WO1991012654A1 - Method of driving brushless motor and device therefor - Google Patents

Method of driving brushless motor and device therefor Download PDF

Info

Publication number
WO1991012654A1
WO1991012654A1 PCT/JP1991/000162 JP9100162W WO9112654A1 WO 1991012654 A1 WO1991012654 A1 WO 1991012654A1 JP 9100162 W JP9100162 W JP 9100162W WO 9112654 A1 WO9112654 A1 WO 9112654A1
Authority
WO
WIPO (PCT)
Prior art keywords
duty
rotation speed
brushless motor
signal
changed
Prior art date
Application number
PCT/JP1991/000162
Other languages
French (fr)
Japanese (ja)
Inventor
Shiro Maeda
Mitsuhisa Nakai
Toshiaki Yagi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE4190248A priority Critical patent/DE4190248C2/en
Priority to KR1019910701343A priority patent/KR940009211B1/en
Publication of WO1991012654A1 publication Critical patent/WO1991012654A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings

Definitions

  • the present invention relates to a brushless motor, and in particular, detects a relative position between a magnet rotor and an armature winding based on an induced voltage induced in an armature winding, and quickly changes the rotation speed while responding to a load. than it also relates ⁇ driving method and a driving device for a brushless motor of the line of Utame.
  • a brushless motor requires a detector to detect the magnetic pole position of its rotor.
  • the reliability of the detector under high temperature and high pressure conditions Cannot be used & these detectors cannot be used.
  • the voltage signal induced in the armature winding is detected without using the magnetic pole position detector, and the commutation signal of the motor is based on it.
  • the generation method is used.
  • the rotational speed is detected based on the commutation signal. As shown in FIG. 1, the motor is driven while always performing feedback control in order to cope with a load change.
  • the present invention includes a three-phase armature winding connected to a neutral point, non-ground, a DC power supply, a semiconductor switching element group that blocks and interrupts current to the armature winding, and a magnet rotor.
  • a drive signal generation means for generating a drive signal for the switching element group using an output signal of the position detection means; a rotation speed judging by using an output signal of the position detection means;
  • a rotation speed comparison unit that compares the rotation speed with the rotation speed, a duty command unit, and a pulse width modulation unit that performs pulse width modulation on an output signal of the drive signal generation unit based on a command from the duty command unit.
  • the duty when the rotation speed is changed, the duty is changed based on a predetermined rotation speed-duty curve, and when the rotation speed is stable, the duty is changed based on a signal obtained by converting the voltage signal.
  • the feedback control is changed, and the inclination of a predetermined rotation speed-duty curve is changed between low rotation and high rotation.
  • the duty based on the predetermined rotation speed / duty curve is adopted.
  • the adopted duty is changed one after another at an arbitrary speed. In this way, a brushless motor drive that can change the rotation speed smoothly and quickly while responding to the load is realized.
  • FIG. 1 shows the relationship between the rotation speed and the duty of the conventional brushless motor driving device.
  • Fig. 2 shows the block diagram of the brushless motor driving device in the first and second embodiments.
  • Fig. 3 shows the brushless motor driving device.
  • FIG. 4 is a flow chart for explaining the operation of this embodiment.
  • FIG. 5 is a diagram showing the relationship between the rotational speed and the duty in the first embodiment of the present invention.
  • FIG. 7 is a relationship diagram of rotation speed and duty in the embodiment of FIG.
  • FIG. 2 is a block diagram of a brushless motor driving device according to the first embodiment of the present invention.
  • 101 is a DC power supply
  • 102 is a group of semiconductor switching elements
  • six transistors Q1 to Q6 are connected to six diodes connected in anti-parallel to each other. It consists of codes.
  • Reference numeral 103 denotes a brushless motor, which is composed of an armature winding 104 connected in three phases and a magnet rotor 105.
  • 106 is position detection means
  • 107 is drive signal generation means
  • 108 is pulse width modulation means
  • 109 is rotation speed command means
  • 110 is rotation speed comparison means
  • 111 is duty command. Means.
  • the position detecting means 106 detects the magnetic pole position of the magnet rotor 105 from the induced voltage generated in the armature winding 104, and transmits it to the drive signal generating means 107, and the pulse It controls the brushless motor 103 by driving the transistors of the semiconductor switching element group 102 by applying width modulation.
