WO1992008569A1 - Optical axis adjusting method for laser robot and system therefor - Google Patents

Optical axis adjusting method for laser robot and system therefor Download PDF

Info

Publication number
WO1992008569A1
WO1992008569A1 PCT/JP1991/001546 JP9101546W WO9208569A1 WO 1992008569 A1 WO1992008569 A1 WO 1992008569A1 JP 9101546 W JP9101546 W JP 9101546W WO 9208569 A1 WO9208569 A1 WO 9208569A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
optical axis
robot
laser beam
Prior art date
Application number
PCT/JP1991/001546
Other languages
English (en)
French (fr)
Inventor
Nobutoshi Torii
Akihiro Terada
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1992008569A1 publication Critical patent/WO1992008569A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus

Definitions

  • the optical axis of the working laser light in the laser robot is adjusted using the adjusting laser light, so that the energy at the irradiation point of the working laser light emitted from the light condensing device at the end of the robot is at a high level.
  • the present invention relates to a method and an apparatus for adjusting the optical axis of a laser robot that can be adjusted. Conventional technology
  • a laser beam introduced into the body from a laser oscillator which is a light source of laser light provided outside the robot body, is reflected by a laser beam reflection mirror provided at each joint of the mouth robot.
  • the optical path is changed by this, and it advances on the same axis as the joint operation axis of the joint part, sequentially leads to the robot tip, and consists of a parabolic mirror for reflection and focusing provided at the tip and an emission nozzle Laser light is irradiated to the irradiation target by the light condensing device.
  • the optical axis of the laser beam in the robot body accurately determines the incident position and incident angle of the light by the laser beam reflecting mirror provided at each joint part, and thus the joint movement.
  • the tip It is necessary to reach the optical device.
  • the energy level of the laser beam at the irradiation point on the irradiation target is the highest.
  • the optical axis of the laser beam has been adjusted by adjusting the position and orientation of the laser beam reflecting mirror provided at each joint.
  • the adjustment laser beam 8 emitted from the laser oscillator 7 is reflected by the reflection mirrors 9, 10 and 1 of a laser conduit installed outside the robot body.
  • the robot is introduced into the robot body via the robot 1 and the laser light reflecting mirrors 1, 2, 3, and 1 4 provided at the joints of the robot's rotating torso and robot arms in the robot body.
  • An optical sensor 16 provided downstream of the parabolic mirror 15 detects the position of the laser beam axis.
  • the adjustment laser beam reaches the final parabolic mirror 15 via the broken line optical path, but the detected optical axis position Is out of alignment. Therefore, when one of the joints of the robot is turned and the detected optical axis position is displaced in the optical sensor 16, there is a deviation in the optical axis of the laser light inside the robot body. And the incident angle and angle of the laser beam at the laser beam reflecting mirrors 12, 13, 14, 15, etc. at each joint so that the displacement becomes zero. A method of adjusting was taken.
  • the optical sensor 16 is composed of a well-known semiconductor position detecting element (P0S ITI ON SENS ITI VE DETECTOR), and the adjusting laser light uses a visible laser light such as a helium-neon laser. Therefore, as shown in FIG. 9, the optical axis of the adjustment laser light is visually detected as a light spot P on the matrix coordinate plane 16a. Therefore, if it is measured whether or not this light spot P is displaced while drawing a trajectory on the matrix coordinate plane 16a in accordance with the movement (turning) at the robot joint, it is possible to determine whether the optical axis of the laser beam and the joint It can be measured whether the axis of motion is aligned with the axis.
  • P0S ITI ON SENS ITI VE DETECTOR semiconductor position detecting element
  • the optical axis of the laser beam that has passed through each joint part inside the robot body will be the same as that of the robot. It can be determined that the adjustment is made so that the light is incident on the same axis as the turning axis of the joint part, and the irradiation to the external irradiation target is reliably performed.
  • the optical axis is adjusted by adjusting the reflection mirror as described above so that the light point stops. Is taken.
  • the adjustment laser light is detected by the optical sensor 16 arranged at one point on the downstream side of the optical path of the laser light emitted from the parabolic mirror 15 of the condensing device.
  • the position of the light spot P on the Ux coordinate plane 16a is stopped at one point on the coordinate plane as shown in Fig. 9, and if only one joint is operated, the rotation axis of that joint and the laser In some cases, it may be measured so that the optical axis of the light coincides with the optical axis.
  • the laser beam emitted from the parabolic mirror 15 of the light condensing device enters the optical sensor 16 at an angle of incidence from the true optical axis.
  • the optical sensor 16 when the angle of incidence is as described above, other joints other than the joint provided with the condensing device are operated (turned). Then, on the matrix coordinate plane 16a of the optical sensor 16, the optical point P of the optical axis of the laser beam may look as if there is no optical axis shift.
  • a main object of the present invention is to solve various drawbacks in the conventional optical axis adjustment method of a laser robot.
  • Another object of the present invention is to provide a method and an apparatus which can be applied to the optical axis adjustment of laser light of an articulated laser robot.
  • the tip of the laser beam emitted from the laser oscillator along the same optical axis as the working laser beam passes through the light reflecting mirrors provided at a plurality of joints inside the robot body. From the light device A method for adjusting the optical axis of a laser robot that adjusts the optical axis of the working laser light inside the body using the emitted adjustment laser light,
  • One of the light reflection mirrors provided at each of the plurality of joint sites is set to a half mirror
  • An optical axis of the adjusting laser light transmitted through the half mirror is detected as a light spot by a light-sensitive first sensor;
  • the optical axis of the adjustment laser light reflected by the half mirror is detected as a light spot by a light-sensitive second sensor provided at a subsequent stage when viewed in the laser light traveling direction of the condensing device,
  • the first and second optical sensors are turned on.
  • Each of the light reflections provided at the mouth-bottom joint part is such that the detection light points are at one point in the light detection coordinate planes of the first and second light sensors.
  • a method for adjusting the optical axis of a laser robot is provided.
  • a plurality of joints are provided therein, and a reflection mirror means provided at the joints and reflecting the working laser light from the laser oscillator;
  • An optical axis adjusting device for adjusting the laser beam axis of the laser robot provided with the means using the adjusting laser light emitted along the same optical axis as the working laser light from the laser oscillator.
  • a half mirror means removably provided on a reflection mirror means at one joint of the plurality of joints of the laser robot;
  • a first optical sensor means for detecting an optical axis position of the adjustment laser light transmitted through the half mirror means as a light spot in plane coordinates
  • the optical axis position of the adjusting laser light which is provided on the downstream side of the laser light path from the condensing device provided in the laser light emitting means and is reflected by the half mirror means, is defined as a light spot in plane coordinates.
  • second optical sensor means for detection is provided.
  • the reflection mirror is used.
  • An optical axis adjusting device for a laser robot characterized in that the means is adjusted to adjust the laser beam axis.
  • FIG. 1 is a schematic diagram illustrating the principle of an optical axis adjustment method for a laser robot according to the present invention.
  • Fig. 2 is a schematic diagram showing the state of the light spot where the optical axis of the laser beam is detected on the matrix coordinate plane of the two optical sensors.
  • Fig. 3 is the articulated laser port box.
  • FIG. FIG. 4 is an enlarged perspective view showing a detailed arrangement of the optical axis adjusting device in the laser robot shown in FIG. 3,
  • FIG. 5 is a cross-sectional view showing the configuration of a reflection mirror provided at each joint site
  • FIG. 6 is a sectional view showing another embodiment of the optical axis adjusting device of the laser port bot according to the present invention.
  • FIG. 7 is a perspective view showing a state where the optical axis adjusting device is incorporated in a laser robot.
  • FIG. 8 is a schematic diagram illustrating the principle of a conventional laser robot optical axis adjustment method
  • FIG. 9 is a schematic diagram for explaining a matrix coordinate plane of an optical sensor used in the optical axis adjustment method of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 shows an articulated laser port robot to which the optical axis adjusting method according to the present invention can be applied, and a laser oscillation unit for transmitting laser light to the robot via a laser light conduit.
  • FIG. 4 shows a state in which an optical axis adjusting device applied to the embodiment of the present invention is mounted on an articulated robot.
  • the airframe 30 of the censored laser robot has a robot base 31 fixed to a mouth-bottom mounting surface, and a vertical axis centered on the robot base 31.
  • ⁇ axis Robot cylinder 32 that can rotate around, attached to the joint on the side of the upper part of the robot cylinder 32, and pivot axis (W axis)
  • the upper arm 33 which is capable of swinging in the elevating direction
  • the lower arm which is capable of linearly moving back and forth in the linear direction (R axis) always perpendicular to the swing axis of the upper arm 33 of the mouth.
  • a laser beam condensing device 36 comprising a mirror 44 and a nozzle portion 36a is provided.
  • the laser oscillating section 50 includes a main laser oscillating tube 51 for emitting an invisible carbon dioxide laser beam, which is a working laser beam, and a sub-oscillating tube 52 for emitting helium-neon laser light.
  • the laser light of either one of the main and sub oscillation tubes 51 and 52 is switched by a beam switching shutter 53 so that the laser light can be emitted to the outside. Note that the configuration of the beam switching shutter 53 is well known and will not be described here.
  • the working laser beam or the adjusting laser beam emitted from the main or sub oscillator tube 51 or 52 passes through a laser beam conduit 56 having a reflection mirror 54, 55, 56 at the bent portion.
  • the laser beam is introduced into the robot body 30 from a laser beam inlet 37 provided at the top of the turning body 32 of the robot body 30.
  • the laser oscillation unit 50 sends a later-described husband inside the robot body 30. Needless to say, a configuration for supplying cooling water or the like to each laser light reflection mirror or the like is provided.
  • the robot control device 60 is provided so as to control the operation of the joints of the body 30 of the laser port robot and also control the laser light emitting operation of the laser oscillation unit 50.
  • a laser light inlet 37 is opened on the axis, and the laser light (work laser light or adjustment laser light) introduced from this laser light inlet 37 is opened.
  • (Light) is the position of the intersection of the 9 axis and the W axis, that is, the first laser light reflecting mirror 41 provided at the joint where the revolving torso 32 and the mouth bot upper arm 33 are connected.
  • the laser beam is then introduced into the upper arm 33 of the robot, and is directed to the second laser light reflecting mirror 42 provided in the upper arm 33 of the robot so as to face the first laser light reflecting mirror 41.
  • the laser light that has entered the second laser light reflection mirror 42 is reflected here and travels along the R-axis in the mouth upper arm 33 along the R axis, and proceeds toward the robot forearm 34.
  • the laser beam reaches the inside of the robot wrist 35 attached to the end of the robot forearm 34, where the R axis of the robot forearm 34 and the r axis of the mouth robot wrist 35 are moved.
  • the light enters the third laser light reflection mirror 43 provided at the intersection point, that is, at the joint site.
  • the light is reflected by the third laser light reflection mirror 43 and enters the fourth laser light reflection mirror, that is, the parabolic mirror 44 of the light condensing device 36.
  • the light is collected and reflected by the parabolic mirror 44, and irradiated from the tip of the nozzle 36a as a low-energy laser beam toward an external irradiation target. Configuration is provided.
  • the laser light introduced into the robot body 30 is focused via the laser light reflection mirrors 41 to 44 provided at the joints.
  • the position and angle of incidence on each of the laser beam reflection mirrors 41 to 44 are adjusted in advance, and in particular, At the joint site, it must be adjusted so that the laser beam travels along the optical axis that coincides with the joint operation axis. That is, the optical axis adjustment is performed in advance as described in the conventional adjustment method based on FIG.
