WO1992018892A1 - Procede et installation pour la fabrication en continu d'un cable plat, notamment a fibres optiques - Google Patents

Procede et installation pour la fabrication en continu d'un cable plat, notamment a fibres optiques Download PDF

Info

Publication number
WO1992018892A1
WO1992018892A1 PCT/CH1992/000075 CH9200075W WO9218892A1 WO 1992018892 A1 WO1992018892 A1 WO 1992018892A1 CH 9200075 W CH9200075 W CH 9200075W WO 9218892 A1 WO9218892 A1 WO 9218892A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic material
fibers
crosslinking
radiation
sheath
Prior art date
Application number
PCT/CH1992/000075
Other languages
English (en)
Inventor
Bruno Buluschek
Eberhard Kertscher
Original Assignee
E. Kertscher S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9105032A external-priority patent/FR2675621B1/fr
Priority claimed from FR9115055A external-priority patent/FR2684328A1/fr
Application filed by E. Kertscher S.A. filed Critical E. Kertscher S.A.
Priority to EP92908580A priority Critical patent/EP0535199B1/fr
Priority to DE69206741T priority patent/DE69206741T2/de
Publication of WO1992018892A1 publication Critical patent/WO1992018892A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/156Coating two or more articles simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0075Light guides, optical cables

