WO1993007505A1 - Device for determining the strength of a magnetic field - Google Patents

Device for determining the strength of a magnetic field Download PDF

Info

Publication number
WO1993007505A1
WO1993007505A1 PCT/EP1992/002288 EP9202288W WO9307505A1 WO 1993007505 A1 WO1993007505 A1 WO 1993007505A1 EP 9202288 W EP9202288 W EP 9202288W WO 9307505 A1 WO9307505 A1 WO 9307505A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetoresistor
sensor
field sensor
resistance
Prior art date
Application number
PCT/EP1992/002288
Other languages
German (de)
French (fr)
Inventor
Norbert Normann
Gunter Schulze
Ralf Kessler
Original Assignee
Doduco Gmbh + Co. Dr. Eugen Dürrwächter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doduco Gmbh + Co. Dr. Eugen Dürrwächter filed Critical Doduco Gmbh + Co. Dr. Eugen Dürrwächter
Priority to EP92920484A priority Critical patent/EP0606313A1/en
Publication of WO1993007505A1 publication Critical patent/WO1993007505A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the invention relates to a device for determining the strength of a magnetic field from a predetermined direction with a magnetic field sensor and with an associated electrical evaluation circuit. 5
  • EP-B-0 263 775 shows a tire pressure monitor in which a bellows is slidably mounted in the rim ring of the wheel and is acted upon from the inside by the tire's air pressure, parallel to the tire
  • the position of the permanent magnet depends on the air pressure.
  • the permanent magnet rotates past a Hall sensor attached to the wheel suspension, which emits a signal which is dependent on the magnetic flux and thus on the position of the permanent magnet and which is fed to an electrical evaluation circuit.
  • the Hall sensor is an active component and therefore requires an energy supply. That is why at least three lines emanate from the Hall sensor.
  • Another disadvantage of the Hall sensors is that they are sensitive to temperature. Their working range is limited to temperatures from -40 to approximately + 120 ° C-150 ° C. In applications on vehicle wheels, however, higher temperatures can occur because the nearby brake discs temporarily radiate considerable heat.
  • the present invention is therefore based on the object of providing a device of the type mentioned at the outset, which does not require more than two supply lines and withstands higher temperatures than a Hall sensor.
  • a fixed arrangement of an electromagnet and an electrical resistor connected in series therewith with a magnetic field-dependent conductivity is used as the magnetic field sensor.
  • magnetoresistor a magnetic field-dependent conductivity
  • Such a magnetic field sensor manages with two supply lines and is suitable for use in temperature ranges from -40 ° C to at least + 200 ° C. It is also advantageous that magnetoresistors have a very low price compared to Hall sensors; the disadvantage with them, however, is that
  • magnetoresistors of a series differ greatly in their basic resistance R_: scattering of the basic resistance by 20% is normal. Therefore, magnetoresistors cannot easily be used for accurate magnetic field measurements,
  • the magnetoresistor is now operated in a manner which nevertheless enables a very precise magnetic field measurement.
  • the magnetoresistor is first coupled to an electromagnet and connected in series with it.
  • the field of the electromagnet is first coupled to an electromagnet and connected in series with it.
  • the magnetoresistor sets the magnetoresistor and shifts its resistance from the basic resistance R_ along the resistance-magnetic flux characteristic to a higher resistance R, which is also referred to below as the operating point of the magnetic field sensor.
  • the evaluation circuit contains a control circuit which regulates the resistance of the magnetoresistor constantly to the value R by controlling the voltage u or the current I of the current source feeding the magnetic field sensor.
  • a control circuit which regulates the resistance of the magnetoresistor constantly to the value R by controlling the voltage u or the current I of the current source feeding the magnetic field sensor.
  • current and voltage are continuously measured at the magnetic field sensor and the resistance R is determined therefrom by means of a dividing device. From the deviation of the determined resistance from the working point a manipulated variable is derived which controls the current flow through the magnetic field sensor so that its self-generated magnetic field compensates for the influence of the external magnetic field on the magnetoresistor and thereby its resistance to the operating point R ⁇ . leads back.
  • the circuit which picks up this signal can either bring it to further processing in the evaluation circuit or display it.
  • a temperature drift of the magnetic field sensor can be compensated for by providing a reference magnet which generates a magnetic field of known strength and orientation at the location of the magnetic field sensor. From time to time, the magnetic field sensor is exposed to the known magnetic field of the reference magnet instead of the magnetic field to be determined. If it is established that the signal supplied by the tapping circuit and proportional to the manipulated variable, which signal originates from the influence of the reference magnet, is of a normal value, e.g. determined at a temperature of 20 ° C, then the next time the unknown magnetic field is determined, the signal proportional to the manipulated variable is compensated by the drift previously determined by means of the reference magnet and the temperature influence is thereby compensated. Other influences falsifying the measurement result, e.g. an aging can be compensated in this way.
  • an air coil can be used as an electromagnet.
  • the magnetoresistor could also be connected to a non-magnetic, e.g. Attach ceramic core that is sufficiently heat-resistant and can also serve as a support for the coil.
  • a field plate magnetic sensor is preferably used as the magnetoresistor, in particular one whose magnetic field sensitive material contains a semiconductor based on indium antimonide / nickel anti onide.
  • the device according to the invention is preferably used in a tire pressure monitor as described in EP-B-0 263 775: the magnetic field sensor is fixed in place on part of the wheel suspension and is oriented parallel to the wheel axle. On the rim ring of the wheel there is a permanent magnet at the end of a bellows which is acted upon by the tire pressure on the inside. The bellows and the permanent magnet are oriented parallel to the wheel axis, so that the distance of the permanent magnet from the magnetic field sensor, if it rotates past it, depends on the tire pressure. Two lines lead from the magnetic field sensor into the interior of the vehicle to the evaluation circuit, which is preferably located in the area of the dashboard. A reference magnet provided for the temperature compensation is fixed in place on the rim ring, namely at such a distance from the magnet on the bellows that its fields practically do not influence one another; in front-
