with trifluoroacetic acid and di-t-butyl dicarbonate to thereby give (2S,1'S,2'R,3'R)-N-t-butoxycarbonyl-2-(3-hydroxymethyl- 2-methoxycarbonylcyclopropyl) lycinol represented by the following formula (17) :
Figure imgf000028_0002
wherein TBS represents a t-butyldimethylsilyl group; and
Boc represents a t-butoxycarbonyl grou ; (e) then, converting the compound of the formula (17) into (2S.1,R,2*R,3'R)-N-t-butoxycarbonyl-2-(2,3- dimethoxycarbonyl-cyclopropyl) lycine methyl ester represented by the following formula (7) :
Figure imgf000029_0001
(7)
wherein Boc represents a t-butoxycarbonyl group; via Jones' oxidation, methyl-esterification and treatment with lithium hydroxide; and
(f) finally, hydrolyzing the compound of the formula (7) to thereby give the above-mentioned compound represented by the formula (1) .
PCT/JP1992/001351 1991-10-18 1992-10-16 2-(2,3-dicarboxycyclopropyl)glycine and method for producing the same WO1993008158A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05507602A JP3124032B2 (en) 1991-10-18 1992-10-16 2- (2,3-dicarboxycyclopropyl) glycine and method for producing the same
EP92921483A EP0564658B1 (en) 1991-10-18 1992-10-16 2-(2,3-dicarboxycyclopropyl)glycine and method for producing the same
DE69210214T DE69210214T2 (en) 1991-10-18 1992-10-16 2- (2,3-DICARBOXYCYCLOPROPYL) GLYCINE AND A METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP3/271392 1991-10-18
JP03271392 1991-10-18
JP4/070472 1992-03-27
JP7047292 1992-03-27
JP4/252823 1992-09-22
JP25282392 1992-09-22

Publications (1)

Publication Number Publication Date
WO1993008158A1 true WO1993008158A1 (en) 1993-04-29

Family

ID=27300342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001351 WO1993008158A1 (en) 1991-10-18 1992-10-16 2-(2,3-dicarboxycyclopropyl)glycine and method for producing the same

Country Status (6)

Country Link
US (1) US5334757A (en)
EP (1) EP0564658B1 (en)
JP (1) JP3124032B2 (en)
AT (1) ATE137215T1 (en)
DE (1) DE69210214T2 (en)
WO (1) WO1993008158A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019049A1 (en) * 1995-11-17 1997-05-29 Novartis Ag Glycine derivatives
EP0827744A2 (en) * 1996-08-12 1998-03-11 Japan Science and Technology Corporation Use of amino acids for the manufacture of a medicament for inhibiting or activating glutamic acid in the brain
WO1999047489A1 (en) * 1998-03-19 1999-09-23 F. Hoffmann-La Roche Ag A process for the manufacture of (2s,2'r,3'r)-2-(2,3-dicarboxylcyclopropyl)-glycine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959493A (en) * 1987-06-30 1990-09-25 Suntory Limited Carboxycyclopropylglycine and process for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3293176A (en) * 1964-04-01 1966-12-20 Le Roy A White Method of chelating with an ethergroup-containing sequestering agent
DE2241134A1 (en) * 1972-08-22 1974-03-21 Hoechst Ag COMPLEX BUILDER
JPS535919Y2 (en) * 1974-08-28 1978-02-15
US4105789A (en) * 1976-05-10 1978-08-08 E. R. Squibb & Sons, Inc. Carboxyalkylacylamino acids
JPS5646186Y2 (en) * 1978-09-30 1981-10-28
DE3919898A1 (en) * 1989-06-19 1991-01-17 Merck Patent Gmbh METHOD FOR THE ENANTIOSELECTIVE PRODUCTION OF (GAMMA) -KETO- (DELTA) -AMINOSAE DERIVATIVES