Definitions

  • the present invention relates to a continuous manufacturing process of a flat cable containing several parallel conductors, in particular optical fibers embedded in a sheath made of at least one synthetic material crosslinked under the effect of radiation, in particular of a ultraviolet radiation, this process consisting in applying the synthetic material around the fibers to form the sheath, and in applying said radiation to the sheath to cause crosslinking of the synthetic material.
  • the invention also relates to an installation for the implementation of this method, for the continuous manufacture of a flat cable containing several parallel conductors, in particular optical fibers embedded in a sheath made of at least one synthetic material ⁇ abut under the effect of radiation, in particular of ultraviolet radiation, this installation comprising an application head traversed continuously by the fibers and provided with at least one die in which the sheath of synthetic material before crosslinking, at least one source of radiation, and at least one crosslinking device disposed on the path of the cable leaving the die and by which said radiation is applied to the cable.
  • the cable leaving the die then passes through an oven where at least part of its sheath is hardened.
  • This oven has a crosslinking chamber containing one or more lamps with ultraviolet radiation and reflectors which direct this radiation towards the cable.
  • Such a chamber has various drawbacks which can affect the quality and regularity of cable manufacturing.
  • a first type of drawback is created by the too long length of this chamber, due to the length of the necessary lamps used, which causes on the one hand an initiation of the process of crosslinking and stabilization of the shape of the sheath relatively slow, so that the sheath remains deformable over a relatively large length, and on the other hand a lack of cable guidance in this area, so that it can undergo harmful vibra ⁇ tions.
  • Another type of disadvantage comes from the heat produced by the lamps, which tends to overheat the synthetic material during polymerization. These lamps are usually fan cooled, but the cooling air can also have harmful effects on the cable.
  • the synthetic material is soft and does not ensure a firm hold of the conductors parallel to each other and coplanar. It therefore happens that these conductors move relative to each other, which affects the performance of the cable.
  • the present invention relates to a method and an installation making it possible to avoid to a large extent the drawbacks mentioned above, and in particular to stabilize the sheath as quickly as possible as soon as it leaves the die.
  • the invention relates to a method of the type indicated in the preamble, characterized in that said radiation is applied to the sheath immediately after its forming and is transmitted from a distant radiation source to the immediate proximity of the sheath by means of at least one light conductor.
  • Said radiation can advantageously be distributed along the sheath thanks to an elongated configuration of an exit of the light conductor.
  • the fibers are bonded parallel to each other, by applying a synthetic material between these fibers and by crosslinking this synthetic material by means of a first ultraviolet radiation, and during a second phase, said fibers are coated with synthetic material firmly bonded, to form said sheath and said synthetic material is crosslinked by means of a second ultraviolet radiation.
  • the fibers are glued using the same synthetic material as that with which they are coated.
  • the crosslinking of the synthetic material used for bonding the fibers is carried out in an area adjacent to the zone of application of this synthetic material, and the crosslinking of the synthetic material used for coating the fibers is carried out. previously glued in an area adjacent to the area of application of this synthetic material.
  • This crosslinking is carried out by simultaneously irradiating the two opposite faces of the flat cable obtained.
  • an installation according to the invention is characterized in that the radiation source is located remote from the crosslinking device, and comprises at least one light conductor transmitting said radiation in the immediate vicinity of the sheath.
  • this crosslinking device is adjacent to the die and comprises a crosslinking chamber.
  • the light conductor may comprise a hollow tube filled with a light conductive liquid or comprise optical fibers made of silica glass or be made of a material having better transparency to ultraviolet radiation than to infrared radiation from the source.
  • the light conductor has, facing the cable, an elongated outlet extending along the cable.
  • the installation comprises means for bonding the fibers parallel to each other, by application of a synthetic material between these fibers, means for crosslinking this synthetic material by a first ultraviolet radiation, means for coating with synthetic material said fibers previously bonded and forming said sheath, and means for crosslinking this sheath by a second ultraviolet radiation.
  • the means for crosslinking the synthetic material applied between the fibers comprise at least one first source of ultraviolet radiation arranged to irradiate this synthetic material on all of its faces.
  • This first source of radiation can be associated with a reflecting surface arranged to concentrate the radiation on the face of the sheath opposite said source.
  • the crosslinking means are respectively adjacent to the means for bonding the fibers and to the means for coating these fibers with synthetic material.
  • These means for bonding and for crosslinking the fibers may comprise a single optical unit in which is formed a channel for guiding the fibers parallel to each other, this unit being associated with converging optical systems for focusing ultraviolet radiation on each of the faces of the synthetic material used to bond these fibers.
  • the means for coating and for crosslinking the previously bonded fibers may comprise a single optical block in which is formed a guide channel for the bonded fibers, this block being associated with converging optical systems for focusing ultraviolet radiation on each of the faces of the synthetic material used to coat the bonded fibers.
  • the optical unit can consist of two adjacent shells which together define said guide channel.
  • FIG. 1 is a perspective view in cross section of a flat fiber optic cable which can be produced by the above process
  • FIG. 2 is a schematic view of an installation for manufacturing such a cable according to the prior art
  • FIG. 3 is a schematic view of a first form of embodiment of an installation according to the present invention.
  • FIG. 4- represents a schematic view of a second embodiment of an installation according to the invention.
  • FIG. 5 represents a perspective view, partially cut away, of a flat cable as produced according to known techniques and having a defect mentioned above,
  • FIG. 6 represents a perspective view of the cable as it appears after the first phase of the process of the invention
  • FIG. 7 represents a perspective view of the flat cable as it appears after the implementation of the method of the invention.
  • FIG. 8 represents a top view of a preferred embodiment of a crosslinking station by application of ultraviolet radiation
  • FIG. 9 represents a side view of the station of FIG. 8, and FIG. 10 represents a perspective view of a particularly advantageous variant of a crosslinking station by application of ultraviolet radiation.
  • Figure 1 illustrates a flat cable 1 of known type optical fibers, also called ribbon cable.
  • it comprises four juxtaposed and parallel optical fibers 2, coated in a sheath 3 of synthetic material which maintains their relative positions and which protects them from external damage.
  • the sheath may be made of thermoplastic material.
  • the sheath 3 is made of a material the hardness and toughness of which are increased by crosslinking with ultraviolet rays after the sheath has been shaped, for example an acrylate which can be hardened ultraviolet radiation.
  • FIG. 2 shows part of the installation for manufacturing such a cable 1 according to the prior art, in particular the elements of the installation used to form the sheath 3.
  • These elements essentially comprise a head 10 constituting an applicator of synthetic material on the optical fibers 2, and a crosslinking furnace 11 serving to harden the synthetic material by a crosslinking initiated by means of ultraviolet radiation.
  • the head 10 has a lateral inlet 12 through which the synthetic material is introduced under pressure according to arrow A, and an outlet die 13 which shapes the sheath 3 around the fibers 2 driven continuously in the direction of arrow B.
  • the oven 11 contains a crosslinking chamber 1 traversed longitudinally by the cable 1, which passes through the inlet 15 and outlet 16 heads of the oven.
  • the chamber 14 contains one or more ultraviolet lamps 17 and reflectors 18 which concentrate the radiation 19 of the lamp on the cable 1.
  • the chamber 14- is provided with a ventilation circuit (not shown) for cooling the lamp 17 as explained above.
  • the sheath of the cable 1 is sufficiently hardened to be supported and driven longi ⁇ tudinally by suitable rollers, then the cable can be wound on a spool.
  • one of the drawbacks of this installation is the relatively large length of the reti ⁇ culation chamber 14, so that the cable 1 must remain unsupported under a relatively large length Li between the die 13 and outlet 16 of oven 11, since in this manufacturing step " contact with a support would deform the still soft sheath of the cable.
  • the sheath undergoes in chamber 14 the undesirable thermal effects mentioned above.