  • the reference magnet is preferably located at a position of the rim ring diametrically opposite the bellows.
  • a magnetic field sensor can also be used
  • Nuclear coil can also be used to detect soft magnetic materials.
  • a sensor itself generates a magnetic field and has a magnetic circuit, the permeability U of which determines the proportionality factor between the coil current I and the generated magnetic field. Since this ⁇ . is increased by the presence of soft magnetic material near the sensor, the control loop reacts to this material by lowering the current I.
  • Figure 1 is a block diagram of an apparatus for
  • FIG. 2 shows the structure of the magnetic field sensor in detail
  • Figure 3 shows a typical example of the course of the characteristic of the magnetic field sensor, which shows the change in resistance depending on the magnetic
  • Figure 4 shows the arrangement of the magnetic field sensor on a wheel suspension
  • FIG. 5 shows in detail the interaction of the magnetic field sensor with a pressure sensor on the vehicle wheel.
  • the device shown in FIG. 1 consists of a magnetic field sensor 1 and an evaluation circuit 2 connected to it.
  • the magnetic field sensor consists of an electromagnet 3 and a magnetoresistor 4, in particular a field plate magnetic sensor, the resistance R of which is square of the amount of the magnetic flux B (FIG. 3) changes.
  • the electromagnet 3 consists of a cylindrical coil 6 on a rod-shaped core 5, at one end of which the magneto-resistor 4 is attached.
  • the evaluation circuit 2 contains a controllable current source 7, which feeds a current I into the magnetic field sensor 1, through which a magnetic force flow B is generated at the location of the magnetoresistor 4, so that the resistance R of the magnetoresistor via the basic resistance R Q , that exists in the absence of a magnetic field increases.
  • the voltage U of the current source 7 is controlled so that the resistance R assumes a predetermined value R 3, which is referred to here as the operating point (see
  • a divider circuit 8 which, on the one hand, taps the voltage U of the controllable current source 7 and, on the other hand, supplies a measurement signal proportional to the current intensity I.
  • REPLACEMENT LEAF circuit the resistance R of the magnetic field sensor and transmits the result to a microcomputer 9 and to a controller 10.
  • the microcomputer 9 also receives a voltage signal proportional to the current I, digitizes the resistance signal transmitted to it in an analog / digital converter 11 and the signal representing the current value I in an analog / digital converter 14, checks the resistance value and the current value for plausibility and gives the controller 10 a new one if the measuring range is exceeded or undershot via a digital / analog converter 12
  • Working point R des
  • the controller 10 derives a manipulated variable S with which the voltage u of the controllable current source 7 is set such that the magnetic field sensor 1 has the resistance R 3.
  • the resistance of the magnetic field sensor is either greater or less than R, depending on whether the outer magnetic field 13 is rectified or opposed to the magnetic field generated in the magnetic field sensor itself.
  • the changed resistance is determined by the dividing circuit 8, communicated to the controller 10 as the actual value, which then forms a manipulated variable S by comparison with the setpoint value R 3, by means of which the voltage of the controllable current source 7 is changed such that the resistance of the magnetic field sensor again assumes the value R_.
  • the manipulated variable S is proportional to the force flow of the external magnetic field 13 at the location of the magnetoresistor 4. Die
  • the manipulated variable is therefore a further input of the microcomputer
  • REPLACEMENT LEAF 9 supplied, there digitized in an analog / digital converter 14 and evaluated according to a predetermined program. The result of the evaluation can be shown numerically on a display. However, it is also possible to control an analog display, for example a signal lamp 16, via a further digital / analog converter 15, which can indicate that a limit value has been reached.
  • an analog display for example a signal lamp 16, via a further digital / analog converter 15, which can indicate that a limit value has been reached.
  • the magnetic field sensor 1 is exposed from time to time to the known magnetic field of a permanent magnet 17 by approaching the permanent magnet 17 from time to time to the magnetic field sensor 1, one can see from the comparison of the measured force flow that that of the permanent magnet 17 goes out, determine and compensate for a possible temperature drift of the magnetic field sensor with its known, actual power flow.
  • FIG. 4 shows the arrangement of such a magnetic field sensor for monitoring the pressure in pneumatic tires of vehicles.
  • the pneumatic tire 20 sits on the rim 21 of a wheel 22 which is screwed to a hub 23 which is part of a wheel suspension 24.
  • a pressure sensor 25 is installed in the rim 21 parallel to the wheel axis 26, which projects with one end into the air space 27 of the tire and with its other end lies outside the air space 27.
  • the structure of the pressure sensor is shown in detail in FIG. 5. It consists of a tube 28, at the end of which is located in the air space 27, the open end of a bellows 29 is fastened, which inside is subjected to the pressure P in the air space 27.
  • the opposite end of the bellows 29 is closed and carries a permanent magnet 30, the position of which in
  • T Pipe 28 depends on the pressure P.
  • a magnetic field sensor according to the invention is attached to part of the wheel suspension 24, namely to a spring strut 31, on which the magnet 30 moves once with each revolution of the wheel 22.
  • the pressure P can be determined from the measured force flow of the magnet 30 at the location of the magnetic field sensor 1.
  • a permanent magnet 17 is firmly attached as a reference magnet, which enables temperature compensation. Changes in the ambient temperature, but also heat, which is temporarily emitted by the brake disk 32 and heats the magnetic field sensor 1, do not lead to a falsification of the measurement result in this way.