  • the conventional optical axis adjustment method shown in FIG. 8 adjusts the laser beam inside the robot body 30 so that the laser beam travels along the optical axis that exactly matches the joint operation axis of each joint. In some cases, it is not possible. Therefore, as described above, the present invention is to solve such a problem.
  • the adjusting laser light emitted from the sub-oscillation tube 52 of the laser light oscillation section 50 and introduced from the inlet 37 into the laser robot body 30 is used.
  • the separate optical sensors provided at two locations along the laser beam path inside 30 accurately match the optical axis along which the textured laser beam travels with the joint operation axis at each joint. It can be adjusted to obtain
  • the two optical sensors described above are provided at the positions of two separated joints along the laser beam path in the robot body 30.
  • the two optical sensors are provided in the robot turning body 32.
  • a first optical sensor 45 provided below the first laser light reflecting mirror 41 and a fourth parabolic mirror 44 provided at the downstream of the fourth parabolic mirror 44 forming the light condensing device 36 are provided.
  • Both the optical sensors 45 and 46 described above are similar to the configuration of the optical sensor 16 described in the prior art in FIGS. 8 and 9 and are well-known semiconductor position detecting elements (POS ITI ON SENSITIVE DETECTOR). When light is projected on the matrix surface consisting of this PSD element, it is formed as a photodetector that detects the light projection point and emits a corresponding electric output signal. Things.
  • the first optical sensor 45 In order to detect the light, a so-called half mirror is temporarily replaced with a total reflection mirror, and the laser light transmitted through the mounted first laser light reflection mirror 41 is detected.
  • the adjustment laser light reflected by the half mirror of the first laser beam 4 passes through the second and third laser light reflection mirrors 4 2 and 4 3, and the condensing device 3
  • the second optical sensor 46 detects the laser beam reflected and condensed by the six parabolic mirrors 44.
  • first and second optical sensors 45 and 46 are previously mounted on the robot body in advance so that they can be detachably mounted from outside the laser body 30 (not shown).
  • the optical sensors 45 and 46 can be removed from the body 30. It is configured as follows.
  • FIG. 1 shows a laser beam path from a laser beam oscillating section 50 having a sub-oscillation tube 52 for emitting the above-mentioned adjustment laser beam to a parabolic mirror 44 of a laser robot focusing device 36.
  • the provided laser reflection mirrors 54 to 56, 41 to 44 and the first and second optical sensors 45, 46 are schematically shown, respectively.
  • the mirrors 41 to 44 are installed inside the robot body 30.
  • the adjustment laser light is first transmitted to the first laser light reflection mirror 41 inside the body 30 of the laser port bot. Reach half mirror. At this time, the adjustment laser light transmitted through the half mirror is detected by the first optical sensor 45. The adjustment laser beam reflected by the half mirror travels via the reflection mirrors 42 and 43 and the parabolic mirror 44. Then, it is detected by the second optical sensor 46 provided at the downstream position of the parabolic mirror 44. At this time, the detection results obtained by the first and second optical sensors 45 and 46 are, as shown in FIG. 2, the light spots on the matrix seat surfaces 45a and 46a of the respective sensors. Is detected as a position.
  • the optical sensor close to the light collector 36 that is, the parabolic mirror 44 of the light collector 36 reflects the light. Even if the detected light point of the emitted adjustment laser light by the second optical sensor 46 is stationary on the matrix coordinate plane 46a of the sensor 46, it is directed toward the stationary point.
  • the detection light spot of the laser beam is circular in the matrix coordinate plane 45a of the first optical sensor 45. Since it is detected along the trajectory, it can be detected that there is a deviation between the optical axis through which the laser beam travels and the motion axis of the joint inside the laser robot. In addition, it is possible to adjust the deviation to a zero value while visually recognizing the deviation quantitatively. That is, when the light spot of the adjustment laser light is detected, then, in that state, the optical axis of the adjustment laser light is adjusted around the axis which is the operating axis for adjusting the optical axis to the coaxial state Causes joint movement.
  • the robot turning cylinder 32 is turned around the axis.
  • the light spot detected by the first optical sensor 45 is inconsistent between the optical axis and the operating axis, as shown in FIG.
  • the adjustment is made so that the optical axis of the adjusting laser beam is introduced from the inlet 37 so as to coincide with the axis.
  • the half mirror of the reflection mirror 41 is removed, the total reflection mirror mounted on the reflection mirror 42 is replaced with a half mirror, and the first sensor is replaced with the half mirror. Installed at a position where it can detect transmitted light By adjusting 41, it is possible to adjust the W axis and the optical axis of the adjustment laser beam.
  • the circular locus of the light spot on the matrix coordinate plane 45a by the first optical sensor 45 can be visually monitored, so that the operator performs the optical axis adjustment. In doing so, the user has the advantage of being able to recognize the adjustment result while looking directly at the adjustment result every moment.
  • the above-described embodiment is an embodiment in which the mouth robot forearm 34 is formed as a straight-moving arm in the laser robot body 30, but the robot forearm 34 is similar to the robot upper arm 33 in the swing joint. It is needless to say that the optical axis adjusting method according to the present invention can be applied to a laser robot configured as such.
  • a laser beam reflecting mirror indicated by reference symbol Rm is mounted on a joint portion of the robot body 30 by a mirror holding base 62 and a fixing screw 6 via a spring 7 to form a mirror.
  • Mirror housing 6 3 fixed to holding base 2, laser beam reflecting mirror 6 4, Adjustment screw 6 5 for adjusting the position of mirror housing 6 3 with respect to mirror holding base 6 2, It has a fixing screw 66 that is fixed after adjustment by the adjustment screw 65.
  • the laser light reflection mirror Rm further has a mirror holder 67 for fixing the laser light reflection mirror 64 to the mirror storage housing 63.
  • This mirror holder 6 7 has a large diameter It has the outer shape of a stepped disk provided with a portion 67a and a small diameter portion 67b, and the inner end face 68 of the small diameter portion 67b presses the laser light reflection mirror 64 from behind to form a mirror.
  • the mirror 64 is held between the storage housing 63 and the storage housing 63.
  • a plurality of through holes 69 are provided at appropriate intervals on the outer peripheral portion of the large diameter portion 67 a, and a flanged color 70 is mounted in the through hole 69, and the flanged color 70 is provided.
  • a fixing screw 7 1 is inserted into 7 0, and this fixing screw 7 1 is configured to fix the mirror holder 6 7 to the mirror storage housing 6 3.
  • a corrugated washer 73 is inserted as an elastic member between the flange 72 and the outermost surface of the mirror holder -67.
  • each of the flanged collars 70 protrudes from the through hole 69 of the mirror holder 67 and abuts against the end surface of the mirror storage housing 63, and the large diameter portion of the mirror holder 67 is formed.
  • the inner end surface of 67 a is allowed to float by an appropriate amount of gap G from the end surface of the mirror housing 63. Accordingly, in order to fix the mirror holder 67 to the mirror housing housing 63, when the fixing screw ⁇ 1 is tightened, the inner end face 6 7b of the small diameter part 67b of the mirror holder 67 is continued. Even when 8 is behind the reflection mirror 64, the large diameter portion 67a of the mirror holder 167 is still floating from the surface of the mirror housing housing 63 due to the gap G described above. .
  • the mirror holder 67 when the mirror holder 67 is fixed to the mirror housing 63, the mirror holder 67 receives the elastic force of the waveform washer 73 from behind, and receives the laser beam reflection mirror 64 from behind. Press You.
  • the elastic force of the above-mentioned wave washer 73 regardless of whether the fixing screw 71 is tightened or not, exerts a constant spring elastic force due to the presence of the above-mentioned gap G, so that the mirror holder 67 is mirrored. It has a function of always maintaining a constant level of holding force for holding the 6 4 between the mirror storage housing 63 and the perforated bottom of the mirror 63.
  • the laser beam reflecting mirror 64 is removed for maintenance, and after the maintenance processing, the mirror is returned into the mirror housing 63 again. Even if the mirror holder 6 is attached and attached and held, the mirror 4 retains the mirror holder 67 before and after attachment / detachment, and the holding force is stably maintained at a certain level.
  • the positioning state in the mirror housing 63 can always be set to a constant state with good reproducibility. For this reason, when the laser reflecting mirror 64 is periodically attached to and detached from the laser holder 50 to sharpen the reflecting surface 4a, or when the optical axis adjusting method according to the present invention is performed, the laser reflecting mirror 64 is used.
  • FIG. 6 shows another embodiment of the present invention.
  • the half mirror and the optical sensor 45 are formed in one assembly.
  • the half mirror 80 has a laser
  • the mirror holder 82 is attached to a cylindrical mirror holder 82 having a cylindrical passage 82 through which light passes, at an angle to the laser beam path, and the mirror holder 82 is attached to the hollow housing 84.
  • the mirror holder 82 has a laser beam inlet 82 b and, when the laser beam entering from the laser beam inlet 82 b is reflected by the half mirror 80, the reflected laser beam passes therethrough.
  • ⁇ 82 c the housing 84 is provided with an optical sensor 85 corresponding to the optical sensor 45 described above at a position where the laser light reflected by the half mirror 80 and passing through the opening 82c is received.
  • a laser light exit 84a for transmitting the laser light transmitted through the half mirror 80 forward is provided.
  • the mirror holder 82 and the nozzle 84 can be detachably mounted inside the body 30 of the laser port bot.
  • a large flange portion 83 is provided.
  • the optical axis adjustment assembly that can be detached inside the body 30 of the laser ⁇ -bot by the mirror mirror 80, mirror holder 82, mirror, housing 84, and optical sensor 85. Yellowtail is formed.
  • such an optical axis adjustment assembler can be mounted during adjustment of the laser beam axis in the middle of the laser beam path inside the body 30 of the laser robot, as described above.
  • the trouble of performing the optical axis adjustment by replacing the total reflection mirrors of the laser light reflection mirrors 141 to 44 provided at each joint part in the body 30 with half mirrors is eliminated. Can be eliminated.
  • the joints inside the fuselage 30 are operated to operate the optical sensor 85 and the condensing device 44.
  • the light spot position of the laser light detected by the optical sensor 46 provided at the downstream position of the sensor is detected, and the respective laser light positions are set so that the light spot positions of both the sensors 85 and 46 are stationary at one point.
  • Adjusting the reflection mirrors 41 to 44 and thereby adjusting the optical axis of the laser beam is the same as in the above-described embodiment.
  • the optical axis position of the adjustment laser light emitted from the light condensing device is detected and measured on the optical path of the laser light inside the laser robot.
  • the position of the optical axis of the laser beam is detected at a different position on the upstream side of the optical path where the laser beam travels with respect to the condensing device, and the operation of the robot joint (rotation) If there is a discrepancy between the optical axis and the motion axis by detecting the coincidence at both measurement positions and activating the joint operation at the robot joint, the amount of discrepancy is reduced by one.
  • the optical coordinate of the laser beam and the robot joint can be visually recognized as a circular locus on the matrix coordinate plane of the optical sensor and adjusted so that the detection light point stops at the center point of the circular locus. Make sure that the axis of motion Optical axis adjustment becomes possible execution.
  • the laser light inside the laser robot is accurately directed in a predetermined direction by the laser light reflection mirror provided at each joint. The light arrives at the light-collecting device while being guided, and is emitted from the light-collecting device.
  • a laser beam with a high energy density is irradiated, so that the desired laser work such as cutting, welding, and photochemical reactions can be performed efficiently.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Laser Beam Processing (AREA)
  • Manipulator (AREA)

