WO1991011083A1 - Material generating heat by absorbing microwaves - Google Patents

Material generating heat by absorbing microwaves Download PDF

Info

Publication number
WO1991011083A1
WO1991011083A1 PCT/JP1991/000035 JP9100035W WO9111083A1 WO 1991011083 A1 WO1991011083 A1 WO 1991011083A1 JP 9100035 W JP9100035 W JP 9100035W WO 9111083 A1 WO9111083 A1 WO 9111083A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
conductive
powder
absorbing
temperature
Prior art date
Application number
PCT/JP1991/000035
Other languages
French (fr)
Japanese (ja)
Inventor
Masaharu Matsuki
Toshiaki Yoshihara
Miki Ikeda
Sumihiko Kurita
Original Assignee
Kabushiki Kaisha Kouransha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26346922&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1991011083(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kabushiki Kaisha Kouransha filed Critical Kabushiki Kaisha Kouransha
Priority to EP91902751A priority Critical patent/EP0463180B1/en
Priority to DE69109940T priority patent/DE69109940T2/en
Publication of WO1991011083A1 publication Critical patent/WO1991011083A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6491Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors
    • H05B6/6494Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors for cooking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • B65D81/3446Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package specially adapted to be heated by microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3471Microwave reactive substances present in the packaging material
    • B65D2581/3472Aluminium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3471Microwave reactive substances present in the packaging material
    • B65D2581/3474Titanium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3471Microwave reactive substances present in the packaging material
    • B65D2581/3474Titanium or compounds thereof
    • B65D2581/3475Titanium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3471Microwave reactive substances present in the packaging material
    • B65D2581/3477Iron or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3471Microwave reactive substances present in the packaging material
    • B65D2581/3479Other metallic compounds, e.g. silver, gold, copper, nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3471Microwave reactive substances present in the packaging material
    • B65D2581/3481Silicon or oxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3486Dielectric characteristics of microwave reactive packaging
    • B65D2581/3494Microwave susceptor

Definitions

  • the present invention relates to a micro wave absorbing and absorbing material which ripens by absorbing the energy of micro ⁇ -waves and has excellent heat generation characteristics especially in a microwave oven.
  • irradiated microwaves apply vibrational friction to molecules such as water contained in the cooked food, and the temperature rises due to the heat. This has the advantage that cooking can be done in a short time.
  • the above object is attained by the following microwave absorbing heat generating material. That is,
  • Fe-based oxide Microwave absorption heat generating material characterized in that a conductive substance is mixed with ⁇ of the base material mainly composed of
  • the above-mentioned conductive material is a metal, an alloy, or a compound of a metal.
  • said conductive material is F e, A £, C u , [:. R, ⁇ i, T i, [S i, T i N, M o S i ⁇ , T i B 2, S i C
  • the magic ⁇ -wave-absorbing heat-generating material according to the above (2) which is at least one of alloys and compounds.
  • a special feature is that a non-conductive compound in the compound of atomic number 21 to 29 ⁇ is mixed with a base material mainly composed of an Fe-based oxide. Microphone Mouth wave absorption heat generating material.
  • the micro wave absorption heat generating material of the present invention is obtained by mixing a conductive substance or a non-conductive compound of a transition metal having an atomic number of 21 to 29 into a base material containing an Fe-based oxide as a main component. Some are solidified. -
  • F e a base oxide, F e 0, F e 2 0,. F e 3 0.
  • F e 'alone G compound or F e. O is a complex oxide that is replaced by / 1 with another G metal element, but is also O.
  • a conductive substance means an inorganic or metal conductive substance.
  • Metals such as' e, ⁇ i, CG-. C r .. Mo, W-. A £, S, Cu-, _ g, A ⁇ , Z n, D i, Z r, etc. , alloys walk C, S i C;.
  • the conductive material is strongly mixed with the powder or ⁇ -':, and the particle size of the powder is preferably about 100 to 400 mesh.
  • the particle size of the powder is preferably about 100 to 400 mesh.
  • a minor axis of 10 to 100 ⁇ m and a major axis of UK) m to 10 mm are appropriate.
  • the addition amount of these is preferably in the range of 0 to 0.5 mo 1 based on 1 m 01 of iron (Fe) in the base material;
  • a sintering temperature of 800 to 1,200 200 is sufficient.
  • the following three are considered as the Mike mouthwave absorption and heat generation mechanism of the invention.
  • ripening due to thermal loss, dielectric loss, and resistance loss-a conventional microwave absorbing and heating material which absorbs microwaves due to its loss of properties. Fever.
  • the 20 'method it is not possible to efficiently convert the energy of the microphone mouth wave into heat energy, and it is not possible to obtain a sufficient heat generation rate and heat temperature.
  • the heat generation rate of the microwave absorption heat generating material in the invention is extremely high because the addition of the above-mentioned conductive or non-conductive substance causes the heat loss or the dielectric loss in addition to the magnetic loss due to the resistance loss. It is presumed that heat was induced by the heat. In addition,... In the present invention
  • 1/3 F e 3 04 - is A / 2 0 3 addition aforementioned oxidation by reduced F e is considered - 2 A £ - 5/6 0 2 ⁇ F e.
  • reaction heat is released by secondary and tertiary products of these reactions. After exit, further absorption of Mike mouth wave occurs and contributes to heat generation, but O and%: TL.
  • FIG. 1 is a spear to curve heating characteristics upon addition of F e powder F e 3 0 4 powder.
  • FIG. 2 is a view to curve heating characteristics upon addition of A £ powder F e 3 0 4 powder.
  • Figure 3 is a curve showing the relationship between the added amount and the heat generation temperature of the various elements with respect to Fe 1 mol c
  • Fig. 4 is a curve showing the relationship between the sample plate thickness and the exothermic temperature-Best Mode for Carrying Out the Invention
  • the exothermic body to which T i and M n are added also has a high exothermic temperature:. Adds crispyness to the pizza craft even when cooking in Pisa:: Tochi; Cooked and had good flavor
  • the heat-generating material of the present invention has an extremely high heat-generating rate as compared with the conventional heat-generating material, and is effective in thawing frozen food and shortening the cooking time.
  • the exothermic temperature is high, it can be cooked in a smaller amount than conventional exothermic substances and is economical.
  • the material according to the present invention absorbs the microwaves of the microwave oven during microwave cooking and generates heat, so that it can be effectively used in microwave ovens as a material for cooking food from outside. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)
  • Cookers (AREA)

