WO1992011518A1 - Dispositif de mesure de rayonnement et de mesure des grandeurs photochimiques d'un gaz - Google Patents

Dispositif de mesure de rayonnement et de mesure des grandeurs photochimiques d'un gaz Download PDF

Info

Publication number
WO1992011518A1
WO1992011518A1 PCT/FR1991/001050 FR9101050W WO9211518A1 WO 1992011518 A1 WO1992011518 A1 WO 1992011518A1 FR 9101050 W FR9101050 W FR 9101050W WO 9211518 A1 WO9211518 A1 WO 9211518A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
radiation
pressure
enclosure
intensity
Prior art date
Application number
PCT/FR1991/001050
Other languages
English (en)
Inventor
Mathieu Petitjean
Jean-François CHAPEAUBLANC
Original Assignee
Thomson-Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Csf filed Critical Thomson-Csf
Publication of WO1992011518A1 publication Critical patent/WO1992011518A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/48Photometry, e.g. photographic exposure meter using chemical effects
    • G01J1/54Photometry, e.g. photographic exposure meter using chemical effects by observing photo-reactions between gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/631Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using photolysis and investigating photolysed fragments

Definitions

  • the invention relates to a device for measuring radiation and more particularly to a device for measuring the intensity of radiation at a determined wavelength.
  • This device can be used to detect a wavelength
  • the device of the invention also makes it possible to measure the photochemical quantities of a gas.
  • UV radiation Ultra-violet (UV) radiation
  • photolithography photochemistry reactor
  • EPROMs erasers germicidal lamps
  • Photo-CVD reactors Photo-Chemical Vapor Deposition
  • UVs can be divided into two categories: - - - UV-A and UV-B radiation whose wavelengths are greater than 200 nm and non-dangerous;
  • VUV Vacuum Ultra Violet
  • UV-A and UV-B wavelengths greater than 200 nm
  • many selective radiometers exist on the market coupling of interference filters and semiconductor-based sensors.
  • the subject of the invention is a simple device, easily integrated into an industrial machine, making it possible to measure and monitor the intensity of certain radiations of the VUV category (greater than 200 nm).
  • This radiometer is based on the photochemical dissociation of a gas under the action of VUV radiation and the increase in pressure of the enclosure containing the gas which results from this dissociation.
  • the invention therefore relates to a device for measuring intensity, radiation, and / or radiation detection, characterized in that it comprises a closed enclosure containing a gas lit by a radiation to be measured, as well as means for measuring the pressure existing inside the enclosure, the gas being sensitive to at least one wavelength to be measured.
  • the device which is the subject of the invention makes it possible to measure the flux (in / cm 2) with a wavelength less than 200 nm (category VUV).
  • the sensitive part of this sensor is a sealed enclosure 1 having walls 11 and a face 10 transparent to the radiation studied (hence a relevant choice of the material to be used for this face 10).
  • This sensor is designed so that the radiation falls in a parallel beam on the transparent face 10.
  • the sensor enclosure is filled with a gas (G) which absorbs a wavelength (frequency v) such that the photochemical balance reaction is as follows:
  • the increase in pressure is therefore linked to the number of photons absorbed, therefore to the number of incident photons.
  • the total number dp of photons absorbed during an instant dt is such that:
  • the rate of increase in the number of moles of gas in the enclosure is therefore:
  • N the number of Avogadro
  • reactions secondary to the photolysis reaction may occur. These reactions are favored by high pressures, but at low pressure, they are negligible compared to photodissociation.
  • T is the quantity sought and used to calculate I Q.
  • FIG. 3 represents a measuring device according to the invention.
  • the internal cavity of the sensor is connected to a pressure gauge
  • valve 3 It is possible to fill the sensor with gas using valve 3 and to purge it after a certain number of uses using pump 4.
  • valve 3 and pump 4 can be assisted or manual.