Description

明 細 書 レーザロボッ トのための光軸調整方法と装置
技術分野
本発明は、 レーザロボッ トにおける作業用レーザ光の光軸 を調整用レーザ光を用いて調整し、 ロボッ ト先端の集光装置 から発出された作業用レーザ光の照射点におけるエネルギ一 を高レベルに調整可能にするレーザロボッ トの光軸調整方法 と装置とに関する。 従来技術
レーザロボッ トは例えば、 国際出願 No. PCT/JP90/01627 に極座標型のレーザロボッ 卜の例が開示されている。 この種 のレーザロボッ トにおいては、 ロボッ ト機体の外部に設けら れたレーザ光の光源であるレーザ発振器から機体内部に導入 したレーザ光を口ボッ トの各関節部に設けたレーザ光反射ミ ラーにより光路変更して関節部の関節動作軸と同軸心上を進 行して順次にロボッ ト先端に導き、 その先端に設けられた反 射、 集光用のパラボラ ミ ラーと発出ノズルとから成る集光装 置により、 照射対象に向けてレーザ光を照射する。
このようなレーザロボッ トにおいて、 ロボッ ト機体内にお けるレーザ光の光軸は、 各闋節部位に設けられたレーザ光反 射ミ ラ一による光の入射位置、 入射角度を正確に関節の動作 軸と同軸になるように調整することにより、 正確に先端の集 光装置へ到達させることが必要である。 また、 そのとき、 口 ボッ ト機体への導入位置から先端の集光装置に到る理想的な 光路を通過した場合に、 照射対象上の照射点におけるレーザ 光のエネルギーレべルが最も高エネルギーとなり、 その結果 として材料切断、 溶接、 光化学反応等の作業を最も効果的に 遂行可能となる。
このために、 従来より、 レーザロボッ トの機体内部におい ては、 各関節部位に設けたレーザ光反射ミ ラ一位置や姿勢を 調整してレーザ光の光軸調整が遂行されている。
この場合に従来は、 第 8図に示すように、 レーザ発振器 7 から発射された調整用レーザ光 8がロボッ ト機体の外部に設 けられたレーザ導管路の反射ミ ラー 9、 1 0、 1 1を介して ロボッ ト機体内に導入され、 ロボッ ト機体内のロボッ ト旋回 胴やロボッ ト腕の各関節部位に設けられたレーザ光反射ミ ラ 一 1 2、 1 3、 1 4を経てロボッ ト手首に設けられた集光装 置のパラボラ ミ ラ一 1 5に導き、 同パラボラ ミ ラー 1 5によ り反射された調整用レーザ光を当該調整甩レーザ光の進行方 向に見て該パラボラ ミ ラー 1 5の下流側に設けられた光セン サ 1 6によってレーザ光々軸位置を検出している。 例えば、 反射ミ ラー 1 1が実線位置から点線位置へずれて設けられて いるようなときには、 調整用レーザ光は破線光路を経て最終 のパラボラ ミ ラー 1 5に達するが、 検出される光軸位置には ずれが生じている。 故に、 ロボッ トの何れか 1つの関節を旋 回させ、 検出された光軸位置が光セ ンサ 1 6内で変位したと き、 ロボッ ト機体内部のレーザ光の光軸にずれが存在してい るものと判断し、 その変位がゼロとなるように、 各関節部に おけるレーザ光反射ミ ラ一 1 2、 1 3、 1 4、 1 5等におけ るレーザ光の入射位置と入射角度を調整する方法が取られて いた。
上記の光セ ンサ 1 6は、 周知の半導体位置検出素子 (P0S I T I ON SENS I T I VE DETECTOR ) からなり、 また、 調整用レーザ 光はヘ リ ウム一ネオンレーザ等の可視性のレーザ光を使用す るので、 第 9図に示すように、 調整用レーザ光の光軸はマ ト リ クス座標面 1 6 aにおける光点 Pとして可視的に検出され る。 故に、 この光点 Pがロボッ トの関節における動作 (旋回) に従ってマ ト リ クス座標面 1 6 a上で軌跡を描きながら変位 するか否かを測定すれば、 レーザ光の光軸と関節の動作中心 軸線とがー致しているか否かが測定できる。 つまり、 光点 P が上記マ ト リ クス座標面 1 6 a上における或る位置に静止し ていれば、 ロボッ ト機体内部の各関節部位を通過したレーザ 光の光軸はそのロボッ トの夫々の関節部位の旋回軸と同軸上 に入光され、 確実に外部の照射対象へ照射される調整が達成 されているものと判断できる。 他方、 光点 Pが円軌跡を描き ながら変位し、 同軸状態に無いずれた状態のときは、 光点が 静止するように、 上記の如く反射ミ ラ一を調整して光軸調整 を行う方法がとられる。
然しながら、 上述した従来の光軸調整方法によれば、 集光 装置のパラボラ ミ ラー 1 5から発出するレーザ光の光路の下 流側の一点に配置した光センサ 1 6で調整用レーザ光を検出 する一点検出、 測定方法であるために、 光セ ンサ 1 6のマ ト U クス座標面 1 6 a上の光点 Pの位置が第 9図に示すように 座標面の一点位置に静止し、 何れか一つの関節を動作させた だけでは、 その関節の回転軸線とレーザ光の光軸とがあたか も、 一致しているように測定される場合がある。
例えば、 第 9図に図示のように、 集光装置のパラボラ ミ ラ 一 1 5から発出したレーザ光が光セ ンサ 1 6に対して真の光 軸から入射角 を有して入射している可能性があり、 その結 果、 多関節形のレーザロボッ トの場合には、 上記のような入 射角 を有するとき、 集光装置が設けられた関節以外の他の 関節を動作 (旋回) させると、 光セ ンサ 1 6のマ ト リ クス座 標面 1 6 a上ではレーザ光の光軸の光点 Pがあたかも光軸ず れが無いように見えてしまう場合がある。
すなわち、 従来のレーザ光の光軸調整では、 レーザロボッ トが多関節型ロボッ トである場合には、 完全な調整を達成で きない場合があると言う欠点があった。 発明の開示
依って、 本発明の主目的は、 従来のレーザロボッ トの光軸 調整方法における諸欠点を解決することにある。
本発明の他の目的は、 多関節型レーザロボッ トのレーザ光 の光軸調整においても適用可能な方法と装置とを提供せんと するものである。
即ち、 本発明によれば、 レーザ発振器から作業用レーザ光 と同光軸に沿って発出され、 ロボッ ト機体の内部の複数の関 節部位に設けられた光反射ミ ラ一を経て先端の集光装置から 発出される調整用レーザ光を用いて作業用レーザ光の口ボッ ト機体の内部における光軸を調整するレーザロボッ トの光軸 調整方法であって、
前記複数の関節部位に夫々設けられる光反射ミ ラーの 1つ をハーフ ミ ラ一に設定し、
前記ハーフ ミ ラ一を透過した前記調整用レーザ光の光軸を 光感知型の第 1のセンサで光点として検出し、
前記ハーフ ミ ラ一で反射された前記調整用レーザ光の光軸 を前記集光装置のレーザ光進行方向に見た後段位置に設けた 光感知型の第 2のセンサで光点として検出し、
次いで、 前記ロボッ ト機体の関節部位の関節作動により、 前記調整用レーザ光がそれに沿って入射すべき前記ハーフ ミ ラーの光入射軸を旋回させたとき、 前記第 1および第 2の両 光センサの検出光点が、 該第 1および第 2の両光センサが有 する光検出座標面内で夫々、 一点に静止状態となるように、 前記口ボッ ト関節部位に設けられた夫々の光反射ミ ラ一を調 整するようにした、
ことを特徵とするレーザロボッ トの光軸調整方法が提供され o