Abstract

This invention relates to a material which heats and cooks foods from outside by absorbing microwaves of an electronic range and by generating heat. A conductive substance or a nonconductive compound containing transition metals of atomic number 21-29 is mixed in a base material having an Fe group oxide as a principal component. Since the material has a rapid heat generating speed, the temperature in heat-generation is high, and further the material is cheap; it is effective as a material generating heat by absorbing microwaves.

Description

明 m マィ ク 口波吸収発熱材料  Akira m Mark Mouth absorption heat generating material
技 術 分 野 Technical field
本発明は、 マイ ク π波のエネルギーを吸収する こ とによ って発熟 し、 特に電子レンジにおいて優れた発熱特性を有するマイ ク ロ波吸 収発^材料に関する ものである。 背 景 技 術  The present invention relates to a micro wave absorbing and absorbing material which ripens by absorbing the energy of micro π-waves and has excellent heat generation characteristics especially in a microwave oven. Background technology
電子レンジは、 照射されたマイ ク ロ波が被調理物中に含まれる水 などの分子に振動摩擦を与え、 その熱による温度上昇 'によ り調理を 行う ものであり、 食品を内部から加熱する こ とができるため、 短時 間で調理できる という利点を有する。  In microwave ovens, irradiated microwaves apply vibrational friction to molecules such as water contained in the cooked food, and the temperature rises due to the heat. This has the advantage that cooking can be done in a short time.
しかしながら、 ガス調理器や抵抗加熱器などのよ う に伝導熱や放 射熱によ り食品を表面から調理できないので食品表面に焦げ目ゃク リ ス ピー性 (パリ ッ と した感じ) を与える こ とができない。 そのた め焼き魚、 肉、 ピザ等の焼け焦げ、 ク リ ス ピ一性を伴った調理をす るには不向きであった。  However, food cannot be cooked from the surface by conductive heat or radiant heat as in a gas cooker or resistance heater, so that the food surface can be given a scorching and quick-crispness (crisp feeling). I can't do that. Therefore, it was not suitable for cooking grilled fish, meat, pizza, etc. with scorch and crispyness.
これに対して、 既存の電子レンジでマイ ク ロ波を吸収し発熱する 材料を用いた発熱体で食品を表面よ り加熱し、 焦げ目あるいはク リ ス ビー性を与える方法が考え られている。  On the other hand, a method has been considered in which food is heated from the surface with a heating element made of a material that absorbs microwaves and generates heat using an existing microwave oven, thereby imparting charred or crisby properties.
しかしながら、 従来の発熱材料は発熱ス ピー ドが遅 く 、 急速調理 を必要とする電子レ ンジの発熱材料と しては十分とは言えない c 本発明は、 かかる問題点に鑑みてなされたもので、 その目的とす る所は、 従来の発熱材料よ り も、 短時間で昇温し、 しかも、 発熱温 Z However, the conventional heat generating material heating scan copy de is rather slow, not be sufficient as a heat generating material of the microwave oven which require rapid cooking c present invention it has been made in view of the above problems The purpose is to raise the temperature in a shorter time than conventional heat-generating materials, and Z
度が高い、 新規なマイ ク コ波吸収発^材料を提^せ ,し と Oて る c Degree is high, a new microphone co-wave absorption onset ^ material Hisage ^ then, teeth and O and Ru c
発明の開示  Disclosure of the invention
本発明によれば、 上記目的は次のマイ ク ロ波吸収発熱材料によ つ て達成される。 即ち、  According to the present invention, the above object is attained by the following microwave absorbing heat generating material. That is,
(1) F e 基酸化物 主成分とする基材の Φに導電性物質が混合され てなる こ とを特墩とするマイ ク 口波吸収発熱材料  (1) Fe-based oxide Microwave absorption heat generating material characterized in that a conductive substance is mixed with Φ of the base material mainly composed of
(2i上記導電性物質が金属、 合金、 あるい 金属の化合物である上 記(υに記載のマイ ク 口波吸収発熱材料  (2i The above-mentioned conductive material is a metal, an alloy, or a compound of a metal.
(3)上記導電性物質が F e 、 A £、 C u 、 〔: r 、 \ i 、 T i 、 〔 . S i 、 T i N、 M o S i 、 T i B 2 , S i Cあるいはこれらのう ち少な く とも一種を舍む合金または化合物である上記 (2)に記載のマ ィ ク π波吸収発熱材料。 (3) said conductive material is F e, A £, C u , [:. R, \ i, T i, [S i, T i N, M o S i Σ, T i B 2, S i C Alternatively, the magic π-wave-absorbing heat-generating material according to the above (2), which is at least one of alloys and compounds.
(4) F e 基酸化物を主成分とする基材の中に、 原子番号 2 1〜29 ©遭 移金属の化合物の中の非導電性化合物が混合されてなる こ とを特数 とするマイ ク 口波吸収発熱材料。  (4) A special feature is that a non-conductive compound in the compound of atomic number 21 to 29 © is mixed with a base material mainly composed of an Fe-based oxide. Microphone Mouth wave absorption heat generating material.
(5)上記非導電性化合物が酸化物である上記 (4)に記毂 Oマィ ク ci波 吸収発熱材料。  (5) The O-mark ci-wave absorbing heat-generating material according to (4), wherein the non-conductive compound is an oxide.