  • the gas-filled sensor is placed where you want to measure the intensity of the radiation to be studied.
  • a linear increase in pressure over time is measured by the pressure gauge.
  • the speed Vp is deduced therefrom by measuring the measurement time.
  • the application of the relation (1) makes it possible to obtain the intensity Io of the radiation received by the sensor. Electronically, this amounts to coupling a circuit 5 tap-off 5 and a display circuit 6 to the pressure gauge 2 to read the lamp flux directly in Watt per cm 2 as shown in Figure 3.
  • This device can use any type of sensitive gas provided that the correct operating pressure is chosen. 1
  • the device of the invention can also operate at variable pressure P.
  • the gas contained in enclosure 1 is NH “for the purpose of measuring the VUV radiation.
  • the radiation whose intensity must be measured has a wavelength of 185 nm.
  • the pressure gauge used is a 0-10 Torr 0 capacitive gauge (Baratron MKS).
  • the temperature of the lamp emitting the radiation to be measured is controlled (65 ° C) to avoid any fluctuation in its behavior.
  • the sensor window is made of Suprasil quality synthetic quartz with a transmission factor of approximately 1 to 185 nm.
  • the curved line Vp f (P) for pressures going from 0.5 Torr to 10 Torr gives rise to the curve of figure 4.
  • the gas contained in the enclosure of the sensor is N_0.
  • the device of the invention therefore operates as a radiometer detecting a determined wavelength since the gas it contains is sensitive to at least one wavelength.
  • I of VUV radiation at 185nm wavelength With known devices, it is known to measure the intensity of a radiation at the wavelength of 254 nm. For a given radiation source, we can therefore measure the ratio R of the intensity at 185 nm and the intensity at 254 nm. Thereafter, we will know therefore the ratio R for a given source. To measure the approximate value of the radiation intensity at 185 nm from this source, it will suffice to measure with a known type of device the radiation intensity at 254 nm and to affect the measurement result using the report R.
  • the device of the invention also makes it possible to measure the characteristics of the gas ⁇ . ⁇ . This appears in formulas (1) and (2) above.
  • the characteristics of the radiation are first of all measured, as has been described previously, using a gas of which the characteristics are known.
  • the characteristics of the radiation being known, the enclosure is filled with the gas to be measured.
  • the irradiation of the gas using known radiation causes a pressure variation in the enclosure and the measurement of this variation as described above allows the product to be measured. . . ...
  • radiometry (measurement of the intensity of a given radiation) in the field of deep ultraviolet rays (whose wavelength is less than 200 nm) does not have a simple, reliable, solid radiometer, and easily integrated into devices using such radiation.
  • This gap is mainly due to the absence of semiconductor-based detectors and to the optical and technological difficulties encountered at such wavelengths (absorption by oxygen in the air, need to work under vacuum).
  • the invention provides a device operating at such wavelengths.
  • This device is based on the photochemical dissociation of a gas under the action of radiation and the increase in pressure in the enclosure containing the gas which is dissociated. This measurement does not depend on the working temperature or on the volume of the enclosure which can be made as small as desired to integrate it into the industrial system.
  • This device can be an intensity measurement device operating at a determined wavelength. It can also be a radiometer detecting a determined wavelength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Dispositif comprenant une enceinte étanche (1) éclairée par un rayonnement à mesurer. L'enceinte contient un gaz sensible au rayonnement à mesurer. Le rayonnement provoque un accroissement du nombre de moles de gaz dans l'enceinte. La mesure de la pression dans l'enceinte à l'aide du manomètre (2) permet soit de détecter la longueur d'onde à laquelle est sensible le gaz, soit de mesurer l'intensité du rayonnement à cette longueur d'onde. Applications: mesure des caractéristiques d'une lampe UV.