  • the application head 10 can be the same as in the previous example. Its die 13 is immediately followed by a crosslinking chamber 21 much smaller than the chamber 14, and in particular shorter, so that the length _ traversed by the cable 1 between the die 13 and the outlet 22 of the chamber 21 is only a fraction of the length Li. Indeed, the ultraviolet radiation 23 applied to the cable comes from a source 24 located outside of the chamber 21, via a light conductor 25 having an input 26 coupled to the source 24 and an output 27 located in the chamber 21 in the immediate vicinity of the cable 1. This outlet 27 may have an elongated shape having the dimensions desired to distribute the radiation over an appropriate length of the cable, with an appropriate intensity.
  • the light conductor 25 can be chosen from conductors of different natures, for example water conductors or bundles of optical fibers.
  • the light conductor 25 is a bundle of optical fibers.
  • the optical fibers can easily be arranged around the cable 1 so as to ensure the desired distribution of the radiation over the various external surfaces of the cable sheath.
  • the outlet 27 of the cable can be located very close to the die 13, the chamber 21 even being able to be directly associated with the head 10.
  • the source 24 comprises one or more lamps 28 emitting the ultraviolet ray 23.
  • This lamp can be extended, of the same type as the lamp 17 of the previous example.
  • a reflector 29 concentrates the radiation 23 on a condenser formed of two lenses 30 and 31 which focus the radiation on the input 26 of the fiber optic conductor 25.
  • the use of a light conductor makes it possible to choose any what type of source 24 of ultraviolet radiation, whatever its size.
  • the cooling by ventilation of the source 24 absolutely does not touch the cable 1.
  • the cable can be supported closer to its outlet from the die 13 and undergoes less vibration or other mechanical effects , which guarantees a better geometric quality of the cable and a better connection between the optical fibers 2 and the matrix of synthetic material forming the sheath 3.
  • FIG. 4 shows a second embodiment of the installation according to the invention.
  • This installation comprises first means 111 for bonding the fibers 2 arranged in parallel and in a coplanar manner, first means 112a and 112b for crosslinking by exposure to ultraviolet radiation of the synthetic material used to bond said fibers, second means 113 for coating these fibers previously bonded, and second means 114a and 114b for ensuring the crosslinking of the synthetic material used to coat said fibers 2 and form the sheath 3.
  • Said first means 111 for bonding the fibers comprise a chamber 115 provided with an inlet die 115a, an outlet die 115b and an inlet 11b of synthetic material 7 used for bonding the fibers arranged in parallel.
  • the outlet die 115b has an opening which is substantially equal to the diameter of the fibers in such a way that the synthetic material 7 becomes encrusted between the fibers 2 (see FIG. 6 ) without forming any excess thickness relative to the thickness of the sheet of fibers.
  • the means 112a and 112b for crosslinking the synthetic material consist of sources, respectively 119a and 119b, generating ultraviolet rays, light conductors 120a and 120b and heads emitting ultraviolet radiation respectively 121a and 121b. It will be noted that these two heads are arranged in the immediate vicinity of the outlet die 115b, which allows almost instantaneous crosslinking of the synthetic material used to bond the fibers 2 together.
  • the fibers which are positioned so as to be parallel to one another and coplanar by the very geometry of the exit die 115b, are maintained and fixed in this position by virtue of the 'crosslinking operation which is carried out in this zone adjacent to the outlet die of the chamber 115.
  • FIG. 5 shows the somewhat disordered position of the fibers 2 obtained according to the techniques of prior art, that is to say when the bonding of the fibers 2 is not carried out.
  • FIG. 6 prior to the coating of the ply thus produced in order to obtain a flat cable as shown in FIG. 7.
  • the second means 113 for coating the sheet of fibers previously glued comprise a second chamber 122 equipped with an inlet die 122a and an outlet die 122b as well as with an inlet 123 of synthetic material 8 represented by an arrow.
  • the synthetic material 8 may be identical or different from the synthetic material 7 previously used to ensure the bonding of the fibers.
  • the inlet die 122a has substantially the same geometry and the same dimensions as the outlet die 115b from the chamber 115 and the outlet die 122b has a geometry and dimensions which correspond to those of the flat cable 1 as represented by the figure 7-
  • the means for crosslinking the synthetic material, respectively 114a and 114b, called crosslinking stations for the synthetic coating material 8, comprise one or more sources, respectively 125a and 125b, generating ultraviolet radiation, light conductors, respectively 126a and 126b, and application heads 127a and 127b respectively.
  • These application heads as well as the application heads 121a and 121b of the fiber sizing means will be described in more detail with reference to FIGS. 8 and 9.
  • the flat cable 1 obtained thanks to the installation illustrated diagrammatically by FIG. 4 comprises a set of parallel and coplanar fibers 2 coated in a layer of synthetic material 8 after having been pre-glued by means of the synthetic material 7.
  • the two synthetic materials 7 and 8 are identical so that the two substances having been used respectively for bonding the fibers and for coating them are intimately linked and merge to form the sheath 3 of the cable 1 as shown in Figure 1.
  • the step of gluing conductors in particular light conductors and more particularly optical fibers, makes it possible to ensure a regular and coplanar arrangement of these components and to avoid their more or less random positioning at the inside the coating mass.
  • the means for crosslinking synthetic materials 7 and / or 8 preferably include several heads for applying ultraviolet radiation.
  • Each of these heads comprises a cylindrical element 40 made of a material transparent to ultraviolet rays, such as for example quartz, which constitutes a light conductor coupled to a flexible conductor 41 constituted for example by a flexible hollow tube filled with a liquid. such as water, this tube being connected to a source emitting ultraviolet rays (not shown).
  • a reflecting surface 42 preferably having a parabolic shape whose purpose is to reflect part of the ultraviolet radiation emitted by the end section 46 of the light conductor 40 so to irradiate the synthetic material for bonding or coating the parallel fibers, on all their faces.
  • the reflecting surfaces 42 are mounted on supports 43 pivoting about an axis 44 and maintained in the working position by a tension spring 45.
  • the reflecting surface can be tilted into a position 42 ', shown in broken lines, by pivoting of the support 43 causing a stretching of the spring 45 which acts as a return spring.
  • This construction is particularly advantageous in that it allows a compact embodiment which can be placed immediately at the outlet of the dies defined above in the immediate vicinity of the sizing and / or fiber coating zones.
  • FIG. 10 represents an embodiment of a crosslinking station which has particularly advantageous advantages compared to the solutions described above. It should be noted that these solutions all tend to place the crosslinking stations as close as possible to the corresponding dies to prevent the fibers from being able to move relative to one another during the period of time which elapses between the time when they leave the die and that where they are fixed in position thanks to the crosslinking of the synthetic material.
  • this period of time is reduced to a minimum thanks to the fact that the function of applying synthetic material is either to bond the fibers, or to coat them when they have been previously bonded, and the function of crosslinking by application of ultraviolet radiation are ensured by the same optical unit, for example made of quartz, which serves as a die and a diffuser for ultraviolet rays.
  • This optical unit 50 is made up of two shells 51 and 52 which each have a recess 51a and 52a which, when the shells are juxtaposed, defines a channel whose dimensions are those of the fibers joined together or of the flat cable so that these fibers are guided during their passage in this channel.
  • This block is associated with a part 53 which contains a chamber 54 containing the synthetic material.
  • each of the shells is associated with a converging lens, respectively 55 and 56, which focuses on the face of the corresponding shell, respectively 57 and 58, in the form of a converging lens, the ultraviolet rays transmitted by light conductors 59 and 60.
  • the transmission of these rays is therefore optimal in an area, which virtually eliminates any possibility of relative movement of the fibers.
  • the manufacturing techniques described in the context of the present invention are also applicable to cables comprising electrical conductors or the like in place of optical fibers or in addition to these fibers.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Insulated Conductors (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Le dispositif pour la mise en ÷uvre du procédé selon l'invention comprend des moyens (111) permettant d'assurer l'encollage de plusieurs fibres disposées parallèlement et de manière coplanaire par injection d'une matière synthétique (7) dans les intervalles séparant ces fibres. Les fibres traversent une chambre (115) et une filière de sortie (115b) et passent dans une zone comportant un dispositif (112a, 112b) de réticulation par rayonnement ultraviolet de la manière synthétique (7). Les fibres encollées traversent ensuite une chambre (122) contenant une matière synthétique (8) destinée à les enrober. A la sortie de la chambre (122) comportant une filière de sortie (122b), est prévu un dispositif (114a et 114b) de réticulation par rayonnement ultraviolet de la matière synthétique (8) qui stabilise le câble plat (1) ainsi réalisé. Dans les deux dispositifs de réticulation les têtes émettrices (121a, 121b; 127a, 127b) sont situées à proximité immédiate des filières de sortie (115b, 122b) et reliées aux sources de rayonnement (119a, 119b; 125a, 125b) par des conducteurs de lumière (120a, 120b; 126a, 126b).