本発明のマイ ク 口波吸収発熱材料は、 F e 基酸化物を主成分とす る基材の中に導電性物質あるいは原子番号 2 1〜 29の遷移金属の非導 電性化合物が混合、 固形化されたもの ある。 - The micro wave absorption heat generating material of the present invention is obtained by mixing a conductive substance or a non-conductive compound of a transition metal having an atomic number of 21 to 29 into a base material containing an Fe-based oxide as a main component. Some are solidified. -
F e 基酸化物と 、 F e 0 , F e 2 0 , . F e 3 0。 等の F e' 単独 G 化物あるいは F e 。一 が他 G 金属元素に置き換えら / - 1た複合酸 化物を意味する も Oである - 導電性物質とは、 無機あるい 金属の導電性物質を意呋し、 例え ばト' e , \ i 、 C G -. C r .. M o , W -. A £ , S 、 C u -、 _ g 、 A υ 、 Z n , 丁 i 、 Z r等のほとんど G)金属、 合金類あるい C、 S i C; _ T i C、 T' i N -. T i B 2 , Z r B 2 、 M o S i t 等 O無 機物質等であり、 適宜単独で、 あるいは混合して使用でき る。 こ? Ί らの中でと りわけ F e 、 A £ 、 C u , C r 、 K i . 丁 i 、 C、 S i T i N 、 M S i z , T i B z , S i C等が実用的である 導電 ']生 物質の添加割合は、 厳密 は材質によ つて種々変; Πつて く るか .. 一 応の目安と しては、 F e 基酸化物基材の約 1 〜50 v o l %程度を置き 換える こ とができ る。 導電性物質は、 粉末あるいはつ ィ へ一し 开 -': で混合される力く、 粉末の粒径は概ね 100 〜400 メ ッ シュ程度が適当 てある。 フ ァ イ バ一の場合は、 短径 10〜 100 μ m . 長径 UK) m〜 10 mmが適当である。 F e a base oxide, F e 0, F e 2 0,. F e 3 0. F e 'alone G compound or F e. O is a complex oxide that is replaced by / 1 with another G metal element, but is also O.- A conductive substance means an inorganic or metal conductive substance. G) Metals such as' e, \ i, CG-. C r .. Mo, W-. A £, S, Cu-, _ g, A υ, Z n, D i, Z r, etc. , alloys walk C, S i C;. _ T i C, T 'i N - a T i B 2, Z r B 2, M o S i t like O No machine substances, in appropriate alone, Alternatively, they can be mixed and used. This? Among them, F e, A £, C u, C r, K i. D i, C, S i T i N, MS iz, T i B z, S i C, etc. are practical. Strictly, the addition ratio of a certain conductive '] raw material varies depending on the material; does it vary ?. As a general rule of thumb, about 1 to 50 vol% of the Fe-based oxide base material The degree can be replaced. The conductive material is strongly mixed with the powder or ィ-':, and the particle size of the powder is preferably about 100 to 400 mesh. In the case of a fiber, a minor axis of 10 to 100 μm and a major axis of UK) m to 10 mm are appropriate.
原子番号 21〜29の遷移金属の非導電性化合物とは、 これらの金属 と 0、 .\—、 , B等との化合物で非導電性のものを意味する £ なか ても、 0 との化合物が最も望ま しい。 これらの添加量は、 基材中 鉄 ( F e ) 1 m 01に対し、 0 〜 0. 5 mo 1 の範囲が好ま しい; The non-conductive compound of a transition metal of atomic number 21 to 29, these metals and 0, \ -.,, Also refers to £ Naka those of a compound of B or the like of the non-conductive, the compounds of the 0 Is most desirable. The addition amount of these is preferably in the range of 0 to 0.5 mo 1 based on 1 m 01 of iron (Fe) in the base material;
つま り 、 本発明では、 上記した様に無機、 金属を問わず、 導電性 のものは-、 おしなべて効果があるが、 非導電性のものでも原子番号 21〜29の遷移金属の化合物は効果がある という こ とである 5 That is, in the present invention, as described above, regardless of whether inorganic or metal, conductive compounds are generally effective, but non-conductive compounds of transition metal compounds having atomic numbers 21 to 29 are effective. There is that 5
基材の F e 基酸化物と、 これらの導電性あるいは非導電性物質と の固形化 、 所要形状に成形後、 焼結によ って、 あるいは必要に It. て常温硬化型のハイ ンダ一を用いる こ とによつて達成される t 結によ つて固形化する場合、 焼結温度は概ね 800 〜 1 , 200 ΐで十分 である。  Solidification of the Fe-based oxide of the base material and these conductive or non-conductive substances, molding into the required shape, sintering or, if necessary, cold curing type soldering. In the case of solidification by t-bonding achieved by using sintering, a sintering temperature of 800 to 1,200 200 is sufficient.
ォ、発明のマイ ク 口波吸収発熱機構と して .、 次の 3 つが考え ηる: すな ち、 挖性損失、 誘電体損失、 抵抗損失による発熟て る - 従来のマイ ク ロ波吸収発熱材料であるフユ -ィ ト .、 こ う ち 性損失により マイ ク ロ波を吸収して発熱する。 しかしながら、 二 Γ' 方法ではマイ ク 口波のエネルギーを効率よ く熱ェ ルギ一 変換で きず、 十分な発熱速度や発熱温度が得られない。 The following three are considered as the Mike mouthwave absorption and heat generation mechanism of the invention. In other words, ripening due to thermal loss, dielectric loss, and resistance loss-a conventional microwave absorbing and heating material, which absorbs microwaves due to its loss of properties. Fever. However, in the 20 'method, it is not possible to efficiently convert the energy of the microphone mouth wave into heat energy, and it is not possible to obtain a sufficient heat generation rate and heat temperature.