又、 本発明に依れば、 内部に複数の関節と該関節の部位に 設けられ、 レーザ発振器からの作業用レーザ光を反射する反 射ミ ラー手段と、 最先端に設けられたレーザ光発出手段とを 備えたレーザロボッ トのレーザ光々軸を、 前記レーザ発振器 から前記作業用レーザ光と同光軸に沿って発出される調整用 レーザ光を用いて調整するための光軸調整装置が、 前記レーザロボッ トの前記複数の関節における 1つの関節 の部位における反射ミ ラ一手段に着脱自在に設けられるハ一 フ ミ ラ一手段と、
前記ハーフ ミ ラ一手段を透過した前記調整用レーザ光の光 軸位置を平面座標内の光点として検出する第 1の光センサ手 段と、
前記レーザ光発出手段に備えられた集光装置よりレーザ光 路の下流側に設けられ、 前記ハーフ ミ ラ一手段で反射される 前記調整用レーザ光の光軸位置を平面座標内の光点として検 出する第 2の光センサ手段とを具備して構成され、
以て、 前記複数の関節の少なく とも 1つの関節を動作させ たときに前記第 1、 第 2光センサにより検出される調整用レ 一ザ光の光点の軌跡に基づき、 前記反射ミ ラ—手段を調節し てレーザ光々軸を調整するようにしたことを特徴としたレ一 ザロボッ トのための光軸調整装置が提供される。
図面の簡単な説明
本発明の上記および他の目的、 特徴、 利点を添付図面に示 す実施例に基づいて、 以下に詳細に説明するが同添付図面に おいて、
第 1図は、 本発明によるレーザロボッ トの光軸調整方法の 原理を説明する略示機構図、
第 2図は、 2つの光セ ンサのマ ト リ ク ス座標面上における レーザ光の光軸を検出した光点の状態を示す略示機構図、 第 3図は、 多関節型レーザ口ボッ トの全体構成を示す斜視 図、 第 4図は第 3図に示したレーザロボッ トにおける光軸調整 装置の詳細な配置を示す拡大斜視図、
第 5図は、 夫々の関節の部位に設けられる反射ミ ラーの構 成を示した断面図、
第 6図は、 本発明によるレーザ口ボッ 卜の光軸調整装置の 他の実施例を示した断面図、
第 7図は、 同光軸調整装置をレーザロボッ トに組み込んだ 状態を示す斜視図、
第 8図は、 従来のレーザロボッ トの光軸調整方法の原理を 説明する模式図、
第 9図は、 第 8図の光軸調整方法で用いられる光センサの マ ト リ クス座標面に関する説明用の略示図。 発明を実施するための最良の態様
第 3図は、 本発明による光軸調整方法を適用することが可 能な多関節型レーザ口ボッ ト と、 同ロボッ トに向けてレーザ 光導管路を介してレーザ光を送出するレーザ発振部とから成 るレーザロボッ ト機構を図示し、 又第 4図は、 本発明の実施 に適用される光軸調整装置が多関節型ロボッ トに装備された 状態を示している。
第 3図、 第 4図を参照すると、 多閲節型レーザロボッ トの 機体 3 0は口ボッ ト据え付け面に固定されるロボッ トベース 3 1、 同ロボッ トベース 3 1上に直立されて垂直軸心 ( Θ軸) 回りに旋回可能なロボッ ト胴 3 2、 同ロボッ ト胴 3 2の上部 の側面位置の関節部位に取付けられ、 揺動軸心 (W軸) 回り に俯仰方向の揺動が可能なロボッ ト上腕 3 3、 この口ボッ ト 上腕 3 3の上記揺動軸心に対して常に直交する直線方向 (R 軸) に前後直線動作が可能なロボッ ト前腕 3 4、 この πボッ ト前腕 3 4の先端の関節部位に装着されて上記のロボッ ト前 腕 3 4の直線運動方向の軸心、 つまり R軸と同軸心 ( r軸) の回りに旋回可能に且つ、 その r軸と直交した旋回軸心 ( 軸) 回りに旋回可能に設けられたロボッ ト手首 3 5 とを具備 し、 また、 同ロボッ ト手首 3 5の先端部位に後述するパラボ ラ ミ ラー 4 4とノズル部 3 6 aとから成るレーザ光の集光装 置 3 6が具備されている。
また、 上記多関節型レーザロボッ トの機体 3 0の外部には 第 3図に詳示するように、 レーザ発振部 5 0、 ロボッ ト制御 装置 6 0が設けられている。 · レーザ発振部 5 0は内部に作業 用レーザ光である不可視性の炭酸ガスレーザ光を発出する主 レーザ発振管 5 1 とヘ リ ウ ム · ネオンレーザ光を発出する副 発振管 5 2 とを具備し、 これらの主副の両発振管 5 1、 5 2 の何れかのレーザ光をビーム切換シャ ッター 5 3で切り換え ることにより、 外部に向けて発出可能に構成されている。 な お、 ビーム切換シャ ッター 5 3の構成は周知であるので、 こ こでは説明を省く。 主又は副発振管 5 1又は 5 2から発出さ れた作業用レーザ光又は調整用レーザ光を反射ミ ラー 5 4、 5 5、 5 6を曲折部に備えたレーザ光導管路 5 6を経てロボ ッ ト機体 3 0の上記旋回胴 3 2の頂部に設けられたレーザ光 導入口 3 7からロボッ ト機体 3 0内に導入される。 なお、 レ 一ザ発振部 5 0からはロボッ ト機体 3 0の内部の後述する夫 々のレーザ光反射ミ ラー等に対する冷却水等の供給する構成 が備えられていることは言うまでもない。
又、 ロボッ ト制御装置 6 0は、 レーザ口ボッ トの機体 3 0 の関節部の動作を制御すると共にレーザ発振部 5 0のレーザ 光発出作用をも制御可能に設けられている。
さて、 レーザロボッ トの機体 3 0の内部においては、 レー ザ光導入口 3 7が 軸上に開口され、 このレーザ光導入口 3 7から導入されたレーザ光 (作業用レーザ光又は調整用レー ザ光) は (9軸と W軸との交点位置、 つまり、 旋回胴 3 2 と口 ボッ ト上腕 3 3とが結合される関節の部位に設けられた第 1 のレーザ光反射ミ ラー 4 1を経てロボッ ト上腕 3 3内に導入 され、 ロボッ ト上腕 3 3内に上記の第 1 レーザ光反射ミ ラ一 4 1 と対峙して設けられた第 2のレーザ光反射ミ ラー 4 2に 向けられる。 この第 2のレーザ光反射ミ ラー 4 2に入射した レーザ光は、 ここで反射されて口ボッ ト上腕 3 3内を R軸線 に沿い、 ロボッ ト前腕 3 4に向けて進む。
次いで、 レーザ光はロボッ ト前腕 3 4の先端に装着された ロボッ ト手首 3 5の内部に達し、 ここでロボッ ト前腕 3 4の R軸心と口ボッ ト手首 3 5の r軸心との交点位置、 つまり、 関節の部位に設けられた第 3のレーザ光反射ミ ラー 4 3に入 射する。 そして、 同第 3のレーザ光反射ミ ラー 4 3で反射さ れ、 第 4のレーザ光反射ミ ラー、 即ち、 集光装置 3 6のパラ ボラ ミ ラー 4 4に入射する。 そして、 このパラボラ ミ ラ一 4 4で集光、 反射されてノ ズル 3 6 aの先端から外部の照射対 象に向けて髙エネルギーのレーザビーム として照射される構 成が設けられている。
さて、 既述から明らかなように、 ロボッ トの機体 3 0内部 に導入されたレーザ光が、 夫々の関節の部位に設けられたレ 一ザ光反射ミ ラー 4 1〜4 4を経て集光装置 3 6のノズル 3 6 aから所望の照射対象へ照射されるには、 夫々のレーザ光 反射ミ ラー 4 1〜 4 4への入射位置、 入射角度を予め調整す ることにより、 特に夫々の関節の部位においては、 関節動作 軸に一致した光軸線に沿ってレーザ光が進行するように調整 されていなければならない。 つまり、 光軸調整が予め行われ ることは、 第 8図に基づく従来の調整方法で説明した通りで ある。 然し、 第 8図に示した従来の光軸調整方法では、 ロボ ッ ト機体 3 0内部において、 特に各関節の関節動作軸に正確 に一致した光軸に沿ってレーザ光が進行するように調整でき ない場合が生ずる。 依って、 既述の通り、 本発明は、 このよ うな問題点を解決せんとするものである。
本発明によれば、 レーザ光発振部 5 0の副発振管 5 2から. 発出され、 レーザロボッ トの機体 3 0内に導入口 3 7から導 入した調整用レーザ光を用い、 しかもロボッ ト機体 3 0の内 部におけるレーザ光路に沿う 2か所に設けられた、 後述の別 々の光セ ンサにより、 諷整レーザ光が進行する光軸と各関節 部における関節動作軸との正確な一致を得るように調整可能 にするものである。
上述した 2つの光センサは、 ロボッ ト機体 3 0内のレーザ 光路に沿う隔設された 2つの関節の部位の位置に設けられる ものであり、 本実施例では、 ロボッ ト旋回胴 3 2内において 第 1のレーザ光反射ミ ラー 4 1の下方位置に設けられた第 1 の光センサ 4 5 と、 集光装置 3 6を構成する第 4のパラボラ ミ ラー 4 4の下流地点に設けられた第 2のレーザ光反射ミ ラ - 4 6 とから構成されている。
上記の両光センサ 4 5、 4 6は、 共に第 8図、 第 9図の従 来技術において記載した光センサ 1 6の構成と同様に、 周知 の半導体位置検出素子 (POS I T I ON SENS I T I V E DETECTOR ) か ら構成され、 この PSD素子から成るマ ト リ クス座表面上に光 が投射されると、 その光投射点を検出し、 対応の電気出力信 号を発する光検出器として形成されているものである。
また、 本発明によれば、 第 1の光センサ 4 5はレーザロボ ッ トの機体 3 0内に導入された調整用レーザ光が第 1のレー ザ光反射ミ ラー 4 1を通過するときに、 その光を検出すべく いわゆる、 ハーフ ミ ラ一が全反射ミ ラーと暫時的に置換、 装 着された第 1のレーザ光反射ミ ラー 4 1を透過したレーザ光 を検出し、 他方、 同第 1のレーザ光反射ミ ラ一 4 1のハーフ ミ ラーで反射された調整用レーザ光は第 2、 第 3のレーザ光 反射ミ ラー 4 2、 4 3を経由して進行し、 集光装置 3 6のパ ラボラ ミ ラー 4 4で反射、 集光されたレーザ光を第 2の光セ ンサ 4 6が検出するように構成されいる。
なお、 上述の第 1、 第 2の光センサ 4 5、 4 6 は共にレー ザロボッ トの機体 3 0外から着脱自在に取付けられるように、 予め、 ロボッ ト機体にはセンサ取付窓 (図示なし) 等が適宜 に形成されており、 光軸調整作業が終了したときには、 それ ら光センサ 4 5、 4 6を機体 3 0外に取外すことができるよ うに構成されている。
上述の配置から成る光センサ 4 5、 4 6を用い、 ロボッ ト 機体 3 0内に導入されるレーザ光の光軸が 軸の旋回軸心と 一致するように調整する光軸調整装置と方法を第 1図、 第 2 図を用いて説明する。
第 1図は上述した調整用レーザ光を発出する副発振管 5 2 を有したレーザ光発振部 5 0からレーザロボッ トの集光装置 3 6のパラボラ ミ ラー 4 4に到るレーザ光々路に設けられた レーザ反射ミ ラー 5 4〜 5 6、 4 1〜 4 4と第 1、 第 2の光 セ ンサ 4 5、 4 6 とを夫々、 模式的に示したものであり、 レ 一ザ反射ミ ラー 4 1〜 4 4がロボッ トの機体 3 0の内部に設 けられたものである。
調整用レーザ光がレーザ光発振部 5 0から発出されると、 その調整用レーザ光は、 レーザ口ボッ トの機体 3 0の内部で は、 先ず、 第 1 のレーザ光反射ミ ラー 4 1のハーフ ミ ラーに 達する。 このとき、 同ハーフ ミ ラ ーを透過した調整用レーザ 光は第 1の光セ ンサ 4 5により検出される。 又、 そのハーフ ミ ラーで反射された調整用レーザ光は、 反射ミ ラー 4 2、 4 3、 パラボラ ミ ラー 4 4を経由して進行する。 そして、 パラ ボラ ミ ラー 4 4の下流位置に設けられた第 2光セ ンサ 4 6に より検出される。 このとき、 第 1 と第 2光セ ンサ 4 5 と 4 6 による検出結果は、 第 2図に示すように、 夫々のセ ンサのマ ト リ クス座表面 4 5 a、 4 6 aにおける光点の位置として検 出される。 すなわち、 本発明によれば、 集光装置 3 6に近い 光セ ンサ、 つまり、 集光装置 3 6のパラボラ ミ ラー 4 4で反 射された調整用レーザ光の第 2光セ ンサ 4 6による検出光点 が、 同セ ンサ 4 6のマ ト リ クス座標面 4 6 aにおいて、 静止 している場合でも、 その静止点に向けて或る角度を有して調 整用レーザ光が入射している場合には、 第 1の光センサ 4 5 のマ ト リ クス座標面 4 5 a内で、 レーザ光の検出光点が円軌 跡を描いて検出されるから、 レーザロボッ ト内部ではレーザ 光が進む光軸と関節の動作軸との間にズレがあることを検出 できる。 しかも、 このズレを定量的に目視で認識しながら、 同ズレがゼロ値となるように調整することができる。 即ち、 調整用レーザ光の光点の検出を行ったときに、 次に、 その状 態のまま、 調整用レーザ光の光軸を同軸状態に調整しようと する動作軸である所の 軸回りに関節の動作を生じさせる。
かく して、 ロボッ ト旋回胴 3 2を 軸回りに旋回させる。 この結果、 第 1光センサ 4 5 により検出される光点は光軸と 動作軸との間に不一致があると、 第 2図に明示のように、 口 ボッ ト旋回胴 3 2の旋回に伴って第 1光セ ンサ 4 5のマ ト リ クス座標面 4 5 a内で円軌跡を描く。 故に、 ロボッ ト旋回胴 3 2の旋回にも係わらず、 このような円軌跡の中心点位置に 検出光点で静止するようになるまで、 例えば、 外部のレーザ 光導管路 5 7におけるレーザ反射ミ ラー 5 5および 5 6を調 整して調整用レーザ光の光軸が導入口 3 7から 軸と一致し た状態で導入されるように調整する。 次いで、 反射ミ ラー 4 1 のハーフ ミ ラ一を取外し、 反射ミ ラー 4 2に装着されてい る全反射ミ ラーをハーフ ミ ラ一と置換し、 第 1のセ ンサをそ のハーフ ミ ラ一の透過光を検出できる位置に設置してミ ラ一 4 1を調整することにより、 W軸と調整用レーザ光の光軸と を調整することが可能となる。
上述の調整過程で、 第 1の光センサ 4 5によるマ ト リ クス 座標面 4 5 aにおける光点の円軌跡は、 目視で監視すること が可能であるから、 光軸調整を作業者が遂行するとき、 調整 結果を時々刻々に直視しながら、 認識できる有利を有してい るのである。
上述した実施例は、 レーザロボッ トの機体 3 0において口 ボッ ト前腕 3 4が直進動作腕に形成された実施例であるが、 ロボッ ト前腕 3 4がロボッ ト上腕 3 3と同様に揺動関節とし て構成されたレーザロボッ トにも等しく、 本発明による光軸 調整方法が適用できることは言うまでもない。
なお、 ここで、 各関節部に設けられるそれ自体は公知であ るレーザ光反射ミ ラー 4 1〜 4 3の構造に就いて、 簡単に第 5図を参照して説明する。
第 5図を参照すると、 参照記号 R mで示すレーザ光反射ミ ラーは、 ロボッ ト機体 3 0の関節部位に取付けられる ミ ラー 保持基台 6 2、 ばね 7を介して固定ねじ 6により ミ ラー保持 基合 2に固定されたミ ラ一格納ハウジング 6 3 、 レーザ光反 射ミ ラー 6 4、 ミ ラー格納ハウジング 6 3をミ ラー保持基合 6 2に対して位置決め調整する調整ねじ 6 5、 同調整ねじ 6 5による調整後に固定する固定甩ねじ 6 6を備えている。 ま た、 同レーザ光反射ミ ラー R mは、 更に、 レーザ光反射ミ ラ 一 6 4をミ ラ一格納ハウジング 6 3に対して固定する ミ ラ一 ホルダー 6 7を有している。 このミ ラーホルダー 6 7は大径 部 6 7 aと小径部 6 7 bとを備えた段付円板の外形を有し、 小径部 6 7 bの内端面 6 8がレーザ光反射ミ ラー 6 4を背後 から押圧してミ ラ一格納ハウジング 6 3との間で同ミ ラー 6 4を挟持する。 また、 大径部 6 7 aの外周部に複数の貫通 孔 6 9が適宜間隔で設けられ、 この貫通孔 6 9内にフラ ンジ 付カ ラー 7 0が装塡され、 このフラ ンジ付カ ラー 7 0内に固 定ねじ 7 1が挿入され、 この固定ねじ 7 1がミ ラ一格納ハゥ ジング 6 3にミ ラーホルダー 6 7を固定する構成にあり、 し かも、 フラ ンジ付カ ラー 7 0のフラ ンジ 7 2 と ミ ラーホルダ - 6 7の最外面との間には弾性部材として波形ヮ ッ シャ 7 3 が介挿されている。
上記各フラ ンジ付カラー 7 0の内端は、 ミ ラーホルダ一 6 7の貫通孔 6 9から突出してミ ラ一格納ハウジング 6 3の端 面に当接し、 ミ ラ一ホルダー 6 7の大径部 6 7 aの内端面を ミ ラ一格納ハウジング 6 3の端面から適宜量のギヤ ップ Gだ け浮かせ得るようにしている。 従って、 ミ ラ一ホルダ一 6 7 をミ ラ一格納ハゥジング 6 3に固定するために、 固定ねじ Ί 1を締め込んで行く と、 該ミ ラーホルダー 6 7の小径部 6 7 bの内端面 6 8が反射ミ ラー 6 4の背後に当接した時点でも 上記のギャ ップ Gにより、 ミ ラーホルダ一 6 7の大径部 6 7 aは依然としてミ ラ一格納ハウジング 6 3の面から浮いてい る。
故に、 ミ ラーホルダー 6 7がミ ラー格納ハウ ジング 6 3に 固定された時点で、 ミ ラーホルダー 6 7は波形ヮ ッ シャ 7 3 の弾性力を背後から受けてレーザ光反射ミ ラー 6 4を押圧す る。 上記波形ヮ ッ シャ 7 3の弾性力は、 固定ねじ 7 1の締め 込み加減に関わりなく、 上記ギヤ ップ Gの存在により、 一定 のばね弾性力を発揮するのでミ ラーホルダー 6 7がミ ラー 6 4をミ ラ一格納ハウジング 6 3の有孔底との間で挟持式に保 持する保持力を常に一定のレベルに維持する機能を奏する。
このように、 ミ ラーホルダー 6 7からミ ラー 6 4に対する 押圧力が常に一定化すれば、 レーザ光反射ミ ラー 6 4を保守 目的で取り外し、 保守処理後に再びミ ラ一格納ハウジング 6 3内に装着し、 ミ ラーホルダー 6 7を取りつけて保持するよ うにしても、 同ミ ラー 4は、 着脱の前後で受けるミ ラーホル ダ一 6 7による保持力が安定に一定レベルに維持されるから、 ミ ラ一格納ハウジング 6 3内における位置決め状態を常に再 現性良く一定状態に設定できるのである。 このために、 レー ザ光反射ミ ラー 6 4を定期的にレーザ保持器 5 0から着脱し て反射面 4 aを研く場合や、 本発明による光軸調整方法の実 施に当たり、 同レーザ反射ミ ラー 6 4をハ ーフ ミ ラーに置換 する等の保守処理や特殊甩途に对しても、 その保守処理ゃハ —フ ミ ラ一を再び光反射ミ ラー 6 4に置換した後に再びレー ザ光反射装置 R m内に装着する時点で角度の調整作業を要す ることなく、 所望のレーザ光反射作用を達成するように高精 度に位置決め設定することができるのである。
次に、 本発明の他の実施例を示す第 6図、 第?図を参照す ると、 ハーフ ミ ラ一と光センサ 4 5 とが 1つのアセンブリ に 形成されている。
第 6図に示すように、 ハーフ ミ ラー 8 0は、 内部にレーザ 光が通過する円筒通路 8 2 aを有した円筒形のミ ラ一ホルダ 8 2にレーザ光進路に対して傾けた角度で取付けられ、 又、 このミ ラ一ホルダ 8 2は中空ハウジング 8 4に固定されてい る。 ミ ラ一ホルダ 8 2にはレーザ光入口 8 2 bと、 そのレ一 ザ光入口 8 2 bから進入したレーザ光がハーフ ミ ラ一 8 0で 反射されたとき、 その反射したレーザ光の通過を許容する開 □ 8 2 c とを有している。 また、 上記のハウジング 8 4はハ 一フ ミ ラー 8 0で反射し、 開口 8 2 cを通過したレーザ光を 受光する位置に前述した光センサ 4 5に対応する光センサ 8 5を備え、 更に、 ハーフ ミ ラ ー 8 0を透過したレーザ光を前 方へ送出するレーザ光出口 8 4 aを備えている。 そして、 ミ ラーホルダ 8 2のレーザ光入口 8 2 bが設けられた一端には レーザ口ボッ トの機体 3 0の内部に同ミ ラーホルダ 8 2 、 ノヽ ウジング 8 4を一体にして着脱自在に取付け可能なフ ラ ンジ 部 8 3が設けられている。 つまり、 ノヽ ーフ ミ ラー 8 0、 ミ ラ 一ホルダ 8 2 、 ノ、ウ ジング 8 4、 光セ ンサ 8 5 によってレー ザ αボッ トの機体 3 0の内部に着脱自在な光軸調整ァッセ ン ブリが形成されている。
このような光軸調整アツセ ンプリを第 7図に示すように、 レーザロボッ トの機体 3 0の内部におけるレーザ光々路の途 中にレーザ光々軸の調整時に取付けるようにすれば、 前述し た実施例において、 機体 3 0内の各関節部位に設けたレーザ 光反射ミ ラ 一 4 1〜 4 4 の全反射ミ ラ ーをハーフ ミ ラ ーに置 換して光軸調整を行う煩瑣性を解消することができる。
なお、 第 6図に示した光軸調整ァ ッ セ ンブリを用いて各関 節部位のレーザ光反射ミ ラー 4 1〜4 4におけるレーザ光の 光軸を調整する作用プロセスにおいても、 機体 3 0内部の各 関節を動作させて、 光センサ 8 5 と、 集光装置 4 4の下流位 置に設けた光センサ 4 6 とによって検出されるレーザ光の光 点位置を検出し、 両センサ 8 5、 4 6における光点位置が共 に一点で静止するように夫々のレーザ光反射ミ ラー 4 1〜 4 4を調整し、 以て、 レーザ光の光軸調整を行うことは、 前述 した実施例と同じである。
以上の説明から明らかなように、 本発明によれば、 レーザ ロボッ トの内部におけるレーザ光の光路上において、 集光装 置から発出れさる調整用レーザ光の光軸位置を検出、 測定す ると共に集光装置に対してレーザ光が進行する光路の上流側 の隔たった別位置でレーザ光の光軸位置を検出し、 ロボッ ト 関節部の動作 (旋回) 軸心とレーザ光の光軸との一致を 2か 所の両測定位置において検出し、 しかも、 ロボッ ト関節部に 関節動作を起動させることにより、 上記光軸と動作軸との間 に不一致があるときは、 その不一致量を一方の光センサのマ ト リ クス座標面で円軌跡として目視で認識可能にし、 その円 軌跡の中心点に検出光点が静止するように調整することで、 レーザ光々軸とロボッ ト関節部の動作軸とを完全に一致させ る光軸調整が遂行可能となる。 この結果、 レーザロボッ トに おいて、 作業用レーザ光を照射対象に照射するとき、 レーザ ロボッ ト内部で同レーザ光は各関節部に設けられたレーザ光 反射ミ ラ一で正確に所定の方向へ進路案内されながら、 集光 装置に到達し、 同集光装置から発出されるから、 照射点には 9 エネルギー密度の高いレーザ光が照射され、 切断や溶接、 光 化学反応等の所望のレーザ作業を効率的に遂行させることが できるのである。

Claims

請求の範囲
1 . レーザ発振器から作業用レーザ光と同光軸に沿って発 出され、 ロボッ ト機体のレーザ光導入口を経て又機体内部の 複数の闋節部位に設けられた光反射ミ ラ一を経て先端の集光 装置から発出される調整用レーザ光を用いて作業用レーザ光 のロボッ ト機体の内部における光軸を調整するレーザロボッ トの光軸調整方法であって、
( a ) 前記複数の関節部位に夫々設けられる光反射ミ ラー の 1つをハーフ ミ ラーに置換し、
( b ) 前記ハーフ ミ ラーを透過した前記調整用レーザ光の 光軸を光感知型の第 1のセンサで光点として検出し、
( c ) 前記ハーフ ミ ラ一により反射されて進行する前記調 整用レーザ光の光軸を前記集光装置のレーザ光進行方向に見 た前方位置に配置の光感知型の第 2のセンサで光点として検 出し、
( d ) 前記 πボッ ト機体の関節部位の関節作動により、 前 記調整用レーザ光がそれに沿って入射すべき前記ハーフミ ラ —の光入射軸を旋回させたとき、 前記第 1および第 2の両光 センサの検出光点が、 該第 1および第 2の両光センサが有す る光検出座標面内でそれぞれ、 一点に静止状態となるように- 前記ロボッ ト関節部位に設けられた夫々の光反射ミ ラ一を調 整するようにした、
ステップを具備したことを特徵とするレーザロボッ トの光軸 の調整方法。
2 . 前記ハーフ ミ ラ一を置換するステップは、 前記レーザ 光導入口に最も近い関節部位に設けられた第 1審目の光反射 ミ ラ一から前記集光装置に最も近い位置に設けられた第 II番 目の光反射ミ ラ一までの複数の光反射ミ ラ一の各々と順次に n回置換し、 各回毎に、 前記 ( b ) から ( d ) までのステツ プを繰り返すことを特徴とする請求項 1 に記載のレーザロボ ッ トの光軸の調整方法。
3 . レーザ発振器から作業用レーザ光と同光軸に沿って発 出され、 ロボッ ト機体のレーザ光導入口を経て又機体内部の 複数の関節部位に設けられた光反射ミ ラーを経て先端の集光 装置から発出される調整用レーザ光を用いて作業用レーザ光 のロボッ ト機体の内部における光軸を調整するレーザロボッ トの光軸調整方法であって、
( a ) 前記ロボッ ト機体の内部におけるレーザ光の光路に 1つのハーフ ミ ラ一を設置し、
( b ) 前記ハーフ ミ ラーで反射した前記調整用レーザ光の 光軸を光感知型の第 1のセンサで光点として検出し、
( c ) 前記ハーフ ミ ラーを透過して進行する前記調整用レ 一ザ光の光軸を前記集光装置のレーザ光進行方向に見た前方 位置に配置の光感知型の第 2 のセンサで光点として検出し、
( d ) 前記ロボッ ト機体の関節部位の関節作動により、 前 記調整用レーザ光がそれに沿って入射すべき前記ハーフ ミ ラ 一の光入射軸を旋回させたとき、 前記第 1および第 2の両光 センサの検出光点が、 該第 1および第 2の両光センサが有す る光検出座標面内で夫々、 一点に静止状態となるように、 前 記ロボッ ト関節部位に設けられた夫々の光反射ミ ラーを調整 するようにした、
ことを特徵とするレーザロボッ トの光軸の調整方法。
4 . 機体に設けられたレーザ光導入口と、 その機体の内部 に備えられた複数の関節と、 該関節に設けられ、 レーザ発振 器からの作業用レーザ光を反射する光反射ミ ラ一手段と、 機 体の最先端に設けられたレーザ光発出手段とを備えたレーザ ロボッ トのレーザ光々軸を、 前記レーザ発振器から前記作業 用レーザ光と同光軸に沿って発出される調整用レーザ光を用 いて関節の動作軸と一致するように調整するための光軸調整 装置が、
前記レーザ口ボッ トの前記複数の関節における或る 1つの 関節の部位における反射ミ ラ一手段に着脱自在に設けられる ハー フ ミ ラ一手段と、
前記ハー フ ミ ラ一手段を透過した前記調整用レーザ光の光 軸位置を平面座標内の光点として検出する第 1の光セ ンサ手 段と、
前記レーザ光発出手段に備えられた集光装置よりレーザ光 路の下流側に設けられ、 前記ハーフ ミ ラ一手段で反射される 前記調整用レーザ光の光軸位置を平面座標内の光点として検 出する第 2の光センサ手段とを具備して構成され、
以て、 前記複数の関節の少なく とも 1つの関節を動作させ たときに前記第 1、 第 2光センサにより検出される調整用レ —ザ光の光点の軌跡に基づき、 前記反射ミ ラ一手段を調節し てレーザ光々軸を調整するようにしたことを特徵としたレー ザロボッ トのための光軸調整装置。
5 . 前記ハーフ ミ ラ一手段は、 反射ミ ラ一手段のホルダー 手段に着脱自在に取着されることを特徵とする請求項 4に記 載のレーザロボッ トのための光軸調整装置。
6 . 前記第 1、 第 2 の光セ ンサ手段は、 前記レーザロボッ トの内部に着脱自在に設けられる請求項 4に記載のレーザ口 ボッ トのための光軸調整装置。
7 . 前記第 1、 第 2の光センサ手段は夫々、 ポジシヨ ン ♦ セ ンシテ ィ ブ ·ディテクタを具備して構成されている請求項 6に記載のレーザロボッ トのための光軸調整装置。
8 . 機体に設けられたレーザ光導入口と、 その機体の内部 に備えられた複数の関節と、 該関節に設けられ、 レーザ発振 器からの作業用レーザ光を反射する光反射ミ ラー手段と、 機 体の最先端に設けられたレーザ光発出手段とを備えたレーザ ロボッ トのレーザ光々軸を、 前記レーザ発振器から前記作業 用レーザ光と同光軸に沿って発出される調整用レーザ光を用 いて関節の動作軸と一致するように調整するための光軸調整 装置が、
前記レーザ口ボッ トの機体の内部におけるレーザ光の光路 に設けられるハーフ ミ ラ一手段と、
前記ハーフ ミ ラー手段により反射された前記調整用レーザ 光の光軸位置を光点として検出する検出用平面座標を有した 第 1の光センサ手段と、
前記レーザ光発出手段に備えられた集光装置よりレーザ光 路の下流側に設けられ、 前記ハーフ ミ ラ一手段を透過した前 記調整用レーザ光の光軸位置を、 光点として検出する検出用 平面座標を有した第 2の光センサ手段とを、 具備して構成さ れ、
以て、 前記複数の関節の少なく とも 1つの関節を動作させた ときに前記第 1、 第 2光センサにより検出される調整用レ一 ザ光の光点の軌跡に基づき、 前記反射ミ ラー手段を調節して レーザ光々軸を調整するようにしたことを特徴としたレーザ ロボッ トのための光軸調整装置。
9 . 前記ハーフ ミ ラ ー手段が、 1つのハウ ジング手段に内 蔵され、 該ハウジング手段に前記第 1の光センサ手段が取着 されている請求項 8に記載のレーザ口ボッ トのための光軸調 整装置。
1 0 . 前記ハウ ジング手段は、 前記レーザロボッ トの機体 の内部に着脱自在に装着可能なフラ ンジ手段を具備した請求 項 9 に記載のレーザロボッ トのための光軸調整装置。
PCT/JP1991/001546 1990-11-14 1991-11-12 Optical axis adjusting method for laser robot and system therefor WO1992008569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30608890 1990-11-14
JP2/306088 1990-11-14

Publications (1)

Publication Number Publication Date
WO1992008569A1 true WO1992008569A1 (en) 1992-05-29

Family

ID=17952886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001546 WO1992008569A1 (en) 1990-11-14 1991-11-12 Optical axis adjusting method for laser robot and system therefor

Country Status (3)

Country Link
US (1) US5233202A (ja)
EP (1) EP0515688A4 (ja)
WO (1) WO1992008569A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536916A (en) * 1994-09-30 1996-07-16 Sanyo Machine Works, Ltd. Method for performing automatic alignment-adjustment of laser robot and the device
US5705789A (en) * 1995-09-29 1998-01-06 Litel Instruments, Inc. Stabilization of parallel transport mirror system
JP3670071B2 (ja) * 1996-01-08 2005-07-13 浜松ホトニクス株式会社 電界測定装置
IT1297360B1 (it) * 1997-12-31 1999-09-01 Prima Ind Spa Testa operatrice per una macchina laser
SE9900742L (sv) * 1999-03-02 2000-09-03 Inst Verkstadstek Forsk Ivf Anordning för inmätning av en laserstråle
GB2370651B (en) * 2000-12-18 2003-01-22 Thyssen Laser Technik Gmbh Laser robot for workpiece machining and method for workpiece machining with a laser robot
US6720567B2 (en) 2001-01-30 2004-04-13 Gsi Lumonics Corporation Apparatus and method for focal point control for laser machining
US7218649B2 (en) * 2003-08-28 2007-05-15 Philip Morris Usa Inc. Laser beam containment system
DE102005052431C5 (de) * 2005-10-31 2015-01-22 Robot-Technology Gmbh Bearbeitungsroboter zur Laserbearbeitung von Werkstücken
US8288684B2 (en) * 2007-05-03 2012-10-16 Electro Scientific Industries, Inc. Laser micro-machining system with post-scan lens deflection
US20100078419A1 (en) * 2008-09-26 2010-04-01 Electro Scientific Industries, Inc Post-lens steering of a laser beam for micro-machining applications
US8524127B2 (en) * 2010-03-26 2013-09-03 Electro Scientific Industries, Inc. Method of manufacturing a panel with occluded microholes
CN104991334A (zh) * 2015-07-24 2015-10-21 中山市力奇工艺有限公司 一种全向激光传能隧道系统
CN113231734B (zh) * 2021-04-23 2024-06-04 大族激光科技产业集团股份有限公司 激光光路校准方法、装置、存储介质和激光切割机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154389A (en) * 1981-03-19 1982-09-24 Toshiba Corp Laser working device
JPS60111789A (ja) * 1983-10-29 1985-06-18 トルンプフ・ゲー・エム・ベー・ハー・ウント・コンパニイ レーザー加工機械

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3406677A1 (de) * 1984-02-24 1985-09-05 Fa. Carl Zeiss, 7920 Heidenheim Einrichtung zur kompensation der auswanderung eines laserstrahls
JPH0338611A (ja) * 1989-07-05 1991-02-19 Think Lab Kk ガスレーザーのビームの通りを修正する方法
US5034618A (en) * 1989-09-05 1991-07-23 Gmf Robotics Corporation Method for aligning an articulated beam delivery device, such as a robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154389A (en) * 1981-03-19 1982-09-24 Toshiba Corp Laser working device
JPS60111789A (ja) * 1983-10-29 1985-06-18 トルンプフ・ゲー・エム・ベー・ハー・ウント・コンパニイ レーザー加工機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0515688A4 *

Also Published As

Publication number Publication date
EP0515688A4 (en) 1993-05-05
EP0515688A1 (en) 1992-12-02
US5233202A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
WO1992008569A1 (en) Optical axis adjusting method for laser robot and system therefor
EP0452138B2 (en) Apparatus and method for automatically aligning a welding device for butt welding workpieces
US4825036A (en) Device for directing optical rays
EP0521194B1 (en) Laser machining apparatus for welding and cutting
EP0077140B1 (en) Improved sensing and welding arrangements for manipulator welding apparatus
EP0118439B1 (en) Adaptive welding system
JP2672380B2 (ja) レーザー溶接モニタ装置および方法
KR900001674B1 (ko) 레이저 빔 절단기의 포커싱 헤드
US5103074A (en) Laser processing method and apparatus
US4117319A (en) Alignment system for lasers
JPH02104484A (ja) レーザ溶接用の接合継目の位置の測定方法及び装置
US4652133A (en) Vision system with environmental control
JPH01274981A (ja) 工業用ロボットの位置補正装置
WO1993014899A1 (en) Method of adjusting optical axis for laser robot
JPH08278117A (ja) 作業対象面に対する作業器具の姿勢制御装置とこれを有するルツボの計測装置および塗装装置
US4675499A (en) Laser beam machining robot
JPH07116849A (ja) 光軸調整手段を有した溶接センサ
KR20200125935A (ko) 자동 레이저-노즐-정렬을 이용한 유체 제트에 결합된 레이저 빔으로 공작물을 제작하기 위한 장치 및 이러한 빔을 정렬하는 방법
JPS5950986A (ja) 管と管板のレ−ザ溶接装置
JP2662679B2 (ja) 多関節形レーザ加工ロボット
JPS59152051A (ja) 加工工具制御用光学装置
JPH05253685A (ja) レーザ加工装置
JP2003138314A (ja) レーザ焼入れ装置
EP0403448B1 (en) Apparatus for manipulating laser beams, particularly power laser beams for use by robots
CN111774725B (zh) 一种机械手、激光加工设备及机械手的控制方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE IT SE

WWE Wipo information: entry into national phase

Ref document number: 1991919155

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991919155

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991919155

Country of ref document: EP