WO1992017911A1 - Electrolytes fluides a base d'ammoniacates de sel(s) de lithium - Google Patents

Electrolytes fluides a base d'ammoniacates de sel(s) de lithium Download PDF

Info

Publication number
WO1992017911A1
WO1992017911A1 PCT/FR1992/000271 FR9200271W WO9217911A1 WO 1992017911 A1 WO1992017911 A1 WO 1992017911A1 FR 9200271 W FR9200271 W FR 9200271W WO 9217911 A1 WO9217911 A1 WO 9217911A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte according
lino
liso
ammonia
Prior art date
Application number
PCT/FR1992/000271
Other languages
English (en)
Inventor
Michel Paul Herlem
Bernard René Clément FAHYS
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs) filed Critical Centre National De La Recherche Scientifique (Cnrs)
Publication of WO1992017911A1 publication Critical patent/WO1992017911A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/047Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Definitions

  • the present invention relates to electrolytes based on lithium salt (s) and having a conductivity greater than approximately 10 -3 ohm - 1 cm -1 for a temperature range extending from approximately -20 ° to approximately + 80 ° C.
  • Ammoniacates and more particularly sodium iodide ammoniacate and lithium perchlorate ammoniacate have already been described for their advantageous properties as electrolytes in generators. They are indeed liquid at 20 ° C, do not dissolve alkali metals, have a low vapor pressure and are excellent conductors.
  • Sodium iodide is a salt that only makes sodium generators; as for lithium perchlorate it has too much thermodynamic instability due to its perchlorate anion.
  • the object of the present invention is precisely the development of electrolytes based on lithium salt (s), having such an efficient conductivity, potentially non-hazardous and capable of functioning, due to their structure preferably of the liquid or gel type, in a wider temperature range towards low temperatures, where they retain good mobility which ensures good contact with the electrodes.
  • lithium salt s
  • the invention is not however limited to liquids or gels, since it also extends to more or less pasty solids which are advantageous for safety reasons.
  • electrolytes have the additional advantage of facilitating the assembly of certain batteries for which they must be under a non-liquid form for reasons of ease of use and safety. Indeed, it can be envisaged to place the electrolyte during assembly in a temperature range where it is. liquid, which assures the assembly a good contact with the electrodes, then add a gelling agent or lower the temperature to solidify it.
  • the present invention relates more particularly to an electrolyte of liquid or gel type and of conductivity greater than approximately
  • lithium salts chosen from lithium nitrate, lithium trifluoromethanesulfonate and lithium bis (trifluoromethanesulfone) imide, in concentrated solution in ammonia or,
  • the concentration of the electrolyte, object of the present invention, in lithium salt (s) is of the order of a few moles per liter, that is to say greater than 1.5 M.
  • the inventors have shown that it is possible to maintain an electrolyte conductivity greater than 10 -3 ohm -1 cm -1 in a temperature range of -20 ° to + 80 ° C by playing on one or more next two parameters, a combination of lithium salts in liquid ammonia and the presence of one or more amines in small amounts in the electrolyte.
  • the presence of several salts makes it possible to lower the freezing point while preserving the electrical properties of the solutions of the salt which conducts the current the best provided that the latter remains in significant proportion.
  • the mixture of two salts not only lowers the melting point of the electrolyte thus formed but also improves the behavior of the electrolyte with respect to each of the two electrolytes which would have been obtained with the salts taken individually. There is an increase in the temperature range where it remains liquid, with respect to one of the salts, and in the conductivity, with respect to the other salt.
  • the lithium salts used according to the present invention are therefore lithium nitrate, lithium trifluororomethanesulfonate and lithium bis (trifluoromethanesulfone) imide.
  • Lithium nitrate gives some of the most conductive solutions. This salt can oxidize lithium, but leads to the formation of Li 2 O on the surface of the metal which is thus passivated. In media such as ammonia or amines, Li 2 O can react to give the corresponding amide which is also passivating and lithine LiOH.
  • Lithium trifluoromethanesulfonate also known as lithium triflate
  • lithium bis (trifluoromethanesulfone) imide hereinafter referred to as LiTFSI
  • LiTFSI lithium bis (trifluoromethanesulfone) imide
  • lithium triflate and LiTFSI give ammoniacates which, in the same number of ammonia molecules, have a vapor pressure much lower than that of lithium nitrate ammonia.
  • the equilibrium pressure is then in fact intermediate between the ammonia pressure for the ammoniacates of lithium nitrate and the ammoniacates of LiTFSI (cf. fig. 6).
  • the ammoniacate LiNO 3 , 2NH 3 has a liquid-solid transition point of approximately 0 ° C.
  • Ammoniacate LiSO 3 CF 3 . 2NH 3 has a lower transition point and a conductivity which is also less good than that of the ammonia mentioned above, lithium nitrate.
  • a mixture of lithium nitrate and lithium triflate in mole proportions of 1: 1 gives an ammoniacate (0.5 LiNO 3 -0.5 LiSO 3 CF 3 ).
  • 2NH 3 which conducts the current a little less well than LiNO 3 .2NH 3 but for which the melting point has been lowered. It is now -18 ° C against 0 ° C for LiNO 3 . 2NH 3 and -15 ° for LiSO 3 CF 3. 2NH 3 .
