WO1991014359A1 - Process for producing tuber - Google Patents

Process for producing tuber Download PDF

Info

Publication number
WO1991014359A1
WO1991014359A1 PCT/JP1991/000382 JP9100382W WO9114359A1 WO 1991014359 A1 WO1991014359 A1 WO 1991014359A1 JP 9100382 W JP9100382 W JP 9100382W WO 9114359 A1 WO9114359 A1 WO 9114359A1
Authority
WO
WIPO (PCT)
Prior art keywords
tuber
tubers
culture
medium
carbon dioxide
Prior art date
Application number
PCT/JP1991/000382
Other languages
French (fr)
Japanese (ja)
Inventor
Noboru Onishi
Kunihiro Hayashida
Kanji Mamiya
Original Assignee
Kirin Beer Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Beer Kabushiki Kaisha filed Critical Kirin Beer Kabushiki Kaisha
Priority to JP3505863A priority Critical patent/JP2904924B2/en
Priority to DE69116044T priority patent/DE69116044T2/en
Priority to BR919105109A priority patent/BR9105109A/en
Priority to US07/773,603 priority patent/US5862626A/en
Priority to EP91905904A priority patent/EP0476141B1/en
Publication of WO1991014359A1 publication Critical patent/WO1991014359A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/005Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques

Definitions

  • the present invention relates to a method for producing tubers of Solanum plants.
  • the supply of “Virus Free” seed potatoes is generally carried out in the following manner, although there are some differences in each region.
  • tubers produced under aseptic conditions by tissue culture has been studied in various fields. That is, the virus-free individuals obtained by the growth point culture are not exposed to a greenhouse, a field, or the like, and tubers are produced as they are in vitro (iv vitro). It is cultivated twice in the field, and the resulting potatoes are used as seed potatoes. Tubers formed under these aseptic conditions are significantly smaller (typically 1 g or less in diameter) than conventional tubers (tuber, tuber, 50-300 g) by conventional methods. Therefore, it is also called "micro tuba".
  • tubers have the following advantages. (1) Tubers are completely sterile, including virulents, because they are made from asphyllous plants under sterile conditions. (2) Since tubers are produced under tissue culture conditions, they can be produced throughout the year regardless of the quantity and quality of natural conditions. (3) Tubers can become seed potatoes directly or have the potential to produce seed potatoes by cultivation once or twice in the field, so there is no risk of re-infection with viruses or other diseases. Or it is smaller than the conventional method.
  • tubers are small in size, they can be easily transported in large numbers.
  • Tubers produced under aseptic conditions that have these advantages are generally divided into two major steps as follows: (Estrada et al., 1986. P1 ant Cell Tiss. Org. Cult. 7: 3-10, Wang PJ and CY Hu. 1982. Am. Potato J. 59: 33-37, Rosell et al. 1987. Potato Research 30: 111-116 ⁇ Hussey G, and NJ Stacey. 1984. Ann. Bot. 53: 565-578).
  • Foliage growth step This step is to grow the potato foliage itself in order to increase the axillary buds necessary for tuber formation later, that is, the buds contained in each node.
  • This process involves adding 1 to 3% sucrose as a carbon source to a basal medium usually used for plant tissue culture, and sometimes a low concentration of plant hormones, and adding a constant amount of agar to agar or liquid. It is performed under photoperiod of light.
  • a plant piece with at least one bud planted under this condition grows in a form similar to that of the aerial part under natural conditions, with a similar reduced size. Although rooting is also involved, tuber formation does not usually occur under these conditions.
  • the culture temperature is 20-25.
  • the culture period is usually 3 to 5 weeks.
  • Tuber-forming step The above-mentioned base containing sucrose (5 to 10%) higher than that in the foliage-growing step, and optionally containing plant hormones such as cytokinin or dwarfants Transfer to medium.
  • the foliage growth process is performed in liquid, the medium is replaced with the same component.
  • Temperature is 15 ⁇ 25 '(: generally in dark condition, sometimes low light or short of 100 ⁇ 5001ux Day conditions are used.
  • the culture period is usually 4 to 8 weeks.
  • the conventional method has low tuber induction efficiency, and the method itself is not suitable for producing a large amount of tubers. As a result, the cost of producing tubers is high, and it is not a practical technique. These conventional techniques have only been used for preservation and distribution of gene sources.
  • the operation is repeated, or a large amount of air (0.8 to 2.2 vvm) is passed through the liquid phase to force the medium.
  • a large amount of air (0.8 to 2.2 vvm) is passed through the liquid phase to force the medium.
  • the medium is gradually evaporated and the surface of the medium is gradually lowered.
  • the majority of the media used is mainly used only for the induction of tubers, and is less often used for hypertrophy. Absent. In other words, the added nutrients and carbon sources are not fully utilized, and it is difficult to further reduce production costs.
  • the method of gradually and artificially removing the culture medium requires many operations, and increases the risk of contamination. Most of the axillary buds, which mainly form tubers, are formed in the gas phase during the foliage growth process, and the foliage formed in the medium is hardly used.
  • tubers produced near the boundary of the culture medium were not suitable for storage and field cultivation, depending on the cultivar.
  • An object of the present invention is to provide an improved method for producing tubers which has solved the above-mentioned problems of the prior art. More specifically, it is an object of the present invention to provide a method for easily producing a large amount of tubers excellent in storability and cultivation.
  • the present inventors have conducted researches to achieve the above object.
  • the application of carbon dioxide gas during the light stage of the foliage growth process was surprising. Strongly inducing and proliferating stron under feeding conditions; (2) Inducing and proliferating thicker strons more efficiently under conventional stron inducing conditions; (3) Long day Inducing and multiplying the stolon more vigorously under low temperature conditions in the dark period.
  • (4) Under the application of carbon dioxide gas By exposing the strons and foliage extending to the liquid phase to the gaseous phase during the tuber formation process, the exposed stron and stalk are synchronized in a short period of time with a remarkably high rate of tubers. Found to be molded.
  • the axillary buds contained in the stron and stem obtained by the method of the present invention had higher tuber-forming ability than those obtained by the conventional method.
  • the most effective (short-time, synchronized and high-efficiency) is obtained from the axillary buds contained in the strons and stems that have been grown under the conditions that elongate into the liquid phase during carbon dioxide application and are exposed to the gas phase during tuber formation. Tuber was formed in the gas phase regardless of the distance from the medium surface. Under such conditions, tubers are mainly formed by direct enlargement of the tips of the strons, but tubers can also form from the strons and the axillary buds of the stems, either directly or through new stalks.
  • the induction and proliferation of stron in the present invention, and the induction of dense morphology of stron and tuber are performed in the plant culture method including carbon dioxide application and the tuber formation method described above. No tuberculosis was reported, nor was it possible to predict from them, and the tuber formation efficiency was greatly improved.
  • the tuber induction medium which generally uses a higher concentration of sucrose than the foliage growth medium, can be used in a smaller amount than the conventional method, and the tuber formation efficiency per unit sugar amount is significantly improved. did.
  • the conventional method in which ordinary air that is not enriched with carbon dioxide, is directly ventilated to the gas phase in the culture environment, also aims to improve the growth rate of cultured plants and the survival rate after acclimation by promoting photosynthesis. No change in plant morphology is considered.
  • a method of directly aerating the gas phase is used in the tuber forming step under culture conditions.
  • This type of tuber formation can achieve similar tuber formation under culture conditions using a conventional culture tank without artificially lowering the boundary surface of the culture medium. No, it's a new phenomenon.
  • the method for producing tubers of the present invention is a method for producing tubers of a Solanum genus plant having tuber-forming ability, as described in the following claims:
  • a method for producing a tuber of a Solanum plant having a tuber-forming ability comprising a step including a foliage growing step and a tuber forming step in a culture vessel,
  • a plant piece having at least one bud is Cultivated in a liquid medium containing a carbon source and inorganic salts, with carbon dioxide applied to at least part of the light period, to induce and proliferate foliage and stront,
  • Tuber production method characterized by the following:
  • the method for producing tubers according to claim 1 wherein in the tuber forming step, the relative humidity of the gas phase is reduced by aerating the gas phase to culture the tuber. 2.
  • the applied concentration of carbon dioxide is 0.1 to 30% (v / v).
  • the method of applying carbon dioxide gas is characterized in that 0.1 to 30% (v / V) of carbon dioxide gas is aerated at a rate of 0.001 to 1 volume per minute with respect to the volume in the container.
  • tuber forming step includes aerating the gas phase in the tuber forming step.
  • a method for producing tubers which comprises culturing while reducing the relative humidity of the gas phase. J
  • Stron The following three types of stems are called “strons” here (Figs. 3 and 4).
  • Plants of interest in the present invention include all species of tuber-forming ability of the genus Solanum. Specific examples of such plants are, for example, potato cultivars (So lanum t uberosum), S. demi ssum, S. acaule, S. stol on iferum, S. phure ja and the like. Of these Is a representative of potato cultivars.
  • the container used in the present invention may be any container that can ventilate air or air enriched with carbon dioxide, but also ventilates the liquid phase and gas phase of the culture medium. It is desirable that it is possible.
  • any air-permeable container or cap for ordinary plant tissue culture may be used.
  • the first invention is to apply carbon dioxide gas during the light period to grow plants, And a stron inducing and multiplying, a foliage growth step (step (A)) and a tuber formation step (step (B)) for forming tubers on the axillary buds contained in the stron and stem of the plant. Therefore, they are described separately below.
  • the second invention will be described in the following step (II). Further, the inventions described in claims 2, 3 and 4 other than the first invention and the second invention will be described in the following steps (I) and (II).
  • the plant material used in this process can be of any origin, provided that it is maintained aseptically, but is usually derived from an individual growing in the field or from a growth point culture of buds sprouted from harvested tubers.
  • the body is used to protect against viruses and other diseases It is desirable to be completely free.
  • roots are not necessarily required as long as the plant pieces have at least one bud, but it is preferable to use plantlets having several buds and roots as planting materials. good.
  • the number of seeds used is 1 to 50 per liter of medium.
  • the plant or plant piece may not have a stron formed thereon, but preferably has a stron formed therein.
  • the medium used in this step may be a basic medium usually used for plant tissue culture supplemented with 1 to 3% of sucrose as a carbon source.
  • the basic medium is Murashige &Skoog's medium (hereinafter referred to as M S medium), Linsmeier & Skoog medium, White medium, Schenk & Hill debrandt medium, etc.
  • M S medium Murashige &Skoog's medium
  • Linsmeier & Skoog medium Linsmeier & Skoog medium
  • White medium Schenk & Hill debrandt medium
  • MS medium is used.
  • the composition of these conventional media is described, for example, in Harada and Komine, "Plant Cell Tissue Culture", pp. 390-391, RIKEN, 1984.
  • Examples of carbon sources other than sucrose include glucose, maltose, molasses and the like.
  • basal media contain plant growth regulators such as 1-naphthalinacetic acid (NAA), indole-3-acetic acid (IAA), and 2,4-dichlorophenoxyacetic acid (2,4-D ), Lee emissions doll one 3 - butyric acid (I BA :), Jibere-phosphate (GA 3), 6 - base Nji Ruadenin (BA), a plant hormone Ya Sa Ikoseru such force Inechin (CCC), such as Anshimi Doll A dwarfing agent may be added in the range of 0.001 to 10 ppm.
  • GA 3 is often effective for elongation of the stron.
  • the amount of medium used is not particularly limited, but (1) strons are more easily and more induced in the medium than outside the medium, and (2) strons grow vigorously in the solution. (3) The stems other than the stront vigorously elongate and branch in the liquid, (4) The stem contains many axillary buds, (5) ) Tubers are more efficiently formed from the axillary buds contained in the sponge and stems formed in the liquid under the conditions described below. Is desirable.
  • Medium pH should be 4-8, preferably 5-7
  • photoperiod, temperature, and the direction of light irradiation are related to the induction and proliferation of strons.
  • strons are generally less likely to be induced under the long-day conditions normally used for potato tissue culture, i.e., at a photoperiod of 14 hours or more and at 20 to 25 ° C. . Also, when induced, the stron elongates as above-ground or foliate stalks, and hardly elongates as a stron. Vigorous stron induction and multiplication by long-day application of carbon dioxide is remarkable under the condition that (1) continuous day length or (2) the temperature in period (1) is 15 ° C or less. Is recognized.
  • the culture temperature is 15 to 30, preferably 17 to 22 ° C
  • the light period is 15 to 30, and the dark period is 5 to; 15 ° C, preferably each A temperature change condition of 17 to 25 e C and 8 to 12 is preferable.
  • the illuminance is preferably 1000 to 20,0001 ux for both (1) and (2), and more preferably 3000 to 80,001 ux.
  • the light period of (2) is preferably 14 to 20 hours, and more preferably 15 to 18 hours. Since the strons induced by this method include those that extend in the direction of light irradiation, illumination from the lateral direction or from below is preferred to increase the number of storons present in the liquid. 2. For short-day conditions
  • strons Under short-day culture conditions, usually less than 12 hours, many varieties induce strons and elongate them as strons. However, straws obtained without carbon dioxide application are generally thin, small in number, and low in tuber formation efficiency. When combined with carbon dioxide treatment under short-day conditions, the strons become significantly thicker and more numerous, and the tuber formation rate is significantly improved thereafter.
  • the daylength is 6-12 hours, preferably 8-10 hours. Since the growth of the plant itself tends to be delayed under short-day conditions, a plant cultured for a certain period under long-day conditions may be used. Temperature is 5-30 ° C, preferably 17-25. It is more effective to lower the temperature during the dark period to 5-15 ° C.
  • Illuminance is 1000 to 20,0001 ux, preferably 3000 to 80,001 ux. Stones guided in this way are likely to show geotropism or skew. The light may be emitted in any direction, but illumination from the side or from below is also effective.
  • the method of applying carbon dioxide is common for long day and short day conditions.
  • a culture tank use a method of culturing in a carbon dioxide-enriched atmosphere, while in the case of a small culture vessel, a condition in which air rich in carbon dioxide gas is passed.
  • the concentration of carbon dioxide used for ventilation in the culture tank or in the atmosphere for culturing the permeable culture vessel is within the range of 0.1 to 30% (v / v), preferably 0.5 to 20% (v / v). / v).
  • the amount of aeration to the culture tank is Use 0.0001 to 1 volume per minute per unit volume of the product, preferably 0.001 to 0.1 volume.
  • a large number of axillary buds are efficiently induced and proliferated, which can be easily converted into tuber via the stron in the gas phase and liquid phase, especially in the latter, and in the subsequent tuber formation process via stron.
  • the ventilation of the coal gas-enriched air may be divided into the liquid phase only, the gas phase only, or the liquid phase and the gas phase.
  • the application of carbon dioxide is at least part of the foliage growth process In addition, it should be carried out at least one hour per day, preferably two hours or more per day.
  • the application period is between 10 and 70 days, preferably between 20 and 40 days.
  • the size of the plant or plant piece to which carbon dioxide is applied is not particularly limited. That is, the application of carbon dioxide may be started immediately after the plant body or the plant piece is placed, or the carbon dioxide gas may be applied by the above-mentioned method after cultivation for a certain period after planting by a known method.
  • a medium containing at least a carbon source as an essential component and having the same or higher sugar concentration as in step (A) is used, but is not limited thereto.
  • sucrose the sugar concentration is 5 to 15%, preferably 6 to 10%.
  • plant hormones such as 6-benzyladenine (BA), potato-inetin, zeatin, abscisic acid (ABA), and dwarfants such as psychocell (CCC :) and ansimidol can be used in the range of 0.01 to 20 ppm.
  • step (A) May be used in The medium used in step (A) is removed from these mediums, and at least the strains that have been induced, grown, or have enhanced tuber formation in the medium in step (A) are removed.
  • a part is added so as to be exposed in the gas phase. That is, under the conditions of the present invention, the strons elongated in step (A) already have a high tuber-forming ability irrespective of the elongation position, but mainly the strons and stems elongated in the liquid phase part in this step. Exposure into the phase allows the formation of many strons and stems in the gas phase, since their location is very independent of their distance from the culture medium and from which tubers are formed in a short period of time, synchronously and very efficiently. It is better that the amount of culture medium is moderately smaller than that in (A) so that the medium is exposed. Usually, use a medium in an amount of 5 to 80%, preferably 10 to 40% of the medium in step (A).
  • the medium used in step (A) may be reduced so as to satisfy the condition. Further, a necessary amount of a concentrated solution of a component that promotes tuber induction (sugar, the basic medium component, a plant hormone, etc.) may be added to the medium. Apart from the operation of the amount of the medium, a method may be used in which the stron is exposed in the gas phase. For example, the plant can be pulled up from the medium, the plant can be inverted, turned upside down, the entire culture tank can be turned down using a vertically long culture tank, or the shape can be changed using a bag for culture.
  • the pH of the medium is 4-8, preferably 5-7.
  • low light conditions of 100-l OOOlux are within an appropriate day length range (4-24 hours)
  • short-day conditions of 4-10 hours are within an appropriate light range (100-8801 ux).
  • the ⁇ condition also produces good results. Especially under short-day conditions, many tubers are formed without increasing the sugar concentration in the medium.
  • the temperature condition is 5 to 30, preferably 15 to 25 ° C.
  • the dark period temperature may be lower than the light period temperature.
  • the culture tank it is usually sufficient to ventilate the liquid phase in the culture tank (the amount of ventilation is, for example, 0.001 to 0.1 lvvm).
  • step (B) even better results can be obtained by combining the second invention. That is, in the above tuber formation step, it is preferable to lower the relative temperature of the gas phase by ventilating the gas phase.
  • the optimal amount of aeration at that time depends on the absolute volume of the culture medium, the shape of the container, the amount of plants present in the gas phase, the amount of ventilation to the liquid phase, the number and shape of the vents to the gas phase, etc. However, each may be 0.02 to 1 volume per minute per unit volume, preferably 0.05 to 0.5 volume.
  • the relative humidity of the gas phase falls to 90% or less due to this ventilation, better qualitative and quantitative results are often obtained in tuber formation.
  • tubers are not sufficiently formed in the gas phase, and the plant will die due to excessive drying.
  • it is preferably 0.05 vvm or less.
  • the medium does not evaporate significantly and does not decrease. Further, even if the aeration rate is such that the amount of the culture medium is reduced, when the gas phase is aerated, more tubers are formed than in the culture using only the liquid phase.
  • the second invention can be used for a plant produced by a conventional culture method, and has a remarkable effect.
  • the culture period in this step is 10 to 50 days, preferably 20 to 40 days.
  • Fig. 1 is a diagram (photograph) showing the state of foliage growth by the conventional method (the method of the control plot in Example 2), and Fig. 2 is a tuber by the conventional method (the method of the control plot in Example 2).
  • Fig. 3 shows the state of formation (photo), and Fig. 3 shows the state of induction and proliferation of strons by carbon dioxide application in Example 6 (photo).
  • FIG. 4 is a diagram showing the state of induction and growth of stron by carbon dioxide application in Example 6 (photograph taken from the bottom of the culture tank), and
  • FIG. 5 is a diagram showing the state of carbon dioxide application in Example 4.
  • Fig. 6 shows the state of tuber formation of the induced and proliferated stron and stem (photo) and Fig. 6 shows the state of tuber formation by aeration to the gas phase of the culture tank of Example 1 (photo). It is.
  • foliage growth medium 10% MS liquid medium (pH 5.8, hereinafter referred to as foliage growth medium) supplemented with 3% sucrose, 10 ⁇ , diameter 27cm, height 40cm the total capacity of about 23 ⁇ were plated into a cylindrical culture vessel, 22 e C, illuminance 60 OO l ux, 16 hr photoperiod, in a liquid phase 30ml / min and the gas phase 500 ml / min of aeration conditions, 5 weeks stover Was grown. By this culture, the plants grew vigorously to a height of about 30 cm.
  • Tubers were formed directly on the axillary buds in the gaseous phase in the aerated section, and white stalks without chloroplasts grew vigorously from many axillary buds in the liquid and gaseous sections. However, many tubers were also formed at the nodes existing in the gas phase. In contrast, in the control plot, tubers were hardly formed on the axillary buds in the gas phase, and although similar white stems were seen, the number was small and many of the top buds died due to the high humidity, and the tubers Most were formed on the axillary buds at and just above the medium interface.
  • the number of tubers and tuber weight in the gas-phase aerated area improved significantly more than twice as much as in the control, and the formation position was also significantly different from that in the control.
  • Almost all of the tubers in the control plot showed remarkable skin hypertrophy and secondary growth, but the tubers in the gas-phase aerated plot were also significantly improved in that respect.
  • Tubers were formed mainly in the gas phase in the gas-phase aerated section through the same process as in Example 1, and formed unevenly near the boundary of the culture medium in the control section.
  • the gas-phase aeration group exceeded the control group in both total tuber number and weight, but there was a remarkable difference particularly in the degree of damage to the epidermis of the tuber.
  • most of the tubers in the control group had remarkable hypertrophy and damage to the epidermis due to overhumidity or contact with the medium, and secondary growth was large, whereas the degree in the gas-phase aeration group was slight. I stayed something. This difference was more pronounced under tuber storage conditions. More than half of the tubers in the control plots due to excessive water evaporation during storage at low temperatures. The tuber in the gas-phase aerated area showed little change in quality qualitatively.
  • the method of forming tubers in the gas phase has a remarkable improvement in the quality of tubers in varieties such as bursett bar banks, which have weak tubers (easily damage the epidermis) under humid conditions.
  • Example 2 After growing the foliage to a height of about 20 cm under the same conditions as in Example 1 except that a culture tank with a diameter of 20 cm, a height of 48 cm, an internal volume of about 16 ⁇ , and a foliage growth medium of 3 were used, the tuber induction medium of 3 was used. The remaining medium was replaced with the remaining medium, and the position of the gas phase aeration was changed in culture in a dark place, the liquid phase aeration 30 mlZ minutes, and the gas phase aeration 1 ⁇ Z minutes, resulting in the relative humidity. The effect of the difference in the tuber formation on tuber formation was compared.
  • section (2) ventilated from the vicinity of the top of the culture tank, the white stems similar to those in Example 1 also vigorously elongated, most of them reached the top, and a large number of tubers formed near the same.
  • section (1) which was aerated near the surface of the culture medium, tubers formed at higher positions were rare. At that time, in section (1), fine water droplets were remarkably adhered to the upper part of the culture tank, and the relative humidity measured at the exhaust port was significantly lower in section (2) than in section (1). This result indicates that aeration into the gas phase with lower humidity in the space where tubers are formed is more effective.
  • Tubers were prepared in the same manner as in Example 1. After storing for a certain period of time at low temperature (at 2 to 4) and in several places, tubers were grown according to local customary methods according to tuber size and storage period. However, the depth at which the tubers are planted was set slightly shallower than the conventional method. Only 0.1 to 0.5 g of tubers were germinated and raised in a greenhouse using a paper pot (diameter 5 cm, length 7.5 cm), and then planted in a field. The results are shown in Table 4.
  • the sprouting rate was extremely low only in the two-month storage period, which is considered to be because the two-month period before sowing was insufficient to release dormancy.
  • the sprout rate was high irrespective of the size, and the initial growth after sprouting was generally inferior to the control, but recovered later.
  • the final yield was close to the control in all the size groups, and in some cases was higher than that of the control. It was confirmed that the tubers produced by the present invention had high growth and production ability.
  • test materials used in this experiment were aseptic from growth point culture of bailecho (So lanum tuberosum L., cultivar: Vincci, obtained from the Agriculture, Forestry and Fisheries Gene Bank through the mediation business of the Organization for Promotion of Specified Industrial Technology Research Institute for Biological Systems). Plants were used.
  • the same foliage growth medium 5 ⁇ as in Example 1 was placed in a culture tank having a diameter of 20 cm, a height of 24 cm and an internal volume of 8, and three plants each having 5 nodes and roots were placed thereon. Place the cultivation tank in an incubator capable of irradiating light from all sides, and cultivate first for 3 weeks under the conditions of 70001 UX illuminance, continuous illumination, 20 and air flow rate of 30 ral Z for liquid phase. Was performed.
  • the plants grew well, mainly in the liquid, and formed numerous axillary buds. Some foliage extends to gas phase At this time, no stron was found. Then, while maintaining the same aeration conditions in the liquid phase, the gas phase was aerated with 10% carbon dioxide-enriched air at 100 ml / min and cultured for 3 weeks. By this cultivation, vigorous induction and proliferation of stomatones, mainly from the axillary buds in the liquid phase, were observed along with further growth of the plant. Many of the mouths grew obliquely toward the wall of the culture tank, but some grew slightly upward, and some reached the gas phase. Eventually, the plants in the liquid became a peculiar form covered with stron.
  • tuber formation in the control plot occurred by the process of only the above (3), and its onset time was later than that in the carbon dioxide application plot.
  • the total number of tubers per tuber and the weight of tubers were significantly higher in the group to which carbon dioxide was applied than in the control group.
  • the average weight per tuber is smaller in the carbon dioxide-applied section, but it is clear from the reference examples that normal sprouting, growth and harvesting are possible from tubers of such a size.
  • the foliage of the rasset burbank was grown for 3 weeks. Then, foliage growth medium whose sucrose concentration was changed to 2% was added 2 ⁇ , and only aeration to the gas phase was performed using air enriched with 2% carbon dioxide. Consecutive days length, continued for a further 3 weeks of culture under the illuminance 60001 ux, 20 e C conditions, induction be sampled opening down, urged extension.
  • the control group had the same ventilation conditions as in Example 2.
  • the light irradiation was performed in an incubator that allows light irradiation from the surroundings. Thereafter, the medium was replaced with a 1.5 ⁇ tuber induction medium, and tuber induction was performed at 20 for 4 weeks in the dark. In this case, the ventilation conditions were increased to two diagonally opposite vents for the gas phase in both the CO2 application and control sections, and 1 i /% from each, and 30 mlZ for the liquid phase. The results are shown in Table 6. Table 6
  • Ventilation was carried out at a rate of 100 ml / min and ⁇ ⁇ min, respectively, with air enriched with 2% carbon dioxide in the gas phase and normal air in the liquid phase.
  • control section IT a section in which the same amount of normal air was ventilated into the gas phase
  • control section I a section in which the temperature condition was 22 ° C in both the light and dark periods
  • Table 7 shows the results of the survey, and Table 8 shows the number of tubers formed.
  • Example 5 the strons in the carbon dioxide applied plot almost immediately synchronized with the tuberization of the tip, regardless of the distance from the culture medium, immediately after exposure to the gas phase. Started. Secondary strons, which had already branched, also formed tubers for a short period of time. As a result, the difference in tuber formation from the control group was large.
  • the tubers in section (A) started to form about 5 days after the medium was changed, and the number increased gradually over the next 3 weeks, whereas most of the tubers in section (B) and (C) It was formed by the strontium's tip swelling in synchrony over a short period of about 2 to 14 days, which also showed a significant difference from the control. Sections (B) and (C), that is, the difference between the application start time and application period of carbon dioxide gas, did not significantly affect the degree of stron growth and tuber formation in this experiment.
  • Example 8 The average weight per tuber was lower in the CO2 application plots than in the control plots.However, as is evident from the reference example, the tubers had an extremely small size of about 0.1 lg. Since it has been confirmed that sprouting, normal growth, and reproduction of tubers are observed, application of carbon dioxide gas does not reduce the effect of improving tuber formation efficiency.
  • Example 8 The average weight per tuber was lower in the CO2 application plots than in the control plots.However, as is evident from the reference example, the tubers had an extremely small size of about 0.1 lg. Since it has been confirmed that sprouting, normal growth, and reproduction of tubers are observed, application of carbon dioxide gas does not reduce the effect of improving tuber formation efficiency. Example 8
  • Example 7- (B) Effect of the amount of medium during tuber formation on tuber formation from straws grown under carbon dioxide gas application 200 ml of foliage in a cylindrical culture vessel of 6 cm in diameter, 15 cm in height and 380 ml in inner volume
  • the growth medium was added and used for the next experiment.
  • the same culture method as in Example 7- (B) was used for the cultivation under the conditions of bed material and carbon dioxide gas application.
  • On the 5th week of culture when the stron grew vigorously in the gas phase and liquid phase, 1 50 ml
  • the medium was exchanged with a tuber induction medium of (2) 100 ml and (3) 200 ml, and the relationship between the amount of medium and the degree of tuber formation was investigated.
  • the culture conditions after medium exchange are the same as in Example 7. The results are as shown in Table 10.
  • Example 7 The effect of carbon dioxide application is greatly shown in the number of tubers formed per container as in Example 7. This result indicates that reducing the amount of medium during tuber formation compared to that during foliage growth further improves the number and weight of tuber formation. In addition, many of the tubers at that time extended into the liquid phase during stron growth and formed into strons exposed to the gas phase during tuber formation.
  • Example 8 The title was investigated using the same method as in 1. The concentrations of the test carbon dioxide in the atmosphere are 1%, 5% and 10%. The results are as shown in Table 11.
  • Example 7 The application time of carbon dioxide in (C) was set to (2 hours) 6 hours (3 hours) per day for 10 hours, and the remaining time was measured by culturing under the condition of no application of carbon dioxide and continuous lighting. Was investigated. The results are as shown in Table 12.
  • Example 7 Under the conditions of (C), the latter three weeks during foliage growth were shortened to 10 days (10 hours long) and low during the dark period (10 ° (: 20 during the light period), The test was performed for 2 hours, 6 hours or 3 10 hours under the condition of applying carbon dioxide during the period.
  • tuber with which storage property and cultivation property were improved compared with the conventional method can be mass-produced easily.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Cultivation Of Plants (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A process for producing tubers of a solanum readily in a large amount, wherein the stolon and foliage which have grown in a liquid phase under application of carbon dioxide in the light period of the foliage growth stage are exposed to a gas phase in the tuber formation stage to form tubers in a high yield, and the culture in the tuber formation stage is conducted while aerating the gas phase of a culture tank to form a large amount of tubers not only near the boundary of the culture medium but also in the gas phase apart from the medium. As a result, the efficiency of tuber formation and the quality of the tuber are improved.