Description

PROCEDE ET INSTALLATION POUR LA FABRICATION EN CONTINU D'UN CABLE PLAT, NOTAMMENT A FIBRES OPTIQUES
La présente invention concerne un procédé de fabrication en continu d' un câble plat contenant plusieurs conducteurs parallèles , notamment des fibres optiques noyées dans une gaine faite d'au moins une matière synthétique réticulée sous l' effet d' un rayonnement , notamment d' un rayonnement ultraviolet , ce procédé consistant à appliquer la matière synthétique autour des fibres pour former la gaine , et à appliquer ledit rayonnement à la gaine pour provoquer une réticulation de la matière synthétique .
L' invention concerne également une installation pour la mise en oeuvre de ce procédé, pour la fabrication en continu d' un câble plat conte¬ nant plusieurs conducteurs parallèles , notamment des fibres optiques noyées dans une gaine faite d'au moins une matière synthétique réti¬ culée sous l' effet d' un rayonnement , notamment d' un rayonnement ultraviolet , cette installation comportant une tête d' application traver¬ sée en continu par les fibres et pourvue d'au moins une filière façon¬ nant la gaine de matière synthétique avant réticulation , au moins une source de rayonnement , et au moins un dispositif de réticulation disposé sur la trajectoire du câble sortant de la filière et par lequel ledit rayonnement est appliqué au câble .
Dans les installations actuelles de ce genre , dont on décrira des exemples de réalisation, le câble sortant de la filière traverse ensuite un four où l' on fait durcir au moins une partie de sa gaine . Ce four comporte une chambre de réticulation contenant une ou plusieurs lampes à rayonnement ultraviolet et des réflecteurs qui dirigent ce rayonnement vers le câble . Une telle chambre présente différents inconvénients pouvant se répercuter sur la qualité et la régularité de fabrication du câble. Un premier type d'inconvénient est créé par la longueur trop importante de cette chambre , due à la longueur des lampes nécessaires utilisées , qui provoque d' une part un amorçage du processus de réticulation et de stabilisation de la forme de la gaine relativement lent, de sorte que la gaine reste déformable sur une longueur relativement importante, et d'autre part une absence de guidage du câble dans cette zone, si bien qu'il peut subir des vibra¬ tions nuisibles. Un autre type d'inconvénient provient de la chaleur produite par les lampes, qui a tendance à échauffer -excessivement la matière synthétique au cours de la polymérisation. Ces lampes sont généralement refroidies par ventilation, mais l'air de refroidissement peut aussi avoir des effets nuisibles sur le câble.
Enfin, pendant le court laps de temps qui s'écoule entre l'enrobage et la réticulation, la matière synthétique est molle et n'assure pas un maintien ferme des conducteurs parallèles entre eux et coplanaires. 11 arrive par conséquent que ces conducteurs se déplacent les uns par rapport aux autres, ce qui altère les performances du câble.
La présente invention a pour objet un procédé et une installation permettant d'éviter dans une large mesure les inconvénients mention¬ nés ci-dessus, et en particulier de stabiliser la gaine le plus vite possible dès sa sortie de la filière.
Dans ce but, l'invention concerne un procédé du type indiqué en préambule, caractérisé en ce que ledit rayonnement est appliqué à la gaine immédiatement après son formage et est transmis d'une source de rayonnement éloignée jusqu'à la proximité immédiate de la gaine au moyen d'au moins un conducteur de lumière.
Ledit rayonnement peut avantageusement être distribué le long de la gaine grâce à une configuration allongée d'une sortie du conducteur de lumière.
Dans une forme préférée du procédé, au cours d'une première phase on colle les fibres parallèlement entre elles, en appliquant une matière synthétique entre ces fibres et en reticulant cette matière synthétique au moyen d'un premier rayonnement ultraviolet, et au cours d'une seconde phase on enrobe de matière synthétique lesdites fibres préala- blement collées , pour former ladite gaine et on réticule ladite matière synthétique au moyen d' un second rayonnement ultraviolet .
De préférence , l' on colle les fibres au moyen de la même matière synthétique que celle avec laquelle on les enrobe.
De façon avantageuse , l'on effectue la réticulation de la matière synthétique utilisée pour coller les fibres dans une zone adjacente à la zone d' application de cette matière synthétique , et l' on effectue la réticulation de la matière synthétique utilisée pour enrober les fibres préalablement collées dans une zone adjacente à la zone d' application de cette matière synthétique . Cette réticulation s' effectue en irradiant simultanément les deux faces opposées du câble plat obtenu .
Pour la mise en oeuvre de ce procédé , une installation selon l'invention est caractérisée en ce que la source de rayonnement se trouve éloignée du dispositif de réticulation , et comprend au moins un conducteur de lumière transmettant ledit rayonnement à proximité immédiate de la gaine .
De préférence, ce dispositif de réticulation est adjacent à la filière et comporte une chambre de réticulation.
Le conducteur de lumière peut comporter un tube creux rempli d' un liquide conducteur de lumière ou comporter des fibres optiques en verre de silice ou être réalisé en une matière ayant une meilleure transparence au rayonnement ultraviolet qu'au rayonnement infrarouge de la source .
Dans toutes les formes de réalisation , le conducteur de lumière comporte, en regard du câble, une sortie de forme allongée s' étendant le long du câble .
Selon une autre forme de réalisation particulièrement avantageuse l'installation comporte des moyens pour coller les fibres parallèlement entre elles , par application d' une matière synthétique entre ces fibres , des moyens pour réticuler cette matière synthétique par un premier rayonnement ultraviolet, des moyens pour enrober de matière synthé¬ tique lesdites fibres préalablement collées et former ladite gaine, et des moyens pour réticuler cette gaine par un second rayonnement ultraviolet.
De préférence, les moyens pour réticuler la matière synthétique appli¬ quée entre les fibres comportent au moins une première source de rayonnement ultraviolet agencée pour irradier cette matière synthé¬ tique sur toutes ses faces. Cette première source de rayonnement peut être associée à une surface réfléchissante agencée pour concentrer le rayonnement sur la face de la gaine opposée à ladite source.
D'une façon avantageuse, les moyens de réticulation sont adjacents respectivement aux moyens pour coller les fibres et aux moyens pour enrober ces fibres de matière synthétique.
Ces moyens pour coller et pour réticuler les fibres peuvent comporter un bloc optique unique dans lequel est ménagé un canal de guidage des fibres parallèlement entre elles , ce bloc étant associé à des systèmes optiques convergents pour focaliser un rayonnement ultra¬ violet sur chacune des faces de la matière synthétique utilisée pour coller ces fibres.
De façon similaire, les moyens pour enrober et pour réticuler les fibres préalablement collées peuvent comporter un bloc optique unique dans lequel est ménagé un canal de guidage des fibres collées , ce bloc étant associé à des systèmes optiques convergents pour focaliser un rayonnement ultraviolet sur chacune des faces de la matière synthé¬ tique utilisée pour enrober les fibres collées.
Dans une forme de réalisation particulière, le bloc optique peut se composer de deux coquilles adjacentes qui définissent ensemble ledit canal de guidage. La présente invention et ses avantages apparaîtront mieux dans la description suivante d' exemples de fabrication d' un câble plat à fibres optiques , respectivement selon l' art antérieur et selon l'invention , en référence aux dessir.3 annexés , dans lesquels :