  • the preferred lithium nitrate / lithium triflate and lithium nitrate / LiTFSI molar ratios are between 1: 1 and 3: 1.
  • LiTFSI LiTFSI
  • This passivation of the anode is a phenomenon necessary for the proper functioning of the generator or of the battery, which is used, which is familiar to those skilled in the art and whose principle will therefore not be repeated here.
  • the freezing point of the electrolytes can also be lowered by adding one / more cosoivants from the same family as ammonia, that is to say the amines.
  • the solvents used must have a relatively high dielectric constant ⁇ so as to prevent the formation of numerous pairs of ions whose presence would lower the number of free ions.
  • the amines used according to the invention therefore have a dielectric constant ⁇ greater than 5. The higher the dielectric constant, the fewer the ion pairs and the higher the conductivity.
  • the amines which can be used according to the present invention offer the following two advantages. Used pure or mixed with each other, they have a low vapor pressure that is always much lower than that of pure ammonia at the same temperature. Used in admixture with ammoniacates, they lead to a lowering of the ammonia vapor pressure of these, which becomes intermediate between that of pure ammoniacate and that of the combination of salt and pure amine (or amines in mixture).
  • the mixture of one or more cosolvents therefore chosen from the family of amines including NH, leads to electrolytes whose melting point is lowered compared to pure solvents. This is what happens, for example, with lithium nitrate ammonia and lithium triflate ammonia when you add a little amine or a few or more amines.
  • the potentially usable amines are primary, secondary or tertiary amines, of which n-butylamine, isopropylamine, ethylene diamine, diethylamine, triethylamine and their mixtures are preferred.
  • the preferred electrolytes according to the present invention consist of the following mixtures:
  • the electrolytes, objects of the present invention can be obtained in the form of an anhydrous liquid or gel with at most 1% water by weight. They have great advantages over those currently available.
  • ammonia which is one of the constituents of electrolytes, is an industrial and anhydrous product whose sale price is particularly low.
  • the amines used are also inexpensive.
  • the present invention also relates to the application of the electrolytes, objects of the present invention.
  • electrolytes can be used both in generators, primary and secondary, particularly of large and medium power, as in electrochromic devices, or even as a fluid in heat pumps or, as a solvent to effect very energetic chemical or electrochemical reductions .
  • FIG. 1 represents the variation of the conductivity of (0.5 LiNO 3 -0.5 LiCF 3 SO 3 ). 2NH 3 depending on the temperature.
  • Figure 2 shows the change in conductivity of (0.5
  • LiNO 3 - 0.5 LiTFSI LiNO 3 - 0.5 LiTFSI). 2NH 3 depending on the temperature.
  • FIG. 3 represents the variation of the conductivity of LiSO 3 CF 3 . 2 n-BuA, LiTFSI. 2.5 n-BuA, LiTFSI. 5 n-BuA and LiNO 3 . 2 n-BuA depending on the temperature.
  • FIG. 4 represents the variation of the conductivity of Li
  • FIG. 5 represents the variation of the conductivity of (0.5 LiNO 3 + 0.5 LiCF 3 SO 3 ). (1.75 NH 3 - 0.25 n-BuA) depending on the temperature.
  • FIG. 6 represents the variation in conductivity of LiNO 3 . 2NH 3 , LiSO 3 CF 3 . 2NH 3 , (0.5 LiNO 3 -0.5 LiSO 3 CF 3 ). 2NH 3 and (0.5 LiNO 3 -0.5 LiSO 3 CF 3. (1.75 NH 3 -0.25 n-BuA) depending on the vapor pressure.
  • the vapor pressure is less than 3 bars.
  • This property has an additional advantage of the electrolytes of the present invention at high temperatures, since they avoid the problems due to too high partial overpressures in the batteries, adding to their safety of use, particularly for consumer uses.
  • Ammoniacate (0.5 LiNO 3 - 0.5 LiSO 3 CF 3 ). 2NH conducts the current a little less well than pure LiNO 3 .2NH 3 ; its conductivity remains very close to 10 -2 ohm - 1 cm - 1 at 0 ° C.
  • LiTFSI as LiSO 3 CF 3 give ammoniacates which remain liquid at lower temperature than LiNO 3 ⁇ NH 3 .
  • the solutions obtained are conductive.
  • ammoniacates electrolytes are obtained which do not react with lithium when the number of amine molecules is low (for example of the order of 2 to 3 or 4; in the latter case for LiTFSI compared to number of salt molecules
  • n is, with n remaining less than 5, the more the conductivity increases because the viscosity decreases.
  • the electrolytes obtained (LiX nEDA) for low n can be gels at ordinary temperature and liquids above about 20 ° C. This is the case with lithium triflate when n is 2.45.
  • the electrolytes obtained are very conductive and the behavior of lithium at temperatures above 60 ° C is remarkable. In this figure we always see that when n increases the conductivity also increases.
  • a mixture of LiNO 3 - LiSO 3 CF 3 salts in 1: 1 molar proportions is dissolved in ammonia and then added with n-butylamine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention se rapporte à un électrolyte fluide et de conductivité supérieure à environ 10-3 ohm-1 cm-1 dans un domaine de température s'étendant d'environ -20 °C à environ +80 °C, caractérisé en ce qu'il est constitué: d'une combinaison d'au moins deux sels de lithium choisis parmi le nitrate de lithium, le trifluorométhanesulfonate de lithium et le bis(trifluorométhanesulfone) imidure de lithium, en solution concentrée dans de l'ammoniac ou, d'au moins un des sels de lithium pré-cités en solution concentrée dans au moins une amine, pure ou en mélange avec de l'ammoniac. La présente invention concerne également l'application de cet électrolyte.