Description

明 細  Details
塊茎の生産方法  How to produce tubers
〔産業上の利用分野〕  [Industrial applications]
本発明は、 ソラナム属植物の塊茎の生産方法に関す る  The present invention relates to a method for producing tubers of Solanum plants.
〔従来の技術〕  [Conventional technology]
現在、 世界のバレイショ生産は、 主にその栄養繁殖 性を利用して行われている。 すなわち、 栄養繁殖器官 である塊茎、 いわゆる芋を植え付けると、 植物体の生 育に伴って地下部の節 (腋芽) からス トロン (側技の 一種であるが地上部の側技が背地性及び主茎と同様の 形態を示すのに対し、 ス トロ ンは斜向性一地中を水平 方向、 又は斜下方に伸長する一であり明瞭な葉を持た ない) が発生し、 その先端部が肥大して、 再び塊茎が 得られる。 これらを次世代の種芋として、 又は食用、 加工に利用するのである。 通常、 1株から 10個程度の 塊茎が再生産される。  At present, world potato production is mainly based on its vegetative reproduction. In other words, when tubers, so-called potatoes, which are vegetative breeding organs, are planted, as the plants grow, from the nodes (axillary buds) in the underground to the stron (a kind of lateral technique, the lateral technique on the ground is not On the other hand, the stalks have the same morphology as the main stem, whereas the stront extends obliquely in the ground horizontally or diagonally downward and has no clear leaves. It enlarges and tubers are obtained again. These are used as next-generation seed potatoes, or for food and processing. Normally, about 10 tubers are reproduced from one plant.
このように栄養繁殖を行うバレイショでは、 世界的 に主にアブラムシが媒介する各種ウイルス病が極めて 重大な病害として問題となっている。 つま り、 イネ、 ムギ、 トウモロコシで代表される種子繁殖性の作物は、 たとえ植物体がウィルス病に罹病しても、 その植物体 上に受精によつて形成される種子には大半のウィルス は移行しないため、 次代への影響がそれ程大き く ない のに対し、 バレイショは上述のように主に受精を伴わ ない塊茎で繁殖するため、 一旦ウィルスに感染すると 世代を越えて体内でウィルスが増殖し、 収穫に極めて 重大な被害をもたらすのである。 そのようなバレイシ ョに感染したウィルスを、 通常の自然条件では植物体 内より除去することはほとんど不可能であるため、 現 在はウィルス病の害を柽減するのに、 できるだけウイ ルスに感染させない栽培体系が世界的に用いられてい る。 その基本となるのは、 ウィルスフ リーの種芋の供 耠である。 すなわち、 ノ《レイショ栽培において、 どの 様なウィルス防除体制をとつたとしても、 植え付ける 種芋が汚染されていれば上述の理由からその努力は無 意味となるからである。 In such vegetatively propagated potatoes, various viral diseases, which are mainly borne by aphids, have become a very serious problem worldwide. In other words, seed-breeding crops such as rice, wheat, and corn, even if the plant is infected with a virus disease, most of the virus is not found in the seed formed on the plant by fertilization. Does not shift, so the impact on the next generation is not so large On the other hand, potatoes propagate mainly in tubers without fertilization as described above, so once infected with the virus, the virus propagates in the body for generations, causing serious damage to the harvest. It is almost impossible to remove such a potato-infected virus from the plant under normal natural conditions, so it is now possible to infect as much virus as possible to reduce the harm of the virus disease. Uncultivated cultivation systems are used worldwide. The basis is the supply of virus-free seed potatoes. In other words, no matter what kind of virus control system is used in potato cultivation, if the seed potatoes to be planted are contaminated, the effort is meaningless for the above-mentioned reasons.
この 「ウィルスフ リー」 の種芋の供給は、 各地で多 少の差異はあるものの、 概ね次の方法で行われている。  The supply of “Virus Free” seed potatoes is generally carried out in the following manner, although there are some differences in each region.
(1)生長点培養によるウィルスフ リー個体の作出、 (2)ゥ ィルスフ リ ー個体の馴化、 鉢植えによる小塊茎の作製、 (3)それら小塊茎の温室での栽培、 塊茎の収穫、 (4)得ら れた塊茎の圃場での栽培、 再収穫、 (5)必要量に応じた 圃場での栽培の継続 (3 - 5回) 。 このように現在世 界のウィルスフ リ一の種芋生産は行われているわけで あるが、 この方法は圃場でのウィルス再感染の危険性 を有する為、 その完全な実施には高度の栽培技術及び 検疫体制が不可欠であり、 より簡易かつ安全な方法が 求められている。 (1) Production of virus-free individuals by growing point culture, (2) adaptation of dirt-free individuals, production of small tubers by potting, (3) cultivation of these small tubers in a greenhouse, harvesting of tubers, (4) Cultivation and reharvesting of the obtained tubers in the field. (5) Continue cultivation in the field according to the required amount (3-5 times). As described above, the world's first virus-free seed potato production is currently being carried out, but since this method has the danger of re-infecting the virus in the field, complete cultivation requires advanced cultivation techniques and techniques. Quarantine systems are indispensable and simpler and safer methods It has been demanded.
その方法の一つとして、 組織培養による無菌条件下 で作製した塊茎の利用が各方面で検討されている。 す なわち、 生長点培養で得られたウィルスフ リ ー個体を、 温室、 圃場等に出すことなく、 インビトロ(i v v i tro) のまま塊茎を作製し、 それらを直接種芋として、 又は その塊茎を 1 〜 2度圃場で栽培し、 それで得られた芋 を種芋として用いるのである。 それら無菌条件で形成 される塊茎は、 従来の方法においてはその大きさが、 普通の塊茎 (tuber, チュ-バ-, 50〜300g) に比して著し く小さい (大半 1 g 以下、 直径 5〜10隨) ため、 マイ クロチューバ一 (mi cro t uber) とも呼ばれている。  As one of the methods, use of tubers produced under aseptic conditions by tissue culture has been studied in various fields. That is, the virus-free individuals obtained by the growth point culture are not exposed to a greenhouse, a field, or the like, and tubers are produced as they are in vitro (iv vitro). It is cultivated twice in the field, and the resulting potatoes are used as seed potatoes. Tubers formed under these aseptic conditions are significantly smaller (typically 1 g or less in diameter) than conventional tubers (tuber, tuber, 50-300 g) by conventional methods. Therefore, it is also called "micro tuba".
これら塊茎は次のような利点を有する。 (1)塊茎はゥ ィルスフ リ ー植物体から無菌条件で作られるため、 ゥ ィルスをはじめ完全に無病である。 (2)塊茎は組織培養 条件下で作製されるため、 自然条件に量及び質が左右 されず年中生産可能である。 (3)塊茎は種芋に直接なり うる、 又は 1 〜 2度の圃場での栽培で種芋を生産しう る可能性を持つので、 ウィルスの再感染、 他の病害の 罹病の危険性がない、 又は従来法に比してより小さい。  These tubers have the following advantages. (1) Tubers are completely sterile, including virulents, because they are made from asphyllous plants under sterile conditions. (2) Since tubers are produced under tissue culture conditions, they can be produced throughout the year regardless of the quantity and quality of natural conditions. (3) Tubers can become seed potatoes directly or have the potential to produce seed potatoes by cultivation once or twice in the field, so there is no risk of re-infection with viruses or other diseases. Or it is smaller than the conventional method.
(4)塊茎はサイズが小さいため、 大量の数の輸送でも簡 易に行いうる。 (4) Since tubers are small in size, they can be easily transported in large numbers.
このような利点を有する無菌条件下で作製される塊 茎は、 一般に次のように大き く 2つの工程に分けられ る培養法によって作製される (Estrada ら、 1986. P1 ant Cell Tiss. Org. Cult.7:3-10 、 Wang P.J. and C. Y. Hu.1982. Am. Potato J.59:33 - 37、 Rosellら、 1987. Potato Research 30:111-116^ Hussey G, and N. J. Stacey. 1984. Ann. Bot. 53: 565-578)。 Tubers produced under aseptic conditions that have these advantages are generally divided into two major steps as follows: (Estrada et al., 1986. P1 ant Cell Tiss. Org. Cult. 7: 3-10, Wang PJ and CY Hu. 1982. Am. Potato J. 59: 33-37, Rosell et al. 1987. Potato Research 30: 111-116 ^ Hussey G, and NJ Stacey. 1984. Ann. Bot. 53: 565-578).
茎葉増殖工程…本工程は、 後の塊茎形成に必要とな る腋芽、 すなわち各節に含まれる芽を増やすため、 バ レイショの茎葉自体を生長させる工程である。 このェ 程は、 通常植物組織培養に使用される基本培地に、 炭 素源として 1〜 3 %のショ糖、 更に場合によっては低 濃度の植物ホルモンを加え、 寒天又は液体条件下、 一 定の日長の光照射下で行われる。 この条件で植え付け られた少なく とも 1個の芽を有する植物片は、 自然条 件下の地上部の生長と同様の形態を相似的に小さ く し た形で生長する。 発根も伴うが、 通常この条件では塊 茎の形成はない。 培養温度は 20〜25でである。 培養期 間は通常 3〜 5週間である。  Foliage growth step: This step is to grow the potato foliage itself in order to increase the axillary buds necessary for tuber formation later, that is, the buds contained in each node. This process involves adding 1 to 3% sucrose as a carbon source to a basal medium usually used for plant tissue culture, and sometimes a low concentration of plant hormones, and adding a constant amount of agar to agar or liquid. It is performed under photoperiod of light. A plant piece with at least one bud planted under this condition grows in a form similar to that of the aerial part under natural conditions, with a similar reduced size. Although rooting is also involved, tuber formation does not usually occur under these conditions. The culture temperature is 20-25. The culture period is usually 3 to 5 weeks.
塊茎形成工程…茎葉増殖工程で生長した茎葉を、 茎 葉増殖工程より高いショ糖 (5〜10%) を含有する、 場合によっては更にサイ トカイニン等の植物ホルモン や矮化剤を加えた上記基本培地に移植する。 また、 茎 葉増殖工程が液体で行われた場合は、 同成分の培地で 交換することも行われている。 温度は 15〜25' (:、 一般 に暗条件、 場合によって 100〜5001uxの低照度又は短 日条件が用いられる。 培養期間は通常 4〜 8週間であ る。 これらの操作によって茎葉に含まれる腋芽に直接、 又はそれらから伸長した茎に主に塊茎が形成される。 Tuber-forming step: The above-mentioned base containing sucrose (5 to 10%) higher than that in the foliage-growing step, and optionally containing plant hormones such as cytokinin or dwarfants Transfer to medium. When the foliage growth process is performed in liquid, the medium is replaced with the same component. Temperature is 15 ~ 25 '(: generally in dark condition, sometimes low light or short of 100 ~ 5001ux Day conditions are used. The culture period is usually 4 to 8 weeks. By these operations, tubers are formed directly on the axillary buds contained in the foliage or mainly on the stems extended from them.
しかし、 従来の方法は塊茎の誘導効率が低く、 また 手法自体が大量の塊茎作製に適しておらず、 結果的に 塊茎作製のコス トが高く、 実用化技術とはなっていな い。 これら従来技術は遺伝子源の保存、 遺伝子源の配 布に用いられているに過ぎなかった。  However, the conventional method has low tuber induction efficiency, and the method itself is not suitable for producing a large amount of tubers. As a result, the cost of producing tubers is high, and it is not a practical technique. These conventional techniques have only been used for preservation and distribution of gene sources.
近年、 その欠点を改良する試みがなされている (特 願昭 63- 500104号(国際公開番号 W088/04136)、 Aki ta M. and S. Takayama. 1988. Acta Hor t i cu l t . 230 : 55- 61 )。 その改良法においては、 塊茎の大半が培地と気 相部の境界面付近にしか形成されないため、 長く伸長 した植物体に効率的に塊茎を誘導するには、 塊茎形成 工程で培地面を徐々に下げていく必要がある。 そのた めにここで用いられている方法は、 植物体を増殖後、 その大部分を没するように塊茎形成用培地を入れ、 境 界面付近に塊茎が形成され始めた時点で、 培地を人為 的にぬき、 更に下げた培地面付近で塊茎が形成された 後これらの操作を繰り返していく方法や、 多量の空気 (0. 8〜2. 2vvm) を液相部に通気し、 培地を強制的に蒸 発させ、 培地面を徐々に下げる方法である。  In recent years, attempts have been made to improve the disadvantages (Japanese Patent Application No. 63-500104 (International Publication No. W088 / 04136), Akita M. and S. Takayama. 1988. Acta Horticu lt. 230: 55- 61). In the improved method, most of the tubers are formed only near the interface between the culture medium and the gas phase, so to efficiently induce tubers in long elongated plants, the medium surface must be gradually grown in the tuber formation process. We need to lower it. For this purpose, the method used here is to grow the plant, add a tuber-forming medium so that most of it is submerged, and artificially transform the medium when tubers begin to form near the boundary interface. After the tuber has formed near the surface of the medium, the operation is repeated, or a large amount of air (0.8 to 2.2 vvm) is passed through the liquid phase to force the medium. In this method, the medium is gradually evaporated and the surface of the medium is gradually lowered.
これら方法では、 用いた培地の大半が主に塊茎の誘 導にのみ使用され、 その肥大にはあまり利用されてい ない。 すなわち、 添加した養分、 炭素源を十分利用し ていないことになり、 一層の製造コス トの削減が難し い。 また、 特に培地を徐々に人為的に除去していく方 法は多く の操作を要し、 コンタ ミネーシヨ ンの危険も 増す。 また、 塊茎が主に形成される腋芽は、 茎葉増殖 工程で気相中に形成したものが殆んどであり、 培地中 に形成された茎葉は殆ど利用されない。 更に、 我々の 検討では、 培地境界面付近に作製された塊茎は、 品種 によっては皮目肥大、 又は、 表皮の損傷が著しく、 貯 蔵及び圃場栽培には不向きであった。 In these methods, the majority of the media used is mainly used only for the induction of tubers, and is less often used for hypertrophy. Absent. In other words, the added nutrients and carbon sources are not fully utilized, and it is difficult to further reduce production costs. In particular, the method of gradually and artificially removing the culture medium requires many operations, and increases the risk of contamination. Most of the axillary buds, which mainly form tubers, are formed in the gas phase during the foliage growth process, and the foliage formed in the medium is hardly used. In addition, in our study, tubers produced near the boundary of the culture medium were not suitable for storage and field cultivation, depending on the cultivar.
〔発明が解決しょう とする課題〕  [Problems to be solved by the invention]
本発明の目的は、 上記従来技術の問題点を解消した、 改良された塊茎の生産方法の提供である。 更に具体的 には、 貯蔵性及び栽培性に優れた塊茎を大量かつ容易 に生産する方法の提供である。  An object of the present invention is to provide an improved method for producing tubers which has solved the above-mentioned problems of the prior art. More specifically, it is an object of the present invention to provide a method for easily producing a large amount of tubers excellent in storability and cultivation.
〔課題を解決するための手段〕  [Means for solving the problem]
本発明者らは、 上記目的を達するべく研究を進めた 結果、 意外はも茎葉増殖工程の明期での炭酸ガス施用 が、 (1)従来ではス ト口ンの誘導が認められなかった培 養条件においても、 ス トロンを旺盛に誘導、 増殖する こと、 (2)従来のス トロン誘導条件において、 より肥厚 したス トロンをより効率的に誘導、 増殖しうること、 (3)長日かつ暗期の低温条件下でス ト口ンをより旺盛に 誘導、 増殖すること、 (4)それら炭酸ガス施用下におい て液相部に伸長したス トロン及び茎葉を、 塊茎形成ェ 程で気相部に露出することによって、 露出されたス ト ロン及び茎に、 短時間に同調的に、 著しく高率で塊茎 が成形されることを見い出した。 また、 意外にも、 塊 茎形成工程において、 培養槽気相部への直接の通気条 件下での培養が、 ス トロ ンの有無及び茎葉の気相部へ の露出に関係なく、 (5)塊茎を培地境界面付近だ でな く培地面から離れた気相中に多数形成せしめ、 結果的 に塊茎の形成効率、 質を改善することを見出した。 さ らに、 (6)前述 (4)及び (5)の組合せにより、 量的、 質的に 優れた塊茎生産が可能であることを見い出し、 上記各 知見に基づいて本発明を完成するに至った。 The present inventors have conducted researches to achieve the above object. As a result, surprisingly, the application of carbon dioxide gas during the light stage of the foliage growth process was surprising. Strongly inducing and proliferating stron under feeding conditions; (2) Inducing and proliferating thicker strons more efficiently under conventional stron inducing conditions; (3) Long day Inducing and multiplying the stolon more vigorously under low temperature conditions in the dark period. (4) Under the application of carbon dioxide gas By exposing the strons and foliage extending to the liquid phase to the gaseous phase during the tuber formation process, the exposed stron and stalk are synchronized in a short period of time with a remarkably high rate of tubers. Found to be molded. Also, surprisingly, in the tuber formation process, culturing under the conditions of direct aeration into the gas phase of the culture tank, regardless of the presence or absence of the stron and the exposure of the foliage to the gas phase, (5) ) We found that a large number of tubers were formed not only near the boundary of the culture medium but also in the gas phase away from the culture medium surface, and as a result, the efficiency and quality of tuber formation were improved. Furthermore, (6) it has been found that the combination of the above (4) and (5) enables excellent tuber production in terms of quantity and quality, and the present invention has been completed based on the above findings. Was.
これまでにも、 炭酸ガスを施用した培養法はいくつ か報告がある (特開平い 285117号、 特開平 1-304826号、 特開平 2-16921号、 Lakso ら、 1986. J. Amer. Soc. Hort. Sci. Ill :634-638 、 Kozai T. and Y. Iwanami.1988. J. Japan, Soc. Hort. Sci.57:279 - 288)0 しかし、 これらい ずれの方法においても、 その目的は、 従来の従属栄養 的生長を行っている培養植物体を光独立的生長に移行 させるこ とによって、 植物の生長を早め、 発根を促進 し、 更には馴化時の活着率を向上せしめることであり、 炭酸ガスも培養環境下での光合成を最適にするために 用いられている。 すなわち、 その目的においては、 培 養植物体は、 自然条件下の植物体と同一の形態、 性質 を持つことが望まれているのであり、 炭酸ガス施用に よって、 自然条件では認められないような新規な植物 体の形態を誘導し、 それらを利用することは報告され ておらず、 又、 考えられてもいなかった。 So far, there have been several reports on culture methods using carbon dioxide gas (JP-A-285117, JP-A 1-304826, JP-A 2-16921, Lakso et al., 1986. J. Amer. Soc. Hort. Sci. Ill: 634-638, Kozai T. and Y. Iwanami. 1988. J. Japan, Soc. Hort. Sci. 57: 279-288) 0 However, the purpose of any of these methods is By shifting the culture of conventional heterotrophic growth to light-independent growth, the growth of plants can be accelerated, rooting can be promoted, and the survival rate during acclimation can be improved. Yes, carbon dioxide is also used to optimize photosynthesis in a culture environment. That is, for that purpose, the cultured plant has the same morphology and properties as the plant under natural conditions. It has been reported that the application of carbon dioxide gas induces new forms of plants that cannot be recognized under natural conditions and uses them. I was not even heard.