  • FIG. 3 is a circuit diagram of a brushless motor driving device according to the first embodiment of the present invention.
  • 1 is a DC power supply
  • 2 is a group of semiconductor switching elements, and consists of six transistors Q1 to Q6 and six diodes connected in anti-parallel to each of them.
  • Reference numeral 3 denotes a brushless motor, which comprises an armature winding 4 and a magnet rotor 5 connected in three phases.
  • Reference numeral 6 denotes a position detection circuit, which comprises three filters 6 1 to 6 3 and a comparator group 6 4.
  • 7 is a microcomputer
  • 8 is a pulse width modulation circuit
  • 9 is a volume for indicating a rotation speed.
  • the comparator group 64 is connected to the input ports IN 0 to IN 2 of the microcomputer 7.
  • a drive signal is output from output ports U, V, W, X, ⁇ , and ⁇ of the microcomputer 7, U to V are connected to the pulse width modulation circuit 8, and X to Z are the semiconductor switching elements described above. Connected to transistors Q4 to Q6 of group 2.
  • the output port of the microcomputer 7 A duty signal is output from the PWM and is connected to the pulse width modulation circuit 8. The output of the pulse width modulation circuit 8 is connected to transistors Q1 to Q3 of the semiconductor switching element group 2.
  • FIG. 4 is a flowchart showing the software of the microcomputer 7.
  • Fig. 5 shows the rotation speed-duty chart, and the dashed line indicates feed pack control.
  • step A the target rotation speed according to the input voltage level of input port IN 3 is determined.
  • step B the target rotational speed is compared with the instructed rotational speed. If they match, the process proceeds to step F. If they differ, the process proceeds to step C.
  • step C the target rotation speed is compared with the indicated tillage speed. If the target rotation speed is higher than the indicated rotation speed, proceed to step E ⁇ if the target rotation speed is lower than the indicated rotation speed, step D Proceed to.
  • step D a value obtained by subtracting an arbitrary value ⁇ from the designated rotation speed is set as the designated rotation speed.
  • step ⁇ a value obtained by adding an arbitrary value ⁇ to the designated rotation speed is set as the designated rotation speed.
  • Optimum up / down speed for changing the rotation speed is selected by appropriately selecting the value to be adjusted in steps D and E. Also, the value of ⁇ to be adjusted in steps D and E is not always the same.
  • step F if the target rotational speed is compared with the instructed rotational speed, the process proceeds to step I. If not, the process proceeds to step G.
  • Step G The basic duty data corresponding to the rotation speed is loaded from the table data in which the predetermined rotation speed-duty is written.
  • step H add the correction duty data to the basic duty data and set the output duty data. Then go to step ⁇ .
  • the operation in steps F, G, H, and 0 is performed when the rotation speed is changed.
  • step I the actual rotational speed calculated from the position detection signal is compared with the target rotational speed. If not, the process proceeds to step M if the process proceeds to step M.
  • step J the target rotation speed is compared with the actual rotation speed.If the target rotation speed is higher than the actual rotation speed, the process proceeds to step L.If the target rotation speed is lower than the actual rotation speed, step K is performed. Proceed to.
  • step K the value obtained by subtracting any value 3 from the output duty cycle is set as output duty data.
  • step L the output duty data plus an arbitrary value ⁇ is set as the output duty data.
  • step M the basic duty data corresponding to the specified rotation speed is loaded from the table data in which the predetermined rotation speed and duty are written.
  • step N the basic duty data is subtracted from the output duty data, and the result is set as the correction duty data.
  • This corrected duty data corresponds to h1 and h2 in FIG. Steps I, J, K, L, M, and N operate in this manner when the rotation speed is stable. Performs feedback control of the In step 2, a pulse is output from the output port PWM according to the output duty data. Thereafter, the process returns to step A and repeats the above processing.
  • the duty ratio can be controlled in parallel with the rotation speed-duty curve as a base when the rotation speed is changed, by changing the inclination between the low rotation speed and the high rotation speed as shown in FIG. Other operations are the same as in the first embodiment.
  • the point of the rotation speed ( ⁇ ) in Fig. 6 is ⁇
  • the intensity of the rotation ( ⁇ ) is light and the correction duty data h4 is negative: L Motor drive

Abstract

The driving of the brushless motor (3) capable of changing its rotational speed smoothly and quickly according to the change of a load can be realized by changing the duty factor control when the rotational speed is changed and when it is stable.