Description

ELECTROLYTES FLUIDES A BASE D'AMMONIACATES DE SEL(S) DE
LITHIUM
La présente invention se rapporte à des électrolytes à base de sel(s) de lithium et présentant une conductivité supérieure à environ 10-3 ohm- 1 cm-1 pour un domaine de température s'étendant d'environ -20° à environ +80°C.
Le besoin en générateurs électrochimiques et en particulier en générateurs à anode de lithium, pouvant fonctionner aussi bien à basse température qu'à température élevée, donnant une tension élevée et délivrant de grandes densités de courant se fait sentir.
Des ammoniacates et plus particulièrement l'ammoniacate d'iodure de sodium et l'ammoniacate de perchlorate de lithium (brevet FR 2 529 0 18) ont déjà été décrits pour leurs propriétés intéressantes à titre d'électrolytes dans des générateurs. Ils sont en effet liquides à 20°C, ne dissolvent pas les métaux alcalins, possèdent une faible tension de vapeur et sont d'excellents conducteurs.
Toutefois, malgré ces propriétés très performantes, il n'est pas possible d'en généraliser l'utilisation. L'iodure de sodium est un sel qui ne permet de réaliser que des générateurs au sodium ; quant au perchlorate de lithium il présente une trop grande instabilité thermodynamique due à son anion perchlorate.
L'objet de la présente invention est précisément la mise au point d'électrolytes à base de sel(s) de lithium, possédant une conductivité aussi performante, potentiellement non dangereux et pouvant fonctionner, de part leur structure préférentiellement de type liquide ou gel, dans un domaine de température plus étendu vers les basses températures, où ils conservent une bonne mobilité qui assure un bon contact avec les électrodes.
L'invention n'est toutefois pas limitée aux liquides ou gels, puisqu'elle s'étend également à des solides plus ou moins pâteux intéressants pour des raisons de sécurité.
Ces électrolytes présentent l'avantage supplémentaire de faciliter l'assemblage de certaines piles pour lesquelles ils doivent être sous une forme non liquide pour des raisons de facilité d'emploi et de sécurité. En effet, il peut être envisagé de placer au montage l'électrolyte dans une plage de température où il est. liquide, ce qui assure à l'assemblage un bon contact avec les électrodes, puis ajouter un gélifiant ou abaisser la température pour le solidifier.
La présente invention se rapporte plus particulièrement à un electrolyte de type liquide ou gel et de conductivité supérieure à environ
10 -3 ohm- 1 cm- 1 dans un domaine de température s'étendant d'environ
-20°C à environ +80°C, caractérisé en ce qu'il est constitué :
- d'une combinaison d'au moins deux sels de lithium choisis parmi le nitrate de lithium, le trifluorométhanesulfonate de lithium et le bis (trifluorométhanesulfone) imidure de lithium, en solution concentrée dans de l'ammoniac ou,
- d'au moins un des sels de lithium pré-cités en solution concentrée dans au moins une aminé, pure ou en mélange avec de l'ammoniac
La concentration de l'électrolyte, objet de la présente invention, en sel(s) de lithium est de l'ordre de quelques moles par litre, c'est-à-dire supérieure à 1,5 M.
Les inventeurs ont mis en évidence qu'il était possible de conserver une conductivité des électrolytes supérieure à 10-3 ohm-1 cm-1 dans un domaine de température de -20° à + 80° C en jouant sur l'un ou les deux paramètres suivants, une combinaison de sels de lithium dans de l'ammoniac liquide et la présence d'une ou plusieurs aminés en petite quantité dans l'électrolyte.
La présence de plusieurs sels permet en effet d'abaisser le point de congélation en conservant les propriétés électriques des solutions du sel qui conduit le mieux le courant à condition que celui-ci reste en proportion importante. Le mélange de deux sels non seulement abaisse le point de fusion de l'électrolyte ainsi formé mais améliore également le comportement de l'électrolyte par rapport à chacun des deux électrolytes qui auraient été obtenus avec les sels pris individuellement. On note une augmentation du domaine de température où il reste liquide, par rapport à l'un des sels, et de la conductivité, par rapport à l'autre sel.
Les sels de lithium utilisés selon la présente invention sont donc le nitrate de lithium, le trifluororométhanesulfonate de lithium et le bis(trifluorométhanesulfone)imidure de lithium.
Le nitrate de lithium donne des solutions parmi les plus conductrices. Ce sel peut oxyder le lithium, mais conduit à la formation de Li2O à la surface du métal qui se trouve ainsi passivée. Dans les milieux tels que l'ammoniac ou les aminés, Li2O peut réagir pour donner l'amidure correspondant qui est lui aussi passivant et de la lithine LiOH.