Abstract

In order to determine the strength of a magnetic field of a predetermined direction there are a magnetic field sensor (1) and an electric assessment circuit (2) connected thereto. The magnetic field sensor (1) is a fixed arrangement of an electromagnet (3) and an electric resistor (4) in series therewith having a magnetic field-dependent conductivity (magnetoresistor). The assessment circuit (2) has a controllable current source (7) powering the electromagnet (3). The resistance of the magnetic field sensor (1) is measured and kept at a constant value by a control circuit (10). A tapping circuit (14) taps a signal proportional to the current I and takes it to the assessment circuit (2, 9) for further processing or for display.

Description

(Λ ( Λ
Vorrichtung zum Bestimmen der Starke eines MagnetfeldesDevice for determining the strength of a magnetic field
Die Erfindung befaßt sich mit einer Vorrichtung zum Be¬ stimmen der Stärke eines Magnetfelds von vorgegebener Aus¬ richtung mit einem Magnetfeldsensor und mit einer damit verbundenen elektrischen Auswerteschaltung. 5The invention relates to a device for determining the strength of a magnetic field from a predetermined direction with a magnetic field sensor and with an associated electrical evaluation circuit. 5
Es ist bekannt, als Magnetfeldsensor einen Hall-Sensor zu verwenden. So zeigt die EP-B-0 263 775 einen Reifendruck¬ wächter, bei welchem im Felgenring des Rades ein Falten¬ balg verschieblich gelagert ist, der von innen mit dem 10 Luftdruck des Reifens beaufschlagt ist, sich parallel zurIt is known to use a Hall sensor as a magnetic field sensor. For example, EP-B-0 263 775 shows a tire pressure monitor in which a bellows is slidably mounted in the rim ring of the wheel and is acted upon from the inside by the tire's air pressure, parallel to the tire
Radachse erstreckt und an seinem äusseren Ende einen Dauer¬ magnet trägt. Da die Dehnung des Faltenbalges vom LuftdruckExtends the wheel axle and carries a permanent magnet at its outer end. Since the expansion of the bellows from the air pressure
ERSATZBLATT REPLACEMENT LEAF
abhängt, hängt auch die Lage des Dauermagneten vom Luftdruck ab. Der Dauermagnet rotiert an einem an der Radaufhängung ange¬ brachten Hall-Sensor vorbei, der ein vom Magnetfluß und damit von der Lage des Dauermagneten abhängiges Signal abgibt, welches einer elektrischen Auswerteschaltung zugeführt wird.depends, the position of the permanent magnet depends on the air pressure. The permanent magnet rotates past a Hall sensor attached to the wheel suspension, which emits a signal which is dependent on the magnetic flux and thus on the position of the permanent magnet and which is fed to an electrical evaluation circuit.
Nachteilig dabei ist, dass der Hall-Sensor ein aktives Bauele¬ ment ist und deshalb eine Energieversorgung benötigt. Deshalb gehen vom Hall-Sensor wenigstens drei Leitungen aus. Fahrzeuge enthalten heute aber bereits so viele elektrische und elek¬ tronische Bauteile, dass es für die Ingenieure ein großen Problem ist, die dafür benötigten Kabelbäume unterzubringen. Es besteht deshalb ein Bedürfnis, die Anzahl der elektrischen Leitungen so klein wie möglich zu halten. Ein weiterer Nachteil der Hall- Sensoren liegt darin, dass sie temperaturempfindlich sind. Ihr Arbeitsbereich ist auf Temperaturen von -40 bis ungefähr +120°C- 150°C beschränkt. Bei Anwendungen an Fahrzeugrädern können jedoch höhere Temperaturen auftreten, weil die in der Nähe liegenden Bremsscheiben zeitweise eine erhebliche Wärme abstrahlen.The disadvantage here is that the Hall sensor is an active component and therefore requires an energy supply. That is why at least three lines emanate from the Hall sensor. Today, however, vehicles already contain so many electrical and electronic components that it is a major problem for the engineers to accommodate the cable harnesses required for this. There is therefore a need to keep the number of electrical lines as small as possible. Another disadvantage of the Hall sensors is that they are sensitive to temperature. Their working range is limited to temperatures from -40 to approximately + 120 ° C-150 ° C. In applications on vehicle wheels, however, higher temperatures can occur because the nearby brake discs temporarily radiate considerable heat.
Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art zu schaffen, welche nicht mehr als zwei Zuleitungen benötigt und höhere Temperaturen aushält als ein Hall-Sensor.The present invention is therefore based on the object of providing a device of the type mentioned at the outset, which does not require more than two supply lines and withstands higher temperatures than a Hall sensor.
Diese Aufgabe wird gelöst durch eine Vorrichtung mit den im An¬ spruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.This object is achieved by a device with the features specified in claim 1. Advantageous developments of the invention are the subject of the dependent claims.
ERSATZBLATT <ΛREPLACEMENT LEAF <Λ
Erfindungsgemäss wird als Magnetfeldsensor eine feste An¬ ordnung aus einem Elektromagneten und aus einem mit diesem in Reihe geschalteten elektrischen Widerstand mit magnet¬ feldabhängiger Leitfähigkeit (Magnetoresistor) verwendet. 5 Ein solcher Magnetfeldsensor kommt mit zwei Zuleitungen aus und eignet sich für den Einsatz in Temperaturbereichen von -40°C bis wenigstens +200°C. Vorteilhaft ist auch, dass Magnetoresistoren verglichen mit Hall-Sensoren einen sehr günstigen Preis haben; nachteilig ist bei ihnen jedoch, dassAccording to the invention, a fixed arrangement of an electromagnet and an electrical resistor connected in series therewith with a magnetic field-dependent conductivity (magnetoresistor) is used as the magnetic field sensor. 5 Such a magnetic field sensor manages with two supply lines and is suitable for use in temperature ranges from -40 ° C to at least + 200 ° C. It is also advantageous that magnetoresistors have a very low price compared to Hall sensors; the disadvantage with them, however, is that
10 die Abhängigkeit ihres elektrischen Widerstandes vom magneti¬ schen Fluß einer quadratischen Kennlinie folgt und somit stark nichtlinear ist. Ihr Widerstand steigt ausgehend von ihrem Grundwiderstand RQ , der bei Abwesenheit eines Magnet¬ feldes vorliegt, bei zunehmendem Magnetfluß mit dem Quadrat10 the dependence of their electrical resistance on the magnetic flux follows a quadratic characteristic and is therefore strongly non-linear. Their resistance increases from their basic resistance R Q , which is present in the absence of a magnetic field, with increasing magnetic flux with the square
15 des Betrages des Magnetflusses an. Nachteilig ist ferner, dass sich Magnetoresistoren einer Serie schon in ihrem Grund¬ widerstand R_ stark unterscheiden: Streuungen des Grundwider¬ standes um 20% sind normal. Deshalb kann man Magnetoresistoren nicht ohne weiteres für genaue Magnetfeldmessungen einsetzen,15 of the amount of magnetic flux. Another disadvantage is that magnetoresistors of a series differ greatly in their basic resistance R_: scattering of the basic resistance by 20% is normal. Therefore, magnetoresistors cannot easily be used for accurate magnetic field measurements,
20 sie werden vielmehr typisch als Differentialsonden zur Messung von Magnetfeldänderungen, aber nicht als Sonden zur Absolutwert- beStimmung von magnetischen Flüssen eingesetzt.Rather, they are typically used as differential probes for measuring changes in the magnetic field, but not as probes for determining the absolute value of magnetic fluxes.
Erfindungsgemäss wird der Magnetoresistor nunmehr in einer Art 25 und Weise betrieben, die doch eine recht genaue Magnetfeld- messung ermöglicht. Zu diesem Zweck wird der Magnetoresistor zunächst einmal mit einem Elektromagneten gekoppelt und mit diesem in Reihe geschaltet. Das Feld des Elektromagneten durch-According to the invention, the magnetoresistor is now operated in a manner which nevertheless enables a very precise magnetic field measurement. For this purpose, the magnetoresistor is first coupled to an electromagnet and connected in series with it. The field of the electromagnet