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959493A (en) * 1987-06-30 1990-09-25 Suntory Limited Carboxycyclopropylglycine and process for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETRAHEDRON LETTERS vol. 31, no. 28, 1990, OXFORD GB pages 4049 - 52 K. SHIMAMOTO ET. AL. 'Synthesis of 3'-substituted 2 (carboxycyclopropyl)glycines via intramolecular cyclopropanation . The folded form of L-Glutamate activates the non-MNDA receptor subtype.' cited in the application *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019049A1 (en) * 1995-11-17 1997-05-29 Novartis Ag Glycine derivatives
EP0827744A2 (en) * 1996-08-12 1998-03-11 Japan Science and Technology Corporation Use of amino acids for the manufacture of a medicament for inhibiting or activating glutamic acid in the brain
EP0827744A3 (en) * 1996-08-12 2000-05-17 Japan Science and Technology Corporation Use of amino acids for the manufacture of a medicament for inhibiting or activating glutamic acid in the brain
WO1999047489A1 (en) * 1998-03-19 1999-09-23 F. Hoffmann-La Roche Ag A process for the manufacture of (2s,2'r,3'r)-2-(2,3-dicarboxylcyclopropyl)-glycine
US6020525A (en) * 1998-03-19 2000-02-01 Hoffmann-La Roche Inc. (2S,2'R,3'R)-2-(2,3-dicarboxyl-cyclopropyl)-glycine (DCG-1/4) and 3 H-DCG-1/4 and to process for the preparation thereof

Also Published As

Publication number Publication date
JPH06504553A (en) 1994-05-26
ATE137215T1 (en) 1996-05-15
JP3124032B2 (en) 2001-01-15
DE69210214D1 (en) 1996-05-30
EP0564658B1 (en) 1996-04-24
US5334757A (en) 1994-08-02
EP0564658A1 (en) 1993-10-13
DE69210214T2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
DE69108363T2 (en) Peptidyl derivatives.
JP3007138B2 (en) Novel hydroxamic acid and N-hydroxyurea derivatives and compositions thereof
JP4857332B2 (en) Alkyl, alkenyl and alkynyl carbamate derivatives, their formulations and therapeutic uses
JPS61134379A (en) Aminomethyloxooxazolydinylbenzene derivative
ES2249015T3 (en) DERIVATIVES OF 2-AMINOPIRIDINAS, ITS USE AS MEDICINES AND PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM.
JP2002539190A (en) Novel compounds and compositions as protease inhibitors
EA013005B1 (en) Isoxazoline derivative and novel process for its preparation
FR2606018A1 (en) NOVEL SUBSTITUTED A-AMINOACIDS, THEIR PREPARATION AND THEIR USE IN THERAPEUTICS AS MEDICAMENTS
EP1537096A2 (en) Derivatives of dioxane-2-alkyl carbamates, preparation method thereof and application of same in therapeutics
JPS63502593A (en) Manoalide analogs
TW200524578A (en) Protease inhibitors
WO1998000391A1 (en) Cyclopropylglycine derivatives and metabolic-regulation type l-glutamate receptor agonist
CA2127066A1 (en) .alpha.-amino acids derivatives, their preparation process and pharmaceutical compositions containing them
EP0564658B1 (en) 2-(2,3-dicarboxycyclopropyl)glycine and method for producing the same
DE60131733T2 (en) PROCESS FOR PREPARING (2S, 3R, 4S) -4-HYDROXYISOLEUCINE AND ANALOGUE
JP3481975B2 (en) (2S, 1'S, 2'R) -2- (2-carboxy-3-substituted oxymethylcyclopropyl) glycine and process for producing the same
AU664559B2 (en) Synthesis of optically active lactones from L-aspartic acid and intermediates
FR2566410A1 (en) New diaminopimelic acid derivatives, a process for preparing them and their therapeutic application
FR2662691A1 (en) DICHLOROANILINE DERIVATIVE.
RU2658837C1 (en) Process for the preparation of 5-aminoisoxazole-carboxylic acid
JPH09110851A (en) Production of (s)-beta-hydroxy-gamma-butyrolactone
EP0410446A1 (en) (S)-5-hydroxydecanoic acid and its therapeutic composition
JP2686876B2 (en) Novel succinic acid derivative
JPH0768192B2 (en) (2S, 3R, 4S) -α- (carboxycyclopropyl) glycine and process for producing the same
JP3619287B2 (en) Ascorbic acid / α-hydroxy acid conjugate or salt thereof, and production method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992921483

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992921483

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992921483

Country of ref document: EP