Le trifluorométhanesulfonate de lithium, encore désigné sous l'appellation de triflate de lithium, et le bis (trifluorométhanesulfone)imidure de lithium, désigné ci-après par l'appellation LiTFSI, donnent à concentration égale des solutions moins bonnes conductrices que le nitrate de lithium mais possèdent un comportement intéressant en température surtout vers les basses températures. En effet, la conductivité de leurs solutions décroît d'une façon monotone lorsque la température diminue contrairement aux solutions de nitrate de lithium qui présentent une chute brutale de la conductivité au moment de leurs transitions liquide-gel ou liquide-solide. D'où l'intérêt de ces deux sels qui déstructurent les solutions et sont intéressants en mélange avec le nitrate de lithium.
Par ailleurs, le triflate de lithium et le LiTFSI donnent des ammoniacates qui à même nombre de molécules d'ammoniac possèdent une tension de vapeur nettement inférieure à celle de l'ammoniacate de nitrate de lithium. On voit par conséquent l'intérêt des mélanges d'ammoniacates mettant en oeuvre le nitrate de lithium avec le LiTSFI ou le triflate de lithium. La pression d'équilibre est alors en effet intermédiaire entre la pression de l'ammoniac pour les ammoniacates du nitrate de lithium et les ammoniacates de LiTFSI (cf. fig. 6). Par exemple, l'ammoniacate LiNO3, 2NH3 possède un point de transition liquide-solide de 0°C environ et une conductivité qui demeure supérieure ou égale à 10-2 ohm- 1 cm- 1 tant que l'on demeure au-dessus de la température de congélation. L'ammoniacate LiSO3CF3. 2NH3 possède un point de transition inférieur et une conductivité également moins bonne que celle de l'ammoniacate pré-cité du nitrate de lithium.
Un mélange de nitrate de lithium et de triflate de lithium dans les proportions en mole de 1:1 donne un ammoniacate (0,5 LiNO3-0,5 LiSO3CF3). 2NH3 qui conduit un peu moins bien le courant que LiNO3.2NH3 mais pour lequel le point de fusion a été abaissé. Il est désormais de -18°C contre 0°C pour le LiNO3. 2NH3 et -15° pour le LiSO3CF3.2NH3.
Les rapports molaires préférentiels nitrate de lithium/triflate de lithium et nitrate de lithium/LiTFSI sont compris entre 1:1 et 3:1.
Enfin, en ce qui concerne plus particulièrement le LiTFSI, il permet de préparer des électrolytes liquides à très basse température et ceci quel que soit le solvant utilisé. Outre cette propriété, il est également un des sels de lithium qui donne des électrolytes dont l'action est la plus intéressante sur la passivation du lithium.
Cette passivation de l'anode est un phénomène nécessaire à la bonne marche du générateur ou de la pile, mis en oeuvre, qui est familier à l'homme de l'art et dont le principe ne sera pas par conséquent rappelé ici.
Le point de congélation des électrolytes peut également être abaissé en y ajoutant un/ou plusieurs cosoivants de la même famille que l'ammoniac, c'est à dire les aminés.
Toutefois, pour obtenir une conductivité élevée des électrolytes, les solvants utilisés doivent posséder une constante diélectrique ε relativement importante de manière à prévenir la formation de nombreuses paires d'ions dont la présence abaisserait le nombre d'ions libres. Les aminés utilisées selon l'invention possèdent par conséquent une constante diélectrique ε supérieure à 5. Plus la constante diélectrique est élevée moins la solution contient de paires d'ions et plus la conductivité est grande.
Les aminés utilisables selon la présente invention offrent les deux avantages suivants. Employées pures ou en mélange entre elles, elles possèdent une faible tension de vapeur toujours très inférieure à celle de l'ammoniac pur à la même température. Employées en mélange avec les ammoniacates, elles conduisent à un abaissement de la tension de vapeur en ammoniac de ceux-ci, qui devient intermédiaire entre celle de l'ammoniacate pur et celle de la combinaison du sel et de l'aminé pure (ou des aminés en mélange).
Le mélange d'un ou de plusieurs cosolvants choisis donc dans la famille des aminés incluant NH, conduit à des électrolytes dont le point de fusion est abaissé par rapport aux solvants purs. C'est ce qui se passe, par exemple, avec l'ammoniacate de nitrate de lithium et l'ammoniacate de triflate de lithium lorsque l'on ajoute un peu d'aminé ou un peu de plusieurs aminés.