Description

明 細 書  Specification
発明の名称 Title of invention
ブラシ レスモータの駆動方法および駆動装置  Driving method and driving device for brushless motor
技術分野 i Technical field i
本発明はブラシレスモータに係り、 特に電機子巻線に誘起さ れる誘起電圧によつて磁石回転子と電機子巻線との相対的位置 を検出し 負荷に対応しながら速やかに回転速度の変更を行な うためのブラシレスモータの駆動方法及び駆動装置に関するも のである。 The present invention relates to a brushless motor, and in particular, detects a relative position between a magnet rotor and an armature winding based on an induced voltage induced in an armature winding, and quickly changes the rotation speed while responding to a load. than it also relates driving method and a driving device for a brushless motor of the line of Utame.
背景技術 Background art
通常ブラシレスモータに その回転子の磁極位置を検出す るための検出器が必要である力 例えばこのブラシレスモータ を空調機のコンプレッサに用いよう とする場合、 高温高圧条件 下で前記検出器の信頼性が保証できないた & これらの検出器 を用いることが出来な 従ってこのような応用において 磁極位置検出器を用いず 電機子巻線に誘起される電圧信号を 検出し それに基づいてモータの転流信号を生成する方法が用 いられている。 そして前記転流信号に基づいて回転速度を検出 第 1 図に示すように負荷変動に対応するために常にフィ一 ドバック制御を行いながらモータの駆動を行っている。  Normally, a brushless motor requires a detector to detect the magnetic pole position of its rotor.For example, when this brushless motor is used for a compressor of an air conditioner, the reliability of the detector under high temperature and high pressure conditions Cannot be used & these detectors cannot be used.Therefore, in such an application, the voltage signal induced in the armature winding is detected without using the magnetic pole position detector, and the commutation signal of the motor is based on it. The generation method is used. The rotational speed is detected based on the commutation signal. As shown in FIG. 1, the motor is driven while always performing feedback control in order to cope with a load change.
しかし 例えば空調機のコンプレッサ駆動用のような大型の ブラ シレスモータの場合、 室内外の空調条件により回転速度を 頻繁に変更する必要が生じる。 通常このような応用においては 電源電圧は一定にしておき、 電圧信号パルスのデューティ を制 御することによつて電圧を制御す; Ικ いわゆるパルス幅変調を 用いる。 However, in the case of a large brushless motor, for example, for driving a compressor of an air conditioner, it is necessary to frequently change the rotation speed depending on the indoor and outdoor air conditioning conditions. Normally in such applications, the power supply voltage is kept constant and the voltage is controlled by controlling the duty of the voltage signal pulse; Used.
従って従来例に示したような駆動方法を用いると回転速度変 更に時間がかかることになり、 緊急を要する保護制御の効果が 無く なるという課題を有してい  Therefore, when the driving method as shown in the conventional example is used, it takes time to change the rotation speed, and there is a problem that the effect of the urgent protection control is lost.
発明の開示 Disclosure of the invention
そこで本発明 中性点非接地に結線された 3相電機子卷線 と、 直流電源と、 前記電機子巻線への電流を通 ¾ 遮断する半 導体スィ ッチング素子群と、 磁石回転子を有するブラシレスモ 一夕と、 回転速度指令手段と、 前記電機子巻線に誘起される電 圧信号によつて前記電機子巻線と前記磁石回転子の相対的位置 を検出する位置検出手段と、 前記位置検出手段の出力信号を用 いて前記スィッチング素子群の駆動信号を生成する駆動信号発 生手段と、 前記位置検出手段の出力信号を用いて回転速度を判 断し前記回転速度指令手段から指示される回転速度との比較を 行う回転速度比較手段と、 デューティ指令手段と、 前記駆動信 号発生手段の出力信号に 前記デューティ指令手段の指令に基 づいてパルス幅変調をかけるパルス幅変調手段より構成される ブラシレスモータの駆動装置において、 回転速度変更時は所定 の回転数一デューティ曲線に基づいてデューティ を変更し 回 転速度安定時には前記電圧信号を変換して得られる信号に基づ いてデューティ を変更するフィ ー ドバッ ク制御としたものであ さらに 所定の回転数一デューティ曲線の傾きを低回転時と 高回転時とで変えるようにしたものである。  Therefore, the present invention includes a three-phase armature winding connected to a neutral point, non-ground, a DC power supply, a semiconductor switching element group that blocks and interrupts current to the armature winding, and a magnet rotor. A brushless motor, rotation speed commanding means, position detecting means for detecting a relative position between the armature winding and the magnet rotor based on a voltage signal induced in the armature winding, A drive signal generation means for generating a drive signal for the switching element group using an output signal of the position detection means; a rotation speed judging by using an output signal of the position detection means; A rotation speed comparison unit that compares the rotation speed with the rotation speed, a duty command unit, and a pulse width modulation unit that performs pulse width modulation on an output signal of the drive signal generation unit based on a command from the duty command unit. In the brushless motor driving device, when the rotation speed is changed, the duty is changed based on a predetermined rotation speed-duty curve, and when the rotation speed is stable, the duty is changed based on a signal obtained by converting the voltage signal. The feedback control is changed, and the inclination of a predetermined rotation speed-duty curve is changed between low rotation and high rotation.