ERSATZBLATT REPLACEMENT LEAF
setzt den Magnetoresistor und verschiebt dessen Widerstand vom Grundwiderstand R_ ausgehend längs der Widerstands-Magnet¬ fluß-Kennlinie auf einen höheren Widerstand R , der nach- folgend auch als Arbeitspunkt des Magnetfeldsensors bezeich- net wird. Der Arbeitspunkt liegt auf einem ansteigenden Ast der parabelförmigen Kennlinie. Aufgrund der Steilheitszu¬ nahme der Kennlinie nimmt auch die Empfindlichkeit des Magnet¬ feldsensors zu. Ein zu messendes äusseres Magnetfeld verstärkt oder schwächt, je nachdem ob es dem Feld des Elektromagneten gleich- oder entgegengerichtet ist, das selbsterzeugte Feld des Magnetfeldsensors. Damit verschiebt sich der Widerstand des Magnetoresistors aus dem Arbeitspunkt R= heraus längs der Kennlinie. Wegen der Parabelform der Kennlinie ist die Messung allerdings stark nichtlinear.sets the magnetoresistor and shifts its resistance from the basic resistance R_ along the resistance-magnetic flux characteristic to a higher resistance R, which is also referred to below as the operating point of the magnetic field sensor. The working point is on an increasing branch of the parabolic curve. Due to the increase in steepness of the characteristic curve, the sensitivity of the magnetic field sensor also increases. An external magnetic field to be measured strengthens or weakens the self-generated field of the magnetic field sensor, depending on whether it is the same as or opposite to the field of the electromagnet. The resistance of the magnetoresistor thus shifts out of the operating point R = along the characteristic curve. However, due to the parabolic shape of the characteristic, the measurement is strongly non-linear.
Um die Nichtlinearität auszugleichen, ist vorgesehen, dass die Auswerteschaltung einen Regelkreis enthält, welcher durch Steuerung der Spannung ü oder des Stroms I der den Magnetfeld¬ sensor speisenden Stromquelle den Widerstand des Magnetoresi- stors konstant auf den Wert R regelt. Zu diesem Zweck werden am Magnetfeldsensor fortlaufend Strom und Spannung gemessen und daraus mittels einer Dividiereinrichtung der Widerstand R be¬ stimmt. Aus der Abweichung des bestimmten Widerstandes vom Arbeitspunkt
Figure imgf000006_0001
wird eine Stellgröße abgeleitet, welche den Stromfluß durch den Magnetfeldsensor so steuert, dass dessen selbst erzeugtes Magnetfeld den Einfluß des äusseren Magnet¬ feldes auf den Magnetoresistor kompensiert und dadurch dessen Widerstand auf den Arbeitspunkt Rα. zurückführt.
In order to compensate for the non-linearity, it is provided that the evaluation circuit contains a control circuit which regulates the resistance of the magnetoresistor constantly to the value R by controlling the voltage u or the current I of the current source feeding the magnetic field sensor. For this purpose, current and voltage are continuously measured at the magnetic field sensor and the resistance R is determined therefrom by means of a dividing device. From the deviation of the determined resistance from the working point
Figure imgf000006_0001
a manipulated variable is derived which controls the current flow through the magnetic field sensor so that its self-generated magnetic field compensates for the influence of the external magnetic field on the magnetoresistor and thereby its resistance to the operating point Rα. leads back.
ERSATZBLATT Bei einem in dieser Art funktionierenden Regelkreis ist der Strom I linear abhängig von der Größe des Magnetflusses des äusseren Feldes am Ort des Magnetoresistors. Greift man ein elektrisches Signal proportional zu I ab, so erhält man eine Meßgröße für dieses Magnetfeld.REPLACEMENT LEAF In a control circuit functioning in this way, the current I is linearly dependent on the magnitude of the magnetic flux of the external field at the location of the magnetoresistor. If you tap an electrical signal proportional to I, you get a measurand for this magnetic field.
Die Schaltung, die dieses Signal abgreift, kann es entweder zur Weiterverarbeitung in der Auswerteschaltung oder zur An¬ zeige bringen.The circuit which picks up this signal can either bring it to further processing in the evaluation circuit or display it.
In Weiterbildung der Erfindung kann eine Temperaturdrift des Magnetfeldsensors dadurch kompensiert werden, dass ein Referenz¬ magnet vorgesehen ist, welcher am Ort des Magnetfeldsensors ein Magnetfeld von bekannter Stärke und Orientierung erzeugt. Der Magnetfeldsensor wird von Zeit zu Zeit dem bekannten Magnetfeld des Referenzmagneten anstelle des zu bestimmenden Magnetfeldes ausgesetzt. Wird dabei festgestellt, dass das von der Abgreif¬ schaltung gelieferte, der Stellgröße proportionale Signal, wel¬ ches vom Einfluß des Referenzmagneten herrührt, von einem Normal- wert, welcher z.B. bei einer Temperatur von 20°C bestimmt wurde, wegdriftet, dann wird, wenn das nächste Mal das unbekannte Magnet¬ feld bestimmt wird, das der Stellgröße proportionale, abgegriffene Signal um die zuvor anhand des Referenzmagneten bestimmte Drift kompensiert und dadurch der Temperatureinfluß ausgeglichen. Auch andere das Meßergebnis verfälschende Einflüsse wie z.B. eine Alte¬ rung können auf diese Weise kompensiert werden.In a development of the invention, a temperature drift of the magnetic field sensor can be compensated for by providing a reference magnet which generates a magnetic field of known strength and orientation at the location of the magnetic field sensor. From time to time, the magnetic field sensor is exposed to the known magnetic field of the reference magnet instead of the magnetic field to be determined. If it is established that the signal supplied by the tapping circuit and proportional to the manipulated variable, which signal originates from the influence of the reference magnet, is of a normal value, e.g. determined at a temperature of 20 ° C, then the next time the unknown magnetic field is determined, the signal proportional to the manipulated variable is compensated by the drift previously determined by means of the reference magnet and the temperature influence is thereby compensated. Other influences falsifying the measurement result, e.g. an aging can be compensated in this way.
Grundsätzlich kann man als Elektromagnet eine Luftspule verwenden. Um mit kleineren Strömen auszukommen, wird es jedoch bevorzugt,Basically, an air coil can be used as an electromagnet. However, in order to get by with smaller currents, it is preferred
ERSATZBLATT REPLACEMENT LEAF
die Spule- auf einem Kern mit höherer magnetischer Suszeptibili- tät μ anzuordnen. Am besten verwendet man eine zylindrische Spule mit einem Stabkern, an dessen einem Ende man den Magneto¬ resistor anbringt. Im Falle einer Luftspule könnte man den Magnetoresistor auch an einem nichtmagnetischen, z.B. kerami¬ schen Kern anbringen, der hinreichend wärmebeständig ist und zugleich als Träger für die Spule dienen kann. Als Magneto¬ resistor wird vorzugsweise ein Feldplatten-Magnetsensor ver¬ wendet, insbesondere ein solcher, dessen magnetfeldempfindliches Material einen Halbleiter auf der Basis von Indium-Antimonid/ Nickel-Anti onid enthält.to arrange the coil on a core with higher magnetic susceptibility μ. It is best to use a cylindrical coil with a rod core, on one end of which the magneto resistor is attached. In the case of an air coil, the magnetoresistor could also be connected to a non-magnetic, e.g. Attach ceramic core that is sufficiently heat-resistant and can also serve as a support for the coil. A field plate magnetic sensor is preferably used as the magnetoresistor, in particular one whose magnetic field sensitive material contains a semiconductor based on indium antimonide / nickel anti onide.