Les aminés potentiellement utilisables sont des aminés primaires, secondaires ou tertiaires, parmi lesquelles la n-butylamine, l'iso-propylamine, l'éthylène-diamine, la diethylamine, la triethylamine et leurs mélanges sont préférés.
Ainsi, pour un mélange de sels LiNO3-LiSO3CF 3 dans les proportions 1.1 en mole, dissous dans de l'ammoniac et auquel on ajoute de la n-butylamine (notée n-BuA), on conserve les avantages acquis avec le mélange des sels tout en les amplifiant. Le domaine des températures s'élargit encore plus vers les basses températures et le point de fusion devient nettement inférieur à -20°C.
Les électrolytes préférés selon la présente invention sont constitués des mélanges suivants :
- (0,5 LiNO3-0,5LiSO3CF3). 2NH3
- (0,5 LiNO3-0,5LiTFSI). 2NH3 et
- (0,5 LiNO3-0,5LiSO3CF3). ( 1,75NH3-0,25 aminé). Sont également préférés les sels de triflurométhane sulfonate suivants :
- LiSO3CF3. 7n-butylamine
- LiSO3CF3. 2,5éthylènediamine
Les électrolytes, objets de la présente invention, peuvent être obtenus sous la forme d'un liquide ou d'un gel anhydre avec au plus 1 % d'eau en poids. Ils présentent de grands avantages vis-à-vis de ceux actuellement disponibles.
Ils permettent de préparer des générateurs électrochimiques dotés d'une grande puissance, puisque la famille d'électrolytes proposée possède une conductivité supérieure ou au moins égaie à celle des autres électrolytes déjà connus.
Ils permettent également d'obtenir des générateurs de moyenne puissance utilisés dans un grand nombre d'industries (appareils audio-visuels par exemple) lesquels présentent généralement une conductivité supérieure a 10-3 ohm- 1 cm-1
Ils assurent un bon fonctionnement à basse température.
Enfin, en ce qui concerne leur coût, l'ammoniac, qui est un des constituants des électrolytes, est un produit industriel et anhydre dont le prix de vente est particulièrement bas. Les aminés employées sont également peu coûteuses.
La présente invention se rapporte également à l'application des électrolytes, objets de la présente invention.
Ces électrolytes peuvent être utilisés aussi bien dans les générateurs, primaires et secondaires, particulièrement de grande et de moyenne puissance, que dans les dispositifs électrochromes, voire comme fluide dans les pompes à chaleur ou, comme solvant pour effectuer des réductions chimiques ou électrochimiques très énergiques.
Lorsque ces électrolytes sont utilisés dans les pompes à chaleur, c'est l'absorption de chaleur qui se produit lors de leurs dissociations en ammoniac et/ou en aminés et en sel, et le dégagement de chaleur, quand l'ammoniac ou l'aminé se combinent aux sels, qui sont intéressants. En ce qui concerne les cas où les électrolytes sont utilisés en revanche comme solvants pour effectuer des réactions de réductions, l'intérêt est, essentiellement pour les ammoniacates et les aminés à point d'ébullition peu élevé, c'est-à-dire inférieur à 0°C, de pouvoir travailler à une température nettement supérieure au point d'ébullition du solvant pur, dans des milieux proches du milieu ammoniac liquide pur ou du milieu aminé liquide pur, sans les inconvénients des hautes pressions que l'on devrait avoir. Les exemples et figures présentés ci-après permettront de mettre en évidence d'autres avantages et caractéristiques de la présente invention sans pour autant en limiter la portée des revendications.
La figure 1 représente la variation de la conductivité de (0,5 LiNO3-0,5 LiCF3SO3). 2NH3 en fonction de la température.
La figure 2 représente la variation de la conductivité de (0,5
LiNO3 - 0,5 LiTFSI). 2NH3 en fonction de la température.
La figure 3 représente la variation de la conductivité de LiSO3CF3. 2 n-BuA, LiTFSI. 2,5 n-BuA, LiTFSI. 5 n-BuA et LiNO3. 2 n-BuA en fonction de la température.
La figure 4 représente la variation de la conductivité de Li
SO3CF3. × C2-H2(NH2)2 en fonction de la température avec × représentant une valeur de 3,70, 3,37 ou 3,00.
La figure 5 représente la variation de la conductivité de (0,5 LiNO3 + 0,5 LiCF3SO3). ( 1 ,75 NH3 - 0,25 n-BuA) en fonction de la température.
La figure 6 représente la variation de conductivité de LiNO3. 2NH3, LiSO3CF3. 2NH3, (0,5 LiNO3-0,5 LiSO3CF3). 2NH3 et (0,5 LiNO3-0,5 LiSO3CF3 .( 1,75 NH3-0,25 n-BuA) en fonction de la tension de vapeur. On peut observer sur cette dernière figure qu'à l'intérieur de la plage de température d'utilisation préférentielle des électrolytes, la pression de vapeur est inférieure à 3 bars.