回転速度変更時において、 回転速度安定時のフィ ― ドバック 制御により得られたデューティ と所定の回転数一デューティ 曲 線から得られるデューティ との差分を加算しながら所定の回転 数一デューティ 曲線に基づく デューティ を採用する。 このとき、 採用するデューティ は任意の速さで次々に変更される。 こうす ることにより、 負荷に対応しながらスムーズかつ素早い回転速 度の変更を可能とするブラシレスモータの駆動を実現すること とな.る。 Feedback when the rotation speed is stable when changing the rotation speed While adding the difference between the duty obtained by the control and the duty obtained from the predetermined rotation speed / duty curve, the duty based on the predetermined rotation speed / duty curve is adopted. At this time, the adopted duty is changed one after another at an arbitrary speed. In this way, a brushless motor drive that can change the rotation speed smoothly and quickly while responding to the load is realized.
ま 所定の回転数一デューチイ 曲線の傾きを低回転時と高 回転時とで変えたことにより、 低回転時の印加電圧が高ま り、 低回転への移行時や低電源電圧時における印加電圧のアンダー シュー トによる脱調現象を防止できる。  In addition, by changing the slope of the predetermined rotation speed-duty curve between low rotation and high rotation, the applied voltage at low rotation increases, and the applied voltage at the transition to low rotation and at low power supply voltage The step-out phenomenon caused by undershoot of the motor can be prevented.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は従来のブラシレスモータの駆動装置の回転数—デュ 一ティの関係 ¾ 第 2図は第 1および第 2の実施例におけるブ ラシレスモータの駆動装置のプロッ ク 第 3図は同ブラシレ スモータの駆動装置の回路 ¾ 第 4図は同実施例の動作を説明 するフローチャー ト、 第 5図は本発明の第 1 の実施例における 回転数—デューティ の関係 ¾ 第 6図は本発明の第 2の実施例 における回転数一デューティ の関係図である。  Fig. 1 shows the relationship between the rotation speed and the duty of the conventional brushless motor driving device. Fig. 2 shows the block diagram of the brushless motor driving device in the first and second embodiments. Fig. 3 shows the brushless motor driving device. FIG. 4 is a flow chart for explaining the operation of this embodiment. FIG. 5 is a diagram showing the relationship between the rotational speed and the duty in the first embodiment of the present invention. FIG. 7 is a relationship diagram of rotation speed and duty in the embodiment of FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の第 1の実施例について図面を参考に説明する。 第 2図は本発明の第 1 の実施例におけるブラシレスモータの 駆動装置のブロック図である。 第 2図において、 1 0 1 は直流 電源、 1 0 2は半導体スィ ッチング素子群で、 Q 1〜Q 6 の 6 個の トラ ンジスタとそれぞれに逆並列接続された 6個のダイォ ー ドからなる。 1 0 3はブラシレスモータで、 3相結線された 電機子巻線 1 0 4 と磁石回転子 1 0 5からなる。 1 0 6は位置 検出手段、 1 0 7 は駆動信号発生手段、 1 0 8 はパルス幅変調 手段、 1 0 9 は回転速度指令手段、 1 1 0 は回転速度比較手段、 1 1 1 はデューティ指令手段である。 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a block diagram of a brushless motor driving device according to the first embodiment of the present invention. In FIG. 2, 101 is a DC power supply, 102 is a group of semiconductor switching elements, and six transistors Q1 to Q6 are connected to six diodes connected in anti-parallel to each other. It consists of codes. Reference numeral 103 denotes a brushless motor, which is composed of an armature winding 104 connected in three phases and a magnet rotor 105. 106 is position detection means, 107 is drive signal generation means, 108 is pulse width modulation means, 109 is rotation speed command means, 110 is rotation speed comparison means, and 111 is duty command. Means.
以上の構成により、 電機子巻線 1 0 4 に発生する誘起電圧よ り位置検出手段 1 0 6で磁石回転子 1 0 5 の磁極位置を検出し 駆動信号発生手段 1 0 7 に伝え、 それにパルス幅変調をかけて 半導体スィ ッチング素子群 1 0 2 の トラ ンジスタを駆動し ブ ラシレスモータ 1 0 3を制御する ものである。  With the above configuration, the position detecting means 106 detects the magnetic pole position of the magnet rotor 105 from the induced voltage generated in the armature winding 104, and transmits it to the drive signal generating means 107, and the pulse It controls the brushless motor 103 by driving the transistors of the semiconductor switching element group 102 by applying width modulation.
第 3図 本発明の第 1 の実施例におけるブラシレスモータ の駆動装置の回路図である。  FIG. 3 is a circuit diagram of a brushless motor driving device according to the first embodiment of the present invention.