术発明におけるマイ ク 口波吸収発熱材料の発熱速度が極めて大き いのは、 上記導電性あるいは非導電性物質を添加する こ とによ り磁 性損失に加え、 抵抗損失による発熱または誘電体損失による発熱か 誘起さ ている ものと推察さ る。 加えて .、 本発明におけるマィ ···· マ イ The heat generation rate of the microwave absorption heat generating material in the invention is extremely high because the addition of the above-mentioned conductive or non-conductive substance causes the heat loss or the dielectric loss in addition to the magnetic loss due to the resistance loss. It is presumed that heat was induced by the heat. In addition,... In the present invention
D波吸収発熱材料 発熱後の X線分折結果による と酸化物の生成か 認められる ものがあり、 これらの酸化またはテルミ ソ ト反応による 反応熱も発熱特性に寄与している ものと考えられる。 According to the results of X-ray diffraction after heat generation, some materials were found to form oxides. It is considered that the heat of oxidation or thermisot reaction also contributed to the heat generation characteristics.
この酸化反応はフヱ ラ イ ト力く F e304 、 金属が F e の時、 以下の 反応が考えられる。 This oxidation reaction off We La wells force rather F e3 0 4, when the metal is F e, are considered following the reaction.
F e — 1/2 0 z → F e 0 F e — 1/2 0 z → F e 0
Figure imgf000006_0001
Figure imgf000006_0001
2 Fe + 3/2 02 → F e203 2 Fe + 3/2 0 2 → F e 2 0 3
3 Fe 0 - 1/2 0 z → Fe304 3 Fe 0-1/2 0 z → Fe 3 0 4
2 Fe 0 - 1/2 02 → F e203 2 Fe 0-1/2 0 2 → F e 2 0 3
2/3 F e304 - 1/6 02 → F e23 2/3 F e 3 04-1/6 0 2 → F e 23
またテルミ ツ 卜反応はフ,.- ライ ト力 F e 304 、 金属か A £ の時.、 以下の反応が考え られる。 The telmisartan Tsu Bok reaction off, .- Rye preparative force F e 3 0 4, when the metal or A £., Considered the following reaction.
1/3 F e304 - 2 A £ - 5/6 02 → F e - A /.2 03 更に還元された F e により前述の酸化反応が考えられる 1/3 F e 3 04 - is A / 2 0 3 addition aforementioned oxidation by reduced F e is considered - 2 A £ - 5/6 0 2 → F e.
また、 これらの反応による二次的、 三次的生成物により反応熱放 出後も、 更にマイ ク 口波吸収が起こ り発熱 寄与している も Oと:% え り; TLる。 The reaction heat is released by secondary and tertiary products of these reactions. After exit, further absorption of Mike mouth wave occurs and contributes to heat generation, but O and%: TL.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図は F e304 粉末に F e 粉末を添加したときの発熱特性を矛 す曲線である。 FIG. 1 is a spear to curve heating characteristics upon addition of F e powder F e 3 0 4 powder.
第 2図は F e304 粉末に A £粉末を添加したときの発熱特性を示 す曲線である。 FIG. 2 is a view to curve heating characteristics upon addition of A £ powder F e 3 0 4 powder.
第 3図は Fe 1 molに対する各種元素の添加量と発熱温度の関係 を示す曲線である c Figure 3 is a curve showing the relationship between the added amount and the heat generation temperature of the various elements with respect to Fe 1 mol c
第 4図は試料板厚と発熱温度の関係を示す曲線である - 発明を実施するための最良の形態  Fig. 4 is a curve showing the relationship between the sample plate thickness and the exothermic temperature-Best Mode for Carrying Out the Invention
(1) F e304 粉末に Fe 粉未を 0、 5、 10、 15、 20 w t %添加し混 合後、 熱衝撃性に優れたるつぼにそれぞれ 10 g積め試料と した。 次 に、 この試料を周波数 2, 450 M H z . 出力 750 Wの電子レンジにて マイ ク ロ波加熱し、 放射温度計を用いて表面温度を測定した。 測定 結,果を第 1図に示す。 (1) The Fe Konahitsuji to F e 3 04 powder 0, 5, 10, 15, 20 wt% added after mixed-and a 10 g pawl samples respectively excellent crucible thermal shock resistance. Next, the sample was microwave-heated in a microwave oven with a frequency of 2,450 MHz and an output of 750 W, and the surface temperature was measured using a radiation thermometer. Figure 1 shows the measurement results and results.
第 1 図からわかるよう に Fe 粉末を添加する こ とにより発熱速度 が上がり、 Fe304 単味の試料の発熱温度が 500 'Cに達するのに 5 分要するのに対し、 Fe 粉末を添加したものはいずれも 2分前後で あった。 また最高発熱温度も 100 て程度の上昇がみられた。 Heat release rate is increased by the this the addition of Fe powder As can be seen from Figure 1, while the required 5 minutes to heat generation temperature of the sample of Fe 3 0 4 plain reaches 500 'C, added Fe powder All of them took around 2 minutes. The maximum exothermic temperature also increased by about 100.
(2) F e 34 粉末に F e 、 C u、 C r、 N i 、 T i 、 C、 S し、 T i N , M ύ S i 2 , T i B ε , S i C粉末を 5 w t %添加し绲合後 . 前述のるつぼに積め実施例 (1)の電子レンジにてマイ ク ロ波加熟し、 放射温度計を用いて表面温度を測定した。 2分後及び Ί分後の発熱 温度を Fe304 と併せて表 1 に示す。 いずれの粉末添加試料も F e ? 0 4 単味の試料に比べて、 著しい発 熟特性が得られた: また これら O添加粉未 C, ώても発熟後 X線的 に存在が認められたのは-. Μ ' S i 2 S ; C及び Cのみであ . 他は酸化による生成熱及び二次的、 三次的生成物による発熱も発熟 特性に寄与したものと考え られる。 (2) F e 34 powder F e, C u, C r , N i, T i, C, and S, T i N, M ύ S i 2, T i B ε, the S i C powder After addition of 5 wt%, the mixture was placed in the above-mentioned crucible, microwave-ripened in the microwave oven of Example (1), and the surface temperature was measured using a radiation thermometer. The heating temperature after the 2 minutes and Ί amount shown in Table 1 together with Fe 3 0 4. ? As compared to any of the powder addition samples were also F e 0 4 plain sample, significant departure ripe properties were obtained: Moreover, these O added powder raw C, and exist Hatsujuku after X Ray be ώ observed It is only-. Μ 'S i 2 S; C and C. Others are considered to have contributed to the ripening characteristics due to the heat generated by oxidation and the heat generated by secondary and tertiary products.