Die bevorzugte Verwendung der erfindungsgemässen Vorrichtung erfolgt in einem Reifendruckwächter, wie er in der EP-B-0 263 775 beschrieben ist: Der Magnetfeldsensor ist ortsfest an einem Teil der Radaufhängung angebracht und parallel zur Rad¬ achse orientiert. Am Felgenring des Rades befindet sich ein Dauermagnet am Ende eines Faltenbalges, der innen vom Reifen¬ druck beaufschlagt ist. Der Faltenbalg und der Dauermagnet sind parallel zur Radachse orientiert, so dass der Abstand des Dauermagneten vom Magnetfeldsensor, wenn er an diesem vorbei rotiert, vom Reifendruck abhängt. Vom Magnetfeldsensor führen zwei Leitungen in das Innere des Fahrzeugs zur Aus¬ werteschaltung, die sich vorzugsweise im Bereich des Armaturen- bretts befindet. Ein für die Temperaturkompensation vorge¬ sehener Referenzmagnet befindet sich ortsfest am Felgenring, und zwar in solcher Entfernung von dem Magneten am Faltenbalg, dass deren Felder einander praktisch nicht beeinflussen; vor- The device according to the invention is preferably used in a tire pressure monitor as described in EP-B-0 263 775: the magnetic field sensor is fixed in place on part of the wheel suspension and is oriented parallel to the wheel axle. On the rim ring of the wheel there is a permanent magnet at the end of a bellows which is acted upon by the tire pressure on the inside. The bellows and the permanent magnet are oriented parallel to the wheel axis, so that the distance of the permanent magnet from the magnetic field sensor, if it rotates past it, depends on the tire pressure. Two lines lead from the magnetic field sensor into the interior of the vehicle to the evaluation circuit, which is preferably located in the area of the dashboard. A reference magnet provided for the temperature compensation is fixed in place on the rim ring, namely at such a distance from the magnet on the bellows that its fields practically do not influence one another; in front-
zugsweise befindet sich der Referenzmagnet an einer dem Faltenbalg diametral gegenüberliegenden Stelle des Felgen¬ ringes.the reference magnet is preferably located at a position of the rim ring diametrically opposite the bellows.
In Weiterbildung der Erfindung kann ein Magnetfeldsensor mitIn a further development of the invention, a magnetic field sensor can also be used
Kernspule auch zum Detektieren von weichmagnetischen Materialien benutzt werden. Ein solcher Sensor erzeugt selbst ein Magnet¬ feld und besitzt einen magnetischen Kreis, dessen Permeabilität U den Proportionalitätsfaktor zwischen Spulenstrom I und er- zeugtem Magnetfeld bestimmt. Da dieses μ. durch die Anwesenheit von weichmagnetischem Material in Sensornähe erhöht wird, rea¬ giert der Regelkreis auf dieses Material mit einer Senkung des Stroms I.Nuclear coil can also be used to detect soft magnetic materials. Such a sensor itself generates a magnetic field and has a magnetic circuit, the permeability U of which determines the proportionality factor between the coil current I and the generated magnetic field. Since this μ. is increased by the presence of soft magnetic material near the sensor, the control loop reacts to this material by lowering the current I.
Eine bevorzugte Anwendung dieser Weiterbildung gibt es in einem Kfz-Antiblockiersystem als Sensor zum Detektieren von Zähnen eines rotierenden Zahnkranzes am blockiergeschützten Rad.There is a preferred application of this development in a motor vehicle anti-lock braking system as a sensor for detecting the teeth of a rotating ring gear on the anti-lock wheel.
Ein Ausführungsbeispiel der Erfindung ist in den beigefügten Zeichnungen dargestellt und wird nachfolgend beschrieben.An embodiment of the invention is illustrated in the accompanying drawings and is described below.
Figur 1 ist ein Blockschaltbild einer Vorrichtung zumFigure 1 is a block diagram of an apparatus for
Bestimmen der Stärke eines Magnetfeldes mit einem Magnetfeldsensor und mit einer Auswerteschaltung,Determining the strength of a magnetic field with a magnetic field sensor and with an evaluation circuit,
Figur 2 zeigt im Detail den Aufbau des Magnetfeldsensors,FIG. 2 shows the structure of the magnetic field sensor in detail,
Figur 3 zeigt ein typisches Beispiel für den Verlauf der Kennlinie des Magnetfeldsensors, die die Änderung des Widerstandes in Abhängigkeit vom magnetischenFigure 3 shows a typical example of the course of the characteristic of the magnetic field sensor, which shows the change in resistance depending on the magnetic
Kraftfluß angibt,Power flow indicates
ERSATZBLATT REPLACEMENT LEAF
Figur 4 zeigt die Anordnung des Magnetfeldsensors an einer Radaufhängung, undFigure 4 shows the arrangement of the magnetic field sensor on a wheel suspension, and
Figur 5 zeigt als Detail das Zusammenwirken des Magnetfeld- sensors mit einem Drucksensor am Fahrzeugrad.FIG. 5 shows in detail the interaction of the magnetic field sensor with a pressure sensor on the vehicle wheel.
Die in Figur 1 dargestellte Vorrichtung besteht aus einem Magnet¬ feldsensor 1 und aus einer mit diesem verbundenen Auswerteschal¬ tung 2. Der Magnetfeldsensor besteht aus einem Elektromagnet 3 und aus einem Magnetoresistor 4, insbesondere ein Feldplatten- Magnetsensor, dessen Widerstand R sich mit dem Quadrat des Be¬ trages des Magnetflusses B (Figur 3) ändert.The device shown in FIG. 1 consists of a magnetic field sensor 1 and an evaluation circuit 2 connected to it. The magnetic field sensor consists of an electromagnet 3 and a magnetoresistor 4, in particular a field plate magnetic sensor, the resistance R of which is square of the amount of the magnetic flux B (FIG. 3) changes.
Der Elektromagnet 3 besteht aus einer zylindrischen Spule 6 auf einem stabförmigen Kern 5, an dessen einem Ende der Magneto¬ resistor 4 befestigt ist.The electromagnet 3 consists of a cylindrical coil 6 on a rod-shaped core 5, at one end of which the magneto-resistor 4 is attached.
Die Auswerteschaltung 2 enthält eine steuerbare Stromquelle 7, welche in den Magnetfeldsensor 1 einen Strom I einspeist, durch welchen am Ort des Magnetoresistors 4 ein magnetischer Kraft¬ fluß B erzeugt wird, so dass der Widerstand R des Magnetoresi¬ stors über den Grundwiderstand RQ, der bei Abwesenheit eines Magnetfeldes besteht, ansteigt. Die Spannung U der Stromquelle 7 wird so gesteuert, dass der Widerstand R einen vorgegebenen Wert R 3. annimmt, der hier als Arbeitspunkt bezeichnet wird (sieheThe evaluation circuit 2 contains a controllable current source 7, which feeds a current I into the magnetic field sensor 1, through which a magnetic force flow B is generated at the location of the magnetoresistor 4, so that the resistance R of the magnetoresistor via the basic resistance R Q , that exists in the absence of a magnetic field increases. The voltage U of the current source 7 is controlled so that the resistance R assumes a predetermined value R 3, which is referred to here as the operating point (see
Figur 3) . Zu diesem Zweck ist eine DividierSchaltung 8 vorge¬ sehen, welche einerseits die Spannung U der steuerbaren Strom¬ quelle 7 abgreift und welcher zum anderen ein der Stromstärke I proportionales Meßsignal zugeführt wird. Durch Division des Spannungswertes ü durch den Stromwert I ermittelt die Dividier-Figure 3). For this purpose, a divider circuit 8 is provided which, on the one hand, taps the voltage U of the controllable current source 7 and, on the other hand, supplies a measurement signal proportional to the current intensity I. By dividing the voltage value ü by the current value I, the dividing
ERSATZBLATT schaltung den Widerstand R des Magnetfeldsensors und über¬ mittelt das Ergebnis an einen Mikrorechner 9 und an einen Regler 10. Der Mikrorechner 9 erhält ferner ein dem Strom I proportionales Spannungssignal, digitalisiert das ihm über- mittelte Widerstand-Signal in einem Analog/Digital-Wandler 11 und das den Stromwert I darstellende Signal in einem Ana¬ log/Digital-Wandler 14, prüft den Widerstandswert und den Stromwert auf Plausibilität und gibt dem Regler 10 bei Me߬ bereichsüberschreitung bzw. -unterschreitung über einen Digital/Analog-Wandler 12 einen neuen Arbeitspunkt R= desREPLACEMENT LEAF circuit the resistance R of the magnetic field sensor and transmits the result to a microcomputer 9 and to a controller 10. The microcomputer 9 also receives a voltage signal proportional to the current I, digitizes the resistance signal transmitted to it in an analog / digital converter 11 and the signal representing the current value I in an analog / digital converter 14, checks the resistance value and the current value for plausibility and gives the controller 10 a new one if the measuring range is exceeded or undershot via a digital / analog converter 12 Working point R = des