同図において、 1 は直流電源、 2 は半導体スィ ッチング素子 群で Q 1〜Q 6の 6個の トラ ンジスタとそれぞれに逆並列接 続された 6個のダイオー ドからなる。 3 はブラシレスモータで、 3相結線された電機子巻線 4 と磁石回転子 5からなる。 6 は位 置検出回路で、 3つのフィルタ 6 1 ~ 6 3 とコンパレータ群 6 4からなる。 7 はマイクロコンピュータ、 8 はパルス幅変調回 胳 9は回転速度指示用ボリ ュームである。 前記コンパレータ 群 6 4は前記マイクロコ ンピュータ 7の入力ポー ト I N 0〜 I N 2 と接続されている。 前記マイクロコンピュータ 7の出力 ポー ト U、 V、 W、 X、 Υ、 Ζからは駆動信号が出力され U 〜Vは前記パルス幅変調回路 8 に接続されてい X〜Zは前 記半導体スィ ッチング素子群 2の トランジスタ Q 4〜Q 6 に接 続している。 また、 前記マイクロコンピュータ 7の出力ポー ト P W Mからはデューティ 信号が出力され 前記パルス幅変調回 路 8 に接続されている。 前記パルス幅変調回路 8 の出力は前記 半導体スィ ッチング素子群 2 の ト ラ ンジスタ Q 1〜Q 3 に接続 している。 In the figure, 1 is a DC power supply, 2 is a group of semiconductor switching elements, and consists of six transistors Q1 to Q6 and six diodes connected in anti-parallel to each of them. Reference numeral 3 denotes a brushless motor, which comprises an armature winding 4 and a magnet rotor 5 connected in three phases. Reference numeral 6 denotes a position detection circuit, which comprises three filters 6 1 to 6 3 and a comparator group 6 4. 7 is a microcomputer, 8 is a pulse width modulation circuit, and 9 is a volume for indicating a rotation speed. The comparator group 64 is connected to the input ports IN 0 to IN 2 of the microcomputer 7. A drive signal is output from output ports U, V, W, X, Υ, and の of the microcomputer 7, U to V are connected to the pulse width modulation circuit 8, and X to Z are the semiconductor switching elements described above. Connected to transistors Q4 to Q6 of group 2. The output port of the microcomputer 7 A duty signal is output from the PWM and is connected to the pulse width modulation circuit 8. The output of the pulse width modulation circuit 8 is connected to transistors Q1 to Q3 of the semiconductor switching element group 2.
第 4図 マイクロコ ンピュータ 7のソフ トウェアを示すフ 口—チャー トである。 第 5図は回転数—デュ一ティチャー トで 波線部分はフィ一ドパック制御を示している。  FIG. 4 is a flowchart showing the software of the microcomputer 7. Fig. 5 shows the rotation speed-duty chart, and the dashed line indicates feed pack control.
第 4図および第 5図を用いて本発明の第 1 の実施例の動作を 説明する。  The operation of the first embodiment of the present invention will be described with reference to FIG. 4 and FIG.
¾ず; ステップ Aにおいて、 入力ポー ト I N 3の入力電圧レ ベルに応じた目標回転速度が確定される。 ステップ Bにおいて、 目標回転速度と指示回転速度との比較を行 \ 一致していれば ステップ Fに進^ 異なっている場合ステップ Cに進む。 ステ ップ Cにおいて、 目標回転速度と指示回耘速度との比較を行 目標回転速度が指示回転速度を上回っていればステツプ Eに進 ^ 目標回転速度が指示回転速度より下回っていればステツプ Dに進む。 ステップ Dにおいて、 指示回転速度から任意の値 α を減じたものを指示回転速度にセッ トする。 ステップ Εにおい て、 指示回転速度から任意の値 αを加えたものを指示回転速度 にセッ トする。 ステップ D、 Eにおいて加減するひの値を適当 に選ぶことにより、 回転速度変更のアップダウンスピー ドを最 適にする。 また、 ステップ D、 Eにおいて加減する αの値は同 一とは限らない。 ステップ Fにおいて、 目標回転速度と指示回 転速度との比較を行 —致していればステツプ I に進^ 異 なっている場合ステップ Gに進む。 ステップ Gにおいて、 指示 回転速度に対応した基本デューティ データを所定の回転数ーデ ユ ーティが書かれたテーブルデータからロー ドする。 ステップ Hにおいて、 基本デューティデータに補正デューティ データを 加算し 出力デューティ データにセッ トする。 そしてステップ ◦に進む。 このようにステッ プ F、 G、 H、 0と動作するのが 回転速度変更時である。 ステップ I において、 位置検出信号か ら算出される実回転速度と目標回転速度と比較を行 —致な らばステツプ Mに進 異なればステツプ Jに進む。 ステツプ Jにおいて、 目標回転速度と実回転速度との比較を行 目標 回転速度が実回転速度を上回つていればステップ Lに進^ 目 標回転速度が実回転速度より下回っていればステップ Kに進む。 ステップ Kにおいて、 出力デューテイデ一夕から任意の値 3を 減じたものを出力デューティデータにセッ トする。 ステップ L において、 出力デューティデータに任意の値 ^を加えたものを 出力デューティ データにセッ トする。 ステップ 、 Lにおいて 加減する の値を適当に選ぶことにより、 フィ ー ドバック制御 時のデューティ アップダウンスピー ドを最適にする。 ま ス チップ Lにおいて加減する の値は同一とは限らない。 ス テツプ Mにおいて、 指示回転速度に対応した基本デューティ デ —タを所定の回転数一デューティが書かれたテーブルデータか らロー ドする。 ステップ Nにおいて、 出力デューテイ デ一タカ、 ら基本デューティ データを減算して、 補正デューティ データに セッ トする。 この補正デューティ データが第 5図の h 1、 h 2 に相当する。 このようにステップ I、 J、 K、 L、 M、 Nと動 作するのが回転速度安定時であり、 実回転速度によるデューテ ィ のフィ ー ドバッ ク制御を行う。 ステッ プ〇において、 出力デ ユ ーティ データに応じて出力ポー ト P W Mからパルス出力を行 う。 以降ステップ Aに戻り以上の処理を繰り返す。 In step A, the target rotation speed according to the input voltage level of input port IN 3 is determined. In step B, the target rotational speed is compared with the instructed rotational speed. If they match, the process proceeds to step F. If they differ, the process proceeds to step C. In step C, the target rotation speed is compared with the indicated tillage speed. If the target rotation speed is higher than the indicated rotation speed, proceed to step E ^ if the target rotation speed is lower than the indicated rotation speed, step D Proceed to. In step D, a value obtained by subtracting an arbitrary value α from the designated rotation speed is set as the designated rotation speed. In step Ε, a value obtained by adding an arbitrary value α to the designated rotation speed is set as the designated rotation speed. Optimum up / down speed for changing the rotation speed is selected by appropriately selecting the value to be adjusted in steps D and E. Also, the value of α to be adjusted in steps D and E is not always the same. In step F, if the target rotational speed is compared with the instructed rotational speed, the process proceeds to step I. If not, the process proceeds to step G. In Step G, The basic duty data corresponding to the rotation speed is loaded from the table data in which the predetermined rotation speed-duty is written. In step H, add the correction duty data to the basic duty data and set the output duty data. Then go to step ◦. The operation in steps F, G, H, and 0 is performed when the rotation speed is changed. In step I, the actual rotational speed calculated from the position detection signal is compared with the target rotational speed. If not, the process proceeds to step M if the process proceeds to step M. In step J, the target rotation speed is compared with the actual rotation speed.If the target rotation speed is higher than the actual rotation speed, the process proceeds to step L.If the target rotation speed is lower than the actual rotation speed, step K is performed. Proceed to. In step K, the value obtained by subtracting any value 3 from the output duty cycle is set as output duty data. In step L, the output duty data plus an arbitrary value ^ is set as the output duty data. By appropriately selecting the value to be added or subtracted in steps and L, the duty up / down speed during feedback control is optimized. Also, the value of addition and subtraction in chip L is not always the same. In step M, the basic duty data corresponding to the specified rotation speed is loaded from the table data in which the predetermined rotation speed and duty are written. In step N, the basic duty data is subtracted from the output duty data, and the result is set as the correction duty data. This corrected duty data corresponds to h1 and h2 in FIG. Steps I, J, K, L, M, and N operate in this manner when the rotation speed is stable. Performs feedback control of the In step 2, a pulse is output from the output port PWM according to the output duty data. Thereafter, the process returns to step A and repeats the above processing.
次に 第 6図により、 本発明の第 2の実施例について説明す る。  Next, a second embodiment of the present invention will be described with reference to FIG.
装置の構成およびソフ トウヱァ 第 1 の実施例と同一のた め説明を省略する。  Device configuration and software The description is omitted because it is the same as that of the first embodiment.
第 1 の実施例において、 回転速度変更時にベースとする回転 数—デューティ 曲線を、 第 6図に示すよ うに低回転時と高回転 時とで傾きを変えて、 それと平行にデューティを制御できる。 これ以外の動作は第 1 の実施例と同様である。  In the first embodiment, the duty ratio can be controlled in parallel with the rotation speed-duty curve as a base when the rotation speed is changed, by changing the inclination between the low rotation speed and the high rotation speed as shown in FIG. Other operations are the same as in the first embodiment.
以上のような動作により、 第 6図における回転数 (ゥ) のポ イ ン トのよう 髙回転時 (ィ) の貪荷が軽く補正デューティ データ h 4がマイナスになっていて: L モータの駆動に十分な デューティが得られるこ とになり、 低負荷時あるいは低電源電 圧時の印加電圧の低下を防止し ブラシレスモータの脱調現象 の発生をなくす。  By the operation as described above, the point of the rotation speed (ゥ) in Fig. 6 is 髙 The intensity of the rotation (ィ) is light and the correction duty data h4 is negative: L Motor drive As a result, sufficient duty can be obtained, preventing the applied voltage from decreasing at low load or low power supply voltage, and eliminating the step-out phenomenon of the brushless motor.
ま 本実施例で 回転数—デューティ 曲線の傾きを変更 するようにした力 ί デューティ の下限値を制限することでも同 様の効果が得られる。  A similar effect can be obtained by limiting the lower limit of the force ί duty in the present embodiment in which the slope of the rotation speed-duty curve is changed.
産業上の利用可能性 Industrial applicability
さ らに 所定の回転数一デューティ曲線の傾きを低回転時と 高回転時とで変えたことにより、 低回転時の印加電圧が高ま り、 低回転への以降時や低電源電圧時における印加電圧のアンダー シュー トによる脱調現象を防止できるなと 実用的にきわめて 有用である。 Furthermore, by changing the slope of the predetermined rotation speed-duty curve between low rotation and high rotation, the applied voltage at low rotation increases, It is practically impossible to prevent the step-out phenomenon caused by undershoot of the applied voltage. Useful.

Claims

請 求 の 範 囲 The scope of the claims
磁石回転子を有するブラシレスモータの電機子巻線に誘起 される電圧信号を検出し この電圧信号を変換して得られ る信号により前記ブラシレスモータの転流信号を生成する ことで回転子磁極位置検出器を省略したブラシレスモータ において、 モータ印加電圧の制御手段と してデューティ制 御を行う ものと し 回転速度変更時は所定の回転数ーデュ 一ティ 曲線に基づいてデューティを変更し 回転速度安定 時には前記電圧信号を変換して得られる信号に基づいてデ ユ ーティを変更するフィ ー ドバック制御としたブラシレス モータの駆動方 Detecting a voltage signal induced in an armature winding of a brushless motor having a magnet rotor and converting the voltage signal to generate a commutation signal of the brushless motor to detect a rotor magnetic pole position In a brushless motor in which a motor is omitted, duty control is performed as control means of the motor applied voltage.When the rotation speed is changed, the duty is changed based on a predetermined rotation speed-duty curve, and when the rotation speed is stable, How to drive a brushless motor with feedback control that changes the duty based on the signal obtained by converting the voltage signal
所定の回転数一デューティ曲線の傾きを低回転時と高回転 時とで変えた請求項 1記載のブラシレスモータの駆動方?あ 中性点非接地に結線された 3相電機子巻線と、 直流電源と、 前記電機子巻線への電流を通電 遮断する半導体スィ ッチ ング素子群と、 磁石回転子を有するブラシレスモータと、 回転速度指令手段と、 前記電機子巻線に誘起される電圧信 号によつて前記電機子卷線と前記磁石回転子の相対的位置 を検出する位置検出回路と、 前記位置検出手段の出力信号 を用いて前記スイツチング素子群の駆動信号を生成する駆 動信号発生手段と、 前記位置検出手段の出力信号を用いて 回転速度を判断し前記回転速度指令手段から指示される回 転速度との比較を行う回転速度比較手段と、 デ ヒ ュ ティ 令手段と、 前記駆動信号発生手段の出力信号に 前記デュ 一ティ指令手段の指令に基づいてパルス幅変調をかけるパ ルス幅変調手段を備え、 前記デューティ指令手段において 回転速度変更時は所定の回転数一デューティ 曲線に基づい てデューティを変更し 回転速度安定時には前記電圧信号 を変換して得られる信号に基づいてデューティを変更する フィ 一 ドパッ ク制御としたブラ シレスモータの駆動装 所定の回転数一デューティ曲線の傾きを低回転時と髙回転 時とで変えた請求項 3記載のブラシレスモータの駆動装 ¾ The method of driving the brushless motor according to claim 1, wherein a slope of a predetermined rotation speed-duty curve is changed between a low rotation time and a high rotation time, and a three-phase armature winding connected to a neutral point non-ground. A DC power supply, a semiconductor switching element group for energizing and interrupting a current to the armature winding, a brushless motor having a magnet rotor, a rotation speed commanding means, and a voltage induced in the armature winding A position detection circuit for detecting a relative position between the armature winding and the magnet rotor by a signal, and a drive signal for generating a drive signal for the switching element group using an output signal of the position detection means. Generating means, rotational speed comparing means for determining a rotational speed using an output signal of the position detecting means, and comparing the rotational speed with a rotational speed instructed by the rotational speed command means, and a duty command means; The drive signal generator Pas applying pulse width modulation on the basis of the output signal to the command of the Du one tee command means When the rotation speed is changed in the duty command means, the duty is changed based on a predetermined rotation speed-duty curve, and when the rotation speed is stable, the duty is changed based on a signal obtained by converting the voltage signal. 4. The brushless motor driving device according to claim 3, wherein the gradient of a predetermined rotation speed-duty curve is changed between low rotation and during rotation.
PCT/JP1991/000162 1990-02-14 1991-02-12 Method of driving brushless motor and device therefor WO1991012654A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4190248A DE4190248C2 (en) 1990-02-14 1991-02-12 Method and device for driving a brushless motor
KR1019910701343A KR940009211B1 (en) 1990-02-14 1991-02-12 Method of driving brushless motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2034322A JP2876681B2 (en) 1990-02-14 1990-02-14 Driving method and driving device for brushless motor
JP2/34322 1990-02-14