表 1 究熱温度 (て !  Table 1 Ultimate heat temperature
: 添加物質 一 : Additive substance
 Minute
F e 4 4 9 6 1  F e 4 4 9 6 1
' ' C u 4 1 δ δ 3  '' Cu 4 1 δ δ 3
C r : 4 3 δ : 6 2 0 :  C r: 4 3 δ: 6 20:
N i 3 4 ϋ ; 5 3 0 : N i 3 4 ϋ ; 5 3 0:
T i 4 9 2 6 3 4 :  T i 4 9 2 6 3 4:
■ C 0 6 1 . 6 1 0  ■ C 0 6 1.6. 10
S i 0 8 δ 9 δ :  S i 0 8 δ 9 δ:
: T i N 4 9 6 δ 0  : T i N 4 9 6 δ 0
; M 0 S i δ 3 0 : 6 δ 4  M 0 S i δ 30: 6 δ 4
: T i B z 6 3 4 : τ ο 3 : T i B z 6 3 4: τ ο 3
' S i C : 4 9 8 - ; 5 9 t  'SiC: 498-; 59 t
3 2 δ 5 3 9  3 2 δ 5 3 9
(3) F e 0 粉未に A £粉末を 0 -, 5 7 1 0 w t %添加し混合後 前述のるつほに積め、 実施例(1)の電子レ ンジにてマイ ク 口波加熟 L 放射温度計を用いて表面温度を測定した- 測定結果を第 2図に示す 第 2 図から mかるよ う に A £粉末を添加する と子ルミ , ト反 、に よ り 1 分前後で発熱速度力;急激にあがる。 7 1 0 u- t %添加の試^ はその後急激に温度が下がり 500 て前後て一定に達する。 また、 5 7 w t %添加の試料 F e 3 0 4 単味の試料に く らベて最高発熱温度 の上昇がみられた。 (3) Add 0-, 5710 wt% of A £ powder to Fe 0 powder and mix. After mixing, load on the above-mentioned crucible and use the electronic range of Example (1) Surface temperature was measured using a mature L radiation thermometer-the measurement results are shown in Figure 2. As shown in Fig. 2, when A £ powder is added so as to increase the heat generation rate in about 1 minute, the temperature rises rapidly. After the addition of 7 10 u-t%, the temperature dropped sharply and reached a constant around 500. Also, increase in the maximum heating temperature to the sample F e 3 0 4 plain sample of additive 5 7 wt% Te Ku label was observed.
(4) F e 3 0 4 粉末に F e A £ T i N粉末を 5 w t %添加した g 合粉末及び F e 3 0 4 単味の粉末を無機バイ ンダ一を用い、 それぞれ 10 cm X 10 cmのセ ラ ミ 'ン ク シ トに膜厚 200 mに塗布し、 発熱体と した。 これを第 3 図のよ う に巿販 冷凍グラ タ ン 〇上に載せ、 実施 例(1)の電子レ ンジにて調理テス トを行い表面の焦げ目および食品内 部の調理具合を観察した。 その結果を表 2 に示す。 (4) F e 3 0 4 powder with F e A £ T i N powder g if added 5 wt% of the powder and F e 3 0 4 Inorganic by Sunda scratch powder PLAIN to each 10 cm X 10 It was applied to a 200 cm thick ceramic sheet with a thickness of 200 m to form a heating element. As shown in Fig. 3, this was placed on a commercial frozen grater, and a cooking test was performed using the electronic range of Example (1), and the burnt surface and the cooking condition inside the food were observed. The results are shown in Table 2.
表 2  Table 2
180 秒 210 秒 240 秒 270 秒 :180 seconds 210 seconds 240 seconds 270 seconds:
; 添加物質 ; Additive substances
表面 : 内部 表面 : 内部 表面 : 内部 ; 表面 : 内部 : Surface: Inside Surface: Inside Surface: Inside; Surface: Inside:
' F e △ △ /- : X 'F e △ △ /-: X
' A £ △ Δ o ; X ' X X 'A £ △ Δ o; X' X X
' T i N Δ ; △ 0 厶 ο ; 〇 , X :
Figure imgf000009_0001
'T i N Δ; △ 0 m ο; 〇, X:
Figure imgf000009_0001
Α ; ; Δ ; ; 厶 調理良好  Δ;; Δ;;
Δ 調理不足  Δ insufficient cooking
X 調理過剰  X overcooked
F e A ί -. T i を添加し 発熱体 F e 3〇 : 単味のものと く らべ調理時間も短 く 、 F e Ί' i N添加の発熱体で 30秒、 A £添加 の発熱体で 60秒の調理時間の短縮ができた- f F e A ί-. T i added and heating element F e 3 〇: simple and short cooking time, 30 seconds with F e Ί 'i N added heating element, A £ added Heating element reduced cooking time by 60 seconds- f
(5) F e r> ) 粉末に丁 i 、 C r 、 VI ri 、 C o -、 N i . C u , S τ . B a の酸化物粉末を、 F e 1 m o 1:こ対し元素比で 0〜に: m ol^加 し、 プレス成形後 800 〜 1,200 ·(:で焼成し、 ^ 30咖 、 板 52 mm 式 料を作製した。 次に、 この試料を使って、 周波数 2,450 Μ Η τ 出 力 1, 500 Wの電子レンジにて 30秒間マイ ク ロ波加熱し、 放射温度計 を用いて表面温度を測定した。 測定結果を第 3図に示す- 第 1 図からわかるよう に、 金属酸化物を添加する こ とによ り発熟 温度が高く なる傾向が認められる力、 添加量比か 0.7 molを越え と逆に低下している: 特に T i 、 C r , M r 、 C 0 , \ に. C u - どの第 4周期の遷移金属 (原子番号 21〜29) の酸化物を添加し 材 料は、 高い特性が得られた。  (5) Fer>) The powder is mixed with the oxide powder of i, Cr, VIri, Co-, Ni. Cu, Sτ. Ba by Fe 1 mo 1: element ratio with respect to From 0 to: mol 加, press-formed and baked at 800 to 1,200 · (: ^ 30 咖 to make a 52 mm plate. Then, using this sample, the frequency was 2,450Μ Η τ Microwave heating was performed for 30 seconds in a microwave oven with an output of 1,500 W, and the surface temperature was measured using a radiation thermometer.The measurement results are shown in Fig. 3-As can be seen from Fig. 1, The addition of oxides tends to increase the ripening temperature, but the force and the addition ratio are conversely reduced when the ratio exceeds 0.7 mol: in particular, T i, C r, M r, and C 0 , \ To. Cu-The material which added the oxide of the transition metal of the 4th period (atomic numbers 21 to 29) was obtained.