la figure 1 est une vue en perspective et en coupe transversale d' un câble plat à fibres optiques pouvant être fabriqué par le procédé ci- dessus ,
la figure 2 est une vue schématique d' une installation de fabrication d' un tel câble selon l' art antérieur ,
la figure 3 est une vue schématique d' une première forme de réali¬ sation d' une installation selon la présente invention ,
la figure 4- représente une vue schématique d' une deuxième forme de réalisation d' une installation selon l'invention ,
la figure 5 représente une vue en perspective , partiellement coupée d' un câble plat tel que réalisé selon les techniques connues et présentant un défaut évoqué ci-dessus ,
la figure 6 représente une vue en perspective du câble tel qu'il se présente après la première phase du procédé de l' invention ,
la figure 7 représente une vue en perspective du câble plat tel qu' il se présente après la mise en oeuvre du procédé de l'invention ,
la figure 8 représente une vue de dessus d' une réalisation préférée d' une station de réticulation par application d' un rayonnement ultra¬ violet ,
la figure 9 représente une vue de côté de la station de la figure 8 , et la figure 10 représente une vue en perspective d'une variante particu¬ lièrement avantageuse d'une station de réticulation par application d' un rayonnement ultraviole .
La figure 1 illustre un câble plat 1 à fibres optiques de type connu , appelé aussi câble en ruban. Dans cet exemple, il comprend quatre fibres optiques 2 juxtaposées et parallèles , enrobées dans une gaine 3 en matière synthétique qui maintient leurs positions relatives et qui les protège des dommages extérieurs . Dans certains cas , la gaine peut être en matière thermoplastique. Cependant, dans le type de câble concerné par la présente invention, la gaine 3 est faite d'une matière dont la dureté et la ténacité sont augmentées par réticulation aux rayons ultraviolets après la mise en forme de la gaine, par exemple un acrylate durcissable au rayonnement ultraviolet.
La figure 2 montre une partie de l'installation pour la fabrication d'une tel câble 1 selon l'art antérieur, en particulier les éléments de l'installation servant à former la gaine 3. Ces éléments comprennent essentiellement une tête 10 constituant un applicateur de matière synthétique sur les fibres optiques 2, et un four de réticulation 11 servant à faire durcir la matière synthétique par une réticulation amorcée au moyen d'un rayonnement ultraviolet. La tête 10 a une entrée latérale 12 par où la matière synthétique est introduite sous pression suivant la flèche A, et une filière de sortie 13 qui façonne la gaine 3 autour des fibres 2 entraînées en continu dans le sens de la flèche B . Le four 11 contient une chambre de réticulation 1 traversée longitudinalement par le câble 1, lequel passe dans des têtes d'entrée 15 et de sortie 16 du four. La chambre 14- contient une ou plusieurs lampes à ultraviolet 17 et des réflecteurs 18 qui concentrent sur le câble 1 le rayonnement 19 de la lampe. La chambre 14- est pourvue d'un circuit de ventilation (non représenté) pour refroidir la lampe 17 comme expliqué plus haut. A la sortie 16 du four 11 , la gaine du câble 1 est suffisamment durcie pour être soutenue et entraînée longi¬ tudinalement par des rouleaux appropriés , puis le câble peut être enroulé sur une bobine. Comme, on l'a expliqué plus haut , un des inconvénients de cette instal¬ lation est la longueur relativement importante de la chambre de réti¬ culation 14, de sorte que le câble 1 doit rester non soutenu sous une longueur Li relativement grande entre la filière 13 et la sortie 16 du four 11 , puisque dans cette étape de fabrication un "contact avec un support déformerait la gaine encore molle du câble. De plus , la gaine subit dans la chambre 14 les effets thermiques indésirables mentionnés plus haut.
Ces inconvénients sont évités dans l'installation selon l'invention telle qu'illustrée par la figure 3. La tête d'application 10 peut être la même que dans l' exemple précédent. Sa filière 13 est suivie immédiatement d'une chambre de réticulation 21 beaucoup plus petite que la chambre 14, et en particulier plus courte, de sorte que la longueur _ parcourue par le câble 1 entre la filière 13 et la sortie 22 de la chambre 21 ne représente qu'une fraction de la longueur Li . En effet, le rayonnement ultraviolet 23 appliqué au câble provient d' une source 24 située à l'extérieur de la chambre 21 , par l'intermédiaire d' un conducteur de lumière 25 ayant une entrée 26 couplée à la source 24 et une sortie 27 située dans la chambre 21 à proximité immédiate du câble 1. Cette sortie 27 peut avoir une forme allongée ayant les dimensions voulues pour distribuer le rayonnement sur une longueur appropriée du câble, avec une intensité appropriée. Comme la distance entre la source 24 et la chambre 21 peut être variable, le conducteur de lumière 25 peut être choisi parmi des conducteurs de différentes natures , par exemple des conducteurs à eau ou des faisceaux de fibres optiques . Afin de limiter le rayonnement thermique appliqué au câble 1 , on pourra choisir un conducteur fait d'une matière ayant une bonne transmission du rayonnement ultraviolet dans la bande concernée, mais une transmission relativement médiocre des rayon¬ nements infrarouges , par exemple un conducteur à eau.
Dans le cas présent , le conducteur de lumière 25 est un faisceau de fibres optiques . A titre d'exemple , on a représenté en traits inter¬ rompus un faisceau supplémentaire 25a provenant de la même source 24 et conduisant le rayonnement ultraviolet vers une face opposée du câble plat 1. On conçoit que les fibres optiques peuvent aisément être disposées autour du câble 1 de façon à assurer la distribution voulue du rayonnement sur les différentes surfaces extérieures de la gaine du câble. De plus , la sortie 27 du câble peut être située tout près de la filière 13, la chambre 21 pouvant même être associée directement à la tête 10.
La source 24 comporte une ou plusieurs lampes 28 émettant le rayon¬ nement ultraviolet 23. Cette lampe peut être allongée, du même type que la lampe 17 de l'exemple précédent. Un réflecteur 29 concentre le rayonnement 23 sur un condenseur formé ds deux lentilles 30 et 31 qui focalisent le rayonnement sur l'entrée 26 du conducteur à fibres optiques 25. Cependant, l'utilisation d'un conducteur de lumière permet de choisir n'importe quel type de source 24 de rayonnement ultraviolet, quel que soit son encombrement. Par ailleurs, le refroi¬ dissement par ventilation de la source 24 ne touche absolument pas le câble 1.
Comme la longueur _ entre la filière et la sortie de la chambre de réticulation est plus faible que dans l'art antérieur, le câble peut être soutenu plus près de sa sortie de la filière 13 et subit moins de vibrations ou d'autres effets mécaniques, ce qui garantit une meilleure qualité géométrique du câble et une meilleure liaison entre les fibres optiques 2 et la matrice de matière synthétique formant la gaine 3.
La figure 4, représente une seconde forme de réalisation de l'installation selon l'invention. Cette installation comporte des premiers moyens 111 pour coller les fibres 2 disposées parallèlement et d'une manière coplanaire, des premiers moyens 112a et 112b pour assurer la réticulation par exposition à un rayonnement ultraviolet de la matière synthétique utilisée pour assurer le collage desdites fibres , des seconds moyens 113 pour enrober ces fibres préalablement collées, et des seconds moyens 114a et 114b pour assurer la réticulation de la matière synthétique utilisée pour enrober lesdites fibres 2 et former la gaine 3. Lesdits premiers moyens 111 pour coller les fibres comportent une chambre 115 pourvue d' une filière d' entrée 115a , d' une filière de sortie 115b et d' une arrivée 11b de matière synthétique 7 utilisée pour assurer le collage des fibres disposées parallèlement . A cet effet , la filière de sortie 115b présente une ouverture qui est sensiblement égale au diamètre des fibres de telle manière que la matière synthé¬ tique 7 vienne s'incruster entre les fibres 2 (voir figure 6) sans former aucune surépaisseur par rapport à l' épaisseur de la nappe de fibres .