Publications (1)

Publication Number Publication Date
WO1991012654A1 true WO1991012654A1 (en) 1991-08-22

Family

ID=12410926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000162 WO1991012654A1 (en) 1990-02-14 1991-02-12 Method of driving brushless motor and device therefor

Country Status (4)

Country Link
JP (1) JP2876681B2 (en)
KR (1) KR940009211B1 (en)
DE (2) DE4190248T (en)
WO (1) WO1991012654A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775369A (en) * 1993-06-29 1995-03-17 Yamamoto Denki Kk Method and apparatus for controlling phase angle of brushless motor
JP2007236153A (en) * 2006-03-03 2007-09-13 Jtekt Corp Sensorless drive method and device for brushless motor
DE102007016872A1 (en) * 2007-04-10 2008-10-23 Klaus Thissen Converter for converting magnetic energy into kinetic energy and / or electrical energy and methods for converting magnetic energy into kinetic energy and / or electrical energy by means of a transducer
JP6082681B2 (en) * 2013-09-19 2017-02-15 ミネベアミツミ株式会社 Motor drive control device and control method of motor drive control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268487A (en) * 1987-04-23 1988-11-07 Seiko Epson Corp Motor control circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512066A (en) * 1967-03-08 1970-05-12 Gerber Scientific Instr Co Motor energizing system
JP2502620B2 (en) * 1987-09-04 1996-05-29 松下電器産業株式会社 Brushless motor drive

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268487A (en) * 1987-04-23 1988-11-07 Seiko Epson Corp Motor control circuit

Also Published As

Publication number Publication date
KR920702070A (en) 1992-08-12
KR940009211B1 (en) 1994-10-01
DE4190248C2 (en) 1995-04-06
JPH03239185A (en) 1991-10-24
JP2876681B2 (en) 1999-03-31
DE4190248T (en) 1992-03-12

Similar Documents

Publication Publication Date Title
JP4261523B2 (en) Motor driving apparatus and driving method
US5339013A (en) Method and apparatus for driving a brushless motor including varying the duty cycle in response to variations in the rotational speed
US6979967B2 (en) Efficiency optimization control for permanent magnet motor drive
US5804939A (en) Brushless D.C. motor driving and controlling method and apparatus therefor and electrical equipment
JP2001251888A (en) Current-limiting circuit for inverter type refrigerator and its control method
WO1987002841A1 (en) Method and apparatus for controlling torque of a servo motor
JP2920754B2 (en) Drive device for brushless DC motor
JP2003111469A (en) Control method and controller of motor
WO1991012654A1 (en) Method of driving brushless motor and device therefor
US6856109B2 (en) Efficiency optimization control for permanent magnet motor drive
KR100654813B1 (en) Method for controlling speed of bldc motor and method for controlling cooling speed of refrigerator
JP4197974B2 (en) Motor control device and motor control method
JP2005020919A (en) Controller for electric motor
Kim et al. DSP-based high-speed sensorless control for a brushless DC motor using a DC link voltage control
JP2700429B2 (en) Drive circuit of three-phase brushless motor and air conditioner outdoor unit
US20130076284A1 (en) Motor drive device, and motor drive method
JP3087300B2 (en) Drive device for brushless motor
JP2014171293A (en) Device and method of controlling cooling fan
JP3167131B2 (en) Driving method and driving device for brushless motor
Lai et al. Back-EMF detection technique of brushless DC motor drives for wide range control
CN114447885A (en) Three-phase motor driving circuit and method
WO1994008391A1 (en) Circuit and method for driving variable reluctance motor
JPH06311778A (en) Freezing cycle controller
JP2006136167A (en) Power converter, control method of power converter, and air conditioner
JP2006191721A (en) Motor controller and control method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE KR US

RET De translation (de og part 6b)

Ref document number: 4190248

Country of ref document: DE

Date of ref document: 19920312

WWE Wipo information: entry into national phase

Ref document number: 4190248

Country of ref document: DE