Cette propriété présente un avantage supplémentaire des électrolytes de la présente invention aux températures élevées, puisqu'ils évitent les problèmes dus à des surpresssions partielles trop élevées dans les piles, ajoutant à leur sécurité d'emploi, particulièrement pour des usages grand public.
EXEMPLE 1
Le mélange de nitrate de lithium LiNO3 et de triflate de lithium LiSO3CF3 dans les proportions en moles de 1:1, dans de l'ammoniac liquide conduit à un ammoniacate qui correspond sensiblement à la formule (0,5 LiNO3-0,5 LiSO3CF3).2NH3.
Sur la figure n°1 sont représentées les courbes log δ=f(l/T) pour LiNO3. 2NH3 seul, pour LiSO3CH3. 2NH3 seul et le mélange des deux (0,5 LiNO3 - 0,5 LiSO3CF3).2NH3.
L'ammoniacate (0,5 LiNO3 - 0,5 LiSO3CF3). 2NH, conduit un peu moins bien le courant que LiNO3.2NH3 pur ; sa conductivité demeure en effet très proche de 10 -2 ohm- 1 cm- 1 à 0°C.
Toutefois, sa courbe log δ = (1/T) est une droite jusqu'à 1/T = 3,92.10 et le point de fusion (Tf) de cet ammoniacate est d'environ dans tout le domaine où δ est supérieur à 10- 3 ohm- 1 cm- 1.
EXEMPLE 2
De la même façon qu'en exemple 1 il a été étudié le comportement d'un ammoniacate obtenu par mélange de LiNO3 et LiTSFI dans de l'ammoniac liquide.
Sur la figure n°2 sont représentées les courbes log δ = f( l/T) pour LiTFSI.2NH3 seul et en mélange avec LiNO3.2NH3, qui correspond sensiblement à la formule (0,5 LiNO3 - 0,5 LiTFSI).2NH3.
Les résultats obtenus dans le cas présent sont sensiblement équivalents à ceux observés dans l'exemple 1. LiTFSI comme LiSO3CF3 donnent des ammoniacates qui restent liquides à plus basse température que LiNO3 × NH3. En outre, on note dans le cas du LiTFSI un excellent comportement du lithium vis-à-vis de l'électrolyte, même lorsque × est élevé et par exemple supérieur à 3. EXEMPLE 3
La n-butylamine ( ε = 5,3 à 21 °C) notée n-BuA dissout facilement et jusqu'à des concentrations élevées les sels de lithium tels que LiNO3, LiSO3CF 3 et LiTFSI. Les solutions obtenues sont conductrices. Comme pour les ammoniacates on obtient des électrolytes qui ne réagissent pas avec le lithium quand le nombre de molécules d'aminé est peu élevé (par exemple de l'ordre de 2 à 3 ou 4 ; dans ce dernier cas pour le LiTFSI par rapport au nombre de molécules de sel. Les courbes log δ = f( l/T) sont représentées en figure 3 pour ces trois sels, avec diverses valeurs de n pour LiTFSI.
D'une manière générale, plus n est grand, avec toutefois n demeurant inférieur à 5, et plus la conductivité augmente car la viscosité diminue.
EXEMPLE 4
L'éthylène-diamine, notée EDA ( ε = 15 à 20°C), comme la n-butylamine, dissout également les sels de lithium tels que LiNO3, LiSO3CF 3 et LiTFSI. Les électrolytes obtenus (LiX nEDA) pour n peu élevé peuvent être des gels à température ordinaire et liquides au dessus de 20°C environ. C'est le cas avec le triflate de lithium quand n est égal à 2,45.
La figure 4 rend compte des courbes log δ = f(l/T) pour chacun des 3 sels testés.
Les électrolytes obtenus sont très conducteurs et la tenue du lithium à des températures supérieures à 60°C y est remarquable. Sur cette figure on constate toujours que lorsque n croît la conductivité croît également.
EXEMPLE 5
Un mélange de sels LiNO3 - LiSO3CF3 dans les proportions 1 : 1 en moles est dissous dans de l'ammoniac puis additionné de n-butylamine.
Ceci conduit à la composition (0,5 LiNO3-0,5 LiSO3 CF3) ( 1 ,75NH3 + 0,25 n-butylamine) qui a été étudiée. Sur la figure n°5 sont représentées les courbes log δ = f(l/T) pour les mélanges des sels LiNO3 et LiSO3CF3 (1:1) dans les mélanges NH3/n-butylamine, (7:1) avec une composition sensiblement voisine de (0,5 LiNO3 - 0,5 LiSO3CF3). (1,75NH3 + 0,25 n-butylamine). La courbe log δ = f(l/T) pour l'ammoniacate (0,5 LiNO3 - 0,5 LiSO3CF3) 2NH3 y est également représentée pour mémoire.
On conserve les avantages acquis avec le mélange des sels en les amplifiant. Le domaine de température est prolongé vers les basses températures et le point de fusion (Tf) devient nettement inférieur à -20°C. On observe dans tout le domaine de température une courbe logδ= f
(1/T) linéaire et une conductivité supérieure à 10-3 ohm- 1 cm- 1.
LEGENDES RELATIVES AUX FIGURES
Légende relative à la figure 4/6
ΟLiSO3CF3.3,7 C2H2(NH2)2
✩ LiSO3CF3 .3,3 C2H2(NH2)2
● LiSO3CF3 .3,0 C2H2(NH2)2
Légende relative à la figure 5/6
■ (0,5 LiNO3- 0,5 LιCF3SO3).2NH3
● (0,5 UNO3- 0,5 LiCF3SO3).(1,75NH3-0,25n-BuA)
Légende relative à la figure 6/6 ✩ (0,5LiNO3.0,5LiSO3CF3)·2NH3
● LiNO3 2NH3
Figure imgf000013_0001
LiSO3CF3·2NH3
□ (0,5LiNO3-0,5LiSO3CF3).(1,75NH3-0,25nBuA)