Les moyens 112a et 112b pour réticuler la matière synthétique , appelés stations de réticulation , se composent de sources , respectivement 119a et 119b , génératrices de rayons ultraviolets , de conducteurs de lumières 120a et 120b et de têtes émettrices de rayonnements ultra¬ violets respectivement 121a et 121b . On notera que ces deux têtes sont disposées à proximité immédiate de la filière de sortie 115b , ce qui permet une réticulation quasi instantanée de la matière synthétique ayant servi à coller les fibres 2 entre elles . Comme cette réticulation s' effectue immédiatement à la sortie de la chambre 115 , les fibres qui sont positionnées de façon à être parallèles entre elles et coplanaires par la géométrie même de la filière de sortie 115b , sont maintenues et figées dans cette position grâce à l'opération de réticulation qui s' effectue dans cette zone adjacente à la filière de sortie de la chambre 115.
A titre de comparaison , la figure 5 montre la position quelque peu désordonnée des fibres 2 obtenue selon les techniques de l' art anté¬ rieur , c' est-à-dire lorsque l' on n' effectue pas le collage des fibres 2 telles que représentées par la figure 6 antérieurement à l' enrobage de la nappe ainsi réalisée pour obtenir un câble plat tel que représenté par la figure 7.
Les seconds moyens 113 pour enrober la nappe de fibres préalablement encollées comportent une seconde chambre 122 équipée d' une filière d' entrée 122a et d' une filière de sortie 122b ainsi que d' une arrivée 123 de matière synthétique 8 représentée par une flèche . On notera que la matière synthétique 8 peut être identique ou différente de la matière synthétique 7 préalablement utilisée pour assurer le collage des fibres. La filière d'entrée 122a a sensiblement la même géométrie et les mêmes dimensions que la filière de sortie 115b de la chambre 115 et la filière de sortie 122b a une géométrie et des dimensions qui correspondent à celles du câble plat 1 tel que représenté par la figure 7-
Les moyens pour réticuler la matière synthétique, respectivement 114a et 114b, appelés stations de réticulation de la matière synthétique d'enrobage 8, comportent une ou plusieurs sources, respectivement 125a et 125b, génératrices de rayonnements ultraviolets, des conduc¬ teurs de lumière, respectivement 126a et 126b, et des têtes d'application respectivement 127a et 127b. Ces têtes d'application ainsi que les têtes d'application 121a et 121b des moyens d'encollage des fibres seront décrites plus en détail en référence aux figures 8 et 9.
Comme le montre la figure 7, le câble plat 1 obtenu grâce à l'installation illustrée schematiquement par la figure 4 comporte un ensemble de fibres 2 parallèles et coplanaires enrobées dans une couche de matière synthétique 8 après avoir été préencollées au moyen de la matière synthétique 7. Selon un mode de réalisation préféré, les deux matières synthétiques 7 et 8 sont identiques de sorte que les deux substances ayant été utilisées respectivement pour coller les fibres et pour les enrober sont intimement liées et se confondent pour former la gaine 3 du câble 1 tel que représenté en figure 1.
En conclusion, l'étape d'encollage des conducteurs, notamment des conducteurs de lumière et plus particulièrement des fibres optiques, permet d'assurer une disposition régulière et coplanaire de ces compo¬ sants et d'éviter leur positionnement plus ou moins aléatoire à l'intérieur de la masse d'enrobage.
En référence aux figures 8 et 9, les moyens destinés à assurer la réticulation des matières synthétiques 7 et/ou 8 comportent de préfé¬ rence plusieurs têtes d'application d'un rayonnement ultraviolet. Chacune de ces têtes comporte un élément cylindrique 40 réalisé en une matière transparente aux rayons ultraviolets , telle que par exemple le quartz , qui constitue un conducteur de lumière couplé à un conducteur flexible 41 constitué par exemple par un tube creux souple rempli d' un liquide tel que l' eau , ce tube étant connecté à une source émettrice de rayons ultraviolets ( non représentée ) . En regard de l' extrémité 40 du conducteur de lumière est montée une surface réflé¬ chissante 42 ayant de préférence une forme parabolique dont le but est de réfléchir une partie du rayonnement ultraviolet émis par le tronçon d' extrémité 46 du conducteur de lumière 40 afin d' irradier la matière synthétique de collage ou d' enrobage des fibres parallèles , sur toutes leurs faces .
Plusieurs têtes d' application du rayonnement peuvent être prévues afin d' accélérer le processus de réticulation et d'assurer un positionnement quasi parfait des fibres à l'intérieur de la couche de matière synthé¬ tique . On notera que ces moyens de réticulation sont disposés à proximité immédiate de la filière d' évacuation 115b ou 122b définie ci- dessus .
Comme le montre la figure 9, les surfaces réfléchissantes 42 sont montées sur des supports 43 pivotant autour d'un axe 44 et maintenus en position de travail par un ressort de traction 45. Toutefois , pour faciliter l'accès à la zone de traitement, la surface réfléchissante peut être basculée dans une position 42' , représentée en traits inter¬ rompus , par pivotement du support 43 entraînant un etirement du ressort 45 qui fait office de ressort de rappel.
Cette construction est particulièrement avantageuse en ce qu' elle permet une réalisation compacte pouvant être placée immédiatement à la sortie des filières définies ci-dessus à proximité immédiate des zones d' encollage et/ou d' enrobage des fibres .
La figure 10 représente une forme de réalisation d' une station de réti¬ culation qui présente des avantages particulièrement intéressants par rapport aux solutions décrites ci-dessus . Il est à noter que ces solu- tions tendent toutes à placer les stations de réticulation aussi près que possible des filières correspondantes pour éviter que les fibres ne puissent se déplacer les unes relativement aux autres pendant le laps de temps qui s'écoule entre le moment où elles sortent de la filière et celui où elles sont figées en position grâce à la réticulation de la matière synthétique . Dans la réalisation décrite ci-dessous , ce laps de temps est réduit au minimum grâce au fait que la fonction d'application de matière synthétique soit pour coller les fibres , soit pour les enrober lorsqu'elles ont été préalablement collées , et la fonction de réticulation par application d'un rayonnement ultraviolet sont assurées par un même bloc optique, par exemple en quartz, qui sert de filière et de diffuseur de rayons ultraviolets . Ce bloc optique 50 se compose de deux coquilles 51 et 52 qui comportent chacune un évidement 51a et 52a qui, lorsque les coquilles sont juxtaposées , définit un canal dont les dimensions sont celles des fibres accolées ou du câble plat de telle manière que ces fibres soient guidées pendant leur passage dans ce canal. Ce bloc est associé à une pièce 53 qui contient une chambre 54 contenant la matière synthétique. Par ailleurs , chacune des coquilles est associée à une lentille convergente, respectivement 55 et 56, qui focalise sur la face de la coquille correspondante , respectivement 57 et 58, en forme de lentille convergente, les rayons ultraviolets transmis par des conducteurs de lumière 59 et 60. La transmission de ces rayons est de ce fait optimale dans une zone, ce qui élimine quasiment toute possibilité de déplacement relatif des fibres .
Les techniques de fabrication décrites dans le cadre de la présente invention sont aussi applicables à des câbles comportant des conduc¬ teurs électriques ou similaires à la place des fibres optiques ou en plus de ces fibres .