(6) F e304 粉末に T i 、 C r 、 M n 、 C o 、 C u 、 S r 、 B a © 酸化物粉末を F e 1 m o 1に対し、 元素比で 0.3 m o 1添加し.、 プレス 成形後 800 〜1, 200 てで焼成した 30譲 、 板厚 1 〜 8 咖の試料を、 実施例 (5)の電子レンジにて 30秒間マイ ク ロ波加熱し、 放射温度計を 用いて表面温度を測定した。 測定結果を第 4図に示す。 (6) F e 3 0 4 powder T i, C r, M n , C o, with respect to C u, S r, F e 1 mo 1 to B a © oxide powder, 0.3 mo 1 added in element ratio After pressing, the sample was baked at 800 to 1,200 mm, and the sample with a thickness of 1 to 8 mm was microwave-heated with the microwave oven of Example (5) for 30 seconds to obtain a radiation thermometer. The surface temperature was measured using. Fig. 4 shows the measurement results.
S r 、 B a の酸化物を添加したものは発熱体の厚みが薄く なると 発熱温度が低下するが、 遷移金属を添加したものは、 蓰く ても高い 効率が得られた。  In the case of adding the oxides of Sr and Ba, the exothermic temperature decreased as the thickness of the heating element became thinner, but in the case of adding the transition metal, high efficiency was obtained at most.
(7) F e304 粉末に、 T i 、 M n 、 S r の金属粉末を F e 1 m olに 対し元素比で 0.3 mol添加し、 プレス成形後焼成した-試料を粉砕し て、 その紛末を無機パイ ンダーを用いて 150 mm©耐熱衝擊性 O強 い結晶化ガラス ( L i 2 0 - A i 2 O 3 - S i O 2 系) の片面 Jf- さ 0.5 mmにコーテ ィ ングして発熱皮膜を形成し、 発熟体を作製し これを実施例 (5)の電子レンジ :こて 30秒間マィ ク α波加熱し、 放射温 度計を用いて表面温度を測定した 測定結果を表 3 に示す (7) F e 3 04 powder, T i, M n, the metal powder of S r was 0.3 mol added element ratio against the F e 1 m ol, was fired after press forming - with the sample was crushed, the the紛末with inorganic pi Nda 0.99 mm © heat衝擊resistance O strong yet crystallized glass (L i 2 0 - a i 2 O 3 - S i O 2 system) quotes i ring on one side Jf- of 0.5 mm of To form a ripened body, which was then baked. Table 3 shows the measurement results obtained by measuring the surface temperature using a thermometer.
table
添加元素 '. 平均発熱温度 (て ) Additive element '. Average exothermic temperature
丁 i δ 1 1 Ding i δ 1 1
Μ η 4 0 2 Μ η 4 0 2
S r 3 1 4 S r 3 1 4
また、 上記発熱体の上に ^ 1 50 mmの市販の冷凍ピザを載せ、 前述 の電子レ ンジにて調理し.、 ピザの表面の ト ッ ピングされた具および 裏面のピザク ラ フ 卜の調理具合を観察した。 その結果を表 4 に示す 表 4 時 間 In addition, put a commercially available frozen pizza of 1 150 mm on the above heating element and cook it with the above-mentioned electronic range, and cook the topping tool on the pizza surface and the pizza craft on the back surface The condition was observed. Table 4 shows the results.
8 0秒 6 0秒 9 0秒 :  80 seconds 60 seconds 90 seconds:
内 ; 外 内 ; 外 内 ; 外 :  Inside; outside inside; outside inside; outside:
' 添 T i 厶 〇 ; Ο X X .  'Attached Tim; Ο X X.
: 加  : Addition
兀 M η X : X '  Pit M η X : X '
: 素  : Elementary
S r X X つ : 調理良好  S r X X: good cooking
L : 調理不足 X : 調理過剰 L: Insufficient cooking X: Overcooked
T i 、 M nを添加した究熟体は発熱温度も高 : . ピサ調理に I てもピザク ラ フ トにク リ ス ピ一性を付ける :: とが一;:き、 かつ全你 均一に調理され、 良好な風味を有した  The exothermic body to which T i and M n are added also has a high exothermic temperature:. Adds crispyness to the pizza craft even when cooking in Pisa:: Tochi; Cooked and had good flavor
以上詳記したよう に本発明の発熱材料は従来の発熱材料に く らべ 発熱速度が格段に速いため冷凍食品の解凍及び調理時間の短縮など に効果がある。 また発熱温度が高いため、 従来の発熱物質より少量 で調理可能で経済的である。  As described above in detail, the heat-generating material of the present invention has an extremely high heat-generating rate as compared with the conventional heat-generating material, and is effective in thawing frozen food and shortening the cooking time. In addition, since the exothermic temperature is high, it can be cooked in a smaller amount than conventional exothermic substances and is economical.
産業上の利用可能性  Industrial applicability
本発明による材料は、 電子レンジ調理に際して電子レ.ンジのマつ ク ロ波を吸収し発熱する こ とにより食品を外部よ り加熱調理するた めの材料と して、 電子レンジに有効に利用する こ とができる。  The material according to the present invention absorbs the microwaves of the microwave oven during microwave cooking and generates heat, so that it can be effectively used in microwave ovens as a material for cooking food from outside. can do.

Claims

I I I I
請 求 の 範 囲 . F e 基酸化物を主成分とする基材の中に導電性物質が混合され てなる こ とを特揿とするマイ ク ロ波吸収発熱材料。  Scope of Claim Microwave-absorbing heat-generating material characterized in that a conductive substance is mixed in a base material mainly composed of an Fe-based oxide.
. 上記導電性物質が金属、 合金あるいは金属の化合物である請求 の範囲第 1 項記載のマイ ク 口波吸収発熱材料。 2. The heat-absorbing and heat-absorbing material according to claim 1, wherein the conductive substance is a metal, an alloy or a compound of a metal.
. 上記導電性物質が F e 、 A £、 C u 、 C r 、 is i 、 丁 i .、 C、 S i 、 T i N N M o S i z 、 T i B 2 、 S i Cあるいはこれらの う ち少な く と も一種を舍む合金または化合物である請求の範囲第 2 項記載のマイ ク ロ波吸収発熱材料。. The conductive material is F e, A £, C u , C r, is i, Ding i., C, S i, T i N N M o S i z, T i B 2, S i C or they 3. The microwave absorbing heat generating material according to claim 2, wherein the material is at least one kind of alloy or compound.
. F e 基酸化物を主成分とする基材の中に、 原子番号 21〜29の遷 移金属の化合物の中の非導電性化合物が混合されてなる こ とを特 徴とするマイ ク 口波吸収発熱材料。 Micro mouth characterized in that a non-conductive compound among transition metal compounds of atomic numbers 21 to 29 is mixed in a base material mainly composed of an Fe-based oxide. Wave absorption heating material.
. 上記非導電性化合物が酸化物である請求の範囲第 4 項記載のマ ィ ク 口波吸収発熱材料。 5. The heat absorption material according to claim 4, wherein the non-conductive compound is an oxide.
PCT/JP1991/000035 1990-01-19 1991-01-16 Material generating heat by absorbing microwaves WO1991011083A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP91902751A EP0463180B1 (en) 1990-01-19 1991-01-16 Material generating heat by absorbing microwaves
DE69109940T DE69109940T2 (en) 1990-01-19 1991-01-16 THROUGH MICROWAVE ABSORPTION HEAT GENERATING MATERIAL.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1149290 1990-01-19
JP2/11492 1990-01-19
JP18233490 1990-07-09
JP2/182334 1990-07-09

Publications (1)

Publication Number Publication Date
WO1991011083A1 true WO1991011083A1 (en) 1991-07-25

Family

ID=26346922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000035 WO1991011083A1 (en) 1990-01-19 1991-01-16 Material generating heat by absorbing microwaves

Country Status (4)

Country Link
EP (1) EP0463180B1 (en)
AT (1) ATE122988T1 (en)
DE (1) DE69109940T2 (en)
WO (1) WO1991011083A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443747A (en) * 1989-10-26 1995-08-22 Kabushiki Kaisha Toshiba Cleaning compositions
US5538024A (en) * 1990-03-16 1996-07-23 Kabushiki Kaisha Toshiba Cleaning method and cleaning apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2686079A1 (en) * 1991-06-06 1993-07-16 Cerex GLASS-BASED COMPOSITE MATERIAL AND PROCESS FOR ITS MANUFACTURING.
GB9318143D0 (en) * 1993-09-01 1993-10-20 Bowater Packaging Ltd Microwave interactive barrier films
MX9707239A (en) * 1995-03-29 1997-11-29 Minnesota Mining & Mfg Electromagnetic-power-absorbing composite.
CN104130458B (en) * 2014-07-24 2016-09-07 中国热带农业科学院农产品加工研究所 A kind of absorbing material and preparation method thereof
CN110372264A (en) * 2019-07-23 2019-10-25 苏州奔马厨具有限公司 The preparation method of absorbing material, microwave heating plate and microwave heating plate
CN110590374A (en) * 2019-10-28 2019-12-20 中原工学院 MoSi prepared by Flashing method2Method for producing-SiC composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932232A (en) * 1972-07-21 1974-03-23
JPS63108122A (en) * 1986-10-23 1988-05-13 Yukio Sawara Oven cooking apparatus for microwave oven

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190757A (en) * 1976-10-08 1980-02-26 The Pillsbury Company Microwave heating package and method
US4904836A (en) * 1988-05-23 1990-02-27 The Pillsbury Co. Microwave heater and method of manufacture
US5075526A (en) * 1989-01-23 1991-12-24 Raytheon Company Disposable microwave package having absorber bonded to mesh

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932232A (en) * 1972-07-21 1974-03-23
JPS63108122A (en) * 1986-10-23 1988-05-13 Yukio Sawara Oven cooking apparatus for microwave oven

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443747A (en) * 1989-10-26 1995-08-22 Kabushiki Kaisha Toshiba Cleaning compositions
US5716456A (en) * 1989-10-26 1998-02-10 Kabushiki Kaisha Toshiba Method for cleaning an object with an agent including water and a polyorganosiloxane
US5728228A (en) * 1989-10-26 1998-03-17 Kabushiki Kaisha Toshiba Method for removing residual liquid from parts using a polyorganosiloxane
US5741365A (en) * 1989-10-26 1998-04-21 Kabushiki Kaisha Toshiba Continuous method for cleaning industrial parts using a polyorganosiloxane
US5741367A (en) * 1989-10-26 1998-04-21 Kabushiki Kaisha Toshiba Method for drying parts using a polyorganosiloxane
US5977040A (en) * 1989-10-26 1999-11-02 Toshiba Silicone Co., Ltd. Cleaning compositions
US5985810A (en) * 1989-10-26 1999-11-16 Toshiba Silicone Co., Ltd. Cleaning compositions
US6136766A (en) * 1989-10-26 2000-10-24 Toshiba Silicone Co., Ltd. Cleaning compositions
US5538024A (en) * 1990-03-16 1996-07-23 Kabushiki Kaisha Toshiba Cleaning method and cleaning apparatus

Also Published As

Publication number Publication date
DE69109940D1 (en) 1995-06-29
DE69109940T2 (en) 1995-09-28
EP0463180A4 (en) 1992-07-08
ATE122988T1 (en) 1995-06-15
EP0463180A1 (en) 1992-01-02
EP0463180B1 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
JP4663005B2 (en) MgCu ferrite powder for microwave absorption heating element
CA2189727C (en) Ferrite compositions for use in a microwave oven
WO1991011083A1 (en) Material generating heat by absorbing microwaves
JP2008116058A (en) Technological development for carrying out cooking and chemical reaction, chemical synthesis, metal working, metal crystallization, metal sintering and metallurgy by heating pottery with microwave for converting into far infrared or infrared wave radiation and improving heat efficiency
JP2006223782A (en) Technique for cooking, heating, and thawing by using microwave of microwave oven and giving heat exchanging function pottery
JP5292447B2 (en) Bakeware for microwave oven
JPH04137482A (en) Microwave absorption heating material
US20030121421A1 (en) Far infrared uniform-heating cookware
JP5081318B1 (en) Exothermic rubber
JPS5852917A (en) Cooking apparatus for electronic range
JP2006314489A (en) Heating element, structural member and container for heating equipped with the same, and production method of heating element
JPH11318378A (en) Fragrance-generating material for heating with microwave oven
JP6692707B2 (en) Microwave absorption heating element
JP5828812B2 (en) Method for producing powder for microwave absorption heating element, powder for microwave absorption heating element, and microwave absorption heating element using the powder
CN1065084A (en) Microwave, magnetic waveguide backing (band) material and manufacture method thereof
JP2876174B2 (en) Tableware for microwave oven
JP6276107B2 (en) Microwave absorption heating element using MgCuZn ferrite powder for microwave absorption heating element
JP3227437B2 (en) Heating element for high frequency heating device
JP2008132098A (en) Method of manufacturing exothermic eating utensil for microwave oven
JPH02133710A (en) Utensil for microwave oven
JP2013242974A (en) Method for producing powder for microwave absorption heating element and method for manufacturing microwave absorption heating element using the powder
KR920004071B1 (en) Cooking vessel for electronic range
JP3680268B2 (en) Heated cooker using weathered rice cake and weathered smoked cooking container for cooker
JPS54118441A (en) Manufacturing of electric cooker
JPH1187045A (en) Cooking utensil for microwave oven

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991902751

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991902751

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991902751

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991902751

Country of ref document: EP