バレイショにおいても炭酸ガスの施用下での培養の 報告はあるが (Kozai ら 1988. Acta Horticult.230:12 1-127、 古在ら 園学雑 58別 1 ' 89 p.244〜245)、 '塊茎 形成に利用した例はない。 それら報告の目的は前述の 例と同じであり、 光独立的生長性の付与による自然条 件下に容易に馴化可能な、 自然条件の地上部と同じ形 態の培養植物体の育成が考えられている。 すなわちこ の方法においては、 ス トロンの誘導、 増殖及びそれら からの塊茎の形成は観察されておらず、 その可能性も 示唆されていない。 また、 それらの報告で用いられて いる炭酸ガス濃度は、 一定の培養条件下での植物体の 光合成を最適にすることを目的に設定されており、 そ の濃度は主に lOOOppm (0.1%) 以下の比較的低い値が 例示されている。  Although potatoes have been reported to be cultured under the application of carbon dioxide gas (Kozai et al. 1988. Acta Horticult. 230: 12 1-127, Koza et al. There is no example used for tuber formation. The purpose of these reports is the same as in the previous example, and it is conceivable to grow cultured plants in the same form as the above-ground part under natural conditions, which can be easily adapted to natural conditions by imparting light-independent growth. ing. That is, in this method, stron induction, proliferation, and tuber formation from them have not been observed, and the possibility thereof has not been suggested. The concentration of carbon dioxide used in these reports is set for the purpose of optimizing photosynthesis of plants under certain culture conditions, and the concentration is mainly 100 ppm (0.1%). The following relatively low values are illustrated.
また根系 (Artecaら、 1979. Science 205:1279-1280) や通常の塊茎そのもの(D. R. Paterson 1975. J. Amer. Soc. Hort. Sci. 100:431-434)に対する炭酸ガス処理 が、 その後の地上部の生長、 ス トロンの長さ、 ス ト口 ンの発達程度、 ス トロンあたりの塊茎形成数、 塊茎収 量に促進的な影響を及ぼす報告例があるが、 それらに おいても植物体は、 茎葉の生長部と塊茎の形成部が明 らかに区別される形態を示し、 それは、 自然条件下の バレイショの形態と同一範ちゆ うに属するものと言え る。 又、 これらの報告では、 高濃度の炭酸ガス (前者 -45 後者- 80 % ) が短時間 (両者とも 12時間) 、 特定の器官 (前者- 根系、 後者- 塊茎) に施されていCarbon dioxide treatment of the root system (Arteca et al., 1979. Science 205: 1279-1280) and the normal tubers themselves (DR Paterson 1975. J. Amer. Soc. Hort. Sci. There are reports that have a positive effect on the growth of the head, the length of the stron, the development of the stolon, the number of tubers formed per stron, and the tuber yield. Even in this case, the plant shows a form in which the growth part of foliage and the formation part of the tuber are clearly distinguished, which can be said to belong to the same range as the form of potato under natural conditions. Also, in these reports, high concentrations of carbon dioxide (the former -45, the latter-80%) were applied to specific organs (the former-the root system, the latter-the tubers) for a short time (both 12 hours).
0。 0.
一方、 培養条件下では、 ス トロンは、 これまでにも 主に短日条件下で形成されることが観察されてはいる が、 これらは一般に細くかつ誘導効率も低く、 また塊 茎形成能力も高く はないので、 これまで積極的に塊茎 の生産に用いられることはなかった。 また自然条件下 では一般にバレイショのスト口ン伸長を促進すると言 われる長日条件において、 培養条件下では、 これまで まれにス トロンの伸長及び塊茎の形成を観察した例 ( 前出、 Huss ey G. and Ν· J. S tacey)はあるが、 ス トロ ン を効率的に誘導、 増殖し、 それらを塊茎生産に利用し た例はない。 また暗期の低温を長日条件と結びつけた 塊茎作成の培養例もない。  On the other hand, under culture conditions, strons have been observed to be mainly formed under short-day conditions, but they are generally thin, have low induction efficiency, and have poor tuber-forming ability. Since it is not high, it has not been actively used for tuber production. In addition, under long-term conditions, which are generally said to promote the growth of potato corn under natural conditions, under culture conditions, stron elongation and tuber formation have been rarely observed (see above, Hussey G. and Ν · J. Stacey), but there is no example of efficiently inducing and growing strons and using them for tuber production. In addition, there are no culture examples of tuber production that combine low-temperature darkness with long-day conditions.
ところが本発明者らは、 明期.に炭酸ガスを施用する こ とにより、 塊茎生産に効果的な植物形態を誘導可能 であることを見い出した。 すなわち自然条件下では主 に土中の根系部分にしか伸長せず、 炭酸ガスを施用し ない同一条件 (主に長日条件) の培養中にはほとんど 形成されないス トロンが、 又条件 (主に短日条件) に よっては形成される場合でも細くかつ少数であるス ト ロンがより肥厚した状態でより効率的に、 植物体の上 部から下部にわたって旺盛に分化、 発達した。 その結 果、 良好な場合にはス トロンの密集した特異な形態に なることもある (第 3図、 第 4図) 。 However, the present inventors have found that an effective plant morphology for tuber production can be induced by applying carbon dioxide gas during the light period. In other words, under natural conditions, it only elongates mainly to the root system in the soil, and during culturing under the same conditions (mainly long-day conditions) without the application of carbon dioxide, it hardly occurs. Unformed strons, and even under some conditions (mainly short-day conditions), are more efficient with thinner and fewer strons, thicker and thicker, from the top to the bottom of the plant. It has been vigorously differentiated and developed. As a result, good conditions can lead to dense and distinctive forms of strons (Figures 3 and 4).
更に本発明の方法で得られたそれらのス トロン及び 茎に含まれる腋芽は、 従来法で得られたものに比して、 高い塊茎形成能力を持つことも見い出された。 特に炭 酸ガス施用時に液相部に伸長し、 塊茎形成時に気相部 に露出する条件で培養されたス トロン及び茎に含まれ る腋芽から、 最も効果的 (短時間、 同調的及び高い効 率) かつ培地面からの距雜に関係なく、 気相中に塊茎 が形成された。 その様な条件下では塊茎は、 それらス トロンの先端部が直接肥大して主に形成されるが、 ス トロン及び茎の腋芽からも、 直接、 又は新たなス ト口 ンを介して塊茎が多く形成された。 その結果、 良好な 場合には、 植物体の上部から下部に至る大部分が塊茎 で覆われる、 すなわち、 自然条件下のバレイショの生 長では明らかに区別されている、 茎葉部分と塊茎の形 成部分が混在すると言う極めて特徴的な形態を示した (第 5図) 。 この現象は、 従来法の培養槽における塊 茎形成のほとんどが、 茎葉増殖工程の気相に存在した 腋芽に、 かつ塊茎形成工程の培地境界近辺で生じる点 と大き く異なっている。 Furthermore, it was also found that the axillary buds contained in the stron and stem obtained by the method of the present invention had higher tuber-forming ability than those obtained by the conventional method. In particular, the most effective (short-time, synchronized and high-efficiency) is obtained from the axillary buds contained in the strons and stems that have been grown under the conditions that elongate into the liquid phase during carbon dioxide application and are exposed to the gas phase during tuber formation. Tuber was formed in the gas phase regardless of the distance from the medium surface. Under such conditions, tubers are mainly formed by direct enlargement of the tips of the strons, but tubers can also form from the strons and the axillary buds of the stems, either directly or through new stalks. Many were formed. As a result, in good cases, a large part of the plant from the top to the bottom is covered with tubers, that is, the formation of foliage and tubers is clearly distinguished in potato growth under natural conditions. It showed a very characteristic form in which parts were mixed (Fig. 5). This phenomenon is due to the fact that most tuber formation in the conventional culture tank occurs in the axillary buds, which existed in the gas phase during the foliage growth process, and near the medium boundary in the tuber formation process. It is very different.
以上の様な、 本発明におけるス トロンの誘導、 増殖、 更にス トロン及び塊茎の密集形態の誘導は、 先に示し たこれまでの炭酸ガス施用を含む植物体培養方法、 並 びに塊茎形成法においては全く報告されておらず、 又、 それらから予想することも不可能であり、 塊茎形成効 率が大幅に改善された。 また本方法では、 一般に、 茎 葉増殖培地より高濃度のショ糖が用いられる塊茎誘導 用培地が、 従来法に比して少量で良く、 単位糖量あた りの塊茎形成効率も顕著に向上した。  As described above, the induction and proliferation of stron in the present invention, and the induction of dense morphology of stron and tuber are performed in the plant culture method including carbon dioxide application and the tuber formation method described above. No tuberculosis was reported, nor was it possible to predict from them, and the tuber formation efficiency was greatly improved. In addition, in this method, the tuber induction medium, which generally uses a higher concentration of sucrose than the foliage growth medium, can be used in a smaller amount than the conventional method, and the tuber formation efficiency per unit sugar amount is significantly improved. did.
一方炭酸ガスを富化しない通常の空気を培養環境下 の気相部に直接通気する方法についても、 従来法はや はり光合成促進による培養植物体の生長率及び馴化後 の活着率の向上を目的としており、 植物形態の変化は 考えられていない。 また培養条件下での塊茎形成工程 に、 気相部に直接通気する方法が用いられた例はない。  On the other hand, the conventional method, in which ordinary air that is not enriched with carbon dioxide, is directly ventilated to the gas phase in the culture environment, also aims to improve the growth rate of cultured plants and the survival rate after acclimation by promoting photosynthesis. No change in plant morphology is considered. In addition, there is no example in which a method of directly aerating the gas phase is used in the tuber forming step under culture conditions.
ところが本発明の塊茎形成時における培養槽気相部 への直接の通気は、 自然条件下と異なる特徴的な植物 体の形態を導き、 塊茎形成効率を大き く改善する点で 予想外であった。 すなわち、 培養槽気相部に適度に通 気した場合、 添加した培地量に関係なく、 かつ培地面 をあまり低下させることなく気相中の植物体の上部か ら培地に接した間の部分に、 塊茎が多数形成されたの である。 その際、 塊茎は、 前過程の植物体生長時に伸 長した茎の腋芽に直接形成される場合もあるし、 それ ら腋芽から新たな茎又はスト口ンが本過程の間に伸長 し、 それらに形成される場合もある。 また望ましい気 相部への直接の通気方法では、 塊茎着生部の湿度が低 下し比較的乾燥した条件下で塊茎が形成される為、 従 来法より乾物割合の高いかつ皮目肥大、 表皮の損傷の 少ない良質な塊茎が得られる。 However, direct aeration into the gas phase of the culture tank during tuber formation according to the present invention was unexpected in that it led to characteristic plant morphology different from that under natural conditions and greatly improved tuber formation efficiency. . In other words, when the gas in the culture tank is appropriately ventilated, regardless of the amount of the medium added, and without significantly lowering the medium surface, the portion between the top of the plant in the gas phase and the area in contact with the medium can be used. Many tubers were formed. At that time, tubers grow during the pre-plant growth. In some cases, the stems are formed directly on the axillary buds of the elongated stems, or in those cases, new stems or stodones from the axillary buds elongate during this process and are formed on them. In addition, in the preferred method of direct aeration into the gas phase, tubers are formed under relatively dry conditions due to reduced humidity of the tuber-growth area. High quality tubers with less damage to the epidermis can be obtained.
このような塊茎の形成の仕方は、 従来の培養槽を用 いた培養条件下では、 培地の境界面を人為的に大幅に 下げることなしに、 これと類似の塊茎の形成を実現す ることが出来ず、 新規な現象と言えよう。  This type of tuber formation can achieve similar tuber formation under culture conditions using a conventional culture tank without artificially lowering the boundary surface of the culture medium. No, it's a new phenomenon.
塊茎形成時におけるこの方法は、 用いる植物体の状 態、 すなわち茎葉増殖工程の培養方法のいかんによら ず効果的であるが (第 6図) 、 前述の炭酸ガス施用に よる塊茎生産法と組合せた際に、 最も良好な結果が得 られる (第 5図) 。  This method at the time of tuber formation is effective regardless of the state of the plant used, that is, the culture method of the foliage growth process (Fig. 6), but it is combined with the tuber production method using carbon dioxide as described above. The best results are obtained (Fig. 5).
すなわち、 本発明の塊茎の生産方法は、 塊茎形成能 を有するソラナム属植物の塊茎の生産方法において、 下記請求範囲記載の通りの、  That is, the method for producing tubers of the present invention is a method for producing tubers of a Solanum genus plant having tuber-forming ability, as described in the following claims:
「 1 . 培養容器内の茎葉増殖工程および塊茎形成工程を 含む工程からなる塊茎形成能を有するソラナム属植 物の塊茎の生産方法において、  "1. A method for producing a tuber of a Solanum plant having a tuber-forming ability comprising a step including a foliage growing step and a tuber forming step in a culture vessel,
(1) 該茎葉増殖工程の少なく とも一部において、 少なく とも 1個の芽を有する植物片を、 少なく とも 炭素源および無機塩を含む液体培地で、 明期の少な く とも一部に炭酸ガスを施用した条件下で培養し、 茎葉およびス トロ ンを誘導、 増殖し、 (1) In at least a part of the foliage growing step, a plant piece having at least one bud is Cultivated in a liquid medium containing a carbon source and inorganic salts, with carbon dioxide applied to at least part of the light period, to induce and proliferate foliage and stront,
(2) 該塊茎形成工程において、 前記茎葉増殖工程 で液体培地中に形成されたス トロ ンの少なく とも一 部を気相に露出させて、 少なく とも炭素源を含む液 体培地で、 培養することを特徴とする塊茎の生産方 法 (2) In the tuber formation step, at least a part of the stron formed in the liquid medium in the foliage growth step is exposed to a gaseous phase, and cultured in a liquid medium containing at least a carbon source. Tuber production method characterized by the following:
. 前記塊茎形成工程において、 気相部に通気するこ とにより該気相部の相対湿度を低下させて培養する こ とを特徴とする請求項 1記載の塊茎の生産法。. 炭酸ガスの施用濃度が、 0. 1 〜30 % (v/v) である ことを特徵とする請求項 1記載の塊茎の生産法。. 炭酸ガスの施用方法が、 炭酸ガスを 0. 1 〜30 % (v /V) に富化した空気を容器内体積に対して毎分 0. 00 01〜 1 容通気することを特徵とする請求項 1 記載の 塊茎の生産方法。 2. The method for producing tubers according to claim 1, wherein in the tuber forming step, the relative humidity of the gas phase is reduced by aerating the gas phase to culture the tuber. 2. The method for producing tubers according to claim 1, wherein the applied concentration of carbon dioxide is 0.1 to 30% (v / v). The method of applying carbon dioxide gas is characterized in that 0.1 to 30% (v / V) of carbon dioxide gas is aerated at a rate of 0.001 to 1 volume per minute with respect to the volume in the container. The method for producing tubers according to claim 1.
. 培養容器内の茎葉増殖工程および塊茎形成工程を 含む工程からなる塊茎形成能を有するソラナム属植 物の塊茎の生産方法において、 該塊茎形成工程にお いて、 気相部に通気するこ とにより該気相部の相対 湿度を低下させて培養することを特徴とする塊茎の 生産法。 J In a method for producing tubers of a Solanum genus plant having tuber-forming ability comprising a step including a foliage growing step and a tuber forming step in a culture vessel, the tuber forming step includes aerating the gas phase in the tuber forming step. A method for producing tubers, which comprises culturing while reducing the relative humidity of the gas phase. J
を含むことを特徵とするものである。 以下、 説明の便宜上、 請求項 1記載の発明を第 1 発明、 請求項 5記載の発明を第 2発明という。 It is characterized by including. Hereinafter, for convenience of explanation, the invention described in claim 1 is referred to as a first invention, and the invention described in claim 5 is referred to as a second invention.
以下に本発明を詳細に説明するが、 こ こで用いる ス ト口ンについて定義しておく。  Hereinafter, the present invention will be described in detail, but the stone used here will be defined.
ス トロン…以下の 3つの形態の茎をここではス ト ロンと呼ぶこ ととする (第 3図、 第 4図) 。  Stron: The following three types of stems are called “strons” here (Figs. 3 and 4).
(1) 自然条件下で生長する植物体のス トロンに 類似した形態をとり (地上部の側技に比して節間が長 い。 先端にはフッ ク =鈞状部を持ち、 葉緑体はなく 白 色に近い、 各節の葉は痕跡程度に発達が抑制されてい る) かつ明らかな伸長方向の斜向性 (水平又は斜下方 に向かって伸長する性質) を示す。  (1) It has a morphology similar to the stron of a plant that grows under natural conditions. (Long internodes compared to the side technique on the ground. It has a hook-junction at the tip, and leafy green There is no body and it is almost white. The leaves of each node are suppressed to the extent of traces.) It shows a clear oblique orientation (property that extends horizontally or downward).
(2) 大部分の形態は (1)のス ト口ンと同じであるが、 葉緑体を有するやや発達した葉を持ち、 時には部分的 に赤色を呈する。 伸長方向は斜向性を示す。  (2) Most forms are the same as those of (1), but have slightly developed leaves with chloroplasts, and sometimes have a partial red color. The direction of extension shows obliqueness.