Claims

REVENDICATIONS
1. Procédé de fabrication en continu d' un câble plat contenant plusieurs conducteurs parallèles , notamment des fibres optiques noyées dans une gaine faite d'au moins une matière synthétique réticulée sous l'effet d'un rayonnement, notamment d'un rayonnement ultraviolet, ce procédé consistant à appliquer la matière synthétique autour des fibres pour former la gaine, et à appliquer ledit rayonnement à la gaine pour provoquer une réticulation de la matière synthétique , caractérisé en ce que ledit rayonnement est appliqué à la gaine immé¬ diatement après son formage et est transmis d' une source de rayon¬ nement éloignée jusqu'à la proximité immédiate de la gaine au moyen d'au moins un conducteur de lumière.
2. Procédé selon la revendication 1, caractérisé en ce que ledit rayon¬ nement est distribué le long de la gaine grâce à une configuration allongée d' une sortie du conducteur de lumière .
3. Procédé selon la revendication 1 , caractérisé en ce qu' au cours d' une première phase du procédé on colle les fibres parallèlement entre elles , en appliquant une matière synthétique entre ces fibres et en reticulant cette matière synthétique au moyen d'un premier rayon¬ nement ultraviolet, et en ce qu'au cours d' une seconde phase de ce procédé on enrobe de matière synthétique lesdites fibres préalablement collées , pour former ladite gaine et on réticule ladite matière synthé¬ tique au moyen d'un second rayonnement ultraviolet.
4. Procédé selon la revendication 3, caractérisé en ce qu'on colle les fibres au moyen de la même matière synthétique que celle avec laquelle on les enrobe.
5. Procédé selon la revendication 3, caractérisé en ce qu'on effectue la réticulation de la matière synthétique utilisée pour coller les fibres dans une zone adjacente à la zone d'application de cette matière synthétique , et en ce qu'on effectue la réticulation de la matière synthétique utilisée pour enrober les fibres préalablement collées dans une zone adjacente à la zone d'application de cette matière synthé¬ tique.
6. Procédé selon la revendication 1, caractérisé en ce que l'on effec¬ tue la réticulation en irradiant simultanément les deux faces opposées du câble plat obtenu.
7- Installation pour la mise en oeuvre du procédé selon la revendi¬ cation 1, pour la fabrication en continu d'un câble plat contenant plusieurs conducteurs parallèles , notamment des fibres optiques noyées dans une gaine faite d'au moins une matière synthétique réticulée sous l'effet d'un rayonnement, notamment d'un rayonnement ultraviolet, cette installation comportant une tête d'application traversée en continu par les fibres et pourvue d'au moins une filière façonnant la gaine de matière synthétique avant réticulation, au moins une source de rayonnement, et au moins un dispositif de réticulation disposé sur la trajectoire du câble sortant de la filière et pour lequel ledit rayon¬ nement est appliqué au câble, caractérisée en ce que la source de - rayonnement (24) est éloignée du dispositif de réticulation et comprend au moins un conducteur de lumière (25) transmettant ledit rayon¬ nement à proximité immédiate de la gaine.
8. Installation selon la revendication 7, caractérisée en ce que le dispositif de réticulation est adjacent à la filière (13) .
9. Installation selon la revendication 8, caractérisée en ce que le dispositif de réticulation comporte une chambre de réticulation (21) .
10. Installation selon la revendication 7, caractérisée en ce que le conducteur de lumière comporte un tube creux rempli d'un liquide conducteur de lumière.
11. Installation selon la revendication 7, caractérisée en ce que le conducteur de lumière comporte des fibres optiques en verre de silice.
12. Installation selon la revendication 7 , caractérisée en ce que le conducteur de lumière est réalisé en une matière ayant une meilleure transparence au rayonnement ultraviolet qu' au rayonnement infrarouge de la source.
13. Installation selon la revendication 7 , caractérisée en ce que le conducteur de lumière ( 25) comporte, en regard du câble ( 1 ) , une sortie de forme allongée (27) s' étendant le long du câble.
14. Installation selon la revendication 7, caractérisée en ce qu' elle comporte des moyens pour coller les fibres (2) parallèlement entre elles , par application d'une matière synthétique (7) entre ces fibres , des moyens pour réticuler cette matière synthétique par un premier rayonnement ultraviolet , des moyens pour enrober de matière synthé¬ tique (8) lesdites fibres préalablement collées et former ladite gaine (3) , et des moyens pour réticuler cette matière synthétique par un second rayonnement ultraviolet.
15- Installation selon la revendication 14, caractérisé en ce que les moyens pour réticuler la matière synthétique (7) comportent au moins une première source de rayonnement ultraviolet ( 119a, 119b) agencée pour irradier cette matière synthétique sur toutes les faces de cette matière .
16. Installation selon la revendication 15 , caractérisée en ce que ladite première source de rayonnement ultraviolet (119a, 119b) est associée à une surface réfléchissante agencée pour concentrer le rayonnement sur la face du câble plat opposée à ladite source.
17. Installation selon la revendication 14, caractérisée en ce que les moyens de réticulation ( 112a, 112b ; 114a, 114b) sont adjacents respectivement aux moyens ( 115) pour coller les fibres et aux moyens ( 122) pour enrober ces fibres de matière synthétique.
18. Installation selon la revendication 14, caractérisée en ce que les moyens pour coller et pour réticuler les fibres comportent un bloc optique unique (50) dans lequel est ménagé un canal de guidage des fibres parallèlement entre elles , ce bloc étant associé à des systèmes optiques convergents (55, 56) pour focaliser un rayonnement ultra¬ violet sur chacune des faces de la matière synthétique utilisée pour coller ces fibres.
19. Installation selon la revendication 14, caractérisée en ce que les moyens pour enrober et pour réticuler les fibres préalablement collées comportent un bloc optique unique (50) dans lequel est ménagé un canal de guidage des fibres collées, ce bloc étant associé à des systèmes optiques convergents pour focaliser un rayonnement ultra¬ violet sur chacune des faces de la matière synthétique utilisée pour enrober les fibres collées .
20. Installation selon l'une ou l'autre des revendications 18 ou 19. caractérisée en ce que le bloc optique se compose de deux coquilles (51, 52) adjacentes qui définissent ensemble ledit canal de guidage.
PCT/CH1992/000075 1991-04-19 1992-04-21 Procede et installation pour la fabrication en continu d'un cable plat, notamment a fibres optiques WO1992018892A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP92908580A EP0535199B1 (fr) 1991-04-19 1992-04-21 Procede et installation pour la fabrication en continu d'un cable plat, notamment a fibres optiques
DE69206741T DE69206741T2 (de) 1991-04-19 1992-04-21 Verfahren und einrichtung zum kontinuierlichen herstellen eines flachkabels, insbesondere ein fiberoptisches kabel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR91/05032 1991-04-19
FR9105032A FR2675621B1 (fr) 1991-04-19 1991-04-19 Procede et installation pour la fabrication d'un cable plat, notamment a fibres optiques.
FR9115055A FR2684328A1 (fr) 1991-12-02 1991-12-02 Procede et dispositif de fabrication d'un cable plat comprenant des conducteurs paralleles: conducteurs de lumiere, fibres optiques.
FR91/15055 1991-12-02

Publications (1)

Publication Number Publication Date
WO1992018892A1 true WO1992018892A1 (fr) 1992-10-29

Family

ID=26228649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1992/000075 WO1992018892A1 (fr) 1991-04-19 1992-04-21 Procede et installation pour la fabrication en continu d'un cable plat, notamment a fibres optiques

Country Status (6)

Country Link
EP (1) EP0535199B1 (fr)
JP (1) JPH05509422A (fr)
AT (1) ATE131627T1 (fr)
CA (1) CA2085991A1 (fr)
DE (1) DE69206741T2 (fr)
WO (1) WO1992018892A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660148A1 (fr) * 1993-12-21 1995-06-28 Pirelli Cable Corporation Procédé de fabrication d'un ruban à fibres optiques
EP0706871A1 (fr) * 1994-10-13 1996-04-17 Alcatel Cable Procédé de revêtement d'un ruban de fibres optiques au moyen d'une résine, et dispositif pour la mise en oeuvre d'un tel procédé
EP0713115A1 (fr) * 1994-11-21 1996-05-22 Alcatel Cable Procédé de fabrication d'un module cylindrique de fibres optiques
EP0892295A1 (fr) * 1997-07-17 1999-01-20 Alcatel Procédé de fabrication de rubans de fibres optiques

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2459844A1 (de) * 1974-12-18 1976-07-01 Felten & Guilleaume Kabelwerk Elektrische leitung
US4198554A (en) * 1977-07-01 1980-04-15 Cober Electronics, Inc. Method and apparatus for microwave vulcanization of extruded rubber profiles
US4277642A (en) * 1978-09-15 1981-07-07 Western Electric Company, Inc. Cordage having a plurality of conductors in a partitioned jacket
EP0031972A2 (fr) * 1979-12-13 1981-07-15 Koninklijke Philips Electronics N.V. Elément optique de télécommunication, procédé de fabrication et câble optique de télécommunication comportant ledit élément
EP0104864A2 (fr) * 1982-09-23 1984-04-04 BICC Public Limited Company Procédé de fabrication d'une structure à fibres optiques en forme de ruban
EP0170185A2 (fr) * 1984-08-02 1986-02-05 Siemens Aktiengesellschaft Elément de transmission de ruban et procédé de sa fabrication
WO1986005085A1 (fr) * 1985-02-28 1986-09-12 Bernard Touati Fixation de pieces rigides telle qu'une prothese dentaire
EP0290849A2 (fr) * 1987-04-27 1988-11-17 Toyo Cloth Co., Ltd. Pultrusion avec durcissement par radiation ultraviolette
DE3717852A1 (de) * 1987-05-27 1988-12-15 Siemens Ag Verfahren zur herstellung einer lichtwellenleiterader
DE3744465C1 (de) * 1987-12-23 1989-02-09 Siemens Ag Vorrichtung und Verfahren zur Herstellung der Isolationsschicht einer Leitung
DE3833406A1 (de) * 1988-10-01 1990-04-05 Kroenert Max Maschf Verfahren und vorrichtung zur bestrahlung mit beschichtungsstoffen versehener materialien
EP0409011A1 (fr) * 1989-07-19 1991-01-23 Emil Kühne Procédé de revêtement d'un faisceau de câbles
EP0438668A2 (fr) * 1990-01-26 1991-07-31 Siemens Aktiengesellschaft Procédé de fabrication d'une structure à fibres optiques en forme de ruban, et appareil pour la mise en oeuvre du procédé

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2459844A1 (de) * 1974-12-18 1976-07-01 Felten & Guilleaume Kabelwerk Elektrische leitung
US4198554A (en) * 1977-07-01 1980-04-15 Cober Electronics, Inc. Method and apparatus for microwave vulcanization of extruded rubber profiles
US4277642A (en) * 1978-09-15 1981-07-07 Western Electric Company, Inc. Cordage having a plurality of conductors in a partitioned jacket
EP0031972A2 (fr) * 1979-12-13 1981-07-15 Koninklijke Philips Electronics N.V. Elément optique de télécommunication, procédé de fabrication et câble optique de télécommunication comportant ledit élément
EP0104864A2 (fr) * 1982-09-23 1984-04-04 BICC Public Limited Company Procédé de fabrication d'une structure à fibres optiques en forme de ruban
EP0170185A2 (fr) * 1984-08-02 1986-02-05 Siemens Aktiengesellschaft Elément de transmission de ruban et procédé de sa fabrication
WO1986005085A1 (fr) * 1985-02-28 1986-09-12 Bernard Touati Fixation de pieces rigides telle qu'une prothese dentaire
EP0290849A2 (fr) * 1987-04-27 1988-11-17 Toyo Cloth Co., Ltd. Pultrusion avec durcissement par radiation ultraviolette
DE3717852A1 (de) * 1987-05-27 1988-12-15 Siemens Ag Verfahren zur herstellung einer lichtwellenleiterader
DE3744465C1 (de) * 1987-12-23 1989-02-09 Siemens Ag Vorrichtung und Verfahren zur Herstellung der Isolationsschicht einer Leitung
DE3833406A1 (de) * 1988-10-01 1990-04-05 Kroenert Max Maschf Verfahren und vorrichtung zur bestrahlung mit beschichtungsstoffen versehener materialien
EP0409011A1 (fr) * 1989-07-19 1991-01-23 Emil Kühne Procédé de revêtement d'un faisceau de câbles
EP0438668A2 (fr) * 1990-01-26 1991-07-31 Siemens Aktiengesellschaft Procédé de fabrication d'une structure à fibres optiques en forme de ruban, et appareil pour la mise en oeuvre du procédé

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 7, no. 196 (P-219)26 Août 1983 & JP,A,58 093 006 ( MITSUBISHI RAYON K.K. ) 2 Juin 1983 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660148A1 (fr) * 1993-12-21 1995-06-28 Pirelli Cable Corporation Procédé de fabrication d'un ruban à fibres optiques
EP0706871A1 (fr) * 1994-10-13 1996-04-17 Alcatel Cable Procédé de revêtement d'un ruban de fibres optiques au moyen d'une résine, et dispositif pour la mise en oeuvre d'un tel procédé
FR2725797A1 (fr) * 1994-10-13 1996-04-19 Alcatel Cable Procede de revetement d'un ruban de fibres optiques au moyen d'une resine, et dispositif pour la mise en oeuvre d'un tel procede
US5763003A (en) * 1994-10-13 1998-06-09 Alcatel Cable Method of covering a ribbon of optical fibers with a resin, and apparatus for implementing such a method
EP0713115A1 (fr) * 1994-11-21 1996-05-22 Alcatel Cable Procédé de fabrication d'un module cylindrique de fibres optiques
FR2727212A1 (fr) * 1994-11-21 1996-05-24 Alcatel Cable Procede de fabrication d'un module cylindrique de fibres optiques
US5720908A (en) * 1994-11-21 1998-02-24 Alcatel Cable Method of manufacturing a cylindrical optical-fiber module
EP0892295A1 (fr) * 1997-07-17 1999-01-20 Alcatel Procédé de fabrication de rubans de fibres optiques
FR2766279A1 (fr) * 1997-07-17 1999-01-22 Alsthom Cge Alcatel Procede de fabrication de rubans de fibres optiques
US6454894B1 (en) 1997-07-17 2002-09-24 Alcatel Method of manufacturing optical fiber ribbons

Also Published As

Publication number Publication date
ATE131627T1 (de) 1995-12-15
JPH05509422A (ja) 1993-12-22
EP0535199B1 (fr) 1995-12-13
DE69206741T2 (de) 1996-08-14
EP0535199A1 (fr) 1993-04-07
CA2085991A1 (fr) 1992-10-20
DE69206741D1 (de) 1996-01-25

Similar Documents

Publication Publication Date Title
EP0121482B1 (fr) Multiplexeur-démultiplexeur de longueurs d'onde, et procédé de réalisation d'un tel ensemble
EP0910772B1 (fr) Dispositif emetteur/reflecteur de rayonnements electromagnetiques, appareil et procede mettant en oeuvre un tel dispositif
FR2732094A1 (fr) Generateur de lumiere pour fibres optiques
FR2727212A1 (fr) Procede de fabrication d'un module cylindrique de fibres optiques
FR2591717A1 (fr) Dispositif de source lumineuse notamment pour machine de gestion ou de bureau
FR2699293A1 (fr) Système optique monolithique comportant des moyens de couplage perfectionnés entre une fibre optique et un phototransducteur.
CA1096215A (fr) Cable optique de telecommunication
EP0535199B1 (fr) Procede et installation pour la fabrication en continu d'un cable plat, notamment a fibres optiques
FR2796129A1 (fr) Ensemble de feu d'eclairage pour vehicules, equipe d'un systeme a guide de lumiere
FR2538916A1 (fr) Dispositif et procede de preparation collective de fibres optiques par un traitement thermique
FR2834565A1 (fr) Dispositif pour faire entrer des signaux optiques dans un guide d'ondes de lumiere et/ou pour les en faire sortir
US6496620B1 (en) Method and apparatus for improving power handling capabilities of polymer fibers
EP0633424B1 (fr) Agencement de source d'éclairage à fibre optique et à faisceau limineux orientable
FR2684328A1 (fr) Procede et dispositif de fabrication d'un cable plat comprenant des conducteurs paralleles: conducteurs de lumiere, fibres optiques.
EP0286475B1 (fr) Procédé de modification du coefficient de réflexion de l'extrémité d'une fibre optique monomode et interféromètre à fibre optique réalisé à l'aide de ce procédé
EP0943946A1 (fr) Procédé de fabrication d'un multiruban de fibres optiques séparable en au moins deux rubans de fibres optiques
WO1994024482A1 (fr) Dispositif d'eclairage reparti
EP0023463B1 (fr) Dispositif pour régler le niveau de la puissance lumineuse émise à l'extrémité d'une fibre optique
WO2022223911A1 (fr) Procede de preparation de fibres optiques a emission lumineuse laterale et installation pour sa mise en œuvre
FR2675621A1 (fr) Procede et installation pour la fabrication d'un cable plat, notamment a fibres optiques.
EP0096608A1 (fr) Collimateur pour fibre optique, application à la réalisation de dispositifs de commutation optique
FR2745393A1 (fr) Dispositif de support d'epissures, notamment pour fibres ou modules optiques
FR2552924A1 (fr) Procede et dispositif de pose d'un revetement entourant un objet presentant un axe longitudinal, et cable obtenu par un tel procede
FR2706046A1 (fr) Câble optique, procédé pour sa fabrication et dispositif pour la mise en Óoeuvre du procédé.
FR2717913A1 (fr) Composant de raccordement à une fibre multicÓoeur et procédé de réalisation.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 2085991

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992908580

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992908580

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992908580

Country of ref document: EP