Magnetfeldsensors vor. Aus dem Vergleich von R und R leitet der Regler 10 eine Stellgröße S ab, mit welcher die Spannung ü der steuerbaren Stromquelle 7 so eingestellt wird, dass der Magnetfeldsensor 1 den Widerstand R 3. hat.Magnetic field sensor before. From the comparison of R and R, the controller 10 derives a manipulated variable S with which the voltage u of the controllable current source 7 is set such that the magnetic field sensor 1 has the resistance R 3.
Gibt es am Ort des Magnetoresistors 4 nur das vom Elektro¬ magnet 3 selbst erzeugte Magnetfeld, aber kein äusseres Magnet¬ feld, dann ist R = R und S = 0. Wird jedoch dem vom Elektro- magnet 3 selbst erzeugten Magnetfeld ein äusseres Magnetfeld 13 überlagert, dann wird der Widerstand des Magnetfeldsensors ent¬ weder größer oder kleiner als R , je nachdem ob das äussere Magnetfeld 13 dem im Magnetfeldsensor selbst erzeugten Magnet¬ feld gleichgerichtet oder entgegengerichtet ist. Der geänderte Widerstand wird von der Dividierschaltung 8 ermittelt, dem Reg- 1er 10 als Ist-Wert mitgeteilt, der daraufhin durch Vergleich mit dem Soll-Wert R 3 eine Stellgröße S bildet, durch welche die Spannung der steuerbaren Stromquelle 7 so geändert wird, dass der Widerstand des Magnetfeldsensors wieder den Wert R_ annimmt. Die Stellgröße S ist proportional zum Kraftfluß des äusseren Magnetfeldes 13 am Ort des Magnetoresistors 4. DieIf there is only the magnetic field generated by the electromagnet 3 itself at the location of the magnetoresistor 4, but no external magnetic field, then R = R and S = 0. However, if the magnetic field generated by the electromagnet 3 itself becomes an external magnetic field 13 superimposed, then the resistance of the magnetic field sensor is either greater or less than R, depending on whether the outer magnetic field 13 is rectified or opposed to the magnetic field generated in the magnetic field sensor itself. The changed resistance is determined by the dividing circuit 8, communicated to the controller 10 as the actual value, which then forms a manipulated variable S by comparison with the setpoint value R 3, by means of which the voltage of the controllable current source 7 is changed such that the resistance of the magnetic field sensor again assumes the value R_. The manipulated variable S is proportional to the force flow of the external magnetic field 13 at the location of the magnetoresistor 4. Die
Stellgröße wird deshalb einem weiteren Eingang des MikrorechnersThe manipulated variable is therefore a further input of the microcomputer
ERSATZBLATT 9 zugeführt, dort in einem Analog/Digital-Wandler 14 digitali¬ siert und nach einem vorgegebenen Programm ausgewertet. Das Ergebnis der Auswertung kann auf einem Display zahlenmässig angezeigt werden. Es ist aber auch möglich, über einen weiteren Digital/Analog-Wandler 15 eine Analoganzeige anzusteuern, z.B. eine Signallampe 16, welche das Erreichen eines Grenzwertes an¬ zeigen kann.REPLACEMENT LEAF 9 supplied, there digitized in an analog / digital converter 14 and evaluated according to a predetermined program. The result of the evaluation can be shown numerically on a display. However, it is also possible to control an analog display, for example a signal lamp 16, via a further digital / analog converter 15, which can indicate that a limit value has been reached.
Wenn man anstelle des zu bestimmenden äusseren Feldes 13 den Magnetfeldsensor 1 von Zeit zu Zeit dem bekannten Magnetfeld eines Dauermagneten 17 aussetzt, indem man den Dauermagneten 17 von Zeit zu Zeit dem Magnetfeldsensor 1 annähert, kann man aus dem Vergleich des gemessenen Kraftflusses, der vom Dauermagnet 17 ausgeht, mit seinem bekannten, tatsächlichen Kraftfluß eine eventuelle Temperaturdrift des Magnetfeldsensors ermitteln und kompensieren.If, instead of the external field 13 to be determined, the magnetic field sensor 1 is exposed from time to time to the known magnetic field of a permanent magnet 17 by approaching the permanent magnet 17 from time to time to the magnetic field sensor 1, one can see from the comparison of the measured force flow that that of the permanent magnet 17 goes out, determine and compensate for a possible temperature drift of the magnetic field sensor with its known, actual power flow.
Figur 4 zeigt die Anordnung eines solchen Magnetfeldsensors zur Überwachung des Drucks in Luftreifen von Fahrzeugen. Der Luftreifen 20 sitzt auf der Felge 21 eines Rades 22, welches mit einer Nabe 23 verschraubt ist, die Teil einer Radaufhängung 24 ist. In die Felge 21 ist parallel zur Radachse 26 ein Druck¬ sensor 25 eingebaut, der mit seinem einen Ende in den Luftraum 27 des Reifens ragt und mit seinem anderen Ende ausserhalb des Luftraumes 27 liegt. Der Aufbau des Drucksensors ist im Detail in Figur 5 dargestellt. Er besteht aus einem Rohr 28, an dessen im Luftraum 27 liegenden Ende das offene Ende eines Faltenbalges 29 befestigt ist, welcher innen mit dem Druck P im Luftraum 27 beaufschlagt wird. Das gegenüberliegende Ende des Faltenbalgs 29 ist geschlossen und trägt einen Dauermagnet 30, dessen Lage imFigure 4 shows the arrangement of such a magnetic field sensor for monitoring the pressure in pneumatic tires of vehicles. The pneumatic tire 20 sits on the rim 21 of a wheel 22 which is screwed to a hub 23 which is part of a wheel suspension 24. A pressure sensor 25 is installed in the rim 21 parallel to the wheel axis 26, which projects with one end into the air space 27 of the tire and with its other end lies outside the air space 27. The structure of the pressure sensor is shown in detail in FIG. 5. It consists of a tube 28, at the end of which is located in the air space 27, the open end of a bellows 29 is fastened, which inside is subjected to the pressure P in the air space 27. The opposite end of the bellows 29 is closed and carries a permanent magnet 30, the position of which in
T Rohr 28 vom Druck P abhängt. Im selben Achsabstand wie der Drucksensor 25 ist an einem Teil der Radaufhängung 24, nämlich an einem Federbein 31 ein erfindungsgemässer Magnetfeldsensor angebracht, an welchem sich der Magnet 30 bei jeder Umdrehung des Rades 22 einmal vorüberbewegt. Aus dem gemessenen Kraft¬ fluß des Magneten 30 am Ort des Magnetfeldsensors 1 kann der Druck P ermittelt werden.T Pipe 28 depends on the pressure P. At the same center distance as the pressure sensor 25, a magnetic field sensor according to the invention is attached to part of the wheel suspension 24, namely to a spring strut 31, on which the magnet 30 moves once with each revolution of the wheel 22. The pressure P can be determined from the measured force flow of the magnet 30 at the location of the magnetic field sensor 1.
An einer diametral vom Drucksensor 25 gegenüberliegenden Stelle der Felge 21 ist ein Dauermagnet 17 als Referenzmagnet fest angebracht, der eine Temperaturkompensation ermöglicht. Änderungen der Umgebungstemperatur, aber auch Wärme, die zeit¬ weise von der Bremsscheibe 32 abgestrahlt wird und den Magnet¬ feldsensor 1 erwärmt, führen auf diese Weise nicht zu einer Ver- fälschung des Meßergebnisses.At a diametrically opposite location of the rim 21 of the pressure sensor 25, a permanent magnet 17 is firmly attached as a reference magnet, which enables temperature compensation. Changes in the ambient temperature, but also heat, which is temporarily emitted by the brake disk 32 and heats the magnetic field sensor 1, do not lead to a falsification of the measurement result in this way.
ERSATZBLATT REPLACEMENT LEAF