(3) (2)のス トロンと同じ形態であるが上方に向かつ て伸びてゆく、 培地上で、 又は、 培地上に出てもそれ 以上の葉の発達が認められない、 あるいはその発達が 極めて遅いもの。  (3) It has the same form as the stron of (2), but extends upward, and no further leaf development is observed on the medium or even when it comes out on the medium, or its development But very slow.
本発明で対象となる植物には、 ソラナム(Solanum) 属の塊茎形成能を持つ種のすべてが含まれる。 その ような植物の具体例は、 例えば、 バレイ ショ栽培種 (So lanum t uberosum) 、 S. demi ssum、 S. acau l e、 S. s t ol on i f erum、 S. phure j a等である。 これらのうちで は、 バレイショ栽培種が代表的である。 Plants of interest in the present invention include all species of tuber-forming ability of the genus Solanum. Specific examples of such plants are, for example, potato cultivars (So lanum t uberosum), S. demi ssum, S. acaule, S. stol on iferum, S. phure ja and the like. Of these Is a representative of potato cultivars.
本発明に用いる容器は、 培養槽の場合、 空気もしく は炭酸ガスを富化した空気を通気しうるものならどの ようなものでも良いが、 培地の液相部、 気相部とも通 気しうるものであることが望ま しい。 培養槽を用いな い場合は、 通気性のある通常の植物組織培養用の容器、 又はキャ ップならどのようなものでも良い。 普通、 通 気性を良く したフタをかぶせた三角フラスコ、 円筒状 の培養びん又はボリカーボネー ト製の培養容器を用い 第 1 発明は、 明期に炭酸ガスを施用し、 植物体を生 長させ、 茎葉およびス トロンを誘導、 増殖させる茎葉 増殖工程((A)工程) と、 それら植物体のス トロン及び 茎に含まれる腋芽に塊茎を形成させる塊茎形成工程 ( (B)工程) の 2つの工程を含むので、 以下別々に説明 する。 また第 2発明については、 下記(Β)工程の中に 含めて説明する。 さらに前記第 1 発明および第 2発明 以外の、 請求項 2, 3および 4記載の発明についても 下記(Α)工程 および(Β)工程の中に含めて説明する。  In the case of a culture tank, the container used in the present invention may be any container that can ventilate air or air enriched with carbon dioxide, but also ventilates the liquid phase and gas phase of the culture medium. It is desirable that it is possible. When a culture tank is not used, any air-permeable container or cap for ordinary plant tissue culture may be used. Ordinarily, an Erlenmeyer flask covered with a lid with good air permeability, a cylindrical culture bottle or a culture container made of polycarbonate is used.The first invention is to apply carbon dioxide gas during the light period to grow plants, And a stron inducing and multiplying, a foliage growth step (step (A)) and a tuber formation step (step (B)) for forming tubers on the axillary buds contained in the stron and stem of the plant. Therefore, they are described separately below. In addition, the second invention will be described in the following step (II). Further, the inventions described in claims 2, 3 and 4 other than the first invention and the second invention will be described in the following steps (I) and (II).
(Α) ェ 程 (Α)
本工程に供試する植物材料は、 無菌的に維持されて いる個体なら由来は問わないが、 通常圃場で生育中の 個体の、 又は収穫した塊茎から萌芽した芽の生長点培 養由来の植物体が用いられ、 ウィルスその他の病害に 完全にフ リーであることが望ま しい。 本工程では、 少 なく とも 1個の芽を有するその植物片であれば根は必 ずしも必要ではないが、 望ましく は数個の芽及び根を 有する小植物体を植え付け材料として用いるのが良い。 植え付け数は、 培地 1 リ ッ トル当たり 1〜50ケが用い られる。 また、 該植物体又は植物片は、 ス トロンが形 成されていないものであってもよいが、 望ましく は既 にス トロンが形成されているものが良い。 なぜならス ト口ンを有しない植物片を材料として用いた場合には、 それまでに存在しなかったス トロンを 「誘導」 するま でに一定時間を要し、 その後それらス トロン及び茎葉 からの旺盛なス トロンの 「増殖」 が生じるのに对し、 ス トロ ンを有する材料の場合には、 既にス トロ ンの 「誘導」 は起こっている為、 置床後すぐにス トロ ンの 「増殖」 が始まり培養時間の効率的な利用が可能だか らである。 更に、 本工程の植え付け材料として、 ス ト ロン又は、 少なく とも 1個の芽を有するス トロンの一 部を用いても良いことは言うまでもない。 本工程によ り、 茎葉およびス トロンが誘導、 増殖され、 更にそれ らの塊茎形成能が高められる。 The plant material used in this process can be of any origin, provided that it is maintained aseptically, but is usually derived from an individual growing in the field or from a growth point culture of buds sprouted from harvested tubers. The body is used to protect against viruses and other diseases It is desirable to be completely free. In this step, roots are not necessarily required as long as the plant pieces have at least one bud, but it is preferable to use plantlets having several buds and roots as planting materials. good. The number of seeds used is 1 to 50 per liter of medium. The plant or plant piece may not have a stron formed thereon, but preferably has a stron formed therein. This is because when using plant pieces that do not have a mouth as a material, it takes a certain amount of time to “induce” strons that did not exist before, and then the strons and foliage While vigorous stront "proliferation" occurs, in the case of a material containing a stron, the "induction" of the stron has already taken place, so the "proliferation" of the stron immediately occurs after placement. This begins because the culture time can be used efficiently. Further, it is needless to say that a stron or a part of a stron having at least one bud may be used as a planting material in this step. By this step, foliage and stron are induced and propagated, and their tuber-forming ability is further enhanced.
本工程で甩いられる培地は、 通常植物組織培養に使 用される基本培地に炭素源としてショ糖を 1〜 3 %添 加したもので良い。 それら基本培地としては、 ムラシ ゲ · スクーグ (Murashi ge & Skoog)の培地( 以下、 M S培地と記す) 、 リ ンスマイヤ一 · スクーグ (Li nsma i er & Skoog)の培地、 ホワイ ト(Whi te) の培地、 シェ ンク · ヒルデブラン ト(Schenk & Hi l debrandt )の培地 等があるが、 通常 M S培地が用いられる。 これら従来 - の培地の組成などは、 例えば、 原田及び駒嶺著 「植物 細胞組織培養」 P. 390〜391 、 理工学社、 1984年に記 載されている。 ショ糖以外の炭素源としては、 グルコ —ス、 マルトース、 糖蜜等が例示される。 The medium used in this step may be a basic medium usually used for plant tissue culture supplemented with 1 to 3% of sucrose as a carbon source. The basic medium is Murashige &Skoog's medium (hereinafter referred to as M S medium), Linsmeier & Skoog medium, White medium, Schenk & Hill debrandt medium, etc. Usually, an MS medium is used. The composition of these conventional media is described, for example, in Harada and Komine, "Plant Cell Tissue Culture", pp. 390-391, RIKEN, 1984. Examples of carbon sources other than sucrose include glucose, maltose, molasses and the like.
それら基本培地に、 植物生長調節剤として、 1 ーナ フタ リ ン酢酸 (NAA)、 イ ン ドール— 3 —酢酸 (I AA)、 2, 4 ージクロロフヱノキシ酢酸 (2, 4 - D)、 イ ン ドール 一 3 —酪酸 (I BA:)、 ジベレ リ ン酸 (GA 3 )、 6 —べンジ ルァデニン (BA) 、 力イネチン等の植物ホルモンゃサ ィコセル(CCC) 、 アンシミ ドール等の矮化剤を 0. 001 〜10ppm の範囲で加えても良い。 特に GA3はス トロ ン 伸長に効果的な場合が多い。 用いる培地量は、 特に限 定されないが、 (1)ス トロンは、 培地外より培地中によ り容易にかつ多く誘導されるこ と、 (2)液中でそれらス トロ ンは旺盛に伸長し、 技分かれし、 更にス トロンを 生み出すこと、 (3)ス トロン以外の茎も液中で旺盛に伸 長、 分枝すること、 (4)茎には腋芽が多数含まれること、 (5)液中に形成されたス ト口ン及び茎に含まれる腋芽か ら、 後に述べる条件下で塊茎がより効率的に形成され ることから、 用いる培養槽、 容器の 30 %以上であるこ とが望ま しい。 培地の pHは 4〜 8、 好ま しく は 5〜 7 を用レヽな o These basal media contain plant growth regulators such as 1-naphthalinacetic acid (NAA), indole-3-acetic acid (IAA), and 2,4-dichlorophenoxyacetic acid (2,4-D ), Lee emissions doll one 3 - butyric acid (I BA :), Jibere-phosphate (GA 3), 6 - base Nji Ruadenin (BA), a plant hormone Ya Sa Ikoseru such force Inechin (CCC), such as Anshimi Doll A dwarfing agent may be added in the range of 0.001 to 10 ppm. In particular, GA 3 is often effective for elongation of the stron. The amount of medium used is not particularly limited, but (1) strons are more easily and more induced in the medium than outside the medium, and (2) strons grow vigorously in the solution. (3) The stems other than the stront vigorously elongate and branch in the liquid, (4) The stem contains many axillary buds, (5) ) Tubers are more efficiently formed from the axillary buds contained in the sponge and stems formed in the liquid under the conditions described below. Is desirable. Medium pH should be 4-8, preferably 5-7
以上の基本的な培養条件の他に、 ス トロンの誘導、 増殖には、 日長、 温度及び光の照射方向が相互に関わ つてく るので、 以下の 2つの場合に分けて説明する。  In addition to the basic culture conditions described above, photoperiod, temperature, and the direction of light irradiation are related to the induction and proliferation of strons.
1 . 長日条件の場合  1. Long day conditions
品種の日長感応性にも依存するが、 通常バレイショ の組織培養に用いられている長日条件、 すなわち 14時 間以上の日長かつ 20〜25°Cの条件では一般にス トロン は誘導されにくい。 また、 誘導される場合においても ス トロンは地上茎又は葉状茎として伸長し、 ス トロン としての伸長は認められにくい。 長日下での炭酸ガス 施用による旺盛なス トロンの誘導、 増殖の促進は、 (1) 連続日長、 もしく は (2)喑期の温度が 15°C以下となる条 件下で顕著に認められる。  Although it depends on the photoperiod sensitivity of the cultivar, strons are generally less likely to be induced under the long-day conditions normally used for potato tissue culture, i.e., at a photoperiod of 14 hours or more and at 20 to 25 ° C. . Also, when induced, the stron elongates as above-ground or foliate stalks, and hardly elongates as a stron. Vigorous stron induction and multiplication by long-day application of carbon dioxide is remarkable under the condition that (1) continuous day length or (2) the temperature in period (1) is 15 ° C or less. Is recognized.
培養温度は、 (1)の場合、 15〜30で、 望ましく は 17〜 22°C、 (2)の場合、 明期が 15〜30て、 暗期が 5〜; 15 °C、 望ましく はそれぞれ 17〜25eC、 8〜12での変温条件が 好ましい。 照度は (1), (2)とも 1000〜20,0001 ux 、 望ま しく は 3000〜80001 ux が好ましい。 (2)の明期の時間は 、 14〜20時間、 望ましく は 15〜18時間が好ましい。 本 方法で誘導されるス トロンには、 光の照射方向に向つ て伸長するものも含まれる為、 液中に存在するス ト口 ンを増すには横方向又は下方からの照明が好ましい。 2 . 短日条件の場合 In the case of (1), the culture temperature is 15 to 30, preferably 17 to 22 ° C, and in the case of (2), the light period is 15 to 30, and the dark period is 5 to; 15 ° C, preferably each A temperature change condition of 17 to 25 e C and 8 to 12 is preferable. The illuminance is preferably 1000 to 20,0001 ux for both (1) and (2), and more preferably 3000 to 80,001 ux. The light period of (2) is preferably 14 to 20 hours, and more preferably 15 to 18 hours. Since the strons induced by this method include those that extend in the direction of light irradiation, illumination from the lateral direction or from below is preferred to increase the number of storons present in the liquid. 2. For short-day conditions
通常 12時間以下の短日培養条件下では、 ス トロンを 誘導し、 それらをス トロンとして伸長させる品種が多 い。 しかし、 炭酸ガスを施用しないで得られたス ト口 ンは一般に細く、 数が少なく、 かつ塊茎形成時の効率 も低い。 炭酸ガス処理を短日条件下で併用すると、 ス トロンは顕著に肥厚化し、 数も増し、 その後の塊茎形 成率も著しく 向上する。 日長時間は 6〜12時間、 望ま しく は 8〜10時間が良い。 短日条件下では植物体自体 の生長が遅延しやすいので、 一定期間長日条件下で培 養された植物体を用いても良い。 温度は 5〜30°C、 望 ましく は 17〜25での条件が良い。 また、 暗期の温度を 5〜15°Cに下げると更に効果的である。 照度は 1000〜 20, 0001 ux 、 望ましく は 3000〜80001 ux が良い。 この 方法で誘導されたス ト口ンは向地性又は斜向性を示し やすい。 光の照射方向はどの様なものでも良いが横方 向又は下方からの照明も有効である。  Under short-day culture conditions, usually less than 12 hours, many varieties induce strons and elongate them as strons. However, straws obtained without carbon dioxide application are generally thin, small in number, and low in tuber formation efficiency. When combined with carbon dioxide treatment under short-day conditions, the strons become significantly thicker and more numerous, and the tuber formation rate is significantly improved thereafter. The daylength is 6-12 hours, preferably 8-10 hours. Since the growth of the plant itself tends to be delayed under short-day conditions, a plant cultured for a certain period under long-day conditions may be used. Temperature is 5-30 ° C, preferably 17-25. It is more effective to lower the temperature during the dark period to 5-15 ° C. Illuminance is 1000 to 20,0001 ux, preferably 3000 to 80,001 ux. Stones guided in this way are likely to show geotropism or skew. The light may be emitted in any direction, but illumination from the side or from below is also effective.
炭酸ガスの施用方法は長日、 短日条件で共通してい る。 培養槽の場合は炭酸ガス富化空気を通気する条件 下で、 小型の培養容器の場合は、 炭酸ガス富化雰囲気 中で培養する方法を用いる。 培養槽への通気又は、 通 気性のある培養容器を培養する雰囲気に用いられる炭 酸ガス濃度は 0. 1〜30 % (v/v) の範囲内、 好ましく は 0. 5〜20 % (v/v) である。 培養槽への通気量はその容 積の単位体積当たり毎分 0. 0001〜 1容、 好ま し く は 0 . 001〜0. 1容を用いる。 The method of applying carbon dioxide is common for long day and short day conditions. In the case of a culture tank, use a method of culturing in a carbon dioxide-enriched atmosphere, while in the case of a small culture vessel, a condition in which air rich in carbon dioxide gas is passed. The concentration of carbon dioxide used for ventilation in the culture tank or in the atmosphere for culturing the permeable culture vessel is within the range of 0.1 to 30% (v / v), preferably 0.5 to 20% (v / v). / v). The amount of aeration to the culture tank is Use 0.0001 to 1 volume per minute per unit volume of the product, preferably 0.001 to 0.1 volume.
これらの条件下では気相、 液相、 特に後者にス ト口 ン、 更には次の塊茎形成過程でス トロンを経由して塊 茎に容易になりうる腋芽が効率良く多量に誘導、 増殖 される。 炭酸ガス濃度がこれより低い場合、 又は通気 量が少ない場合、 植物体は通常の増殖形態を示し、 ス トロンは形成されにく い。 すなわち、 液中の腋芽から 伸長した芽は、 ス トロ ンにはならず通常の茎葉へと発 達する。 これら茎に含まれた腋芽の塊茎形成能力は低 い。  Under these conditions, a large number of axillary buds are efficiently induced and proliferated, which can be easily converted into tuber via the stron in the gas phase and liquid phase, especially in the latter, and in the subsequent tuber formation process via stron. You. If the concentration of carbon dioxide is lower than this, or if the aeration rate is low, the plant will show a normal growth form and a stron will not be formed. In other words, the buds extending from the axillary buds in the liquid do not become stront but reach normal foliage. The ability of the axillary buds contained in these stems to form tubers is low.
逆に、 炭酸ガス濃度が更に濃い場合 (30 %以上) に は植物体が枯死してしま う。 通気量が更に多い場合 Conversely, if the carbon dioxide concentration is higher (over 30%), the plant will die. If the airflow is higher
(容積の単位体積あたり毎分 1容以上) は、 炭酸ガス の過剰害や通気量の多さに起因する、 培地の蒸発、 気 相部の過湿 (液相部への通気の場合) 、 又は、 逆に、 過度の乾燥 (気相部への通気の場合) によって植物体 の生長、 ス トロ ンの伸長が遅れる。 (1 volume per minute or more per unit volume) is caused by excessive harm of carbon dioxide gas and a large amount of ventilation, evaporating the culture medium, over-humidification of the gas phase (in the case of ventilation to the liquid phase), Or, conversely, excessive drying (in the case of aeration into the gas phase) delays plant growth and elongation of the stron.
培養槽の場合、 炭 ガス富化空気の通気は液相部の み、 気相部のみ、 又は液相部と気相部とにわけても良 い。 望ましく は、 気相部に炭酸ガス富化空気を通気し、 液相部には通常の空気を適量、 すなわち 0. 001〜0. 05 vvm 程度通気する方法が良い。  In the case of a culture tank, the ventilation of the coal gas-enriched air may be divided into the liquid phase only, the gas phase only, or the liquid phase and the gas phase. Desirably, a method in which carbon dioxide gas-enriched air is passed through the gas phase and a suitable amount of ordinary air, ie, about 0.001 to 0.05 vvm, is passed through the liquid phase.
炭酸ガスの施用は、 茎葉増殖工程の少なく とも一部 に、 1 日あたり少なく とも明期に 1 時間、 好ましく は 2時間以上実施すれば良い。 施用期間は 10〜70日間、 好ま しく は 20〜40日間である。 The application of carbon dioxide is at least part of the foliage growth process In addition, it should be carried out at least one hour per day, preferably two hours or more per day. The application period is between 10 and 70 days, preferably between 20 and 40 days.
また炭酸ガスを施用する植物体又は植物片の大きさ も特に限定されるものではない。 すなわち、 植物体又 は植物片を置床した直後から炭酸ガス施用を開始して も良いし、 植え付け後、 一定期間、 公知の方法で培養 後、 炭酸ガスを上記の方法で施用しても良い。  The size of the plant or plant piece to which carbon dioxide is applied is not particularly limited. That is, the application of carbon dioxide may be started immediately after the plant body or the plant piece is placed, or the carbon dioxide gas may be applied by the above-mentioned method after cultivation for a certain period after planting by a known method.
炭酸ガスを施用しない時間帯がある場合は、 通常の 空気を同様の条件で通気しても良い。 又培養槽の場合 には、 その間少なく とも液相部に適量、 すなわち 0. 00 1 〜0. l vvm通気することが望ま しい。  If there is a period when carbon dioxide is not applied, normal air may be ventilated under the same conditions. In the case of a culture tank, it is desirable to ventilate at least an appropriate amount, that is, 0.001-1.
(B) ェ 程 (B) Process