Claims

REVENDICATIONS
1. Electrolyte non solide de conductivité supérieure à environ 10- 3 ohm-1 cm- 1 dans un domaine de température s'étendant d'environ -20°C à environ +80°C, caractérisé en ce qu'il est constitué:
- d'une combinaison d'au moins deux sels de lithium choisis parmi le nitrate de lithium, le trifluorométhanesulfonate de lithium et le bis (trifluorométhanesulfone) imidure de lithium, en solution concentrée dans de l'ammoniac, où
- d'au moins un des sels de lithium pré-cités en solution concentrée dans au moins une aminé, pure ou en mélange avec de l'ammoniac.
2. Electrolyte selon la revendication 1 caractérisé en ce que sa concentration en sel(s) de lithium est d'au moins 1,5 moles par litre.
3. Electrolyte selon la revendication 1 ou 2 caractérisé en ce que l'amine utilisée possède une constante diélectrique supérieure à 5.
4. Electrolyte selon l'une des revendications 1 à 3, caractérisé en ce qu'il est constitué d'un mélange de nitrate de lithium et de trifluorométhanesulfonate de lithium dans un rapport en mole de 1:1 à 3:1.
5. Electrolyte selon l'une des revendications 1 à 4, caractérisé en ce qu'il est constitué d'un mélange de nitrate de lithium et de bis(trifluorométhanesulfone)imidure de lithium dans un rapport en mole de 1:1 à 3:1.
6. Electrolyte selon l'une des revendications 1 à 5 caractérisé en ce que l'amine peut être une aminé primaire, secondaire ou tertiaire.
7. Electrolyte selon l'une des revendications 1 à 6, caractérisé en ce que l'amine est choisie parmi la n-butylamine, l'iso-propylamine, l'éthylène-diamine ou un mélange de celles-ci.
8. Electrolyte selon l'une des revendications 1 à 5, caractérisé en ce qu'il est choisi parmi l'un des mélanges suivants :
- (0,5 LiNO3 - 0,5 LiSO3CF3). (1,75 NH3 - 0,25n-butyiamine)
- (0,5 LiNO3 - 0,5 LiSO3CF3). 2NH3
- (0,5 LiNO3-0,5Li TFSI). 2NH3
9. Electrolyte selon la revendication 7, caractérisé en ce qu'il est choisi parmi l'un des mélanges suivants :
- LiSO3CF3. 7n-butylamine
- LiSO3CF3. 2,5éthylènediamine
10. Electrolyte selon l'une des revendications 1 à 9, caractérisé en ce qu'il se présente sous la forme d'un liquide.
11. Electrolyte selon l'une des revendications 1 à 9, caractérisé en ce qu'il se présente sous la forme d'un gel.
12. Application d'un electrolyte selon l'une des revendications 1 à 1 1 dans des générateurs, ou dispositifs électrochromes.
13. Application d'un electrolyte selon la revendication 12 dans des générateurs à moyenne puissance.
14. Application d'un electrolyte selon l'une des revendications 1 à 1 1 à titre de fluide pour les pompes à chaleur.
15. Application d'un electrolyte selon l'une des revendications
1 à 1 1, à titre de solvant pour effectuer des réductions chimiques ou électrochimiques.
PCT/FR1992/000271 1991-03-26 1992-03-26 Electrolytes fluides a base d'ammoniacates de sel(s) de lithium WO1992017911A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9103632A FR2674518A1 (fr) 1991-03-26 1991-03-26 Electrolytes fluides a base d'ammoniacates de sel(s) de lithium.
FR91/03632 1991-03-26

Publications (1)

Publication Number Publication Date
WO1992017911A1 true WO1992017911A1 (fr) 1992-10-15

Family

ID=9411121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/000271 WO1992017911A1 (fr) 1991-03-26 1992-03-26 Electrolytes fluides a base d'ammoniacates de sel(s) de lithium

Country Status (2)

Country Link
FR (1) FR2674518A1 (fr)
WO (1) WO1992017911A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907217B1 (fr) * 1993-06-18 2006-02-15 Hitachi Maxell Ltd. Pile à solution électrolytique organique