Claims

Patentansprüche: Claims:
1. Vorrichtung zum Bestimmen der Stärke eines Magnet¬ felds von vorgegebener Ausrichtung mit einem Magnet¬ feldsensor (1) und mit einer damit verbundenen elektri¬ schen Auswerteschaltung (2) ,1. Device for determining the strength of a magnetic field of a predetermined orientation with a magnetic field sensor (1) and with an associated electrical evaluation circuit (2),
dadurch gekennzeichnet:, dass der Magnetfeldsensor (1) eine feste Anordnung aus einem Elektromagneten (3) und aus einem mit diesem in Reihe geschalteten elektrischen Widerstand (4) (nachfolgend als Magnetoresistor bezeichnet) mit magnetfeldabhängiger Leitfähigkeit ist,characterized in that the magnetic field sensor (1) is a fixed arrangement comprising an electromagnet (3) and an electrical resistor (4) (hereinafter referred to as a magnetoresistor) connected in series therewith and having a magnetic field-dependent conductivity,
dass die Auswerteschaltung (2) eine den Elektromagneten (3) speisende Stromquelle (7) hat, die den Widerstand R des Magnetoresistors (4) ausgehend von seinem Grundwider- stand R bei fehlendem Magnetfluß (B = 0) auf der R (B)- Kennlinie auf einen Arbeitspunkt mit höherem Widerstand R 3 verschiebt,that the evaluation circuit (2) has a current source (7) which feeds the electromagnet (3) and which, based on its basic resistance R in the absence of magnetic flux (B = 0) on the R (B) - the resistance R of the magnetoresistor (4) - Shifts characteristic to a working point with higher resistance R 3,
dass die Auswerteschaltung (2) einen Regelkreis (10) ent- hält, welcher durch Steuerung der Spannung U oder desthat the evaluation circuit (2) contains a control circuit (10), which by controlling the voltage U or the
Stroms I der Stromquelle (7) den Widerstand R des Magneto¬ resistors (4) konstant auf den Widerstandswert R 3. regelt,Current I of the current source (7) regulates the resistance R of the magnetoresistor (4) constantly to the resistance value R 3.
und dass eine AbgreifSchaltung (14) vorgesehen ist, welche ein dem Strom I proportionales Signal abgreift und zur Weiter-and that a tapping circuit (14) is provided which taps a signal proportional to the current I and for further
ERSATZBLATT Verarbeitung in der Auswerteschaltung (2, 9) oder zur Anzeige (16) anbietet.REPLACEMENT LEAF Offers processing in the evaluation circuit (2, 9) or for display (16).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein Referenzmagnet (17) vorgesehen ist, welcher am Ort des Magnetfeldsensors (1) ein Magnetfeld von bekannter Stärke und Orientierung erzeugt,2. Device according to claim 1, characterized in that a reference magnet (17) is provided which generates a magnetic field of known strength and orientation at the location of the magnetic field sensor (1),
und dass Mittel (22) vorgesehen sind, die den Magnetfeldsensor (1) von Zeit zu Zeit dem bekannten Magnetfeld des Referenz¬ magneten (17) anstelle des zu bestimmenden Magnetfeldes aus¬ setzen,and that means (22) are provided which expose the magnetic field sensor (1) from time to time to the known magnetic field of the reference magnet (17) instead of the magnetic field to be determined,
und dass eine Korrekturschaltung (9) vorgesehen ist, welche das abgegriffene, der Stellgröße (S) proportionale Signal ent¬ sprechend einer festgestellten Abweichung der beim Bestimmen des Referenzfeldes auftretenden Stellgröße (S) von einem Normal¬ wert korrigiert.and that a correction circuit (9) is provided, which corrects the tapped signal, which is proportional to the manipulated variable (S), in accordance with a determined deviation of the manipulated variable (S) occurring when determining the reference field from a normal value.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Elektromagnet (3) eine zylindrische Spule (6) auf einem Stabkern (5) hat und dass der Magnetoresistor (4) an einem Ende des Stabkerns (5) angeordnet ist.3. Device according to claim 1 or 2, characterized in that the electromagnet (3) has a cylindrical coil (6) on a rod core (5) and that the magnetoresistor (4) is arranged at one end of the rod core (5).
4. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Elektromagnet (3) und der Referenz¬ magnet (17) parallel oder antiparallel zueinander angeordnet sind.4. Device according to one of the preceding claims, characterized in that the electromagnet (3) and the reference magnet (17) are arranged parallel or antiparallel to each other.
ERSATZBLATT REPLACEMENT LEAF
5. Vorrichtung nach einem der vorstehenden Ansprüche, da¬ durch gekennzeichnet, dass der Magnetoresistor (4) ein Feldplatten-Magnetsensor ist.5. Device according to one of the preceding claims, da¬ characterized in that the magnetoresistor (4) is a field plate magnetic sensor.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der Magnetoresistor (4) als magnetfeldempfindliches Material einen Halbleiter auf der Basis von InSb/NiSb enthält.6. The device according to claim 5, characterized in that the magnetoresistor (4) as a magnetic field sensitive material contains a semiconductor based on InSb / NiSb.
7. Verwendung einer Vorrichtung gemäss einem der vorstehenden Ansprüche als Bestandteil eines Reifendruckwächters, wel¬ cher einen am Rad (22) angebrachten Drucksensor (25) mit einem Dauermagnet (30), dessen Abstand von der Radachse (26) konstant ist, dessen Lage parallel zur Radachse (26) aber vom Reifen¬ druck (P) abhängt, und einen Magnetfeldsensor (1) hat, der in gleichbleibender Lage an der Radaufhängung (24, 31) angeordnet ist.7. Use of a device according to one of the preceding claims as part of a tire pressure monitor, which pressure sensor (25) attached to the wheel (22) with a permanent magnet (30), the distance from the wheel axis (26) is constant, the position of which is parallel to the wheel axis (26) but depends on the tire pressure (P) and has a magnetic field sensor (1) which is arranged in a constant position on the wheel suspension (24, 31).
8. Reifendruckwächter nach Anspruch 7 und Anspruch 2, da¬ durch gekennzeichnet, dass der Referenzmagnet (17) an einer dem Drucksensor (25) diametral gegenüberliegenden Stelle des Rades (22) angeordnet ist.8. Tire pressure monitor according to claim 7 and claim 2, characterized in that the reference magnet (17) is arranged at a point of the wheel (22) diametrically opposite the pressure sensor (25).
9. Reifendruckwächter nach Anspruch 7 oder 8, dadurch ge¬ kennzeichnet, dass die Magnete (3, 17, 30) parallel zur Radachse (26) orientiert sind.9. Tire pressure monitor according to claim 7 or 8, characterized ge indicates that the magnets (3, 17, 30) are oriented parallel to the wheel axis (26).
10. Verwendung einer Vorrichtung gemäss einem der Ansprüche 1 bis 6 zur Erkennung von ferromagnetischen Gegenständen mit der Maßgabe, dass der Elektromagnet (3) einen ferromagnetischen Kern (5) , insbesondere aus Weicheisen, hat.10. Use of a device according to one of claims 1 to 6 for the detection of ferromagnetic objects with the proviso that the electromagnet (3) has a ferromagnetic core (5), in particular made of soft iron.
11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, dass die Gegenstände die Zähne eines Zahnkranzes an einem blockiergeschützten Kfz-Rad sind.11. Use according to claim 10, characterized in that the objects are the teeth of a ring gear on an anti-lock motor vehicle wheel.
ERSATZBLATT REPLACEMENT LEAF
PCT/EP1992/002288 1991-10-04 1992-10-03 Device for determining the strength of a magnetic field WO1993007505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP92920484A EP0606313A1 (en) 1991-10-04 1992-10-03 Device for determining the strength of a magnetic field

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DEP4133041.2 1991-10-04
DE4133041 1991-10-04
DEP4200156.0 1992-01-07
DE19924200156 DE4200156A1 (en) 1991-10-04 1992-01-07 DEVICE FOR DETERMINING THE STRENGTH OF A MAGNETIC FIELD

Publications (1)

Publication Number Publication Date
WO1993007505A1 true WO1993007505A1 (en) 1993-04-15

Family

ID=25907970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/002288 WO1993007505A1 (en) 1991-10-04 1992-10-03 Device for determining the strength of a magnetic field

Country Status (3)

Country Link
EP (1) EP0606313A1 (en)
DE (1) DE4200156A1 (en)
WO (1) WO1993007505A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408511A1 (en) * 1994-03-14 1995-09-21 Duerrwaechter E Dr Doduco Wheel rim mounted vehicle pneumatic tyre pressure monitoring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260932A (en) * 1963-05-10 1966-07-12 Siemens Ag Magnet-field measuring device with a galvanomagnetic resistance probe
EP0030041A1 (en) * 1979-11-27 1981-06-10 LGZ LANDIS &amp; GYR ZUG AG Measuring transformer, especially for measuring a magnetic field generated by a measuring current
US4513609A (en) * 1982-06-14 1985-04-30 Nippondenso Co., Ltd. Electromagnetic rotation detecting apparatus
EP0263775A2 (en) * 1986-10-08 1988-04-13 Alligator Ventilfabrik GmbH Device and method for supervising the air pressure of a vehicle tyre
EP0316493A1 (en) * 1987-11-18 1989-05-24 Equipement Industriel Normand France Device for monitoring the proper electric and/or mechanic functioning of electro-magnetic-type indicator elements
EP0319737A1 (en) * 1987-11-19 1989-06-14 Alcatel SEL Aktiengesellschaft Magnetic field detector, method and circuit for generating an electric signal with that magnetic field detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU485384A2 (en) * 1973-12-07 1975-09-25 Уфимский авиационный институт им. Орджоникидзе Linear speed sensor
EP0406024B1 (en) * 1989-06-30 1994-09-14 SHARP Corporation Method and device for sensing a magnetic field with use of a magneto-resistive property of a superconductive material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260932A (en) * 1963-05-10 1966-07-12 Siemens Ag Magnet-field measuring device with a galvanomagnetic resistance probe
EP0030041A1 (en) * 1979-11-27 1981-06-10 LGZ LANDIS &amp; GYR ZUG AG Measuring transformer, especially for measuring a magnetic field generated by a measuring current
US4513609A (en) * 1982-06-14 1985-04-30 Nippondenso Co., Ltd. Electromagnetic rotation detecting apparatus
EP0263775A2 (en) * 1986-10-08 1988-04-13 Alligator Ventilfabrik GmbH Device and method for supervising the air pressure of a vehicle tyre
EP0316493A1 (en) * 1987-11-18 1989-05-24 Equipement Industriel Normand France Device for monitoring the proper electric and/or mechanic functioning of electro-magnetic-type indicator elements
EP0319737A1 (en) * 1987-11-19 1989-06-14 Alcatel SEL Aktiengesellschaft Magnetic field detector, method and circuit for generating an electric signal with that magnetic field detector

Also Published As

Publication number Publication date
DE4200156A1 (en) 1993-04-08
EP0606313A1 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
EP2137499B1 (en) Method and sensor arrangement for determining the position and/or change of position of a measured object relative to a sensor
DE19580095C2 (en) Proximity sensor using magneto-resistive elements and permanent magnet
EP1241437B1 (en) Magnetical position sensor, valve stem with magnetic tube, ring slices
DE102012001997B4 (en) Operating device for an electrical device
DE19817356A1 (en) Angle indicator for determining an angle between a sensor arrangement and a magnetic field
EP2564164B1 (en) Magnetic length measuring system, length measuring method and method for producing a magnetic length measuring system
DE3903359A1 (en) DEVICE FOR DETERMINING THE STEERING WHEEL ANGLE OF A MOTOR VEHICLE
WO2009121193A1 (en) Magnetic linear sensor arrangement
EP1850096B1 (en) Remote transmitter for analogue measuring devices
EP1563258A1 (en) Angle position sensor
EP3321643A2 (en) Position sensor and positioning device with position sensor
DE102013114825B4 (en) Device for measuring an angle of an axis of rotation
WO2021123278A1 (en) Device component having a magnetorheological brake device
DE4123131A1 (en) Rotation-angle dependent electrical output signal generation - measuring magnetic potential differences between pairs of points on arms of rotation symmetrical closed magnetic system
DE4325406B4 (en) proximity switch
WO1993007505A1 (en) Device for determining the strength of a magnetic field
DE10248148B4 (en) Displacement measuring device
DE3600830C1 (en) Tyre-pressure measuring and indicating device
DE3940819C2 (en) Active vibration damper sensor for measuring the relative speed between body and axle
DE3019540C2 (en) Device for measuring the thickness of solid coatings on a base material
EP3128294B1 (en) Sensor for determining the angular position of a motor, and a motor having a sensor for determining the angular position
EP0932019A2 (en) Angular position sensor with rotatable selector wheel
DE4133365A1 (en) Contactless measurement transmission system for machinery with rotating parts, rollers, drums - using permanent magnet, exploits temp. dependence of field in connection with magnetoresistance bridge circuit containing components having opposite coeffts.
DE102014012168A1 (en) Device for detecting the angle of rotation of a mechanical shaft
EP3809099B1 (en) Stroke and velocity measurement on hydraulic, pneumatic and electric cylinders for mobile and stationary applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992920484

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992920484

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992920484

Country of ref document: EP