本工程の塊茎誘導培地としては、 少なく とも炭素源 を必須成分とし、 (A)工程のそれと同じか、 又は糖濃 度を高めたものを用いるが、 これに限定されるもので はない。 糖濃度はショ糖の場合、 5〜15 %、 望ましく は 6〜10 %が用いられる。 場合によっては、 6 —ベン ジルアデニン(BA)、 力イネチン、 ゼァチン、 アブシジ ン酸 (ABA)等の植物ホルモンや、 サイコセル (CCC:)、 アンシミ ドール等の矮化剤を 0. 01〜20ppm の範囲で使 用しても良い。 これらの培地を、 (A)工程で使用した 培地を除去し、 (A)の工程で培地中に誘導、 増殖され た又は塊茎形成能が高められたス ト口ンの少なく とも 一部が気相中に露出するように添加する。 すなわち本 発明の条件では、 (A)工程で伸長したス トロンは伸長 位置にかかわらず既に高い塊茎形成能を有するが、 主 に、 液相部に伸長したス トロン及び茎が本工程におい て気相中に露出することによって、 その位置が培地と の距離にあまり関係なく、 それらから塊茎が短期間に、 同調的に、 極めて効率良く形成されるため、 多くのス トロン及び茎が気相中に露出するよう培地量は(A) ェ 程より適度に少ない方が良い。 通常(A) 工程の培地量 の 5〜80 %量、 好ま しく は 10〜40 %量の培地を用いる。 As the tuber induction medium in this step, a medium containing at least a carbon source as an essential component and having the same or higher sugar concentration as in step (A) is used, but is not limited thereto. In the case of sucrose, the sugar concentration is 5 to 15%, preferably 6 to 10%. In some cases, plant hormones such as 6-benzyladenine (BA), potato-inetin, zeatin, abscisic acid (ABA), and dwarfants such as psychocell (CCC :) and ansimidol can be used in the range of 0.01 to 20 ppm. May be used in The medium used in step (A) is removed from these mediums, and at least the strains that have been induced, grown, or have enhanced tuber formation in the medium in step (A) are removed. A part is added so as to be exposed in the gas phase. That is, under the conditions of the present invention, the strons elongated in step (A) already have a high tuber-forming ability irrespective of the elongation position, but mainly the strons and stems elongated in the liquid phase part in this step. Exposure into the phase allows the formation of many strons and stems in the gas phase, since their location is very independent of their distance from the culture medium and from which tubers are formed in a short period of time, synchronously and very efficiently. It is better that the amount of culture medium is moderately smaller than that in (A) so that the medium is exposed. Usually, use a medium in an amount of 5 to 80%, preferably 10 to 40% of the medium in step (A).
また、 その条件を満たすように (A)工程で用いた培 地を減じても良い。 更にそれら培地に塊茎誘導を促進 する成分 (糖、 前記基本培地成分、 植物ホルモン等) の濃縮液を必要量添加しても良い。 又、 培地量の操作 とは別に、 ス トロンが気相中に露出する様な手法を用 いても良い。 たとえば植物体を培地より引きあげる、 植物体を倒す、 逆さにする、 縦長の培養槽を用い培養 槽ごと倒す、 培養に袋を用い形伏を変化させる等があ げられる。 培地の p Hは 4〜 8、 好ましく は 5〜 7で めな。  Further, the medium used in step (A) may be reduced so as to satisfy the condition. Further, a necessary amount of a concentrated solution of a component that promotes tuber induction (sugar, the basic medium component, a plant hormone, etc.) may be added to the medium. Apart from the operation of the amount of the medium, a method may be used in which the stron is exposed in the gas phase. For example, the plant can be pulled up from the medium, the plant can be inverted, turned upside down, the entire culture tank can be turned down using a vertically long culture tank, or the shape can be changed using a bag for culture. The pH of the medium is 4-8, preferably 5-7.
光環境は種々 の条件が用いう る。 すなわち 100〜 l OOO l ux の低照度条件は適当な日長範囲内 (4〜24時 間) において、 又 4〜10時間の短日条件は、 適当な照 度範囲内(100〜80001 ux)において使用可能であり、 望 ま しく はその両者を組合せた時に、 又は、 塊茎が形成 される部分のみ遮光した時に良好な結果が得られやす レ、。 又、 喑条件も同様に良好な結果を生じる。 特に短 日条件下では培地中の糖濃度を高めなく とも多数の塊 茎が形成される。 Various conditions can be used for the light environment. In other words, low light conditions of 100-l OOOlux are within an appropriate day length range (4-24 hours), and short-day conditions of 4-10 hours are within an appropriate light range (100-8801 ux). Can be used in More preferably, good results are obtained when both are combined, or when only the portion where tubers are formed is shielded from light. The 喑 condition also produces good results. Especially under short-day conditions, many tubers are formed without increasing the sugar concentration in the medium.
温度条件は 5〜30 、 好ましく は 15〜25°Cである。 また短日条件利用時は、 暗期温度を明期温度より下げ ても良い。  The temperature condition is 5 to 30, preferably 15 to 25 ° C. When using short day conditions, the dark period temperature may be lower than the light period temperature.
この工程では、 通気性のある容器を用いた場合には 上記培養条件を満たす大気環境下で培養すると良い。 培養槽の場合は通常、 培養槽で行なわれる液相部への 空気の通気 (通気量はたとえば 0 . 001〜0. l vvm) をし てやりさえすれば良い。  In this step, when a container having air permeability is used, it is preferable to culture the cells in an air environment satisfying the above culture conditions. In the case of the culture tank, it is usually sufficient to ventilate the liquid phase in the culture tank (the amount of ventilation is, for example, 0.001 to 0.1 lvvm).
本(B) 工程では、 第 2発明を組み合わせるとさらに 良好な結果が得られる。 すなわち、 上記の塊茎形成ェ 程において、 気相部に通気することにより、 気相部の 相対温度を低下させると良い。 その際の最適の通気量 は培地の絶体量、 容器の形状、 気相部に存在する植物 体量、 液相部への通気量、 気相部への通気口の数及び 形状等によって異なるが、 いずれも単位体積当たり毎 分 0. 02〜 1 容で良く、 好ましく は 0. 05〜0. 5容が良い。 更に、 この通気によって気相部の相対湿度が 90 %以下 になった場合に、 塊茎形成において、 質的、 量的によ り良い結果が得られることが多い。 この通気量以下で は、 十分に塊茎が気相部に形成されることがなく、 以 上では過度の乾燥により植物体が枯死してしまう。 液 相部へ通気する場合は 0. 05vvm 以下が好ましい。 以上 のような条件では培地が大き く蒸発して減少すること はない。 また、 培地量が減少するような通気量であつ ても、 気相部の通気を行った場合には、 液相部の通気 のみの培養より多くの塊茎が形成される。 In the step (B), even better results can be obtained by combining the second invention. That is, in the above tuber formation step, it is preferable to lower the relative temperature of the gas phase by ventilating the gas phase. The optimal amount of aeration at that time depends on the absolute volume of the culture medium, the shape of the container, the amount of plants present in the gas phase, the amount of ventilation to the liquid phase, the number and shape of the vents to the gas phase, etc. However, each may be 0.02 to 1 volume per minute per unit volume, preferably 0.05 to 0.5 volume. Furthermore, when the relative humidity of the gas phase falls to 90% or less due to this ventilation, better qualitative and quantitative results are often obtained in tuber formation. Below this ventilation In tuberculosis, tubers are not sufficiently formed in the gas phase, and the plant will die due to excessive drying. When ventilating to the liquid phase, it is preferably 0.05 vvm or less. Under the above conditions, the medium does not evaporate significantly and does not decrease. Further, even if the aeration rate is such that the amount of the culture medium is reduced, when the gas phase is aerated, more tubers are formed than in the culture using only the liquid phase.
第 2発明は、 従来の培養法で作出された植物体にも 用いることが可能であり、 顕著な効果をもたらす。  The second invention can be used for a plant produced by a conventional culture method, and has a remarkable effect.
また、 本発明においては、 前述した塊茎形成工程に おける気相への強制的な通気の代わりに、 該工程にお ける培養を相対濃度 90 %以下で行いうる他の手段 (例 えば、 (1)換気能力の高い培養槽の利用、 (2)培地面から の水分蒸発を抑制する物質の利用、 (3)培地面から蒸発 した水分が気相部に移行しにくい培養槽の利用等) を 用いても良い。  In addition, in the present invention, instead of the forced aeration into the gas phase in the tuber formation step described above, other means capable of culturing at a relative concentration of 90% or less (for example, (1) ) Use of a culture tank with high ventilation capacity, (2) Use of a substance that suppresses evaporation of water from the medium surface, (3) Use of a culture tank in which water evaporated from the medium surface is difficult to transfer to the gas phase) May be used.
本工程の培養期間は 10〜50日、 望ましく は 20〜40日 である。  The culture period in this step is 10 to 50 days, preferably 20 to 40 days.
〔図面の簡単な説明〕  [Brief description of drawings]
第 1 図は、 従来法 (実施例 2の対照区の方法) によ る茎葉増殖の状態を示す図 (写真) 、 第 2図は、 従来 法 (実施例 2の対照区の方法) による塊茎形成状態を 示す図 (写真) 、 第 3図は、 実施例 6の炭酸ガス施用 によるス トロンの誘導、 増殖の状態を示す図 (写真) 、 第 4図は、 実施例 6の炭酸ガス施用によるス トロンの 誘導、 増殖の状態を示す図 (培養槽の底部より撮影し た写真) 、 第 5図は、 実施例 4の炭酸ガス施用によつ て誘導、 増殖したス トロンおよび茎の塊茎形成の状態 を示す図 (写真) および第 6図は、 実施例 1 の培養槽 気相部への通気による塊茎形成の状態を示す図 (写真) である。 Fig. 1 is a diagram (photograph) showing the state of foliage growth by the conventional method (the method of the control plot in Example 2), and Fig. 2 is a tuber by the conventional method (the method of the control plot in Example 2). Fig. 3 shows the state of formation (photo), and Fig. 3 shows the state of induction and proliferation of strons by carbon dioxide application in Example 6 (photo). FIG. 4 is a diagram showing the state of induction and growth of stron by carbon dioxide application in Example 6 (photograph taken from the bottom of the culture tank), and FIG. 5 is a diagram showing the state of carbon dioxide application in Example 4. Fig. 6 shows the state of tuber formation of the induced and proliferated stron and stem (photo) and Fig. 6 shows the state of tuber formation by aeration to the gas phase of the culture tank of Example 1 (photo). It is.
〔実施例〕  〔Example〕
以下、 実施例により本発明を更に詳細に説明するが、 これらの実施例は本発明の範囲を何ら制限するもので はない。  Hereinafter, the present invention will be described in more detail by way of examples, but these examples do not limit the scope of the present invention at all.
実施例 1 Example 1
塊茎形成時の培養槽内気相部への通気が、 塊茎の 形成位置及び効率に及ぼす影響  Influence of ventilation to gas phase in culture tank during tube formation on tuber formation position and efficiency
本実験の供試材料には、 生長点培養から得られたバ ィ レショ (So lanum t uberosum し、 品種 : 農林 1号) の無菌植物体を用いた。  As a test material in this experiment, a sterile plant of a potato (So lanum t uberosum, cultivar: Norin 1) obtained from a growing point culture was used.
5節及び根を有するそれら小植物体 3本を、 ショ糖 を 3 %添加した M S液体培地(p H 5. 8、 以下、 茎葉増 殖培地という) 10 ^を含む、 直径 27cm、 高さ 40cmの総 容量約 23 ^の円筒状の培養槽に置床し、 22eC、 照度 60 OO l ux 、 16時間日長、 液相 30ml /分及び気相 500ml/ 分の通気条件で、 5週間茎葉を増殖した。 この培養に よって植物体は約 30cmの高さまで旺盛に生長した。 次に 、 残存培地をショ糖 8 %を含む M S液体培地(pH 5. 8 、 以下、 塊茎誘導培地という) 10 ^ と交換し、 塊茎の 誘導を、 22 、 暗所及び (1)液相部のみへの通気 1030ml 分 (対照) 、 (2)液相部への通気 30ml /分、 気相部へ の通気 lOOOinlZ分の 2つの条件下で 3週間行い、 塊茎 の形成位置とその効率について比較検討した。 気相部 への通気は茎葉増殖時、 塊茎誘導時とも頂部より行ない 、 排気口は高さ約 30cmのところに設置した。 培養終了 時培地面は (1), (2)区ともほぼ同じ位置であった。 結果は 、 第 1表の通りであった。 Three plantlets with 5 nodes and roots, containing 10% MS liquid medium (pH 5.8, hereinafter referred to as foliage growth medium) supplemented with 3% sucrose, 10 ^, diameter 27cm, height 40cm the total capacity of about 23 ^ were plated into a cylindrical culture vessel, 22 e C, illuminance 60 OO l ux, 16 hr photoperiod, in a liquid phase 30ml / min and the gas phase 500 ml / min of aeration conditions, 5 weeks stover Was grown. By this culture, the plants grew vigorously to a height of about 30 cm. next Replace the remaining medium with 10 ^ MS liquid medium containing 8% sucrose (pH 5.8, hereinafter referred to as tuber induction medium) 10 ^, and induce tuber induction to 22, dark place and (1) liquid phase only. Aeration of 1030 ml (control), (2) Aeration to the liquid phase 30 ml / min, aeration to the gas phase lOOOinlZ 3 weeks for 3 weeks, and compared the tuber formation position and its efficiency . Ventilation to the gas phase was performed from the top both during foliage growth and tuber induction, and the exhaust port was set at a height of about 30 cm. At the end of the culture, the medium surface was almost the same in both (1) and (2). The results were as shown in Table 1.
(本頁以下余白) (Margins below this page)
第 1 表 Table 1
Figure imgf000029_0001
Figure imgf000029_0001
*…培養終了時の培地面からの距離 *… Distance from the culture surface at the end of culture
気相部に通気した区では、 気相部の腋芽に直接塊茎 が形成され、 又液相部及び気相部の多くの腋芽から、 葉緑体を持たない白色の茎が新たに旺盛に伸長し、 そ れらの気相中に存在する節部にも多く の塊茎が形成さ れた。 それに対し、 対照区では、 気相部の腋芽に塊茎 が形成されることはほとんどなく、 同様の白色茎はみ られたものの、 数は少なく又その頂芽の多く は多湿の 為枯死し、 塊茎は培地境界面及びその直上部の腋芽に 大半が形成された。 その結果として気相通気区は塊茎 数、 塊茎重量とも対照の 2倍以上に大き く向上し、 そ の形成位置も対照と大きく異なり 60%以上が培地から 5 cm以上離れた部位に、 また対照では全く認められな い 10cm以上の部位においても多く の塊茎が存在した。 また、 対照区の塊茎はほとんど全てにおいて顕著な皮 目肥大が認められ、 二次生長も多かったが、 気相通気 区の塊茎はその点でも大きく改善されていた。 Tubers were formed directly on the axillary buds in the gaseous phase in the aerated section, and white stalks without chloroplasts grew vigorously from many axillary buds in the liquid and gaseous sections. However, many tubers were also formed at the nodes existing in the gas phase. In contrast, in the control plot, tubers were hardly formed on the axillary buds in the gas phase, and although similar white stems were seen, the number was small and many of the top buds died due to the high humidity, and the tubers Most were formed on the axillary buds at and just above the medium interface. As a result, the number of tubers and tuber weight in the gas-phase aerated area improved significantly more than twice as much as in the control, and the formation position was also significantly different from that in the control. There were many tubers even in the area of 10 cm or more, which was not recognized at all. Almost all of the tubers in the control plot showed remarkable skin hypertrophy and secondary growth, but the tubers in the gas-phase aerated plot were also significantly improved in that respect.
実施例 2 Example 2
塊茎形成時の培養槽内気相部への通気が、 塊茎形 成効率及びその質に及ぼす影響  Influence of ventilation to the gas phase inside the culture tank during tube formation on tuber formation efficiency and quality
ノくィ レショ (Solanum tuberosum L.、 品種 : ラセッ トバーバンク) の無菌植物体を根及び 5節を有する小 植物体に分割し、 それら 5本を、 ショ糖濃度を 2 %に 変更した茎葉増殖培地 3 を含む 8 ^培養槽 (直径 20 cm, 高さ 24cm) に置床した。 液相部に 30mlZ分、 気相 部に 100ml /分の量で空気を通気し、 22で、 照度 6000 l ux 、 16時間日長で 5週間茎葉の増殖を行なった。 次 に培地を塊茎誘導培地 3 と交換した後、 気相部の通 気量を 1 ^ /分に変更し、 22で、 喑所で 3週間塊茎の 形成を行なった。 対照として塊茎誘導時の通気を、 液 相部にのみ SOml Z分で行なう こと以外、 同じ条件で培 養する区を設けた。 結果は第 2表の通りであった。 第 2 表 A foliage growth medium obtained by dividing a sterile plant of Solanum tuberosum L. (variety: Russet Burbank) into plantlets having roots and five nodes, and changing the five of them to a sucrose concentration of 2%. They were placed in an 8 ^ culture tank (diameter 20 cm, height 24 cm) containing 3. 30mlZ min in liquid phase, gas phase The part was aerated at a rate of 100 ml / min, and the foliage was grown for 5 weeks at 22, illuminance of 6000 lux and 16 hours of photoperiod. Next, after replacing the medium with the tuber induction medium 3, the air volume in the gas phase was changed to 1 ^ / min, and tuber formation was performed at 22 places for 3 weeks at 22 places. As a control, a section was provided for cultivation under the same conditions except that aeration during tuber induction was performed only in the liquid phase with SOml Z. The results are shown in Table 2. Table 2
Figure imgf000031_0001
Figure imgf000031_0001
塊茎は実施例 1 と同様の過程を経て気相通気区では、 気相中に主に、 対照区では培地境界付近に偏在して形 成された。 総塊茎数、 重量とも気相通気区が対照区を 上回ったが、 特に塊茎の表皮の損傷程度に顕著な差が みられた。 すなわち対照区の塊茎の大半が、 過湿又は 培地との接触に起因する著しい皮目肥大や表皮の損傷 があり、 二次生長も多かったのに対し、 気相通気区で はその程度が軽微なものにとどまった。 この差違は、 塊茎の貯蔵条件下で一層明確であった。 対照区の塊茎 は半数以上が低温での貯蔵中に過度の水分の蒸発によ り栽培に不適な状態に劣化したのに対し、 気相通気区 の塊茎は質的にほとんど変化が認められなかった。 Tubers were formed mainly in the gas phase in the gas-phase aerated section through the same process as in Example 1, and formed unevenly near the boundary of the culture medium in the control section. The gas-phase aeration group exceeded the control group in both total tuber number and weight, but there was a remarkable difference particularly in the degree of damage to the epidermis of the tuber. In other words, most of the tubers in the control group had remarkable hypertrophy and damage to the epidermis due to overhumidity or contact with the medium, and secondary growth was large, whereas the degree in the gas-phase aeration group was slight. I stayed something. This difference was more pronounced under tuber storage conditions. More than half of the tubers in the control plots due to excessive water evaporation during storage at low temperatures. The tuber in the gas-phase aerated area showed little change in quality qualitatively.
この様に、 気相部に塊茎を形成させる方法は、 ラセ ッ トバーバンクの様な過湿条件に塊茎が弱い (表皮を 損傷しやすい) 品種において、 塊茎の質の改善も著し い。  As described above, the method of forming tubers in the gas phase has a remarkable improvement in the quality of tubers in varieties such as bursett bar banks, which have weak tubers (easily damage the epidermis) under humid conditions.
実施例 3 Example 3
塊茎形成時の培養槽内気相部の相対湿度が塊茎形 成に及ぼす影響  Effect of relative humidity of gas phase in culture tank on tuber formation during tuber formation
直径 20cm、 高さ 48cm、 内容積約 16 ^の培養槽、 3 の茎葉増殖培地を用いる以外、 実施例 1 と同一の条件 で茎葉を約 20cmの高さまで増殖した後、 3 の塊茎誘 導培地と残存培地を交換し、 22で、 暗所、 液相部通気 30mlZ分、 気相部通気 1 ^ Z分の条件下での培養にお いて気相通気の位置を変え、 それに起因する相対湿度 の差が塊茎形成に及ぼす影響について比較した。 すな わち、 気相部への通気を (1)培地面に近い (約 5 cm上部) 場所から行う場合と (2)培養槽の頂部付近から行う場合 の 2方法 (通気の向きはいずれも培地面方向) を試み た。 その際の内部の相対湿度 (頂部付近に取り付けた 排気口で計測) 及び塊茎形成程度を調査した。 結果は 第 3表の通りであつた。  After growing the foliage to a height of about 20 cm under the same conditions as in Example 1 except that a culture tank with a diameter of 20 cm, a height of 48 cm, an internal volume of about 16 ^, and a foliage growth medium of 3 were used, the tuber induction medium of 3 was used. The remaining medium was replaced with the remaining medium, and the position of the gas phase aeration was changed in culture in a dark place, the liquid phase aeration 30 mlZ minutes, and the gas phase aeration 1 ^ Z minutes, resulting in the relative humidity. The effect of the difference in the tuber formation on tuber formation was compared. In other words, there are two methods of venting the gas phase (1) near the surface of the culture medium (approximately 5 cm above) and (2) near the top of the culture tank. Also in the direction of the culture medium). The relative humidity (measured by the exhaust port installed near the top) and the degree of tuber formation at that time were investigated. The results are shown in Table 3.
(本頁以下余白) 第 3 表 (Margins below this page) Table 3
Figure imgf000033_0001
Figure imgf000033_0001
*…培養終了時の培地面からの距離 *… Distance from the culture surface at the end of culture
培養槽頂部付近より通気した (2)区においては、 実施 例 1 と同様の白色茎がやはり旺盛に伸長し、 その多く が頂部に達し、 多数の塊茎をその近辺にも形成したの に対し、 培地面付近で通気した (1)区では、 高い位置に 形成される塊茎はまれであった。 その際 (1)区では細か な水滴の、 培養槽上部での顕著な付着がみられ、 排気 口で測定した相対湿度も (2)区が (1)区に対して顕著に低 かった。 この結果は塊茎を形成する空間の湿度低下を 伴なう気相部への通気がより有効であることを示して いる。 In the section (2) ventilated from the vicinity of the top of the culture tank, the white stems similar to those in Example 1 also vigorously elongated, most of them reached the top, and a large number of tubers formed near the same. In section (1), which was aerated near the surface of the culture medium, tubers formed at higher positions were rare. At that time, in section (1), fine water droplets were remarkably adhered to the upper part of the culture tank, and the relative humidity measured at the exhaust port was significantly lower in section (2) than in section (1). This result indicates that aeration into the gas phase with lower humidity in the space where tubers are formed is more effective.
参考例 Reference example
気相部通気法によって作製した塊茎の、 圃場での 生産力の検討  Examination of the productivity of tubers produced by the gas phase aeration method in the field
本発明で得られた塊茎の圃場での崩芽、 生育及び生 産能力を把握する為に北海道 (上川郡剣淵町) におい て試作を行った。 塊茎は実施例 1 と同様の手法で作製 し、 一定期間低温 (2〜 4で) 、 喑所で貯蔵した後、 塊茎のサイズ及び貯蔵期間別に現地の慣行法に従って 栽培を行なった。 但し塊茎を植え付ける深さは慣行法 より もやや浅目に設定した。 また、 0. 1 〜0. 5 gの塊 茎のみは、 ペーパーポッ ト (直径 5 cm、 長さ 7. 5 cm) を用い、 温室で催芽、 育苗した後圃場へ定植した。 結 果は第 4表の通りであった。  A trial production was carried out in Hokkaido (Kenbuchi-cho, Kamikawa-gun) in order to grasp the germination, growth and productivity of the tubers obtained in the present invention in the field. Tubers were prepared in the same manner as in Example 1. After storing for a certain period of time at low temperature (at 2 to 4) and in several places, tubers were grown according to local customary methods according to tuber size and storage period. However, the depth at which the tubers are planted was set slightly shallower than the conventional method. Only 0.1 to 0.5 g of tubers were germinated and raised in a greenhouse using a paper pot (diameter 5 cm, length 7.5 cm), and then planted in a field. The results are shown in Table 4.
(本頁以下余白) 第 4表 貯蔵期間 サイズ1)個体数 萌芽率 2)茎 数 3) 収 量 4) 上いも5〉 10a当り 上いも 澱粉価(Margins below this page) Table 4 Storage period Size 1 ) Number of individuals Germination rate 2 ) Number of stems 3) Yield 4) High potato 5 〉 High potato per 10a Starch value
(月) (%) 収 量 上いも (Mon) (%) Yield
(本/株) (g/株) (g/株) 収量(t) 数 Ζ株 (%) 小 30 16.7 1.1 970 728 3.4 7.7 10.7 (Strain / strain) (g / strain) (g / strain) Yield (t) Number Ζstrain (%) Small 30 16.7 1.1 970 728 3.4 7.7 10.7
9 Ψ on 1 9 Ψ on 1
0. ί 1. A 1 Π 10 1 0 に  0.ί 1. To A 1 Π 10 1 0
ά. ο D. D 1 . ά 大 32 12.5 1.3 1207 1046 4.8 8.2 13.6 ぺ-パ-ポ 7 60 1.1 1108 932 4.3 10.9 13.3 小 30 93.3 1.5 1324 1203 5.6 12.1 11.8 ο Large 32 32 12.5 1.3 1207 1046 4.8 8.2 13.6 ぺ -Paper 7 60 1.1 1108 932 4.3 10.9 13.3 Small 30 93.3 1.5 1324 1203 5.6 12.1 11.8
5 中 30 90.0 1.4 1106 1006 4.7 9.2 14.4 5 Medium 30 90.0 1.4 1106 1006 4.7 9.2 14.4
大 32 93.8 1.2 1324 1150 5.3 10.7 13.4 ぺ-パ -ポプト 60 1.6 1207 1029 4.8 11.1 12.4 小 30 100.0 1.5 1120 985 4.6 10.7 12.1 Large 32 93.8 1.2 1324 1150 5.3 10.7 13.4 ぺ -Pa-Pop 60 1.6 1207 1029 4.8 11.1 12.4 Small 30 100.0 1.5 1120 985 4.6 10.7 12.1
9 中 30 96.7 1.8 1286 1179 5.5 10.7 15.1 9 Medium 30 96.7 1.8 1286 1179 5.5 10.7 15.1
大 32 93.8 2.7 1317 1249 5.8 11.2 14.2 対照 β> 60 83.3 4.2 1211 1140 5.3 10.9 14.5 Large 32 93.8 2.7 1317 1249 5.8 11.2 14.2 Control β> 60 83.3 4.2 1211 1140 5.3 10.9 14.5
1) ペ-パ-ポ'ノト: 0.1-0.5g, 小: 0.5- lg, 中: l_5g, 大: 5 - 10g, 1) Paper-Po'not: 0.1-0.5g, Small: 0.5-lg, Medium: l_5g, Large: 5-10g,
各区とも 72cmX30cniの栽植密度  Planting density of 72cmX30cni for each plot
2) 植え付け後 4週目に調査  2) 4 weeks after planting
3) 各区 12株の平均値 3) Average value of 12 shares in each ward
4) 各区の総収量 Z供試個体数 4) Total yield of each plot Z
5) 40g以上 5) 40g or more
6) 通常の種芋 (40〜120g) 6) Normal seed potato (40-120g)
貯蔵期間 2 ヶ月の区のみ萠芽率が著しく低いが、 こ れは 2 ヶ月 という播種までの期間が休眠の解除には不 十分であった為と判断される。 貯蔵期間 5 ヶ月及び 9 ヶ月区ではサイズに関わらず萠芽率は高く、 萠芽後の 初期の生育は全般に対照に比してやや劣ったもののそ の後回復した。 最終的な収量はいずれのサイズ区にお いても対照に近い、 場合によってはそれ以上の高い値 となり、 本発明で作成された塊茎は高い生育及び生産 能力を持つことが確認された。 The sprouting rate was extremely low only in the two-month storage period, which is considered to be because the two-month period before sowing was insufficient to release dormancy. In the storage periods of 5 months and 9 months, the sprout rate was high irrespective of the size, and the initial growth after sprouting was generally inferior to the control, but recovered later. The final yield was close to the control in all the size groups, and in some cases was higher than that of the control. It was confirmed that the tubers produced by the present invention had high growth and production ability.
実施例 4 Example 4
培養槽での炭酸ガス施用がその後の塊茎形成に及 ぼす影饗  Effect of carbon dioxide application in culture tank on subsequent tuber formation
本実験の供試材料には、 バイ レショ(So lanum t uberosum L.、 品種 : ビンチヱ、 農林水産ジーンバンクか ら、 生物系特定産業技術研究推進機構のあっせん事業 により入手) の生長点培養由来無菌植物体を用いた。 直径 20cm、 高さ 24cm、 内容積 8 の培養槽に実施例 1 と同じ茎葉増殖培地 5 ^を入れ、 それぞれ 5節及び 根を有する植物体 3個を置床した。 その培養槽を、 四 方より光照射の可能なインキュベーター内に置き、 照 度 70001 UX 、 連続照明、 20で、 液相部への空気通気量 30ral Z分の条件下で、 まず 3週間前培養を行なった。 この過程で植物体は主に液中で分技しながら良く生長 し、 多数の腋芽を形成した。 一部の茎葉は気相部に伸 長したが、 この時点ではス トロンの発生は認められな かった。 その後液相部への通気条件は同一のまま、 気 相部に炭酸ガスを 10%に富化した空気を 1 OOmlZ分で 通気し、 更に 3週間培養した。 この培養によって植物 体の更なる生長とともに、 主に液相部の腋芽からのス ト口ンの旺盛な誘導、 増殖が認められた。 多くのス ト 口ンは培養槽の壁面に向って斜向性を示しながら生長 したが、 やや上方に進むものもあり、 一部は気相部に 達した。 最終的に液中の植物体はス トロンで覆われる 特異な形態となった。 対照として、 炭酸ガスを富化し ない空気を気相部に通気した区を設けた。 この対照区 では、 明らかなス トロンの誘等、 増殖は観察されず、 炭酸ガス施用区との植物形態の相違は顕著であつた。 その後、 残存培地を、 塊茎誘導培地 1. 5 と交換し、 20°C、 連続暗条件で 4週間培養した。 その時の通気は 炭酸ガス施用区、 対照区とも炭酸ガス無富化の空気を 液相部に 30ml//分、 気相部に 1 ^ Z分の条件で行った。 炭酸ガス施用区では、 この培地交換によって液中に形 成されたス トロ ンも、 大半が気相中に露出した。 結果 は第 5表の通りであつた。 The test materials used in this experiment were aseptic from growth point culture of bailecho (So lanum tuberosum L., cultivar: Vincci, obtained from the Agriculture, Forestry and Fisheries Gene Bank through the mediation business of the Organization for Promotion of Specified Industrial Technology Research Institute for Biological Systems). Plants were used. The same foliage growth medium 5 ^ as in Example 1 was placed in a culture tank having a diameter of 20 cm, a height of 24 cm and an internal volume of 8, and three plants each having 5 nodes and roots were placed thereon. Place the cultivation tank in an incubator capable of irradiating light from all sides, and cultivate first for 3 weeks under the conditions of 70001 UX illuminance, continuous illumination, 20 and air flow rate of 30 ral Z for liquid phase. Was performed. During this process, the plants grew well, mainly in the liquid, and formed numerous axillary buds. Some foliage extends to gas phase At this time, no stron was found. Then, while maintaining the same aeration conditions in the liquid phase, the gas phase was aerated with 10% carbon dioxide-enriched air at 100 ml / min and cultured for 3 weeks. By this cultivation, vigorous induction and proliferation of stomatones, mainly from the axillary buds in the liquid phase, were observed along with further growth of the plant. Many of the mouths grew obliquely toward the wall of the culture tank, but some grew slightly upward, and some reached the gas phase. Eventually, the plants in the liquid became a peculiar form covered with stron. As a control, a section was provided in which air not enriched in carbon dioxide was passed through the gas phase. No growth was observed in this control plot, such as obvious attraction of stron, and the difference in plant morphology from the carbon dioxide-treated plot was remarkable. Thereafter, the remaining medium was replaced with a tuber induction medium 1.5, and the cells were cultured at 20 ° C under continuous dark conditions for 4 weeks. In this case, ventilation was performed under the conditions of carbon dioxide-enriched air at 30 ml / min in the liquid phase and 1 ^ Z in the gas phase in both the CO2 application and control sections. In the carbon dioxide application zone, most of the stron formed in the liquid by this medium exchange was also exposed in the gas phase. The results are as shown in Table 5.
(本頁以下余白) 第 5表 (Margins below this page) Table 5
W W
Figure imgf000038_0001
対照比
Figure imgf000038_0001
Control ratio
炭酸ガス施用区では、 培地交換後 2 日目より、 (1)培 地面からの距離に関係なく気相に露出したス トロンの 大部分がほぼ同調的にその先端部の塊茎化を開始し、 引き続いて、 (2)それらス トロンの節部に直接、 又は新 たに誘導されたス トロンを介して塊茎を形成した。 更 にその後、 (3)他の茎の節部より、 実施例 1 と同様の白 色茎や、 ス トロンの発生及び塊茎化が認められた。 こ の様な塊茎形成過程により炭酸ガス施用区の植物体は、 その気相部分全体に塊茎が密集して存在するという本 発明特有の形態を示した。 一方対照区の塊茎形成は、 上記 (3)のみの過程によって生じその開始時期も炭酸ガ ス施用区より も遅れた。 結果的に培養槽あたりの総塊 茎数及び塊茎重とも炭酸ガス施用区が対照区を大き く 上回った。 1塊茎あたりの平均重量は炭酸ガス施用区 で小さ くなつているが、 この様なサイズの塊茎からも 正常な萠芽、 生育、 収穫が可能であることは参考例か らも明らかである。 In the CO2 application zone, from the second day after the medium was replaced, (1) most of the stron exposed to the gas phase started to tuberize at the tip almost synchronously regardless of the distance from the culture medium, Subsequently, (2) tubers were formed directly at the nodes of the strons or via newly derived strons. After that, (3) the occurrence of white stalks and strons and tubers similar to those in Example 1 were observed from the nodes of the other stems. Due to such tuber formation process, the plant in the carbon dioxide application section exhibited a form peculiar to the present invention in which tubers were densely present throughout the gas phase portion. On the other hand, tuber formation in the control plot occurred by the process of only the above (3), and its onset time was later than that in the carbon dioxide application plot. As a result, the total number of tubers per tuber and the weight of tubers were significantly higher in the group to which carbon dioxide was applied than in the control group. The average weight per tuber is smaller in the carbon dioxide-applied section, but it is clear from the reference examples that normal sprouting, growth and harvesting are possible from tubers of such a size.
実施例 5 Example 5
培養槽での炭酸ガス施用がその後の塊茎形成に及 ぼす影響  Effect of carbon dioxide application in the culture tank on subsequent tuber formation
実施例 2 と同じ方法によってラセッ トバーバンクの 茎葉を 3週間増殖した。 次いでショ糖濃度を 2 %に変 更した茎葉増殖培地を 2 ^添加し、 気相部への通気の みを、 炭酸ガスを 2 %に富化した空気を用いて行ない、 連続日長、 照度 60001 ux 、 20eC条件で更に 3週間培養 を継続し、 ス ト口ンの誘導、 伸長を促した。 対照区は 実施例 2 と同じ通気条件とした。 培地追加後は、 光照 射が周囲より可能なインキュベーターで実施した。 そ の後培地を 1. 5 ^の塊茎誘導用培地と交換し、 20で、 暗所で 4週間塊茎の誘導を行なった。 その際の通気条 件は炭酸ガス施用区、 対照区とも気相部への通気口を 対角に位置する 2 ケ所に増し、 各々 より 1 i / %、 液 相部へは 30mlZ分とした。 結果は第 6表の通りであつ た。 第 6 表 By the same method as in Example 2, the foliage of the rasset burbank was grown for 3 weeks. Then, foliage growth medium whose sucrose concentration was changed to 2% was added 2 ^, and only aeration to the gas phase was performed using air enriched with 2% carbon dioxide. Consecutive days length, continued for a further 3 weeks of culture under the illuminance 60001 ux, 20 e C conditions, induction be sampled opening down, urged extension. The control group had the same ventilation conditions as in Example 2. After the addition of the culture medium, the light irradiation was performed in an incubator that allows light irradiation from the surroundings. Thereafter, the medium was replaced with a 1.5 ^ tuber induction medium, and tuber induction was performed at 20 for 4 weeks in the dark. In this case, the ventilation conditions were increased to two diagonally opposite vents for the gas phase in both the CO2 application and control sections, and 1 i /% from each, and 30 mlZ for the liquid phase. The results are shown in Table 6. Table 6
Figure imgf000040_0001
Figure imgf000040_0001
対照比 この様に品種ラセッ トバーバンクにおいても、 実施 例 4のビンチェと同じく、 最終的に形成された塊茎の 総数及び総重量に顕著な増加が認められ、 植物体増殖 時の炭酸ガスの施用効果が確認できた。 又、 本結果で は、 対照に対する総重量の増加率が総塊茎数のそれを 上回った為、 1個あたりの平均塊茎重量も大き く改善 された。 一方、 得られた塊茎の質は、 炭酸ガス施用区、 対照区とも塊茎の形成位置が主に気相中であつた為、 両区とも皮目肥大及び表皮の損傷がほとんど見られず、 優れていた。 Contrast ratio As in the case of Binche in Example 4, a remarkable increase in the total number and total weight of the finally formed tubers was observed in the varieties ratchet bar bank as well, and the effect of carbon dioxide application during plant growth was reduced. It could be confirmed. Also, in the present results, the rate of increase in total weight relative to the control Because of this, the average tuber weight per piece also improved significantly. On the other hand, the quality of the obtained tubers was excellent because the tuber formation position was mainly in the gas phase in both the CO2 application and control plots, and both plots showed almost no hypertrophy and no damage to the epidermis. I was
実施例 6 Example 6
培養槽における長日及び暗期の低温条件下での炭 酸ガス施用が、 ス ト口ンの誘導、 増殖、 及びその 後の塊茎形成に及ぼす影響  Effects of carbon dioxide application in a culture tank under low-temperature conditions during the long days and dark periods on the induction, growth, and subsequent tuber formation of stone mouth
照度 6000 1 UX 、 16時間日長、 20で条件下で維持され ているビンチェ及びラセッ トバーバンクの無菌植物体 5本 (それぞれ 5節と根を有する) を供試材料として 用い、 ショ糖濃度を 2 %に変更した茎葉増殖培地 3 ^ を含む 8 ^培養槽に置床した。 それら培養槽を、 主に 下方より光照射可能なインキュベーターにおいて、 照 度 6000 1 U X 、 16時間日長、 明期温度 22て、 暗期温度 10 で条件下で培養し、 6週間後に形成されたス トロ ン数 を調査した。 通気は気相部に炭酸ガスを 2 %に富化し た空気を、 液相部に通常の空気を、 それぞれ 100ml / 分、 δΟπιΐ Ζ分の量で実施した。 対照として気相部へも 通常の空気を同量通気した区 (対照区 IT ) 、 更に温度 条件を明期、 暗期とも 22°Cとした区 (対照区 I ) を設 けた。  Five sterile plants (each having 5 nodes and roots) of Vinche and Russet Burbank maintained under the conditions of illuminance of 6000 1 UX, 16 hours photoperiod, and 20 at 20 were used as test materials, and the sucrose concentration was 2 The plant was placed in an 8 ^ culture tank containing 3% of the foliage growth medium changed to%. These culture tanks were cultured in an incubator capable of irradiating light from below, mainly under the conditions of illuminance 6000 1 UX, 16 hours day length, light period temperature 22 and dark period temperature 10 and formed after 6 weeks. The number of strons was investigated. Ventilation was carried out at a rate of 100 ml / min and δΟπιΐ Ζmin, respectively, with air enriched with 2% carbon dioxide in the gas phase and normal air in the liquid phase. As a control, a section in which the same amount of normal air was ventilated into the gas phase (control section IT), and a section in which the temperature condition was 22 ° C in both the light and dark periods (control section I) were provided.
次にビンチヱについて、 上記と同一方法で茎葉の増 殖、 ス トロンの増殖を行なった後、 培地を塊茎誘導培 地 1 ^ と交換した。 20で暗条件下で形成された塊茎数 を 4週後に調査した。 通気条件は、 炭酸ガス施用区、 対照区 I とも、 通常の空気を気相部に 1 分、 液相 部に 30mlZ分とした。 培地の交換によって炭酸ガス施 用時に旺盛に液相部に増殖、 技分れしたス トロンの多 く は、 気相部に露出した。 Next, with respect to vinch ヱ, increase of foliage in the same manner as above After propagation and stron propagation, the medium was replaced with tuber induction medium 1 ^. At 20 weeks the number of tubers formed under dark conditions was investigated after 4 weeks. Aeration conditions were as follows. In both the CO2 application zone and the control zone I, normal air was set to 1 minute in the gas phase and 30 mlZ in the liquid phase. When the medium was replaced, the vigorously proliferated to the liquid phase during the application of carbon dioxide, and many of the strons that were successfully exposed were exposed to the gas phase.
ス トロ ンの調査結果を第 7表に、 塊茎の形成数を第 8表に示した。  Table 7 shows the results of the survey, and Table 8 shows the number of tubers formed.
Figure imgf000042_0001
Figure imgf000042_0001
* …形成されたス トロ ン数 (本) 炭酸ガス施用区ではビンチェ、 ラセッ トバーバンク とも培養開始後 2週間茎葉を伸長させた後、 やはり主 に液中の腋芽からス トロンを発生し始め、 続いてそれ らの旺盛な増殖を示したのに対し、 一方対照区では、 I区、 I [区ともス トロ ンの発生が全く認められず、 炭 酸ガス施用の効果は極めて顕著であった。 本実験で観 察されたス トロンは、 実施例 4で認められたそれらに 比して、 より強い斜向性を示すス トロンが多いこ と、 更に、 枝分れするス トロンの数が多い点で特徴的であ つた。 *… Number of formed stalks (numbers) In the CO2 application plots, both for Vinche and Lasset Burbank, after growing the stems and leaves for 2 weeks after the start of cultivation, the stront also began to generate stront, mainly from axillary buds in the liquid. On the other hand, in the control plot, no stront was generated in both plots I and I, and the effect of carbon dioxide gas application was extremely remarkable. The strons observed in this experiment were the same as those observed in Example 4. Compared to this, it was characterized by the fact that there were more strong skewed strons and the number of branched strons was larger.
また、 供試材料に、 炭酸ガス施用によって既にス ト ロンの誘導が開始された植物体を用いた実験では、 置床 直後より旺盛なス トロン増殖が認められ、 より良好な 結果が得られた。 第 8 表  Also, in experiments using plants that had already started to induce stron by carbon dioxide application, vigorous stron proliferation was observed immediately after implantation, and better results were obtained. Table 8
Figure imgf000043_0001
Figure imgf000043_0001
ネ · · ·対照比 炭酸ガス施用区のス トロンは、 実施例 5のそれらと 同じく、 気相に露出した直後から、 培地面からの距離 に関係なく、 ほぼ同調的にその先端の塊茎化を開始し た。 また既に枝分れしていた二次的なス トロンも同様 に短期間の塊茎形成を行なった。 その結果、 対照区と の塊茎形成程度の差違は大きなものとなつた。  As in Example 5, the strons in the carbon dioxide applied plot almost immediately synchronized with the tuberization of the tip, regardless of the distance from the culture medium, immediately after exposure to the gas phase. Started. Secondary strons, which had already branched, also formed tubers for a short period of time. As a result, the difference in tuber formation from the control group was large.
実施例 7  Example 7
炭酸ガスの施用時期がス トロンの誘導、 増殖、 及 びその後の塊茎形成に及ぼす影響  Effect of CO2 application time on stron induction, growth, and subsequent tuber formation
品種ビンチ の無菌植物体を各節毎に約 1 cmの長さ に分割し、 茎葉増殖培地 4 00mlを含有する 5 00ml容三 角フラスコに 3節ずつ置床した。 それら三角フラスコ を通気性フィルター付きのアルミ箔 (商品名 PFミ ク口 フィルタ一 : 柴田ハリォ社製) を用いて密封し、 以下 の 3つの条件下で静置培養を行い、 ス トロンの誘導、 増殖の程度を調査した。 (A) 温度 20で、 連続照明、 照 度約 7, 0001 ux、 炭酸ガス無施用条件 (大気中炭酸ガス 濃度約 0. 03% (v/v))で、 6週間培養 (対照) 。 (B) 炭 酸ガス濃度を 2 % (v/v) に高めた雰囲気中で培養する 以外(A) と同一の条件下で 6週間培養。 (C) (A) 条件 下で 3週間培養した後、 (B)条件下で更に 3週間培養。 光の照射はいずれの区も四方より行った。 その後、 そ れらフラスコに残存する培地を塊茎誘導培地 1 00mlと 交換し、 20で、 連続暗条件下で更に 4週間培養した後、 それぞれの塊茎形成程度を調査し、 比較した。 結果は 第 9表の通りであつた。 Approximately 1 cm long for each node , And placed on a 500 ml triangular flask containing 400 ml of foliage growth medium. The Erlenmeyer flasks were sealed using aluminum foil with a gas-permeable filter (trade name: PF Mikuguchi Filter-1: manufactured by Shibata Hario), and subjected to static culture under the following three conditions to induce stron induction and The extent of proliferation was investigated. (A) Cultivation for 6 weeks (control) at a temperature of 20, continuous lighting, an illuminance of about 7,0001 ux, and in the absence of carbon dioxide (atmospheric carbon dioxide concentration of about 0.03% (v / v)). (B) Culture for 6 weeks under the same conditions as (A), except that the culture is performed in an atmosphere with an increased carbon dioxide concentration of 2% (v / v). (C) After culturing under (A) condition for 3 weeks, further culturing under (B) condition for 3 weeks. Light irradiation was performed from all sides in each section. Thereafter, the medium remaining in the flasks was replaced with 100 ml of tuber induction medium, and the tuber was further cultured for 4 weeks under continuous dark conditions at 20, and the degree of tuber formation was examined and compared. The results are as shown in Table 9.
(本頁以下余白) (Margins below this page)
第 9表 Table 9
Figure imgf000045_0001
Figure imgf000045_0001
'容器あたりの平均値 各区 4 反復  'Average value per container 4 replicates
対照比 Control ratio
第 9表が示すように、 容器を炭酸ガス富化雰囲気中 におく培養条件においても、 その効果は明らかであつ た。 すなわち、 対照区(A) では、 ス トロンの増殖が全 く認められなかったのに対し、 培養開始時から炭酸ガ ス施用条件にあった区 ((B) )、 及び培養途中から炭酸 ガス施用条件で培養された区 ((C) )、 においては旺盛 なス トロンの誘導、 増殖が認められた。 また、 塊茎形 成程度についても、 対照に比して(B)、 (C)区は容器当 たりの塊茎数で 3倍以上、 総重量で 2倍に近い改良が 認められた。 また (A)区の塊茎は培地交換後約 5 日目 より形成され始め、 その後の 3週間にわたり徐々に数 が増して行ったのに対し、 (B)、 (C)区の塊茎の大半は、 ス トロンの先端部が約 2 日〜 14日間と言う短期間にか つ同調的に肥大することによって形成され、 この点で も対照と顕著な差が認められた。 (B)区と(C)区、 即ち 炭酸ガスの施用開始時期及び施用期間の差異は、 本実 験においてはス トロンの増殖程度、 塊茎の形成率には 大きな影響を及ぼさなかった。 As Table 9 shows, the effect was evident even under culture conditions in which the vessel was placed in an atmosphere enriched with carbon dioxide. In other words, in the control group (A), no stron proliferation was observed, whereas in the group that was under the conditions of carbon dioxide application from the start of culture ((B)), and in the middle of culture, carbon dioxide was applied. In the section ((C)) cultured under the conditions, vigorous stron induction and proliferation were observed. The tuber formation (B) and (C) were more than three times the number of tubers per container and almost twice the total weight of the tuber compared to the control. The tubers in section (A) started to form about 5 days after the medium was changed, and the number increased gradually over the next 3 weeks, whereas most of the tubers in section (B) and (C) It was formed by the strontium's tip swelling in synchrony over a short period of about 2 to 14 days, which also showed a significant difference from the control. Sections (B) and (C), that is, the difference between the application start time and application period of carbon dioxide gas, did not significantly affect the degree of stron growth and tuber formation in this experiment.
1塊茎あたりの平均重量は、 炭酸ガス施用区は対照 区に比していずれも少なくなつてはいるが、 この点は、 参考例で明らかな様に、 塊茎は 0. l g程度の極小型のも のでも萌芽し、 正常に生育し、 塊茎を再生産すること が確認されているので、 炭酸ガスの施用による、 塊茎 形成効率の改善という効果を減ずるものではない。 実施例 8 The average weight per tuber was lower in the CO2 application plots than in the control plots.However, as is evident from the reference example, the tubers had an extremely small size of about 0.1 lg. Since it has been confirmed that sprouting, normal growth, and reproduction of tubers are observed, application of carbon dioxide gas does not reduce the effect of improving tuber formation efficiency. Example 8
塊茎形成時の培地量が、 炭酸ガス施用条件下で増 殖したス ト口ンからの塊茎形成に及ぼす影響 直径 6 cm、 高さ 15cm、 内容積 380mlの円筒状の培養 容器に 2 00mlの茎葉増殖培地を入れ、 次の実験に供試 した。 置床材料及び炭酸ガス施用条件下での培養法は 実施例 7—(B) と同様のものを用い、 ス トロンが気相 部、 液相部に旺盛に増殖した培養 5週目に、 ① 50ml、 ② 100ml及び③ 200mlの塊茎誘導培地との培地交換を行 レ、、 培地量と塊茎形成程度との関連を調査した。 培地 交換後の培養条件は実施例 7 と同じである。 結果は第 10表の通りであつた。  Effect of the amount of medium during tuber formation on tuber formation from straws grown under carbon dioxide gas application 200 ml of foliage in a cylindrical culture vessel of 6 cm in diameter, 15 cm in height and 380 ml in inner volume The growth medium was added and used for the next experiment. The same culture method as in Example 7- (B) was used for the cultivation under the conditions of bed material and carbon dioxide gas application. On the 5th week of culture, when the stron grew vigorously in the gas phase and liquid phase, ① 50 ml The medium was exchanged with a tuber induction medium of (2) 100 ml and (3) 200 ml, and the relationship between the amount of medium and the degree of tuber formation was investigated. The culture conditions after medium exchange are the same as in Example 7. The results are as shown in Table 10.
(本頁以下余白) (Margins below this page)
第 10表 Table 10
Figure imgf000048_0001
Figure imgf000048_0001
容器あたりの平均値  Average value per container
各区 4 反復  4 reps for each ward
対照比  Control ratio
大気条件下 (炭酸ガス濃度 0. 03% ) で培養 Cultured under atmospheric conditions (CO2 concentration: 0.03%)
7 炭酸ガス施用の効果は、 実施例 7 と同様に、 容器当 たりの塊茎形成数に大き く表われている。 本結果は、 塊茎形成時の培地量を、 茎葉増殖時のそれより も減じ ることが、 塊茎形成数及び重量をより改善することを 示している。 また、 その際の塊茎の多く は、 ス トロン 増殖時に液相に伸長し、 かつ、 塊茎形成時に気相部に 露出したス トロンに形成された。 7 The effect of carbon dioxide application is greatly shown in the number of tubers formed per container as in Example 7. This result indicates that reducing the amount of medium during tuber formation compared to that during foliage growth further improves the number and weight of tuber formation. In addition, many of the tubers at that time extended into the liquid phase during stron growth and formed into strons exposed to the gas phase during tuber formation.
実施例 9 Example 9
炭酸ガス濃度がス トロンの誘導、 増殖、 及びその 後の塊茎形成に及ぼす影響  Effect of carbon dioxide concentration on stron induction, proliferation, and subsequent tuber formation
実施例 8 —①と同一の方法を用いて表題の点につい て調査を行った。 雰囲気中の供試炭酸ガスの濃度は、 1 % , 5 %、 10 %である。 結果は第 11表の通りであつ た。  Example 8 The title was investigated using the same method as in ①. The concentrations of the test carbon dioxide in the atmosphere are 1%, 5% and 10%. The results are as shown in Table 11.
(本頁以下余白) (Margins below this page)
第 11表 Table 11
CDCD
Figure imgf000050_0001
Figure imgf000050_0001
容器あたりの平均値  Average value per container
各区 4 反復  4 reps for each ward
対照比  Control ratio
大気条件下 (炭酸ガス濃度 0.03%) で培養 Cultured under atmospheric conditions (carbon dioxide concentration 0.03%)
炭酸ガス施用の効果が最も顕著に表われる容器当た りの個数においては、 いずれの区についても対照を大 き く上回り、 中でも 5 %区が対照の約 4倍と最高の値 を示した。 1 %区と 10 %区間では大きな差は認められ なかった o Regarding the number of containers per container where the effect of CO2 application was most remarkable, the control significantly exceeded the control in all the groups, and the 5% group showed the highest value, about 4 times that of the control. No significant difference between 1% and 10% sections o
実施例 10 Example 10
連続光照射下での、 1 日当たりの炭酸ガス施用時 間がその後の塊茎の形成に及ぼす影響  Influence of daily CO2 application time on subsequent tuber formation under continuous light irradiation
実施例 7 - (C) の炭酸ガス施用時間を 1 日当たり① 2時間② 6時間③ 10時間とし、 残りの時間は、 炭酸ガ ス無施用かつ連続照明条件下で培養することによって、 表題の点について調査を行った。 結果は第 12表の通り であった。  Example 7-The application time of carbon dioxide in (C) was set to (2 hours) 6 hours (3 hours) per day for 10 hours, and the remaining time was measured by culturing under the condition of no application of carbon dioxide and continuous lighting. Was investigated. The results are as shown in Table 12.
(本頁以下余白) (Margins below this page)
第 12表 Table 12
Figure imgf000052_0001
Figure imgf000052_0001
容器あたり の平均値  Average value per container
各区 4 反復  4 reps for each ward
対照比  Control ratio
大気条件下 (炭酸ガス濃度 0.03% ) で培養 Cultured under atmospheric conditions (carbon dioxide concentration 0.03%)
連続光照射下での炭酸ガスの施用効果は、 1 日あた り 2時間と言う短時間から明らかに認められ、 その程 度は施用時間が増すに連れ、 大となる傾向であった。 実施例 1 1 The effect of carbon dioxide application under continuous light irradiation was clearly observed from a short time of 2 hours per day, and it tended to increase as the application time increased. Example 1 1
短日及び暗期の低温条件下での、 明期における 1 日当たりの炭酸ガス施用時間がその後の塊茎形成 に及ぼす影響  Influence of daily CO2 application during the light period on subsequent tuber formation under low temperature conditions during short and dark periods
実施例 7 -(C) の条件において、 茎葉増殖時の後半 の 3週間を短日 (10時間日長) 及び暗期の低温 (10° (:、 明期は 20で) とするとともに、 明期に① 2時間② 6時 間又は③ 10時間、 炭酸ガスを施用する条件下で行った。 結果は第 13表の通りであった。  Example 7 Under the conditions of (C), the latter three weeks during foliage growth were shortened to 10 days (10 hours long) and low during the dark period (10 ° (: 20 during the light period), The test was performed for 2 hours, 6 hours or ③ 10 hours under the condition of applying carbon dioxide during the period.
(本頁以下余白) (Margins below this page)
第 13表 Table 13
t
Figure imgf000054_0001
t
Figure imgf000054_0001
* —容器あたりの平均値  * — Average value per container
各区 4 反復  4 reps for each ward
** 対照比  ** Control ratio
*** 大気条件下 (炭酸ガス濃度 0.03%) 及び  *** Atmospheric conditions (carbon dioxide concentration 0.03%) and
短日 · 低温条件下で培養 Short day cultivation at low temperature
本実施例で用いた短日、 低温条件下では、 対照にお いてもス トロンの伸長が認められたが、 その数及び太 さは、 炭酸ガスを施用した区がいずれも対照を上回つ た。 塊茎形成に及ぼす炭酸ガスの効果は、 容器あたり 総重量で 1 日あたり 2時間処理から、 塊茎数で 1 日あ たり 6時間処理から認められた。 Under the short-day, low-temperature conditions used in this example, stron elongation was also observed in the control, but the number and thickness of the strontium were higher in the sections to which carbon dioxide was applied than in the control. Was. The effect of carbon dioxide on tuber formation was observed from a 2-hour treatment per day with a total weight per container and a 6-hour treatment per day with the number of tubers.
〔発明の効果〕  〔The invention's effect〕
本発明によれば、 従来法に比し、 貯蔵性及び栽培性 が改善された塊茎を大量かつ容易に生産するこ とがで きる。  ADVANTAGE OF THE INVENTION According to this invention, tuber with which storage property and cultivation property were improved compared with the conventional method can be mass-produced easily.