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2863933A (en) * 1952-10-27 1958-12-09 G And W H Corson Inc Electric current producing cell and method of producing current using the same
FR1189268A (fr) * 1957-11-26 1959-10-01 Perfectionnements apportés aux piles et accumulateurs électriques
GB1036303A (en) * 1962-03-09 1966-07-20 Nehezvegyipari Ki Inhibited ammoniacal refrigerating agent
DE3009820A1 (de) * 1980-03-14 1981-09-24 Dürr Innovation GmbH, 7000 Stuttgart Ein- oder mehrstufige absorptionswaermepumpe
DE3115031A1 (de) * 1981-04-14 1982-11-04 Jochen 6800 Mannheim Jesinghaus Stoffsysteme fuer sorptionswaermepumpen
EP0085649A1 (fr) * 1982-01-28 1983-08-10 Diamond Shamrock Corporation Suppression de la formation de bronze à l'aide d'amine pour améliorer la vie de la membrane dans des systèmes métal alcalin soufre
EP0097078A1 (fr) * 1982-06-16 1983-12-28 Electricite De France Générateurs électrochimiques dont les milieux électrolytiques sont constitués par des ammoniacates de sels d'un métal identique au métal de l'anode
FR2606217A1 (fr) * 1986-10-30 1988-05-06 Elf Aquitaine Nouveau materiau a conduction ionique constitue par un sel en solution dans un electrolyte liquide
JPS63198260A (ja) * 1987-02-12 1988-08-16 Sanyo Electric Co Ltd 非水電解液電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2863933A (en) * 1952-10-27 1958-12-09 G And W H Corson Inc Electric current producing cell and method of producing current using the same
FR1189268A (fr) * 1957-11-26 1959-10-01 Perfectionnements apportés aux piles et accumulateurs électriques
GB1036303A (en) * 1962-03-09 1966-07-20 Nehezvegyipari Ki Inhibited ammoniacal refrigerating agent
DE3009820A1 (de) * 1980-03-14 1981-09-24 Dürr Innovation GmbH, 7000 Stuttgart Ein- oder mehrstufige absorptionswaermepumpe
DE3115031A1 (de) * 1981-04-14 1982-11-04 Jochen 6800 Mannheim Jesinghaus Stoffsysteme fuer sorptionswaermepumpen
EP0085649A1 (fr) * 1982-01-28 1983-08-10 Diamond Shamrock Corporation Suppression de la formation de bronze à l'aide d'amine pour améliorer la vie de la membrane dans des systèmes métal alcalin soufre
EP0097078A1 (fr) * 1982-06-16 1983-12-28 Electricite De France Générateurs électrochimiques dont les milieux électrolytiques sont constitués par des ammoniacates de sels d'un métal identique au métal de l'anode
FR2606217A1 (fr) * 1986-10-30 1988-05-06 Elf Aquitaine Nouveau materiau a conduction ionique constitue par un sel en solution dans un electrolyte liquide
JPS63198260A (ja) * 1987-02-12 1988-08-16 Sanyo Electric Co Ltd 非水電解液電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POWER SOURCES. vol. 34, 1 Mars 1991, LAUSANNE CH pages 183 - 188; B.FAHYS: 'LITHIUM NITRATE AND LITHIUM TRIFLUOROMETHANESULFONATE AMMONIATES FOR ELECTROLYTES IN LITHIUM BATTERIES' *
PATENT ABSTRACTS OF JAPAN vol. 12, no. 481 (E-694)(3328) 15 Décembre 1988 & JP,A,63 198 260 ( SANYO ELECTRIC CO LTD ) 16 Août 1988 *

Also Published As

Publication number Publication date
FR2674518A1 (fr) 1992-10-02

Similar Documents

Publication Publication Date Title
EP2301093B1 (fr) Électrolytes liquides ioniques comprenant un surfactant anionique et dispositifs électrochimiques tels que des accumulateurs les comprenant.
EP3293807B1 (fr) Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
Beltrop et al. Does size really matter? New insights into the intercalation behavior of anions into a graphite-based positive electrode for dual-ion batteries
EP0098772B1 (fr) Anodes composites et souples de pile au lithium en milieu non aqueux
WO1995018456A1 (fr) Pile photo-electrochimique et electrolyte pour cette pile
EP2321866A1 (fr) Accumulateurs rechargeables lithium ion comprenant un électrolyte liquide ionique
FR2713403A1 (fr) Pile électro-chimique.
EP0189891A1 (fr) Générateur électrochimique à électrolyte non aqueux
JP2019523968A (ja) 電気化学エネルギー貯蔵デバイス
CH638931A5 (fr) Pile electrochimique non aqueuse.
FR2588007A1 (fr) Polymeres conducteurs electroniques azotes, leurs procedes de preparation, cellule d'affichage electrochrome et generateur electrochimique utilisant ces polymeres
EP2845262A1 (fr) Systeme d'accumulateurs et piles aluminium air
CN102106022A (zh) 适于一级锂电池的低温性能的thf基电解液
EP3703174A1 (fr) Composition d'électrolyte pour élément électrochimique lithium-ion
CH649655A5 (fr) Procede pour prolonger la duree d'utilisation des piles non aqueuses.
FR2464567A1 (fr) Generateur electrochimique non dommageable a anode de metal actif et depolarisant cathodique fluide
WO1992017911A1 (fr) Electrolytes fluides a base d'ammoniacates de sel(s) de lithium
FR3081866A1 (fr) Procede de preparation de sel d'imides contenant un groupement fluorosulfonyle
CH636733A5 (fr) Pile non aqueuse.
EP0241650A1 (fr) Composés d'insertion du graphite à performances améliorées et application électrochimique de ces composés
EP3776697B1 (fr) Élément électrochimique de type lithium/soufre
FR3111020A1 (fr) Procede de separation selective d’un materiau carbone d’un melange d’electrodes positives et d’electrodes negatives
EP3072176A1 (fr) Additif d'electrolyte pour batterie lithium-ion
EP0097078B1 (fr) Générateurs électrochimiques dont les milieux électrolytiques sont constitués par des ammoniacates de sels d'un métal identique au métal de l'anode
EP3430671B1 (fr) Sel de bis(fluorosulfonyl)imide de lithium et ses utilisations

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase