WO1991016664A1 - Dispositivo para reproducir por proyeccion imagenes tridimensionales estaticas o en movimiento - Google Patents

Dispositivo para reproducir por proyeccion imagenes tridimensionales estaticas o en movimiento Download PDF

Info

Publication number
WO1991016664A1
WO1991016664A1 PCT/ES1990/000014 ES9000014W WO9116664A1 WO 1991016664 A1 WO1991016664 A1 WO 1991016664A1 ES 9000014 W ES9000014 W ES 9000014W WO 9116664 A1 WO9116664 A1 WO 9116664A1
Authority
WO
WIPO (PCT)
Prior art keywords
images
projection
distance
image
optical system
Prior art date
Application number
PCT/ES1990/000014
Other languages
English (en)
French (fr)
Inventor
Juan Dominguez Montes
Original Assignee
Juan Dominguez Montes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juan Dominguez Montes filed Critical Juan Dominguez Montes
Priority to JP2506603A priority Critical patent/JPH04501922A/ja
Priority to EP90907063A priority patent/EP0478568A1/en
Priority to PCT/ES1990/000014 priority patent/WO1991016664A1/es
Publication of WO1991016664A1 publication Critical patent/WO1991016664A1/es

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/20Stereoscopic photography by simultaneous viewing using two or more projectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/229Image signal generators using stereoscopic image cameras using a single 2D image sensor using lenticular lenses, e.g. arrangements of cylindrical lenses

Definitions

  • This invention describes a device capable of reproducing static or moving three-dimensional images by projection using ordinary light.
  • stereoscopic is used for systems in which
  • the term three-dimensional is used to distinguish the systems that use a greater number of captured and reproduced images, allowing observation within a wide viewing angle, without disturbing
  • the holographic technique is based on wavefront reconstruction photography. These systems require the coherence of the light sources of
  • the acquisition is made through two objectives separated from each other by a distance, approximately equal to the average value of the distance between the eyes of human beings.
  • stereoscopic systems in which the arrival of a different image to each eye is achieved through procedures not suitable for projection.
  • these are those who interpose, between the observers and the reproduced image, an optical system, such as that of Breter's prisms and that of Wheatstone's flat mirrors, ⁇ orling, JA, The Stereoscopic Art. ... A. Reprint. J. Smpt 60, u '3, 286-308 (March 1953) 7, or Kempf's concave mirror, US Pat.
  • the stereoscopic systems suitable for projection are very varied depending on the procedure used to convey the image captured by the left lens to the left eye and the image captured by the right to the right.
  • the best known and most used in stereoscopic projections with movement are those that use colored, polarized or shutter filters.
  • stereoscopic systems used in projection, is that they need to disturb the observer by placing optical filters or a shutter mechanism in front of them.
  • US Patent 4,086,585 to Wah-Lo describes a system and camera for controlling depth of field in three-dimensional photography.
  • the diffusing surface is made of an opaque material if the projection is front or a translucent material if the projection is rear. In all cases the images appear on this surface divided into thin vertical strips.
  • Patent 1,883,290 by Ivés which describes a frontal projection procedure on an opaque screen in which the element that divides the image into fine vertical strips is the same sheet of vertical cylindrical lenses through which it is carried out. the observation, and another of rear projection on a translucent surface in which the element that divides the images into thin vertical strips is also a sheet of vertical cylinders used in the process of copying the different films into one.
  • a high precision adjustment is required to position the image strips on each cylinder.
  • the maximum angle of view is limited by the opening of the vertical cylinder, the relation between its width and its focal length; If this angle is exceeded, the observation is made on a strip of image corresponding to the attached cylinder, producing the undesirable pseudoscopic effect, that is, the inverted depth.
  • Haisma in his aforementioned patent, (see 10 pp. 1-65) highlights the importance of this problem.
  • the first increasing the size of the reproduced image, can be seen on p. 3, 58-65.
  • This procedure there is a loss of quality in the reproduction, derived from the fact that the distance between the axes of the cylinders is greater than the diameter of the cylinders, consequently, dark vertical strips appear between cylinders, see Ivés'290 p. 3, 65-75.
  • the enormous manufacturing complexity of this lenticular sheet is obvious.
  • the second based on the relative decrease in the focal length due to an increase in the refractive index, leads to the need to place opaque sheets between cylinders, making their manufacture notably complicated (see Ives'290 p. 4, 45-50). .
  • Image quality is limited by the transverse dimension of the cylindrical lens, which in turn is limited by that of the vertical fringe of the image.
  • each vertical image strip must be as many times less than the size of the cylinder as the number of images reproduced. For this reason, the size of the cylinder is limited by that of the image, which, in turn, is smaller than that of said cylinder.
  • the non-observance condition of a strip of width "d" for a healthy eye is that
  • each image strip must be 0.03 and 0.008 mm. , respectively. These values are of the order of only 15 times greater than the wavelength of visible light. If a number of images greater than 10 were used, the situation would logically be aggravated. Manufacturing difficulties are obvious and, therefore, the price of the marketed product is high. In systems like Haisma, the image is positioned through optical conductors, this difficulty can be insurmountable.
  • the invention is due to Lippmann, a famous French optician in 1908 (Lippmann, M.g., Epreuves Repreuves Rversibles Donnant la Sensation du Relief. J. Phys. 7, 4th series, 821-825 (Nov-1908)).
  • the basis of integral photography is to prepare a sheet of fly-eye lenses, made of glass or plastic, with a tremendous number of spherical plano-convex lenses (for example 10,000).
  • Haisma in its patent n ⁇ 4,571,616, already mentioned, describes an integral relief system based on the capture of the image by conventional cameras that form a square mosaic. He gives as an example a number of 9 cameras arranged in 3 columns of 3 cameras each.
  • Reproduction is carried out by positioning, behind each spherical lens, nine different pieces of images, at the rate of one piece for each image captured. Adjustment is achieved by properly positioning the optical conductors by mechanical means. If the manufacturing complexity involved in placing n image strips behind each cylinder has been seen before, the problem here is much more serious, then,
  • Yano in the second part of his patent for USA 4,078,854, replaces the diffuser surface with a sheet of horizontal cylindrical lenses, but does not do so to design a new system based on the angular differentiation of images, but rather as a mere variant of the one described in the first part and based on in scalar differentiation on a diffusing surface in translucent material.
  • the system is called stereoscopic reproduction in that patent, having a very small number of reproduced images (see pages 1, 10-13) that can be a maximum of five (see pages 5, 30- 32) with a wide margin of vision, but, as is recognized in that patent (see pages 3, 32-36), there are observers who will see the same image with both eyes and for which it is needed give a sense of depth by other means.
  • this last device described has two elements, a convergent optical system that conditions and hinders the projection of large images and a screen composed of two cylindrical lens sheets; the opening of the cylinders has a concrete and fixed value independent of the distance between objectives-projectors and the projection distance; which shows that its design is not based on the angular differentiation of images.
  • the system object of this invention is based on the angular differentiation of images, for which, in addition to suppressing the diffusing surface, it is necessary to conceive the reproduction of images in a different way from that carried out in previous systems.
  • each observation point In a system based on the angular differentiation of images, from each observation point only one rectangle is seen of each image, which will be -distinct for each observation point.
  • the set of rectangles corresponding to an observation point will form a unique and different image from the one corresponding to any other point.
  • the photons from the different projections retain their direction after passing through it.
  • the different images can be distinguished because the photons of each emerge at a different angle from this transparent surface: that is, "Angular image differentiation" can be used.
  • an optical frame of vertical cylinders will first be placed in front of this transparent surface and at a distance equal to the focal length of these cylindrical lenses.
  • the choice of the focal length of these cylindrical lenses is made in such a way that the ratio of the cylinder's transverse size to its focal length is at least equal to the ratio of the distance between two projection lenses adjacent to the projection distance, and never more than double that value.
  • any observer whatever their position, will see as many image segments as there are projection targets. These will be aligned in a single rectilinear segment. This rectilinear image segment will be different for each observation point and will be contained in the line resulting from the intersection of the plane, which contains the projection objectives and the observer, with the transparent projection surface.
  • the projection objectives will be located in a horizontal line and a second optical frame of horizontal cylinders, whose focal lines are in the same focal plane of the vertical cylinders. and, therefore, coinciding with the transparent screen devised with pedagogical units, it will be in charge of converting the previous segment into a rectangle, whose base will be the size of this same segment and whose height will be that of the transparent surface.
  • a different image rectangle will correspond to each observation position and the set of these rectangles will form a unique and different image for each observation point.
  • the focal length of these horizontal cylinders must be as small as possible compared to their width (semicircular cylinders), in order to ensure that their opening allows the vision, from any point, of a rectangle as high as the optical system itself. .
  • the optical system object of this invention consists of two sheets of cylindrical lenses per pendicular to each other and such that the resulting vertical optical aperture encompasses at least two vertical projection objectives and at most three and the optical aperture.
  • the resulting horizontal ca encompasses at least two horizontal projection targets and a maximum of three.
  • the system thus designed is made up of cylinders with a very small opening, that is to say, with a very large radius relative to their transverse size.
  • This small aperture value is also independent of the orthoscopic viewing angle.
  • the size of the cylinders as it is a system based on the angular differentiation of images, is independent of the number of images reproduced and by both the quality of the reproduction can be very high. By not using an additional convergent optical system, large images can be reproduced without difficulty.
  • Frontal projection is achieved by simply replacing one of the lens sheets with mirrors, without the mirror image of the projectors appearing at any time. Rear projection does not require special precision adjustments and each observer sees a different image with each eye. In short, the advantages of this system over all other systems are:
  • the orthoscopic viewing angle can be made as large as desired, it only depends on the number of projectors, the distance between them and the projection distance.
  • the size or width of the cylinders is not limited by the number of images and can be designed as small as desired, so the image quality is only limited by the manufacturing conditions of these cylinders.
  • Figures 1, 2 and 3 explain the ideas on which the new system is based, while Figures 4, 5 and 6 describe the system that is the object of this invention.
  • - Figure 1 shows the horizontal parallax angle E with which an object P is seen at distance 1 from an observer with a distance b between his eyes.
  • FIG. 2 schematically shows an observer 0-, looking at an object P through the window AB.
  • FIG. 3 schematically shows m observers 01, '02 ... 0 m m looking at an object P through the window " AB.
  • FIG. 4 shows n cameras CC- ,, ⁇ C 2 ... CC separated from each other by a distance K and with their optical axes parallel.
  • FIG. 5 shows the arrangement of the projection objectives PR- ,, PR ... PR and of the optical frame of vertical cylinders (1) of focal length f and transversal size d. '
  • the distance between two adjacent projection lenses is K R and the projection distance B.
  • FIG. 6 shows the optical system object of this invention from which the optical frame of vertical cylinders (1) can be seen, in its front part, in its rear part the optical frame of horizontal cylinders (2); where "e” is the thickness of the system V the angle of view, S the horizontal angle under which two projection lenses are seen, f the focal length of the vertical cylinders, B the projection distance, K R the distance between two projectors contiguous and ER ] _, Hi2 ... the situation of the optical centers of the you of projection.
  • Binocular vision is what allows us to appreciate the distance at which objects are. This operation is carried out by means of the angle that the eyes rotate. Let the lines I1A1 and D1A2 be the infinity vision lines of the left eye II and the right eye DI respectively. Reference is made to Figure 1 which schematically represents the binocular observation of an object P. If the eyes rotate to observe an object P located at a distance 1 on the line I1A1, the right eye will do so. in an angular magnitude E given by the expression
  • Angle E is called the horizontal parallax angle.
  • the systems that reproduce this parallax are sufficient and satisfactory. For this reason, the capture and reproduction of horizontal parallax constitute the essential part of three-dimensional vision based on the angular differentiation of images, as explained below.
  • This figure 2 shows this 0- observer in plan, with his right eyes D-, and left eyes I-,.
  • the beam of light rays that, starting from the landscape, pass through 1 ⁇ is the one that serves to form the image of the left eye.
  • the beam of light rays, passing through D- , serves to form the image of the right eye.
  • the perception of relief is achieved when the brain synthesizes the images of the left and right eyes, formed by these two beams of light rays, ⁇ which pass through points I-, and D-, not coincident.
  • the line AB contained in the trace of the plane that contains the window, is considered decomposed into the series of infinitely close points F- ,, F ? ... F .... F ,,
  • every ray belonging to the homocentric beam I-, as well as every ray belonging to the homocentric beam D-, are contained in the set of homocentric beams F ⁇ i, F ._... Fi. ... Fn - l,, 'Fn, as long as the distance - ⁇ - ? ⁇ * ⁇ - ! _ ⁇ for any i is small enough.
  • Figure 3 represents the optical scheme of m observers looking at an object through window AB.
  • the image formed based on the homocentric beams I. or D. corresponding to the left and right eyes of observer 0., and for any observer 0., can be synthesized by selecting and conveniently composing pieces of the images formed by taking as a basis the homocentric beams F. ,, F ... F .... P - ,, F provided that the distance ⁇ A ⁇ ®- ⁇ _- ⁇ is small enough ".
  • the minimum necessary separation (or size of the reproductive elements) are very different, so as not to appreciate that the image is made up of stripes, and the necessary separation (or distance between optical centers of objectives in the capture), to be able to reproduce in an apparently continuous way the variation of parallax.
  • the method object of this invention such as shutter in cinematography, allows that, with a small number of captured images, it can be reproduced with a large number of elements.
  • the same image is repeated during several shutters.
  • three-dimensional reproduction the same image will be repeated in several reproducing elements.
  • the maximum distance between the optical centers of the camera lenses is imposed, for each depth of field, by the condition of image continuity in the reproduction. This condition is the same for all three-dimensional reproduction systems of the prior art and for that of this invention.
  • the distance between the adjacent optical centers of the projectors, when using the angular difference of images, is determined by the relationship between the projection aperture and the observation aperture.
  • the projection aperture is the quotient between the distance between the optical centers of two adjacent projection lenses and the projection distance.
  • the observation aperture is the quotient between the distance between the eyes of an observer and the observation distance.
  • Our experience has shown that three-dimensional vision with angular differentiation of images is acceptable even for projection aperture values three or four times higher than those for observation.
  • the distance between targets in the capture can be much greater than the distance F.-F ._-
  • the capture procedure will consist of a series of capture targets whose optical centers are on a horizontal line separated from each other at a distance Kc that will be a function of the depth of the capture field.
  • this procedure has been schematically represented.
  • each objective belongs to a different camera and that the optical axes of these objectives are parallel to each other.
  • the objectives can belong to a single camera and the optical axes can be tilted.
  • CC- ⁇ CC 2 , CC., ... CC n are the n cameras with the optical centers of the objectives separated by a distance Kc and located on the horizontal line ZZ '.
  • the same number of projector lenses will be used in the projection as the number of camera lenses used in the shot. Each of them will project an image on a transparent optical-cylindrical screen.
  • Figure 5 schematically represents the arrangement of the projection objectives PR- ,, PR 2 ... PR n separated from each other by the distance KR projecting onto the optical-cylindrical reproduction screen.
  • each objective has been represented as belonging to a single project and to all the parallel optical axes.
  • the optical axes may be inclined. It is important to bear in mind that the angle formed by the different image films in the projection must be the same as that formed by the images. image lines in the uptake. Otherwise, flat surfaces of equal parallax in the capture will be reproduced as curved surfaces in the reproduction, unless a compensatory inclination is introduced in the process of copying the films.
  • the distance B from the projectors to the screen is dictated by the focal length of the projectors and the size of the screen or optical-cylindrical frame.
  • the optic-cylindrical plot (1) is made up of cylinders with a width d, small enough not to be perceived, experience tells us that for a healthy eye the width d of the cylinder should be less than the viewing distance in meters divided by 3,500.
  • the opening of the cylinder can be between this value, vision covering three projection objectives, and its half, vision covering two projection objectives. This achieves an imperceptible transition of an image fringe to the following, since the image part of the projection objective PRi mixes smoothly with that projected by its neighbors FR. ⁇ and -PR i + 1 »
  • the reproduction parallax decreases although the three-dimensional and reverse angle of view increases.
  • the projection lenses are separated from each other, the reproduction parallax decreases although the three-dimensional and reverse angle of view increases.
  • the projection distance is maintained, there will correspond to of a different cylindrical screen, since it is necessary to make the relation between transversal size and focal distance of the cylinder equal to the relation between distance between projection objectives and projection distance.
  • the vision of the images would be limited to a rectilinear segment composed of as many sub-segments as images or projection objectives. This rectilinear segment is given by the intersection of the plane that passes through the projection objectives and the observation point with the plane that contains the aforementioned transparent optical frame of vertical cylinders.
  • the optical reproduction system will be as shown in Fig. 6 and its vision will be made by transparency.
  • the angle of view V can be seen, which is a function of the quotient between the separation distance from the first projection objective to the last projection objective, and the projection distance B.
  • the angle S can be considered of opening of the vertical cylinders, function of the quotient between the separation between two contiguous projection objectives K R and the projection distance B, coefficient that is the same as that obtained between the transverse size of the vertical cylinder d and its distance focal f.
  • the thickness of the optical system must be:
  • e (r 2- r l ⁇ nl where r 2 and r 1 are the radii of the vertical and horizontal cylinders respectively and n is the refractive index of the substance with which the optical system is made.
  • the same bases that have served to create a three-dimensional reproduction system with variation of the horizontal parallax are valid for the design of an "integral reproduction system", a system that reproduces horizontal and vertical parallax. simultaneously.
  • the projection objectives will be arranged in this case on a rectangle.
  • the design of the horizontal cylinders (2) is made in a similar way to the design of the vertical ones.
  • the ratio of the cylinder's transverse size to its focal length is at least equal to the ratio of the distance between three vertical projection lenses to the projection distance.
  • optical characteristics such as being lenses or mirrors, optically convergent or divergent, can be chosen arbitrarily.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

Dispositivo para reproducir por proyección imágenes tridimensionales estáticas o en movimiento, la captación se realiza a través de varios objetivos situados, cada uno de ellos, en una posición espacial distinta; en el sistema de reproducción, las diferentes imágenes, al no ser reproducidas sobre una superficie difusora, no necesitan ser distinguidas por su posición en ella; la proyección se realiza directamente sobre un sistema óptico transparente, distinguiéndose las imágenes entre sí por su ángulo de proyección; este sistema óptico está compuesto por una hoja de lentes cilíndricas verticales cuyo tamaño transversal no viene condicionado por el número de imágenes y cuya abertura es independiente del ángulo de visión ortoscópica y por una hoja de lentes cilíndricas horizontales de distancia focal corta y tamaño arbitrariamente pequeño constituyendo un sistema de reproducción de fácil fabricación y adaptable a cualquier ángulo de visión dando una imagen distinta a cada punto de observación.

Description

DISPOSITIVO PARA REPRODUCIR POR PROYECCIÓN IMÁGENES TRIDIMENSIONALES EST TICAS O EN MOVIMIENTO
CAMPO DEL INVENTO 5 Esta invención describe un dispositivo capaz de reproducir por proyección imágenes tridimensionales estáticas o en movimiento empleando luz ordinaria.
ANTECEDENTES DEL INVENTO Los sistemas de captación y de reproducción de
10 imágenes con profundidad, realizados hasta el momento, se pueden dividir en dos grandes grupos: Los más moder¬ nos, desarrollados a partir de 1.947, basados en- la for¬ mación de imágenes debida a la interferencia de haces de luz coherente, que se denominan sistemas holográficos,
15 y los más antiguos que no graban por interferencia de ondas, que se denominan sistemas no holográficos.
Entre estos últimos, se diferencian los siste¬ mas estereoscópicos y los tridimensionales. El término estereoscópico se utiliza para los sistemas en los que
20 en la reproducción se emplean dos imágenes distintas, una para cada ojo. El término tridimensional se utiliza para distinguir los sistemas que emplean mayor número de imágenes captadas y reproducidas, permitiéndose la obser¬ vación dentro de un amplio ángulo de visión, sin molestar
2.5 a los observadores, anteponiéndoles filtros ópticos o cualquier otro artificio.
La técnica de la holografía se basa en la foto¬ grafía por reconstrucción de frentes de ondas. Estos sis¬ temas exigen la coherencia de las fuentes luminosas de
30 captación y reproducción. Tanto los objetos que van a ser captados, como las imágenes que han de ser reproduci¬ das, necesitan iluminarse sólo con luz coherente. Esto ha impedido que, por este procedimiento, se hayan comer¬ cializado sistemas capaces de conseguir captaciones de
35 objetos lejanos que, como la luna, no pueden ser ilumi¬ nados con un haz coherente. Resulta imposible la capta¬ ción de puestas de sol o de reflejos lunares o solares sobre el mar, paisajes, etc. Por último, al ser necesaria su observación por transparencia, al tamaño de la imagen reproducida es limitado.
En los sistemas estereoscópicos, la captación de hace a través de dos objetivos separados entre sí una distancia, aproximadamente, igual al valor medio de la distancia entre los ojos de los seres humanos.
Para esta captación estereoscópica se han de¬ sarrollado sistemas especiales de lentes aptos para aco- piar a cámaras convencionales, tal como el de Pazekas, explicado en la patente de EE.UU. 4.525.045.
Existen sistemas estereoscópicos en los que la llegada de una imagen distinta a cada ojo, se consigue a través de procedimientos no aptos para proyección. Entre éstos se encuentran los que interponen,, entre los obser¬ vadores y la imagen reproducida, un sistema óptico, tal como el de prismas de Bre ster y el de espejos planos de Wheatstone, Ñorling, J.A. , The Stereoscopic Art. ... A. Reprint. J. Smpt 60, u« 3, 286-308 (March 1.953)7, o el de espejo cóncavo de Kempf, patente de EE.UU.
Figure imgf000004_0001
Los sistemas estereoscópicos aptos para proyec¬ ción son muy variados dependiendo del procedimiento uti¬ lizado para hacer llegar al ojo izquierdo la imagen cap¬ tada por el objetivo izquierdo y al derecho la captada por el derecho. Los más conocidos y empleados en proyec¬ ciones estereoscópicas con movimiento, son los que usan filtros coloreados, polarizados o de obturación.
La principal limitación de los sistemas este¬ reoscópicos, utilizados en proyección, es que necesitan molestar al observador anteponiéndole unos filtros óp¬ ticos o un mecanismo de obturación.
Entre los sistemas de reproducción tridimensio¬ nal con luz ordinaria, realizados hasta el momento, se encuentran algunos capaces de mostrar la imagen reprodu- cida su lado derecho o izquierdo cuando el observador se mueve de izquierda a derecha o viceversa.
La mayoría de estos dispositivos de reproduc- ción tridimensional, emplean una superficie difusora don de se imprimen, proyectan, generan, amplifican o simple¬ mente transmiten las distintas imágenes. Son típicos de impresión los sistemas que emplean como superficie difu- sora el propio material fotográfico, de proyección sobre superficie opaca o traslúcida el cinematógrafo o la te¬ levisión proyectada; de generación aquellos en que la su perficie difusora es el propio tubo de rayos catódicos; y de transmisión los que emplean conductores o amplifíca¬ dores luminosos.
Interesa destacar una característica esencial, común a toda superficie difusora, que condiciona grande¬ mente el diseño de todos los dispositivos dé reproducción tridimensional que emplean este tipo de superficie: Esta característica esencial es: "Todo punto de la superficie difusora se convierte en centro emisor de fotones luminosos en todas las direcciones".
Como consecuencia, cualquier observador y cual¬ quiera que sea su posición verá toda la imagen reproduci- da sobre la superficie difusora.
Si dos o más imágenes se reproducen al mismo tiempo, sobre el mismo punto de la superficie difusora, los fotones provenientes de las distintas imágenes apa¬ recen mezclados entre sí cualquiera que sea su dirección. Por esta razón, la distinción de las distintas imágenes reproducidas sobre la superficie difusora se consigue reservando un lugar distinto para cada una de ellas, es decir, mediante "diferenciación escalar de imᬠgenes".- Todos los sistemas, que contienen una pantalla difusora, consiguen, con distintos procedimientos, reser¬ var una posición diferente sobre ésta a cada imagen. Es¬ ta posición suele ser una franja vertical de muy poca an¬ chura. En los sistemas de reproducción de imágenes fo¬ tográficas estáticas es en el propio material fotográfi¬ co, que actúa de superficie difusora, donde aparecen las imágenes divididas en finas tiras verticales. El elemento encargado de dividir las imágenes en finas tiras es nor¬ malmente una hoja de lentes cilindricas.
Entre los sistemas que utilizan esta técnica se pueden citar:
La patente de EE.UU. 1.918.705 de Ivés donde se describe un procedimiento para conseguir imágenes tri¬ dimensionales sobre material fotográfico.
La patente de EE.UU. 3.482.913 de Glenn donde se describe un método y los aparatos necesarios para com¬ poner fotografías tridimensionales.
La patente EE.UU. 4.086.585 de Wah-Lo donde se describe un sistema y una cámara para el control de la profundidad de campo en fotografía tridimensional. En los sistemas de reproducción de imágenes en movimiento por proyección, la superficie difusora es de un material opaco si la proyección es frontal o de un material traslúcido si la proyección es trasera. En todos los casos las imágenes aparecen sobre esta superficie di- vididas en finas tiras verticales.
Entre los sistemas que utilizan esta técnica se pueden citar:
La patente 1.883.290 de Ivés donde se describe un procedimiento de proyección frontal sobre pantalla opaca en el que el elemento que divide la imagen en fi¬ nas tiras verticales es la misma hoja de lentes cilindri¬ cas verticales a través de la cual se realiza la observa ción, y otro de proyección trasera sobre una superficie traslúcida en el que el elemento que divide las imágenes en finas tiras verticales es también una hoja de cilin¬ dros verticales empleada en el proceso de copia de las diferentes películas en una sola. En el primer caso ha¬ brá que eliminar el brillo generado por la imagen especu lar de los proyectores sobre la hoja de cilindro y en el segundo se requiere un ajuste de alta precisión para po- sicionar las tiras de imágenes en cada cilindro.
La patente de EE.UU. 4.078.854 de Yano donde se describen dos procedimientos de reproducción tridimen sional por proyección trasera. En el primero, correspon¬ diente a las figuras 1, 2, 3 y 4 de la patente aparece la pantalla difusora, realizada en material traslúcido, entre dos hojas de lentes cilindricas verticales. Una de estas hojas de lentes cilindricas es la encargada de dividir la imagen en finas tiras verticales sobre la su- . perficie difusora. El segundo procedimiento de su paten¬ te, que sustituye la superficie difusora por una hoja de lentes cilindricas horizontales, se comentará más adelan te.
En la patente de EE.UU. ns 4.737.840 de Morish ta se describe un procedimiento que se basa la proyecció trasera a través de una rejilla opaca vertical, situada delante de la superficie difusora. En .la superficie difu sora aparece siempre cada imagen en un lugar distinto, en una franja vertical diferente.
Existen otros procedimientos de reproducción de imágenes en movimiento en que la superficie difusora está formada por los extremos de conductos luminosos, como se describe en la patente de EE.UU. ns 4.571.616 de Hais a, donde cada imagen aparece también ubicada en una franja vertical distinta. En este caso- las imágenes se posicionan después de ser guiadas por conductores lumi- nosos.
En todos estos casos la visión se realiza a través de una trama óptica de lentes cilindricas verti¬ cales cuyas líneas focales están contenidas en un plano en el que se sitúa la superficie difusora. A continuación se presenta en primer lugar un examen crítico de los sistemas tridimensionales de repro¬ ducción de la paralaje horizontal descritos en lo que an¬ tecede.
Los factores a tener en cuenta en la compara- ción de los distintos sistemas son:
El ángulo de visión ortoscópica, la calidad de la imagen reproducida y el coste derivado de la co ple- jidad de fabricación.
El máximo ángulo de visión viene limitado por la abertura del cilindro vertical, relación entre el an¬ cho de éste y su distancia focal; si se sobrepasa este 5 ángulo, la observación se realiza sobre una franja de im gen correspondiente al cilindro adjunto, produciéndose el indeseable efecto pseudoscópico, es decir, la profun¬ didad invertida.
Haisma, en su patente antes mencionada, (véase 10 pag. 1-65) destaca la importancia de este problema.
Si el conjunto de tiras, correspondiente a ca¬ da cilindro, ocupa el ancho de éste, el máximo ángulo de visión sin pseudoscopía viene expresado por:
-,,- 2 arcotag ancho cilindro
2 x dist.focal
que para los materiales ordinarios, cuyos índices de re¬ fracción oscilan alrededor de 1,5, toma un valor aproxi¬ mado de 542 claramente insuficiente en muchos casos.
20 La conservación de este ángulo a lo ancho de toda la trama exige una precisa correspondencia entre ca da cilindro y su imagen (conjunto de tiras). Esta corres pondencia es difícil de conseguir cuando la hoja lenticu lar encargada de generar la imagen dividida en finas ti-
25 ras verticales., no es la misma que la utilizada en la ob servación de la imagen. Esta falta de correspondencia es un problema a tener en cuenta en los sistemas de repro¬ ducción fotográfica y en aquellos otros de proyección trasera en que, como el utilizado por Ivés*290, la divi-
30 sión de la imagen en finas tiras verticales se hace en un proceso distinto al de la proyección. Esta dificultad fue anticipada por el propio Ivés'290, aunque no propo¬ ne ningún método para salvarla (ver pag. 3, 103-106).
Ya que el ángulo de visión ortoscópica es fun-
35 ción del cociente entre el ancho de la imagen y su dis¬ tancia focal, para aumentar este ángulo se pueden seguir dos procedimientos: Aumentar el ancho de la imagen co- rrespondiente a cada cilindro, o disminuir la distancia focal del cilindro respecto a su anchura eligiendo mate¬ riales de índices de refracción muy alto (próximos a 2), Ambos procedimientos son mencionados por
Figure imgf000009_0001
El primero, aumento del tamaño de la imagen re producida, puede verse en pag. 3, 58-65. En este procedi miento se produce una pérdida de calidad en la reproduc¬ ción, derivada del hecho de que la distancia entre los ejes de los cilindros resulta superior al diámetro de es te, apareciendo, en consecuencia, tiras verticales oscu¬ ras entre cilindros, ver Ivés'290 pag. 3, 65-75. La enor me complejidad de fabricación de esta hoja lenticular es obvia. El segundo, basado en la disminución relativa de la distancia focal por aumento del índice de refrac¬ ción, conduce a la necesidad de situar láminas opacas en tre cilindros, complicándose notablemente su fabricación (ver Ives'290 pag. 4, 45-50). En ambos casos la compleja sección de estos ci lindros aconseja la proyección frontal y como consecuen¬ cia aparece sobre la hoja lenticular un brillo indesea¬ ble provocado por la visión especular de los proyectores Esta nueva dificultad obliga a proyectar sobre una hoja lenticular convenientemente inclinada frente a los pro¬ yectores y observadores (ver Ivés'290, pag. 4, 60-65).
La calidad de la imagen viene limitada por la dimensión transversal de la lente cilindrica que, a su vez, viene limitada por el de la franja vertical de la imagen.
Hay que tener en cuenta que el ancho de cada franja vertical de imagen ha de ser tantas veces menor al tamaño del cilindro, como número de imágenes reprodu¬ cidas. Por esta razón, el tamaño del cilindro viene li- mitado por el de la imagen que, a su vez, es inferior al de dicho cilindro.
La condición de inobservancia de una tira de ancho "d" para un ojo sano es que
, ¿^ distancia de visión en metros ~~ 3.500
Por ejemplo: 0,3 mm. para la distancia de 1 .
0,08 mm. para distancia de 0,25 m Si se utilizan 10 imágenes, el ancho de cada tira de imagen ha de ser de 0,03 y 0,008 mm. , respectiva mente. Valores éstos del orden de sólo 15 veces superio- res a la longitud de onda de la luz visible. Si se emple un número de imágenes mayor de 10 la situación se vería, lógicamente, agravada. Las dificultades de fabricación son obvias y, por tanto, es alto el precio del producto comercializado. En los sistemas que como el de Haisma, la imagen se posiciona a través de conductores ópticos, esta dificultad puede resultar insalvable.
Es importante hacer observar que los autores d los sistemas basados en la diferenciación escalar de imá genes, que han tratado de dotar a su sistema de un gran ángulo de visión ortoscópica, han tenido que resolver el problema de diseñar elementos cilindricos con una gran abertura.
Esto es así porque, en estos sistemas, el ángu lo de visión ortoscópica coincide con el ángulo de aber- tura de los cilindros verticales a través de los cuales se realiza la visión.
Por esta razón, los sistemas basados en la di¬ ferenciación escalar de imágenes de elevado valor de án¬ gulo de visión ortoscópica dan lugar a diseños de cilin- dros verticales de muy costosa o imposible construcción. Además, un ángulo de visión ortoscópica eleva¬ do, con el requisito de continuidad y gran profundidad en la reproducción exige un elevado número de imágenes. Como se ha señalado, un gran número de imágenes, en un sistema de diferenciación escalar, exige unos cilindros de tamaño transversal también elevado, ya que cada ci¬ lindro tiene que albergar tantas tiras como imágenes y estas tiras no se pueden hacer indefinidamente pequeñas. Por tanto, el tamaño de los cilindros esta condicionado y la calidad de la reproducción puede ser deficiente. Estas razones explican que estos sistemas no hayan sido comercializados con éxito, ni siquiera en ci¬ nematografía con p.equeñas pantallas de proyección.
En segundo lugar, dentro de esta técnica gene¬ ral se encuentran los sistemas de reproducción integral. Se denominan así los sistemas capaces de reproducir las paralajes horizontal y vertical simultáneamente.
La invención se debe a Lippmann, famoso ópti¬ co francés en 1.908 (Lippmann, M.g. , Epreuves Repreuves Rversibles Donnant la Sensation du Relief. J. Phys. 7, 4th series, 821-825 (Nov-1908)). La base de la fotografía integral es preparar una hoja de lentes de ojo de mosca, de vidrio o plásti¬ co, con un número tremendo de lentes planoconvexas es¬ féricas (por ejemplo 10.000).
Un ejemplo de reproducción integral es la pa- tente número 3.852.524 de Ando.
Ando no menciona, en ningún momento, el número de imágenes captadas ni el ancho de banda necesario para su transmisión; se limita a decir que son múltiples y que se ha de emplear una portadora de muy alta frecuen- cia.
En realidad, este procedimiento de captación y de reproducción requiere el manejo de una cantidad de información enorme, porque detrás de cada lente plano¬ convexa se recoge una imagen bidimensional completa. Para hacer operativo el sistema, el número de lentes planoconvexas empleadas, tanto en la reproducción como en la captura, debe ser del orden de miles.
Aparte de estas dificultades, y del empleo de tramas ópticas esféricas, la reproducción se hace siem- pre, en todas las modalidades descritas en su patente, a través de una superficie difusora, con los inconvenien tes que de este empleo se derivan. Haisma, en su patente nδ 4.571.616, ya mencio¬ nada, describe un sistema de relieve integral basado en la captación de la imagen por cámaras convencionales que forman un mosaico cuadrado. Pone como ejemplo un número de 9 cámaras dispuestas en 3 columnas de 3 cáma¬ ras cada una.
La reproducción se sigue haciendo posicionan- do, detrás de cada lente esférica, nueve trozos distin¬ tos de imágenes, a razón de un trozo por cada imagen cap- tada. El ajuste se consigue posicionando, debidamente, los conductores ópticos por medios mecánicos. Si antes se ha visto la complejidad de fabricación que acarrea la colocación de n tiras de imagen detrás de cada cilin¬ dro, el problema aquí es mucho más grave, pues, se tra-
2 ta de posicionar n cuadrados de imágenes detrás de ca¬ da microlente esférica.
También, en el sistema descrito por Haisma se emplea una superficie difusora, en este caso los extre¬ mos de conductores ópticos. Los inconvenientes citados anteriormente en los sistemas de reproducción de la paralaje horizontal, también aparecen aquí, no sólo en la reproducción de la paralaje horizontal sino también en la reproducción de la paralaje vertical y han impedido la comercialización con éxito de este sistema.
Existen algunos otros campos de aplicación, como la robótica, donde también se emplean, como en la ya mencionada patente de Ando, tramas ópticas de lentes esféricas véase por ejemplo la patente de EE.UU. n2 4.410.804, debida a Stauffer. Su objetivo, no obstante, es obtener datos sobre la distancia de los objetos y su tamaño, nunca la reproducción tridimensional con pa- ralajes vertical y horizontal de imágenes.
El único sistema del que se haya tenido cono- cimiento que no emplea superficies difusoras es el des¬ crito por Yano.
Yano, en la segunda parte de su patente de EE.UU. 4.078.854, sustituye la superficie difusora por una hoja de lentes cilindricas horizontales, pero no lo hace para diseñar un nuevo sistema basado en la diferen ciación angular de imágenes, sino como mera variante del descrito en la primera parte y basado en la diferencia¬ ción escalar sobre una superficie difusora en material traslúcido.
De hecho, al sistema, se le denomina en esa patente de reproducción estereoscópica, teniendo un nú- mero muy pequeño de imágenes reproducidas (ver pag. 1, 10-13) que como máximo pueden ser cinco (ver pag. 5, 30-32) con un amplio margen de visión, pero, como se re¬ conoce en esa patente (ver pag. 3, 32-36), existen ob¬ servadores que verán la misma imagen con los dos.ojos y para los que se necesita dar sensación de profundidad po otros medios.
Por esto, este último dispositivo descrito con ta de dos elementos, un sistema óptico convergente que condiciona y dificulta la proyección de imágenes de gran tamaño y una pantalla compuesta de dos hojas de lentes cilindricas; la abertura de los cilindros tiene un valor concreto y fijo independiente de la distancia entre obje tivos-proyectores y de la distancia de proyección; lo que pone de manifiesto que su diseño no está basado en la diferenciación angular de imágenes.
En consecuencia este último sistema descrito en la segunda parte de la patente de Yano mencionada es una mera variante del descrito en la primera, que está basado en la diferenciación escalar de imágenes y como t dos los anteriores con parecidos inconvenientes.
Por último, conviene hacer notar que los ante¬ riores sistemas se conciben tratando de hacer llegar a cada ojo una imagen tomada en su totalidad por una única cámara. Se trata de conseguir la visión tridimensional haciendo que cada ojo vea una imagen captada por una cᬠmara distinta y por tanto situada en distinto lugar.
Este concepto se encuentra con mayor o menor amplitud, descrito por los autores anteriores, véanse por ejemplo, Ivés'290 pag. 4, 10-25, Ivés'705 pag. 1, 95-100 y pag. 2, 0-2 Glen pag. 1, 65-70, Haisma pag. 1, 24-29, Yano pag. 1, 14-19 y pag. 2, 29-32. SUMARIO DE LA INVENCIÓN
El sistema objeto de esta invención está basa¬ do en la diferenciación angular de imágenes, para lo que se necesita, además de suprimir la superficie difusora, concebir la reproducción de imágenes de manera distinta a la realizada en los sistemas anteriores.
En un sistema basado en la diferenciación an¬ gular de imágenes, desde cada punto de observación se ve de cada imagen solamente un rectángulo, que será -distin¬ to para cada punto de observación. El conjunto de rectán- gulos correspondiente a un punto de observación formará una imagen única y distinta a la correspondiente a cual¬ quier otro punto.
En la diferenciación angular de imágenes no se emplea ninguna superficie difusora sobre la que se foca- lizan las distintas imágenes. Existe un plano ideal, don de se focalizan las imágenes, pero este plano no se ma¬ terializa.
Por razones pedagógicas, se puede imaginar di¬ cho plano como una superficie transparente. Por seguir el mismo orden expositivo, que el seguido en el examen de los procedimientos anteriores, se empezará definiendo la característica fundamental de toda superficie transparente:
"Todo punto de la superficie transparente se convierte en centro emisor de fotones, que conservan la misma dirección que el fotón incidente". Como consecuencia:
- Cualquier observador, cualquiera que sea su posición, verá de la imagen proyectada un solo punto. Di cho punto es la intersección con la superficie transpa¬ rente de la línea que une el centro óptico del objetivo proyector con el centro óptico del observador. A cada situación de observación corresponderá un punto imagen distinto.
- Si dos o más imágenes se proyectan al mismo tiempo desde posiciones espaciales distintas, sobre la superficie transparente, los fotones provenientes de las distintas proyecciones conservan su dirección después de atravesar ésta. Las diferentes imágenes se podrán dis tinguir porque los fotones de cada una emergen con un ángulo diferente de esta superficie transparente: es de- cir se puede emplear la "Diferenciación angular de imᬠgenes".
Para describir, en forma breve, la invención objeto de esta solicitud, se situará en primer lugar una trama óptica de cilindros verticales delante de esta su- perficie transparente y a una distancia igual a la dis¬ tancia focal de estas lentes cilindricas.
La elección de la distancia focal de estas len tes cilindricas se hace de tal manera que la relación de tamaño transversal del cilindro a su distancia focal sea al menos igual a la relación entre la distancia entre dos objetivos de proyección contiguos a la distancia de proyección, y nunca superior al doble de dicho valor.
Después de posicionar los cilindros verticales con las características anteriores, cualquier observa- dor, cualquiera que sea su posición, pasará a ver tantos segmentos de imágenes como objetivos de proyección. Es¬ tos se alinearán en un único segmento rectilíneo. Este segmento de imagen rectilíneo será distinto para cada punto de observación y estará contenido en la línea re- sultante de la intersección del plano, que contiene los objetivos de proyección y el observador, con la superfi¬ cie transparente de proyección.
Si el sistema solo pretende reproducir la para laje horizontal los objetivos de proyección se situarán en una línea horizontal y una segunda trama óptica de cilindros horizontales, cuyas líneas focales se encuen¬ tran en el mismo plano focal de los cilindros verticales y, por tanto, coincidentes con la pantalla transparente ideada con unes pedagógicos, se encargará de convertir el segmento anterior en un rectángulo, cuya base tendrá el tamaño de este mismo segmento y cuya altura será la de la superficie transparente. A cada posición de ob¬ servación corresponderá un rectángulo de imagen distin¬ to y el conjunto de estos rectángulos formará una image única y distinta a cada punto de observación.
La distancia focal de estos cilindros horizon tales ha de ser lo más pequeña posible frente a su anch ra (cilindros semicirculares), para conseguir que su ab tura permita la visión, desde cualquier punto, de un re tángulo tan alto como el propio sistema óptico.
Si el sistema es integral, es decir, si se quiere reproducir la paralaje vertical además de la hor zontal, el diseño de los cilindros horizontales anterio res debe hacerse de forma análoga a la descrita para lo cilindros verticales. Ha de tenerse en cuenta, en este caso, que los proyectores, objetivos de proyección que antes formaban una línea, pasan a formar un rectángulo. En resumen, el sistema óptico objeto de esta invención consta de dos hojas de lentes cilindricas per pendiculares entre sí y tal que la abertura óptica ver¬ tical resultante abarca al menos dos objetivos de pro- yección vertical y como máximo tres y la abertura ópti¬ ca horizontal resultante abarca al menos dos objetivos de proyección horizontal y como máximo tres.
El sistema así diseñado está constituido de cilindros de abertura muy pequeña, es decir, de un ra- dio muy grande respecto a su tamaño transversal. Este valor de abertura pequeño es, además, independiente del ángulo de visión ortoscópica. De esta manera, cilin¬ dros de fácil y barata fabricación pueden producir tan elevados ángulos de visión ortoscópica como se deseen. El tamaño de los cilindros, por tratarse de un sistema basado en la diferenciación angular de imágenes, es in¬ dependiente del número de imágenes reproducidas y por tanto la calidad de la reproducción puede ser muy alta. Al no emplear un sistema óptico convergente adicional, se pueden reproducir imágenes de gran tamaño sin dificul¬ tad. La proyección frontal se consigue con solo sustituir una de las hojas de lentes por espejos, sin que aparezca en ningún momento la imagen especular de los proyectores. La proyección trasera no requiere ajustes especiales de precisión y cada observador ve una imagen distinta con cada ojo. En definitiva las ventajas de este sistema fren¬ te a todos los otros sistemas son:
A) El ángulo de visión ortoscópica puede hacerse tan gran¬ de como se quiera, sólo depende del número de proyecto¬ res, la distancia entre ellos y distancia de proyección. B) El tamaño o ancho de los cilindros no viene limitado por el número de imágenes y puede diseñarse tan pequeño como se quiera, con lo que la calidad de la imagen sólo viene limitada por las condiciones de fabricación de es¬ tos cilindros. C) Cuando el observador se sale del campo de visión, no se produce pseudoscopía.
D) No se necesita crear ningún complejo artificio de di¬ visión de las imágenes proyectadas en tiras verticales ordenadas y entrelazadas, ni la colaboración de otros sistemas ópticos convergentes adicionales al plano lenti¬ cular, la proyección trasera no precisa ajustes de preci¬ sión, y en definitiva, el sistema del invento resulta de muy fácil fabricación y muy sencillo de implementar cual¬ quiera que sea el tamaño de la imagen reproducida. E) Las imágenes percibidas por cada ojo del observador son distintas independientemente de su ubicación. P) Los sistemas de reproducción integral son de muy fᬠcil fabricación. G) La proyección frontal se consigue muy fácilmente sus- tituyendo una de las hojas de lentes por otra hoja de es¬ pejos.
Conviene advertir, que este sistema sólo es vé- lido para proyección y no puede utilizarse en reproduc¬ ciones fotográficas sobre papel. En cambio, sí es posible diseñar, con este sistema, visores de diapositivas tridi¬ mensionales. BREVE DESCRIPCIÓN DE LAS PIGURAS
Las figuras 1, 2 y 3 explican las ideas en las que se basa el nuevo sistema, mientras que las figuras 4, 5 y 6 describen el sistema objeto de esta invención. De éstas: - La figura 1 muestra el ángulo E de paralaje horizontal con el que se ve un objeto P a la distancia 1 de un observador con una distancia b entre sus ojos.
- La figura 2 muestra en forma esquemática un observador 0-, mirando un objeto P a través de la venta- na AB.
- La figura 3 muestra en forma esquemática m observadores 01,' 02... 0mm mirando un objeto P a través de la ventana" AB.
- La figura 4 muestra n cámaras CC-,, σC2...CC separadas entre sí una distancia K y con sus ejes ópti¬ cos paralelos.
- La figura 5 muestra la disposición de los ob¬ jetivos de proyección PR-,, PR ... PR y de la trama ópti¬ ca de cilindros verticales (1) de distancia focal f y de tamaño transversal d.' La distancia entre dos objetivos de proyección contiguos es KR y la distancia de proyección B.
- La figura 6 muestra el sistema óptico objeto de esta invención del que puede observarse, en su parte delantera la trama óptica de cilindros verticales (1), en su parte trasera la trama óptica de cilindros horizon¬ tales (2); siendo "e" el espesor del sistema V el ángulo de visión, S el ángulo horizontal bajo el cual se ven dos objetivos de proyección, f la distancia focal de los cilindros verticales, B la distancia de proyección, KR la distancia entre dos proyectores contiguos y ER]_, Hi2... la situación de los centros ópticos de los objeti- vos de proyección. DESCRIPCIÓN DETALLADA DE LAS REALIZACIONES PREFERIDAS
La visión binocular es la que permite apreciar la distancia a la que están los objetos. Esta operación se realiza por medio del ángulo que giran los ojos. Sean las líneas I1A1 y D1A2 las de visión al infinito del ojo izquierdo II y del ojo derecho DI respectivamente. Se re¬ mite a la figura 1 en la que se representa esquemática- - mente la observación binocular de un objeto P. Si los ojos giran para observar un objeto P situado a una distancia 1 sobre la recta I1A1 el ojo de¬ recho lo hará en una magnitud angular E dada por la ex¬ presión
tg E =
donde b es la distancia entre los ojos del observador.
Al ángulo E se le llama ángulo de paralaje ho¬ rizontal. Como los ojos se mantienen normalmente sobre una línea horizontal, los sistemas que reproducen esta paralaje son suficientes y satisfactorios. Por esta ra¬ zón, la captura y reproducción de la paralaje horizontal constituyen la parte esencial de la visión tridimensio¬ nal basada en la diferenciación angular de imágenes, co- mo a continuación se explica.
Sea un observador "O," mirando un objeto P a través de una ventana de ancho AB practicada en una pared perpendicular a las líneas de visión al infinito.
En la fig. 2, se ha representado el esquema óp- tico de un observador 0-, mirando un objeto P a través de la ventana AB.
Esta figura 2 muestra en planta a este observa¬ dor 0-, con sus ojos derecho D-, e izquierdo I-, . El haz de rayos luminosos que, partiendo del paisaje, pasan por 1^ (homocéntrico en I-, ) es el que sirve para formar la ima¬ gen del ojo izquierdo. Análogamente, el haz de rayos lumi¬ nosos, que pasan por D-,, (homocéntrico en D-, ) sirve para formar la imagen del ojo derecho.
La percepción del relieve se logra al sinteti¬ zar el cerebro las imágenes del ojo izquierdo y del dere¬ cho, formadas por estos dos haces de rayos luminosos, αue pasan por los puntos I-, y D-, no coincidentes.
La recta AB, contenida en la traza del plano que contiene la ventana, se considera descompuesta en la se¬ rie de puntos infinitamente próximos F-,, F?...F....F ,,
Es importante hacer notar que todo rayo perte¬ neciente al haz homocéntrico I-, , así como todo rayo perte neciente al haz homocéntrico D-, , están contenidos en ei conjunto de haces homocéntricos Fηi, F._... Fi.... Fn--l, ,' Fn, siempre que la distancia -^-?~*^-!_η para cualquier i sea lo suficientemente pequeña.
Si se consideran varios observadores 0-, } 0
... Om mirando el mismo objeto a través de la ventana ante_ rior AB y situados en distintos puntos, dado que no es necesario considerar la paralaje vertical, se pueden re- presentar todos los pares de ojos por su proyección en un plano horizontal común. En la figura 3 se representa el esquema óptico de m observadores mirando un objeto a través de la ventana AB.
Es evidente, por razones topológicas obvias, que todo haz homocéntrico I. ó D. está contenido en la se rie de haces homocentricos F- 1, ,' F2... Fi.....Fn„--l, ,' F_n„ siem- pre que la distancia F.-F. ., sea suficientemente pequeña.
Dicho de otra manera:
"La imagen formada tomando como base los haces homocéntricos I. o D. correspondientes a los ojos izquier do y derecho del observador 0. , y para cualquier observa- dor 0., se puede sintetizar seleccionando y componiendo convenientemente trozos de las imágenes formadas tomando como base los haces homocéntricos F.,, F ...F.... P -,, F siempre que la distancia ^A ~®-\ _-\ sea lo suficientemente pequeña".
La demostración sigue siendo válida, cualquie- ra que sea la curva que contenga a los haces homocéntri¬ cos F, , F2... F.... ^ . C0Ω "t l de que sea continua y pa se por los puntos A y B.
Es evidente la analogía entre la idea en la qu se basó el desarrollo de la cinematografía: una imagen después de otra, separadas por un intervalo de tiempo suficientemente pequeño, y la idea básica que se acaba de exponer para la creación de un sistema tridimensional: una imagen F. separada de otra A?. -, por una distancia suficientemente pequeña.
Existe también una analogía en la diferencia entre la frecuencia de reproducción, 48 imágenes por se¬ gundo, a partir de la cual el ser humano no percibe las interrupciones luminosas y la frecuencia de captación, de 16 imágenes por segundo, mínima necesaria para conse¬ guir continuidad en el movimiento y el número de imáge¬ nes necesario para la reproducción y el necesario para la captación en el sistema tridimensional.
Resultan muy diferentes la separación mínima necesaria (o tamaño de los elementos reproductores), pa¬ ra no apreciar que la imagen está constituida por fran¬ jas, y la separación necesaria (o distancia entre cen¬ tros ópticos de objetivos en la captación) , para poder reproducir en forma aparentemente continua la variación de la paralaje.
La experiencia dice que el número de elemen¬ tos reproductores requeridos para una reproducción co¬ rrecta es mucho mayor que el necesario para una capta¬ ción tridimensional. El procedimiento objeto de esta invención, co¬ mo la obturación en la cinematografía, permite que, con un número pequeño de imágenes captadas, se pueda repro¬ ducir con un gran número de elementos. En la cinematogra¬ fía se repite la misma imagen durante varias obturacio- nes. En la reproducción tridimensional se repetirá la misma imagen en varios elementos reproductores.
De este modo, desde cada punto de observación se verá la misma imagen a través de un gran número de ele mentos reproductores verticales. Estos elementos repro¬ ductores, adyacentes entre sí, formarán un rectángulo. Este rectángulo será diferente para cada punto de obser- vación. El conjunto de rectángulos correspondientes a todas las imágenes formara una imagen única y distinta para cada posición de observación.
Las condiciones de visión correcta imponen lí¬ mites prácticos a la distancia entre los centros ópticos de los objetivos contiguos de las cámaras en la captación y a la distancia entre los centros ópticos de los objeti¬ vos contiguos de los proyectores en la reproducción.
La distancia máxima entre los centros ópticos de los objetivos de las cámaras viene impuesta, para ca- da profundidad de campo, por la condición de continuidad de imagen en la reproducción. Esta condición es la mis¬ ma para todos los sistemas de reproducción tridimensio¬ nal de la técnica anterior y para el de esta invención. La distancia entre los centros ópticos conti- guos de los proyectores, cuando se utiliza la diferencia ción angular de imágenes, viene determinada por la rela¬ ción entre la abertura de proyección y la de observa¬ ción.
La abertura de proyección es el cociente entre la distancia entre los centros ópticos de dos objetivos proyectores contiguos y la distancia de proyección.
La abertura de observación es el cociente en¬ tre la distancia entre los ojos de un observador y la distancia de observación. Nuestra experiencia ha mostrado que la visión tridimensional con diferenciación angular de imágenes es aceptable incluso para valores de abertura de proyección tres o cuatro veces superiores a los de observación.
Como se acaba de mostrar, la forma más obvia de captar la paralaje horizontal es disponer de tantos objetivos de captación como puntos i. No obstante, la experiencia dice que este número de imágenes captadas puede ser mucho más pequeño que el de puntos i.
Es decir la distancia entre objetivos en la captación puede ser mucho mayor que la distancia F.-F._-| , utilizada en la descripción anterior. Así, el procedimiento de captación consistirá en una serie de objetivos de captación cuyos centros óp¬ ticos se encuentran sobre una línea horizontal separados entre sí a una distancia Kc que será función de la pro¬ fundidad de campo de captación. En la figura 4 se ha representado esquemática¬ mente este procedimiento. Por simplicidad de dibujo se ha supuesto que cada objetivo pertenece a una cámara dis tinta y que los ejes ópticos de estos objetivos son para lelos entre sí. En general, varios o todos, los objeti- vos pueden pertenecer a una única cámara y los ejes óp¬ ticos pueden inclinarse.
En la figura 4 CC-^ CC2, CC.,... CCn son las n cámaras con los centros ópticos de los objetivos separa¬ dos por una distancia Kc y situados sobre la línea ZZ' horizontal.
En la proyección se utilizará el mismo número de objetivos proyectores que el de objetivos de cámaras que se utilizaron en la toma. Cada uno de ellos proyecta rá una imagen sobre una trama óptico-cilindrica transpa- rente.
La figura 5 representa esquemáticamente la dis posición de los objetivos de proyección PR-,, PR2...PRn separados entre sí por la distancia KR proyectando sobre la trama óptico-cilindrica de reproducción. En esta figura se ha representado por simplici¬ dad cada objetivo como perteneciente a un único proyecto y a todos loa ejes ópticos paralelos. En realidad, varios o todos los objetivos pueden pertenecer a un único pro¬ yector y los ejes ópticos pueden estar inclinados. Es importante tener en cuenta que el ángulo formado por las distintas películas de imágenes en la proyección ha de ser el mismo que el formado por las pe- lículas de imágenes en la captación. En caso contrario, las superficies planas de iguales paralajes en la capta¬ ción se reproducirán como superficies curvas en la re¬ producción, a menos que se introduzca una inclinación compensatoria en el proceso de copiado de las películas. La distancia B de los proyectores a la panta¬ lla viene impuesta por la distancia focal de los proyec¬ tores y el tamaño de la pantalla o trama óptico-cilin¬ drica. La trama óptico-cilindrica (1) está formada po cilindros de un ancho d, lo suficientemente pequeño como para no ser percibidos, la experiencia nos dice que para un ojo sano el ancho d del cilindro deberá ser inferior a la distancia de visión en metros dividida por 3.500. La distancia focal f está dada por: d f = B
2KR
deducida igualando la abertura de cada cilindro G = d/f con aquella, 2KR, bajo la cual se ven tres objetivos de
"1 proyección. En realidad, la abertura del cilindro puede estar comprendida entre este valor, visión abarcando tre objetivos de proyección, y su mitad, visión abarcando do objetivos de proyección. Con esto se consigue una tran¬ sición imperceptible de una franja de imagen a la siguie te, ya que la parte de imagen del objetivo de proyección PRi se va mezclando suavemente con la proyectada por sus vecinos FR.^ y -PRi+1»
Si los objetivos de proyección se separan en¬ tre sí, disminuye la paralaje de reproducción aunque aumenta el ángulo de visión tridimensional y a la inver¬ sa. Para un número determinado de objetivos de pro yección, a cada variación de distancias entre ellos, si se conserva la misma distancia de proyección, correspon- de una trama cilindrica diferente, ya que hay que hacer que la relación entre tamaño transversal y distancia fo cal del cilindro sea igual a la relación entre distanci entre objetivos de proyección a distancia de proyección. Si sólo se dispusiera de la trama óptica de cilindros verticales (1) anteriormente descrita, la vi¬ sión de las imágenes se limitaría a un segmento rectilí- neo compuesto de tantos sub-segmentos como imágenes u objetivos de proyección. Este segmento rectilíneo viene dado por la intersección del plano que pasa por los ob¬ jetivos de proyección y el punto de observación con el plano que contiene la mencionada trama óptica transparen te de cilindros verticales.
Para que los planos verticales se' formen ade- cuadamente, se dispone de otra trama óptica de cilindros horizontales de abertura suficiente para que cualquier observador, independientemente de su altura, vea toda la componente vertical de la imagen. En general, siempre pueden elegirse cilindros semicirculares, ya que son los de máxima abertura, con un tamaño transversal que, como en el caso vertical, debe ser lo suficientemente pe¬ queño como para no ser percibido.
Así pues, el sistema óptico de reproducción quedará como se muestra en la Fig. 6 y su visión se hará por transparencia. En esta figura 6 puede apreciarse el ángulo de visión V, que es función del cociente entre la distancia de separación del primer objetivo de proyec¬ ción al último objetivo de proyección, y la distancia de proyección B. De igual manera puede considerarse el ángulo S de abertura de los cilindros verticales, función del cociente entre la separación entre dos objetivos de pro¬ yección contiguos KR y la distancia de proyección B, co¬ ciente que es el mismo que el obtenido entre el tamaño transversal del cilindro vertical d y su distancia focal f.
En esta figura puede también apreciarse la vi- sión de la componente vertical a través de la trama óp¬ tica de cilindros horizontales.
Para que las líneas focales de los cilindros horizontales y verticales coincidan en el mismo plano, el espesor del sistema óptico deberá valer:
e = (r2-rl} n-l siendo r2 y r1 los radios de los cilindros verticales y horizontales respectivamente y n el índice de refracción de la sustancia con la que está fabricado el sistema óp¬ tico.
Como otra realización, las mismas bases que han servido para crear un sistema de reproducción tridi- mensional con variación de la paralaje horizontal, son válidas para el diseño de un "sistema de reproducción in¬ tegral", sistema que reproduce la paralaje horizontal y vertical simultáneamente.
Los objetivos de proyección se dispondrán en este caso sobre un rectángulo.
Para el diseño de los cilindros verticales (1) valen los mismos desarrollos anteriores.
El diseño de los cilindros horizontales (2) se hace de manera análoga al diseño de los verticales. La relación del tamaño transversal del cilindro a su distan¬ cia focal es al menos igual a la relación entre la dis¬ tancia entre tres objetivos de proyección verticales y la distancia de proyección.
Así se deberá cumplir para la distancia focal de los cilindros horizontales la ecuación: dH.B
Figure imgf000026_0001
donde d = tamaño transversal del cilindro horizontal B = distancia de proyección Kjvy = distancia entre objetivos de proyección con- tiguos verticales.
Para el espesor _e sigue siendo válida la fórmu¬ la dada anteriormente con ocasión del sistema de repro¬ ducción de paralaje horizontal. Las restricciones matemáticas anteriores sólo condicionan las dimensiones transversales y las abertu¬ ras de los elementos ópticos.
El resto de características ópticas tales como la de ser lentes o espejos, ópticamente convergentes o divergentes, puede elegirse arbitrariamente.

Claims

REIVINDICACIONES MODIFICADAS
[recibidas por la Oficina Internacional el 25 de enero de 1991 (25.01.91); reivindicación 2 anulada; reivindicaciones 3 a 7 reemplazadas por las modificadas reivindicaciones 2 a 6
(1 pígina)]
1^.- Un sistema óptico, para la reproducción de imágenes tridimensionales con paralaje vertical y ho- 5 rizontal sobre el que se proyectan II imágenes, con obje¬ tivos proyectores formando un rectángulo, captadas desde 11 lugares distintos, formando también un rectángulo, com¬ puesto de dos hojas de lentes cilindricas perpendicula¬ res entre sí, en donde la abertura óptica vertical tiene 10 un valor superior al cociente obtenido dividiendo la distancia entre dos objetivos verticales de proyección contiguos por la distancia de proyección, y menor que el doble de dicho valor, y la abertura óptica horizontal tiene un valor mayor que el cociente obtenido dividiendo 15 la distancia entre dos objetivos horizontales de proyec¬ ción contiguos.por la distancia de proyección y menor que el doble de dicho valor.
2^.- Un sistema óptico como el descrito en la reivindicación 1&, caracterizado porque las dos ho- 20 jas de lentes cilindricas son ópticamente convergentes. 3--- Un sistema óptico como el descrito en la reivindicación 1^, caracterizado porque las dos hojas de lentes cilindricas son ópticamente divergentes.
4--- Un sistema óptico como el descrito en la 25 reivindicación 1^, caracterizado porque una de las ho¬ jas de lentes cilindricas es ópticamente convergente y la otra es ópticamente divergente.
5-.- Un sistema óptico como el descrito en la reivindicación 2§-, 3- y 4-, caracterizado porque una de 30 las hojas es de lentes cilindricas y otra de las hojas de espejos cilindricos.
6&.- Un sistema óptico como el descrito en las reivindicaciones 2§*, 3- y 4§-, caracterizado porque las dos hojas de lentes cilindricas se enfrentan o dan la 35 espalda a los proyectores o bien una se enfrenta y la otra muestra sυ espalda.
DECLARACIÓN SEGÚN EL ARTICULO 19 (1)
El Agente que suscribe, ELZABURU MÁRQUEZ, Alberto, manifiesta que, el solicitante, a la vista del contenido del Informe de Búsqueda Internacional transmitido por la Oficina de Patentes Europea con fe¬ cha 20 de Diciembre de 1990, ha decidido suprimir la reivindicación 2 anticipada por la patente EP-A-0273845 del mismo titular de la presente solicitud y mantener las reivindicaciones restantes, si bien en las reivindicaciones 3, 4 y 5 se han suprimido en su segunda linea "y 2a" y en las reivindicaciones 6 y 7 se ha sustituido en su segunda linea "3a, 4a y 5a" por "2a, 3a y 4a", dejando inalterado el resto del contenido de las reivindicaciones 3 a 7 originales. La reivindicación 1 conserva su redacción original. Además, las reivin¬ dicaciones 3 a 7 originales se han renumerado como nuevas reivin¬ dicaciones 2 a 6, con lo cual las reivindicaciones 1 a 7 originales han quedado sustituidas por nuevas reivindicaciones 1 a 6.
Como consecuencia de la supresión de la reivindicación 2, el texto correspondiente a la misma en el cuerpo de la memoria, comprendido entre la linea 33 de la página 13 y la linea 13 de la página 14, y no forma propiamente parte del presente invento, sino que quedar integrado dentro del capitulo de la memoria que, bajo el epígraf ANTECEDENTES DEL INVENTO, hace alusión a la técnica anterior perti nente. Por su parte, los dibujos no han precisado ninguna modi ficación y por ello podrán mantenerse tal como se depositaron ini cialmente.
PCT/ES1990/000014 1990-04-23 1990-04-23 Dispositivo para reproducir por proyeccion imagenes tridimensionales estaticas o en movimiento WO1991016664A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2506603A JPH04501922A (ja) 1990-04-23 1990-04-23 投影による固定又は動的な三次元画像生成システム
EP90907063A EP0478568A1 (en) 1990-04-23 1990-04-23 Device for reproducing by projection still or moving tridimensional images
PCT/ES1990/000014 WO1991016664A1 (es) 1990-04-23 1990-04-23 Dispositivo para reproducir por proyeccion imagenes tridimensionales estaticas o en movimiento

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES1990/000014 WO1991016664A1 (es) 1990-04-23 1990-04-23 Dispositivo para reproducir por proyeccion imagenes tridimensionales estaticas o en movimiento

Publications (1)

Publication Number Publication Date
WO1991016664A1 true WO1991016664A1 (es) 1991-10-31

Family

ID=8265314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1990/000014 WO1991016664A1 (es) 1990-04-23 1990-04-23 Dispositivo para reproducir por proyeccion imagenes tridimensionales estaticas o en movimiento

Country Status (3)

Country Link
EP (1) EP0478568A1 (es)
JP (1) JPH04501922A (es)
WO (1) WO1991016664A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2358980A (en) * 2000-02-07 2001-08-08 British Broadcasting Corp Processing of images for 3D display.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR750156A (fr) * 1932-01-23 1933-08-05 Procédé de photographie et de cinématographie d'images polychromes à effet plastique
US4078854A (en) * 1971-10-05 1978-03-14 Canon Kabushiki Kaisha Stereo imaging system
EP0273845A2 (en) * 1986-12-29 1988-07-06 DOMINGUEZ MONTES, Juan Equipment and process for obtaining three-dimensional moving images, that is four-dimensional images in both colour and in black and white

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR750156A (fr) * 1932-01-23 1933-08-05 Procédé de photographie et de cinématographie d'images polychromes à effet plastique
US4078854A (en) * 1971-10-05 1978-03-14 Canon Kabushiki Kaisha Stereo imaging system
EP0273845A2 (en) * 1986-12-29 1988-07-06 DOMINGUEZ MONTES, Juan Equipment and process for obtaining three-dimensional moving images, that is four-dimensional images in both colour and in black and white

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2358980A (en) * 2000-02-07 2001-08-08 British Broadcasting Corp Processing of images for 3D display.
GB2358980B (en) * 2000-02-07 2004-09-01 British Broadcasting Corp Processing of images for 3D display
US6798409B2 (en) 2000-02-07 2004-09-28 British Broadcasting Corporation Processing of images for 3D display

Also Published As

Publication number Publication date
EP0478568A1 (en) 1992-04-08
JPH04501922A (ja) 1992-04-02

Similar Documents

Publication Publication Date Title
US5013147A (en) System for producing stationary or moving three-dimensional images by projection
US6795241B1 (en) Dynamic scalable full-parallax three-dimensional electronic display
KR100315851B1 (ko) 3차원사진촬영방법및장치
US3357770A (en) Stereoscopic viewing apparatus which includes a curved lenticular screen in front ofa curved picture supporting surface
US4799739A (en) Real time autostereoscopic displays using holographic diffusers
US4757350A (en) Stereoscopic recording method and apparatus, and production method and apparatus
CN105425404B (zh) 一种集成成像光学系统
US20090115783A1 (en) 3d optical illusions from off-axis displays
US2562077A (en) Composite stereography
JP2889585B2 (ja) 像配列および3次元カメラ
US1984004A (en) Means for presenting pictures
TW200933195A (en) Autostereoscopic display
US6055100A (en) Doublet based large aperture free space imaging system
JPH11508058A (ja) 自動実体鏡像を得る方法及びシステム
US3688045A (en) Method for photographing and reproducing three-dimensional images
US2075853A (en) Projection of pictures for viewing in stereoscopic relief
JP2002072135A (ja) 光線再生と影絵型多眼パララックスを兼用した3次元画像表示システム
WO1992001241A1 (es) Un procedimiento y un sistema optico integrado de captacion, copiado y reproduccion tridimensional de imagenes estaticas y en movimiento
US3642342A (en) Method and apparatus for making a reproduction
US3501230A (en) Three-dimensional display system
WO1991016664A1 (es) Dispositivo para reproducir por proyeccion imagenes tridimensionales estaticas o en movimiento
US4509835A (en) Three dimensional cinema and novel projector system therefore
WO1990016009A1 (es) Pantalla mejorada para reproduccion de imagenes tridimensionales estaticas o en movimento y procedimiento para fabricarla
US2100634A (en) Apparatus for projecting pictures in relief
JP4492208B2 (ja) 三次元画像再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1990907063

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2048603

Country of ref document: CA

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA FI HU JP KP KR LK MC MG MW NO RO SD SU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB IT LU ML MR NL SE SN TD TG

WWP Wipo information: published in national office

Ref document number: 1990907063

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990907063

Country of ref document: EP