Description

DISPOSITIF DE MESURE DE RAYONNEMENT ET DE MESURE DES GRANDEURS PHOTOCHIMIQUES D'UN GAZ
L'invention concerne un dispositif de mesure de rayonnement et plus particulièrement un dispositif de mesure de l'intensité d'un rayonnement à une longueur d'onde déterminée .
Ce dispositif peut servir à détecter une longueur d'onde
* déterminée . Il fonctionne notamment aux longueurs d'ondes UV .
Le dispositif de l'invention permet également de mesurer les grandeurs photochimiques d'un gaz .
L'utilisation des rayonnements ultra-violets (UV) se fait de plus en plus importante dans de nombreux domaines tels 1 que la photochimie, l'électronique . Leurs applications sont de plus en plus variées : photolithographie, réacteur de photochimie, effaceurs d'EPROMs, lampes germicides, réacteurs de Photo- CVD (Photo- Chemical Vapor Déposition) .
Ces UV peuvent se diviser en deux catégories : - -- - les rayonnements UV-A et UV-B dont les longueurs d'ondes sont supérieures à 200 nm et non dangereuses ;
- les rayonnements UV- C ou encore nommés Vacuum Ultra Violet (VUV) dont les longueurs d'ondes sont inférieures à 200 nm. Ils sont très énergétiques et dangereux pour 0 l'organisme et il faut les utiliser sous vide pour s'affranchir de l'absorption par l'oxygène de l'air et la production conséquente d'ozone (gaz toxique) . Les sources les plus utilisées sont les lampes à basse pression de mercure (raie principale à 185 nm dans le domaine VUV) et les lampes à 5 deutérium (spectre continu) .
La mesure de l'intensité de ces radiations (radiométrie) devient de plus en plus critique pour l'optimisation et le contrôle de processus industriels ou de laboratoire . En ce qui concerne les UV-A et UV-B (longueurs 0 d'ondes supérieures à 200 nm) de nombreux radiomètres sélectifs existent sur le marché (couplage de filtres interférentiels et de capteurs à base de semiconducteurs) .
En revanche, il n'existe pas de radiomètre sélectif simple pour les VUV (longueurs d'ondes inférieures à 200 nm) . La solution actuellement connue est le couplage sous vide d'un monochromateur et d'un photomultiplicateur . Cette solution est très encombrante, fragile, onéreuse et s'intègre très difficilement dans un dispositif industriel.
L'invention a pour objet un dispositif simple, facilement intégrable dans une machine industrielle, permettant de mesurer et de suivre l'intensité de certaines radiations de catégorie VUV (supérieures à 200 nm) .
Ce radiomètre est basé sur la dissociation photochimique d'un gaz sous l'action de la radiation VUV et de l'accroissement de la pression de l'enceinte contenant le gaz qui résulte de cette dissociation.
Nous prouverons que, de manière générale, cette mesure ne dépend ni de la température de travail, ni du volume de l'enceinte que l'on peut rendre aussi petite que l'on veut pour l'intégrer dans le dispositif industriel . L'invention concerne donc un dispositif de mesure d'intensité, de rayonnement, et/ou de détection de rayonnement caractérisé en ce qu'il comporte une enceinte fermée contenant un gaz éclairé par un rayonnement à mesurer, ainsi que des moyens de mesure de la pression existant à l'intérieur de l'enceinte, le gaz étant sensible à au moins une longueur d'onde à mesurer.
Les différents objets et caractéristiques de l'invention apparaîtront plus clairement dans la description qui va suivre et dans les dessins qui représentent : - la figure 1, un exemple de réalisation d'un capteur selon l'invention ;
- la figure 2, une courbe de fonctionnement du capteur de la figure 1 ;
- la figure 3, un exemple de réalisation du dispositif de mesure de l'invention : - les figures 4 et 5 , des courbes d'exemples de réalisation détaillés ;
- la figure 6, un exemple de réalisation plus complet du dispositif selon l'invention. Le dispositif objet de l'invention permet de mesurer le flux (en /cm2) d'une longueur d'onde inférieure à 200 nm (catégorie VUV) .
En se reportant à la figure 1, on va tout d'abord décrire un exemple de réalisation d'un capteur selon l'invention. La partie sensible de ce capteur est une enceinte étanche 1 possédant des parois 11 et une face 10 transparente à la radiation étudiée (d'où un choix pertinent du matériau à utiliser pour cette face 10) .
Ce capteur est conçu de telle sorte que la radiation tombe en faisceau parallèle sur la face transparente 10.
L'enceinte du capteur est remplie d'un gaz (G) qui absorbe une longueur d'onde (fréquence v) telle que la réaction photochimique bilan soit la suivante :
G + hv ---> aA + bB + . . . , φ (v) A, B . . . étant les produits obtenus ; a , b, . . . étant les coefficients stoéchiométriques de la réaction ; φ (v) étant le rendement quantique de cette réaction ; h étant la constante de Plank. L'absorption d'un photon est donc responsable d'un accroissement du nombre de moles de gaz dans l'enceinte : Φ n = Φ (a+b+ " 1)
L'accroissement de la pression est donc liée au nombre de photons absorbés, donc au nombre de photons incidents
(c'est-à-dire le flux ou l'intensité de la radiation) . Nous explicitons ci-dessous cette relation : Si ε (v) est le coefficient d'absorption molaire de la radiation v par le gaz G, la loi de Berr-Lamber, appliquée à la géométrie axiale de notre enceinte, nous donne l'intensité de la radiation à la cote x :
I(x)= I0e " ε Cx
C étant la densité de molécules de gaz dans l'enceinte et I» l'intensité de la radiation à la surface du capteur. Dans ce calcul, le facteur de transmission du hublot à la longueur d'onde λ est supposé égal à un. II résulte que l'intensité de la lumière absorbée est :
Ia (x) = Io-I(x) = Io (1-e" ε Cx)
En choisissant de travailler à de faibles densités de gaz (faibles pressions et sur de courtes distances (x petit) , l'intensité totale absorbée par l'enceinte sera :
I a (d) ' = I o (1-e- ε Cd) ' ≈ I o ε C d
Si l'intensité est exprimée en Watt par unité de surface, le nombre total dp de photons absorbés pendant un instant dt est tel que :
Figure imgf000006_0001
Le taux d'accroissement du nombre de moles de gaz dans l'enceinte est donc :
Figure imgf000006_0002
Il en résulte donc un taux d'accroissement de la pression dans l'enceinte de volume V, à la température T :
Figure imgf000006_0003
N étant le nombre d'Avogadro
De plus, si l'on cherche à exprimer la densité C de molécules de gaz, nous avons :
PV≈ nRT d'où C= -û- = -E- et V≈ Sd
V RT
ce qui permet d'obtenir :
V ≈ dE. i Înl p d) p dt hv N Il est très important de remarquer que ce résultat ne dépend ni de la température ni de la géométrie du capteur (volume, dimension . . . ) .
La mesure de la vitesse d'augmentation de la pression (V ) pour une pression "statique" P donnée permet donc de déduire Io. En effet, tous les autres paramètres de cette formule sont connus et décrits, par exemple, dans l'article "Vacuum Ultraviolet Photochemistry" publié dans Advances in photochemistry. Vol. 3. Pitts . Willey and Sons) .
Dans certains gaz, des réactions secondaires à la réaction de photolyse peuvent apparaître. Ces réactions sont favorisées par des pressions élevées , mais à faible pression, elles sont négligeables devant la photodissociation.
Si on représente la courbe Vp = f (P) comme cela est représenté schématiquement en figure 2 , dans tous les cas, la tangente I" à l'origine de la courbe Vp = f(P) nous à conduit a
I Φ ε
(2)
P hv TV
T est la grandeur cherchée et utilisée pour calculer IQ .
La figure 3 représente un dispositif de mesure selon l'invention . La cavité interne du capteur est reliée à un manomètre
2 suffisamment sensible qui joue le rôle de transducteur électrique ou électronique .
Il est possible de remplir de gaz le capteur à l'aide de la vanne 3 et de le purger après un certain nombre d'utilisations à l'aide de la pompe 4.
La commande de la vanne 3 et de la pompe 4 peut être assistée ou manuelle .
Le capteur rempli de gaz est placé à l'endroit où l'on souhaite mesurer l'intensité de la radiation à étudier. Une augmentation linéaire de la pression en fonction du temps est mesurée par le manomètre. La vitesse Vp en est déduite par mesure du temps de mesure. L'application de la relation (1) permet d'obtenir l'intensité Io du rayonnement reçu par le capteur. Electroniquement cela revient à coupler un circuit 5 dérivateur 5 et un circuit d'affichage 6 au manomètre 2 pour lire directement le flux de la lampe en Watt par cm2 comme cela est représenté en figure 3.
Ce dispositif peut utiliser tout type de gaz sensible à condition de bien choisir la pression de onctionnement. 1 Le dispositif de l'invention peut également fonctionner à pression P variable.
Ce type de fonctionnement est recommandé lorsque des réactions secondaires peuvent se superposer à la réaction de photolyse et que l'on ne souhaite pas travailler avec une seule --ft- mesure de type précédent.
Si la mesure précédente est répétée pour différentes valeurs de P afin de tracer la courbe Vp = f(P) telle que celle de la figure 2 comme cela a été décrit précédemment, la valeur de l'intensité du rayonnement est déduite de la tangente initiale de cette courbe en application de la relation (2) .
Il est également possible d'adjoindre au dérivateur 5 de la figure 3, un diviseur par P qui divisera par P (pression) la valeur dP/dt. Cette mesure ne sera valable qu'en tout début de fonctionnement (origine de la courbe) . 5 Selon un exemple de réalisation pratique, le gaz contenu dans l'enceinte 1 est du NH« en vue de la mesure de la radiation VUV. Le rayonnement dont on doit mesurer l'intensité a pour longueur d'onde 185 nm. Dans le dispositif de la figure 3, le manomètre utilisé est une jauge capacitive 0-10 Torr 0 (Baratron MKS) . La température de la lampe émettant le rayonnement à mesurer est contrôlée (65°C) pour éviter toute fluctuation de son comportement.
Le hublot du capteur est réalisé en quartz synthétique de qualité Suprasil dont le facteur de transmission est environ 1 à 185 nm. Le tracé la courbé Vp = f(P) pour des pressions allant de 0, 5 Torr à 10 Torr donne lieu à la courbe de la figure 4.
Au vu de cette courbe il apparaît qu'il se produit des réactions secondaires comme cela est décrit dans l'article concernant la photolyse de NH„ à 185 nm "The Photolysis of Ammonia at 1849 A in a Flow System" C. C . Me Donald, Journal of Chem. Phys . 22, 5, 908 (1954) . Nous utiliserons donc la méthode de la tangente initiale :
Figure imgf000009_0001
avec : ε = 1, 21. 103 1 mole cm et, d'après la réaction à basse pression :
NH3 + Hv (185nm) ---> 1/2 N2 + 3/2 H2 > φ =1
on a φ n = 1
On mesure la courbe T p = 6, 67 10 s et l'on trouve :
I (185 nm) = 3, 55 mW/cm2
Nous avons mesuré la lampe à 254 nm avec un radiomètre commercial et obtenu, à 254 nm la valeur : Io (254) =
18 mW/cm2.
Le rapport Io(185 nm)/Io(254 nm) - 20% pour ce type de lampe ce qui est confirmé par l'article de B .T Barnes
("Intensities of λ 1850 Angstroems and λ 2537 Angstroems in a Lo - Pressure Mercury Vapor Lamps With Rare Gaz Présent" ,
Jour. Appl. Phys . 31, 5, 852 (1960) .
Selon un autre exemple de réalisation, pour détecter des VUV, le gaz contenu dans l'enceinte du capteur est du N_0. L'influence des réactions secondaires dans ce cas n'est pas remarquable comme le montre la courbe Vp = f(P) (que nous superposons à celle de NH~) .
En ce qui concerne la photolyse de N-O à 185 nm nous avons trouvé dans le document de PITTS ("Photochemistry" Willey and Sons, NY) les renseignements suivants :
Equation bilan :
N2O + hv (185nm) — > 3/4 N2 + 1/4 O2 + 1/2 NO, φ = 1
donc φ = 0, 5 n '
-1 -1 et ε = 252 1 mole cm
Compte tenu de la linéarité de la courbe Vp(P) dans le cas de N„O nous pouvons utiliser les formules 1 ou 2 au choix . Si nous utilisons la formule (2) qui ne fait pas intervenir les unités de pression, on trouve :
I (185 nm) = 3, 02 mW/cm2
Nous retrouvons la même valeur que dans l'exemple de réalisation dans lequel le gaz est du NH„ ce qui valide le système de l'invention. Le dispositif de l'invention fonctionne donc en radiomètre détectant une longueur d'onde déterminée puisque le gaz qu'il contient est sensible à au moins une longueur d'onde .
De plus à une longueur d'onde déterminée, il permet de mesurer l'intensité du rayonnement. Selon l'exemple pris, il permet de mesurer l'intensité
I d'un rayonnement VUV à 185nm de longueur d'onde . Avec des o appareils connus , on sait mesurer l'intensité d'un rayonnement à la longueur d'onde de 254 nm. Pour une source de rayonnement déterminée, on peut donc mesurer le rapport R de l'intensité à 185 nm et de l'intensité à 254 nm. Par la suite, on connaîtra donc le rapport R pour une source déterminée . Pour mesurer la valeur approchée de l'intensité de rayonnement à 185 nm de cette source, il suffira de mesurer avec un appareil de type connu l'intensité de rayonnement à 254 nm et d'affecter le résultat de la mesure à l'aide du rapport R .
Le dispositif de l'invention permet également de mesurer les caractéristiques du gaz ε . φ . Cela apparaît dans les formules (1) et (2) précédentes .
Pour fonctionner dans ce but, on suppose que l'on connaît les caractéristiques du rayonnement (longueur d'onde et intensité) . Si cela n'est pas le cas , les caractéristiques du rayonnement sont tout d'abord mesurées , comme cela a été décrit précédemment, à l'aide d'un gaz dont on connaît les caracté¬ ristiques . Les caractéristiques du rayonnement étant connues, on remplit l'enceinte à l'aide du gaz à mesurer . L'irradiation du gaz à l'aide du rayonnement connu provoque une variation de pression dans l'enceinte et la mesure de cette variation comme cela a été décrit précédemment, permet de mesurer le produit . . . .. .
En résumé, la radiométrie (mesure de l'intensité d'une radiation donnée) dans le domaine des ultra-violets profonds (dont la longueur d'onde est inférieure à 200 nm) ne dispose pas de radiomètre simple, fiable, solide, et facilement intégrable dans les dispositifs utilisant de telles radiations .
Cette lacune est principalement due à l'absence de détecteurs à base de semiconducteurs et aux difficultés optiques et technologiques rencontrées à de telles longueurs d'ondes (absorption par l'oxygène de l'air, nécessité de travailler sous vide . . . ) .
L'invention fournit un dispositif fonctionnant à de telles longueurs d'ondes . Ce dispositif est basé sur la dissociation photochimique d'un gaz sous l'action d'une radiation et de l'accroissement de la pression dans l'enceinte contenant le gaz qui est dissocié . Cette mesure ne dépend ni de la température de travail, ni du volume de l'enceinte que l'on peut rendre aussi petite que l'on veut pour l'intégrer dans le dispositif industriel.
Ce dispositif peut être un dispositif de mesure d'intensité fonctionnant à une longueur d'onde déterminée. Il peut être également un radiomètre détectant une longueur d'onde déterminée .
Les applications d'un tel dispositif recouvrent notamment les grandes applications de la radiométrie des VUV. Ce radiomètre peut avantageusement remplacer et concurrencer le couplage monochromateur+photomultiplicateur dans de nombreuses applications industrielles .
Il est bien évident que la description qui précède n'a été faite qu'à titre d'exemple et que d'autres variantes peuvent être envisagées. Notamment, la nature du gaz contenu dans l'enceinte du capteur et la longueur d'onde de fonctionnement du capteur n'ont été fournis que pour illustrer la description.

Claims

REVENDICATIONS
1. Dispositif de mesure d'intensité de rayonnement et/ou de détection de rayonnement, caractérisé en ce qu'il comporte une enceinte (1) fermée contenant un gaz éclairé par un rayonnement à mesurer, ainsi que des moyens de mesure de la pression existant à l'intérieur de l'enceinte, le gaz étant sensible à au moins la longueur d'onde à mesurer .
2. Dispositif selon la revendication 1, caractérisé en ce qu'il comporte des moyens permettant de mesurer une variation de pression par unité de temps .
3. Dispositif selon la revendication 2 , caractérisé en ce qu'il comporte un dérivateur recevant une information de variation de pression des moyens de mesure de pression et permettant de la dériver par rapport au temps .
4. Dispositif selon la revendication 3, caractérisé en ce qu'il comporte un circuit diviseur permettant de diviser, par la valeur de la pression, la dérivée par rapport au temps de la variation de pression.
5. Dispositif selon la revendication 1 , caractérisé en ce que l'enceinte (1) est fermée par des parois (11) possédant au moins une fenêtre (10) transparente au rayonnement à mesurer .
6. Dispositif selon la revendication 1 , caractérisé en ce que le gaz est du NH„ .
7. Dispositif selon la revendication 1, caractérisé en ce que le gaz est du N?0.
8. Dispositif de mesure de grandeurs photochimiques d'un gaz, caractérisé en ce qu'il comporte une enceinte (1) fermée remplie d'un gaz éclairé par un rayonnement de caractéristiques (intensité, longueur d'onde) connues, ainsi que des moyens de mesure de la pression existant à l'intérieur de l'enceinte, le gaz étant sensible à la longueur d'onde du rayonnement .
PCT/FR1991/001050 1990-12-21 1991-12-20 Dispositif de mesure de rayonnement et de mesure des grandeurs photochimiques d'un gaz WO1992011518A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR90/16132 1990-12-21
FR9016132A FR2670892B1 (fr) 1990-12-21 1990-12-21 Dispositif de mesure de rayonnement et de mesure des grandeurs photochimiques d'un gaz.

Publications (1)

Publication Number Publication Date
WO1992011518A1 true WO1992011518A1 (fr) 1992-07-09

Family

ID=9403557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1991/001050 WO1992011518A1 (fr) 1990-12-21 1991-12-20 Dispositif de mesure de rayonnement et de mesure des grandeurs photochimiques d'un gaz

Country Status (2)

Country Link
FR (1) FR2670892B1 (fr)
WO (1) WO1992011518A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE552089C (de) * 1929-03-15 1932-06-09 Hans Koeppe Dr Verfahren und Vorrichtung zur Messung der der Dosierung zugrunde zu legenden wirksamen Strahlenstaerke von Lampen fuer medizinische Strahlungszwecke
GB559973A (en) * 1942-09-15 1944-03-14 Venner Time Switches Ltd Improvements in or relating to means for effecting movements in accordance with changes of light intensity and to apparatus operated thereby
FR1360255A (fr) * 1963-03-25 1964-05-08 Centre Nat Rech Scient Récepteur pneumatique sélectif sensible aux rayonnements notamment aux rayonnements infra-rouge et ultra-violet
GB1303147A (fr) * 1969-08-29 1973-01-17 Canada Minister Defence
JPS5940219A (ja) * 1982-08-31 1984-03-05 Matsushita Electric Ind Co Ltd レ−ザ光エネルギ−測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE552089C (de) * 1929-03-15 1932-06-09 Hans Koeppe Dr Verfahren und Vorrichtung zur Messung der der Dosierung zugrunde zu legenden wirksamen Strahlenstaerke von Lampen fuer medizinische Strahlungszwecke
GB559973A (en) * 1942-09-15 1944-03-14 Venner Time Switches Ltd Improvements in or relating to means for effecting movements in accordance with changes of light intensity and to apparatus operated thereby
FR1360255A (fr) * 1963-03-25 1964-05-08 Centre Nat Rech Scient Récepteur pneumatique sélectif sensible aux rayonnements notamment aux rayonnements infra-rouge et ultra-violet
GB1303147A (fr) * 1969-08-29 1973-01-17 Canada Minister Defence
JPS5940219A (ja) * 1982-08-31 1984-03-05 Matsushita Electric Ind Co Ltd レ−ザ光エネルギ−測定装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS. vol. 26, no. 6, 15 Mars 1975, NEW YORK US pages 300 - 303; T.F. DEATON ET AL.: 'Absorption coefficient measurements of nitrous oxide and methane at DF laser wavelength' *
OPTICS LETTERS. vol. 15, no. 14, Juillet 1990, NEW YORK US pages 771 - 773; S.M. PARK ET AL.: 'Photoacoustic generation of anisotropic pressure waves through photodissociation of Cl2' *
P. HESS (ED.) 'Topics in current physics, Vol 46: Photoacoustic, Photothermal and Photochemical Processes in Gases' 1989 , SPRINGER-VERLAG , BERLIN, DE page 125 - page 140 *
PATENT ABSTRACTS OF JAPAN vol. 8, no. 141 (P-283)(1578) 30 Juin 1984 & JP,A,59 040 219 ( MATSUSHITA ) 5 Mars 1984 *

Also Published As

Publication number Publication date
FR2670892B1 (fr) 1993-04-23
FR2670892A1 (fr) 1992-06-26

Similar Documents

Publication Publication Date Title
Stutz et al. UV‐visible absorption cross sections of nitrous acid
US7723685B2 (en) Monitoring system comprising infrared thermopile detector
US7351976B2 (en) Monitoring system comprising infrared thermopile detector
US4775794A (en) Process and apparatus for measurement of light-absorbable components dissolved in liquids
Osgood et al. Measurement of Vibration‐Vibration Energy Transfer Time in HF Gas
CA2203780C (fr) Detection ultrasensible de contaminants dans un gaz par la spectroscopie laser intracavite
Müller et al. O3→ O (¹D) photolysis frequencies determined from spectroradiometric measurements of solar actinic UV‐radiation: Comparison with chemical actinometer measurements
Shetter et al. Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O (1 D) during Mauna Loa Observatory Photochemistry Experiment 2
Chen et al. A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases
JP2023011020A (ja) 気相媒質の品質を監視するための方法及び装置
Hunziker A new technique for gas-phase kinetic spectroscopy of molecules in the triplet state
US5630987A (en) Method and apparatus for the measurement of pollutants in liquids
FR2509467A1 (fr) Appareil pour mesurer la concentration de l'ozone dans un liquide
Crowley et al. CH3OCI: UV/visible absorption cross sections, J values and atmospheric significance
Takahashi et al. Quantum yields of O (1D) formation in the photolysis of ozone between 230 and 308 nm
WO1992011518A1 (fr) Dispositif de mesure de rayonnement et de mesure des grandeurs photochimiques d'un gaz
Bénilan et al. Mid‐UV spectroscopy of propynenitrile at low temperature: Consequences on expected results from observations of Titan's atmosphere
Fried et al. Application of tunable diode laser absorption for trace stratospheric measurements of HCl: laboratory results
Clyne et al. Kinetic studies of ground-state phosphorus atoms
Clayson Sensing of nitrate concentration by UV absorption spectrophotometry
Baucom et al. Monitoring of MOCVD reactants by UV absorption
Biggs et al. Kinetics and mechanism of the reaction of CH 3 and CH 3 O with ClO and OClO at 298 K
Enami et al. Temperature‐dependent absorption cross sections of ozone in the Wulf‐Chappuis band at 759–768 nm
Skorobogatov et al. Isochoric isothermal pyrolysis of trifluoroiodomethane: CF3· recombination kinetics
Ishii et al. A high sensitivity compact gas concentration sensor using UV light and charge amplifier circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

122 Ep: pct application non-entry in european phase