Claims

請求 の 範 囲 The scope of the claims
1 . 培養容器内の茎葉増殖工程および塊茎形成工程を 含む工程からなる塊茎形成能を有するソラナム属植 物の塊茎の生産方法において、 1. A method for producing a tuber of a Solanum plant having a tuber-forming ability, comprising a step including a foliage growing step and a tuber forming step in a culture vessel.
(1) 該茎葉増殖工程の少なく とも一部において、 少なく とも 1個の芽を有する植物片を、 少なく とも 炭素源および無機塩を含む液体培地で、 明期の少な く とも一部に炭酸ガスを施用した条件下で培養し、 茎葉およびス トロンを誘導、 増殖し、  (1) In at least a part of the foliage growth step, a plant piece having at least one bud is converted into a liquid medium containing at least a carbon source and an inorganic salt, and at least part of a light period is carbon dioxide gas. Cultivated under the conditions applied to induce foliage and stron, proliferate,
(2) 該塊茎形成工程において、 前記茎葉増殖工程 で液体培地中に形成されたス トロンの少なく とも一 部を気相に露出させて、 少なく とも炭素源を含む液 体培地で、 培養することを特徵とする塊茎の生産方 法  (2) In the tuber forming step, at least a part of the stron formed in the liquid medium in the foliage growing step is exposed to a gaseous phase, and cultured in a liquid medium containing at least a carbon source. For producing tubers specializing in
2 . 前記塊茎形成工程において、 気相部に通気するこ とにより該気相部の相対湿度を低下させて培養する ことを特徴とする請求項 1記載の塊茎の生産法。 2. The method for producing tubers according to claim 1, wherein in the tuber forming step, the relative humidity of the gas phase is reduced by aerating the gas phase to culture the tuber.
3 . 炭酸ガスの施用濃度が、 0. 1 〜30 % (v/v) である ことを特徴とする請求項 1記載の塊茎の生産法。3. The method for producing tubers according to claim 1, wherein the applied concentration of carbon dioxide is 0.1 to 30% (v / v).
4 . 炭酸ガスの施用方法が、 炭酸ガスを 0. 1 〜30 % (v /v) に富化した空気を容器内体積に対して毎分 0. 00 01〜 1容通気することを特徵とする請求項 1記載の 塊茎の生産方法。 4. The method of applying carbon dioxide gas is characterized in that 0.1 to 30% (v / v) of carbon dioxide gas is aerated at a rate of 0.001 to 1 volume per minute with respect to the volume in the container. The method for producing tubers according to claim 1, wherein
. 培養容器内の茎葉増殖工程および塊茎形成工程を 含む工程からなる塊茎形成能を有するソラナム属植 物の塊茎の生産方法において、 該塊茎形成工程にお いて、 気相部に通気することにより該気相部の相対 湿度を低下させて培養することを特徴とする塊茎の 生産法。 A method for producing tubers of a Solanum genus plant having tuber-forming ability comprising a step including a foliage growing step and a tuber forming step in a culture vessel, wherein the tuber forming step is performed by aerating the gas phase in the tuber forming step. A method for producing tubers, which comprises culturing at a reduced relative humidity in the gas phase.
PCT/JP1991/000382 1990-03-23 1991-03-25 Process for producing tuber WO1991014359A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3505863A JP2904924B2 (en) 1990-03-23 1991-03-25 How to produce tubers
DE69116044T DE69116044T2 (en) 1990-03-23 1991-03-25 METHOD FOR PRODUCING TUBERS
BR919105109A BR9105109A (en) 1990-03-23 1991-03-25 PROCESS FOR THE PRODUCTION OF TUBERCULES
US07/773,603 US5862626A (en) 1990-03-23 1991-03-25 Process for producing tuber
EP91905904A EP0476141B1 (en) 1990-03-23 1991-03-25 Process for producing tuber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2/74763 1990-03-23
JP7476390 1990-03-23
JP2/74762 1990-03-23
JP7476290 1990-03-23

Publications (1)

Publication Number Publication Date
WO1991014359A1 true WO1991014359A1 (en) 1991-10-03

Family

ID=26415947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000382 WO1991014359A1 (en) 1990-03-23 1991-03-25 Process for producing tuber

Country Status (6)

Country Link
US (1) US5862626A (en)
EP (2) EP0691073B1 (en)
BR (1) BR9105109A (en)
DE (2) DE69133173T2 (en)
ES (2) ES2190444T3 (en)
WO (1) WO1991014359A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691609B1 (en) * 1992-05-26 1995-02-10 Commissariat Energie Atomique Potato tuberization process.
BE1007666A3 (en) * 1993-10-27 1995-09-12 Billet Alain MULTIPLICATION PROCESS ABOVE GROUND OF SEEDLINGS, BULBS, bulbils, RHIZOMES AND TUBERS.
US5498541A (en) * 1993-11-30 1996-03-12 Japan Tobacco Inc. Method for producing potato microtubers
JP3585050B2 (en) * 1994-07-28 2004-11-04 サッポロホールディングス株式会社 Method for producing virus-free hop stick seedlings
JPH08214693A (en) * 1995-02-16 1996-08-27 Japan Tobacco Inc Producing method of tuber of potato by grafted plant
EP0764401A4 (en) * 1995-04-03 1998-11-18 Japan Tobacco Inc Process for producing potato microtubers
EP1418802A2 (en) * 2001-06-28 2004-05-19 " Glory of the Land" Detached Substrates-non-Drain Systems Ltd. A method and system for water management
CN111528097B (en) * 2020-06-09 2023-03-21 吉林省蔬菜花卉科学研究院 Method for breeding potato mini-potatoes by utilizing stem segments of potato stolons
CN112106660B (en) * 2020-10-09 2021-11-23 山东宇泰生物种业有限公司 Culture medium and culture method for improving potato propagation process efficiency
CN112930890B (en) * 2021-02-03 2022-10-14 农业农村部规划设计研究院 Strawberry stolon traction and cutting composite seedling culture method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497486A (en) * 1972-05-24 1974-01-23

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466216A (en) * 1982-07-08 1984-08-21 Stauffer Chemical Company Method for propagating plants from tissue cultures
DE3522389A1 (en) * 1985-06-22 1987-01-02 Henkel Kgaa Granular detergent with improved cleaning power
US4857464A (en) * 1986-02-21 1989-08-15 Bio-Rational Technologies, Inc. Mist cultivation of cells
WO1988002213A1 (en) * 1986-10-02 1988-04-07 Novotrade Rt Process for mass production of potato's propagation material free from viroids and viruses
DE3786794T2 (en) * 1986-12-02 1993-12-09 Kyowa Hakko Kogyo Kk PROCESS FOR PROPAGING TUBERS.
US5047343A (en) * 1988-04-29 1991-09-10 Wisconsin Alumni Research Foundation Microtuber propagation of potatoes
JPH01285117A (en) * 1988-05-10 1989-11-16 Mitsui Petrochem Ind Ltd Method for producing cultured seedling
JPH01304826A (en) * 1988-05-31 1989-12-08 Mitsui Petrochem Ind Ltd Proliferation of seed and seedling of plant
JPH0216921A (en) * 1988-07-05 1990-01-19 Nippon Steel Chem Co Ltd Method for propagating young plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497486A (en) * 1972-05-24 1974-01-23

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0476141A4 *

Also Published As

Publication number Publication date
ES2190444T3 (en) 2003-08-01
DE69133173T2 (en) 2003-04-30
EP0691073A3 (en) 1996-06-12
DE69133173D1 (en) 2003-01-23
EP0476141A4 (en) 1992-09-09
EP0476141B1 (en) 1996-01-03
DE69116044T2 (en) 1996-06-13
DE69116044D1 (en) 1996-02-15
EP0691073B1 (en) 2002-12-11
EP0476141A1 (en) 1992-03-25
BR9105109A (en) 1992-07-21
US5862626A (en) 1999-01-26
EP0691073A2 (en) 1996-01-10
ES2083571T3 (en) 1996-04-16

Similar Documents

Publication Publication Date Title
KR101587707B1 (en) Producing method of orchid seedlings
Etienne Somatic embryogenesis protocol: coffee (Coffea arabica L. and C. canephora P.)
Yepes et al. Micropropagation of thirteen Malus cultivars and rootstocks, and effect of antibiotics on proliferation
Ng In vitro tuberization in white yam (Dioscorea rotundata Poir)
Abraham et al. Asymbiotic seed germination and in vitro conservation of Coelogyne nervosa A. Rich. an endemic orchid to Western Ghats
Aliyu Application of tissue culture to cashew (Anacardium occidentale L.) breeding: An appraisal
Dave et al. Scaling-up production and field performance of micropropagated medicinal herb ‘Safed Musli’(Chlorophytum borivilianum)
Simmonds Direct rooting of micropropagated M26 apple rootstocks
Rathore et al. Callus culture and plantlet regeneration in date palm (Phoneix dactylifera L.): an important horticultural cash crop for arid and semi-arid horticulture
Mekonen et al. In vitro propagation of banana (Musa paradisiaca L.) plant using shoot tip explant
D'Silva et al. In vitro propagation of Anacardium occidentale L.
WO1991014359A1 (en) Process for producing tuber
Arce-Montoya et al. Micropropagation and field performance of Yucca valida
CN112931197B (en) Preparation method of pineapple tissue culture seedlings
Bertsouklis et al. In vitro propagation of Arbutus andrachne L.
CN115885855A (en) Method for establishing regeneration system by taking hypocotyl of Zikui tea tree as explant
Teasdale et al. Culture of Pinus radiata embryos with reference to artificial seed production
JP2904924B2 (en) How to produce tubers
Akbar et al. Effects of liquid medium on rooting and acclimation of regenerated microshoots of banana (Musa sapientum L.) cv. Sagar
Lassus et al. Micropropagation of rhubarb with special reference to weaning stage and subsequent growth
Ng Production and distribution of virus-free yam (Dioscorea rotundata Poir.)
Yang et al. Induction of multiple bud clumps from inflorescence tips and regeneration of salt-tolerant plantlets in Beta vulgaris
Liu et al. Development of an in vitro grafting method for the enhancement of growth of isolated shoots and buds in soybean (Glycine max L.)
CN107211892A (en) A kind of MD2 pineapples root media and its tissue culture sprout quick breeding method
Norton et al. Rhododendrons

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991905904

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991905904

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991905904

Country of ref document: EP