WO1991007589A1 - Temperature difference heat engine - Google Patents

Temperature difference heat engine Download PDF

Info

Publication number
WO1991007589A1
WO1991007589A1 PCT/JP1990/001459 JP9001459W WO9107589A1 WO 1991007589 A1 WO1991007589 A1 WO 1991007589A1 JP 9001459 W JP9001459 W JP 9001459W WO 9107589 A1 WO9107589 A1 WO 9107589A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
temperature difference
shape
engine
memory alloy
Prior art date
Application number
PCT/JP1990/001459
Other languages
French (fr)
Japanese (ja)
Inventor
Yasubumi Furuya
Original Assignee
Yasubumi Furuya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yasubumi Furuya filed Critical Yasubumi Furuya
Publication of WO1991007589A1 publication Critical patent/WO1991007589A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a temperature difference heat engine utilizing thermomechanical solid-state transformation of a shape memory alloy. It is suitable for power supply and material transportation from the sea floor.
  • the crank type of the first example is proposed by Guinel (Gine 1), and as shown in FIG. 3, it has a ring-shaped body having a fixed shaft at the center and a ring-shaped body fixed to the fixed shaft.
  • a crank having an eccentric shaft, a rotating solid body rotatably supported by a bearing on the eccentric shaft of the crank, and a shape memory alloy (Ti) radially between the rotating petal body and the ring-shaped body.
  • This is related to the combination of the engine body with a coil made of Ni alloy) and hot water, and is called an offset crank engine.
  • the turbine engine of the second example was proposed by Honma et al., And as shown in Fig. 4, two pulleys having different diameters are arranged at a predetermined interval, and are arranged. Apply hot water to one side of the shape memory alloy cable between the two pulleys, and apply cold water to the other side to partially heat the shape memory alloy cable. The mechanical solid-phase transformation is caused to rotate the cord.
  • a plurality of shape memory alloy coils are connected between two disks that are spaced apart from each other. By setting the heating range and the cooling range in advance, the disk is tilted using the expansion and contraction of the shape memory alloy coil by thermomechanical solid state transformation, and the heating range and the cooling range are rotated.
  • This is an inclined engine that rotates in the direction of inclination of the inclined plate. Each of these has a large rotating disk in the portion that converts the expansion and contraction force of the shape memory alloy into rotational power.
  • the present invention provides a temperature difference heat engine using a novel shape memory alloy that can reduce the drawbacks of the conventional large pulley rotary type shape memory alloy engine as described above and obtain high efficiency and large power. It will not be provided.
  • the present invention has the following means to solve the above problems.
  • the present invention includes an engine body and a heat transfer medium.
  • the engine body has a pulley disposed at each vertex position of a right triangle of a base frame, and a shape memory alloy belt-like body is wrapped between the respective pulleys in a substantially right triangle.
  • the heat transfer medium is made of a liquid or gas having a certain temperature difference in the vertical direction.
  • the institution new paper The main body is positioned so that all or part of one side of the belt-shaped body wrapped in a right-angled triangle with respect to the heat transfer medium is placed almost vertically in the heat transfer medium. Things.
  • thermomechanical solid-phase transformation in a heat transfer medium having a temperature difference in the vertical direction, and the belt-shaped body repeatedly undergoes reversible expansion and contraction between the pulleys.
  • a temperature difference heat engine characterized in that a rotational driving force is generated in a belt-shaped body.
  • the positions of the respective vertices of the right triangle of the pulley provided on the base frame are movable so that the shape and angle of the right triangle formed by the shape memory alloy belt can be adjusted.
  • the temperature difference heat engine is characterized in that the rotational driving force can be controlled by this.
  • a temperature difference heat engine wherein the shape memory alloy belt-shaped body is formed in a wire shape, a flat belt shape, or a coil shape.
  • the positions of the vertices of the right triangle of the pulley provided on the base frame can be freely moved, and the shape and angle ⁇ of the right triangle formed by the shape-memory alloy belt can be freely adjusted.
  • the rotational driving force ⁇ F r can be adjusted and controlled.
  • the belt-like body undergoes thermomechanical solid-phase transformation in a heat transfer medium having a temperature difference in the vertical direction, and reversibly expands and contracts the belt-like body between the boogies.
  • the new paper is driven by a belt Since it generates power, there is no need for an electric motor, a circulation device, or a hydraulic device as in the past. Therefore, the configuration of the entire engine and the operation system itself can be greatly simplified, and energy loss and failure of the entire system can be reduced.
  • FIG. 1 is a schematic view showing an embodiment of a temperature difference heat engine according to the present invention
  • FIG. 2 is a diagram showing the principle of operation
  • FIG. 3, FIG. 4, and FIG. 5 are shape memories conventionally proposed. It is a schematic diagram of a temperature difference heat engine using an alloy. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention relates to a combination of an engine body 1 and a heat transfer medium 2.
  • the engine body 1 is provided with pulleys 3, 4, and 5 at the respective vertex positions A, B, and C of the right-angled triangle of the base frame, and a shape memory alloy made between the pulleys 3, 4, and 5 is provided.
  • the belt-like body 6 is wound around a substantially right triangle.
  • the base frame 9 in the illustrated embodiment is a frame 9a in which the shaft cores 3A and 4B of the pulleys 3, 4, and 5 disposed at the vertices A, B, and C of the right triangle are connected. And a frame 9b connecting the shaft cores 3A and 5C.
  • the frame 9a and the frame 9b are configured such that the length of the frames 9a and 9b can be adjusted. Have been.
  • the base frame 9 is not limited to the frame structure having the shape as shown in the illustrated embodiment, and the boogies 3, 4, and 5 can be disposed and maintained at each vertex position ABC of the right triangle. Any structure may be used as long as it has such a structure.
  • the belt-shaped body 6 made of the shape memory alloy may be any of a wire, a flat belt, a coil, etc., but a new paper wound around the pulleys 3, 4, and 5 At this time, the tension may be adjusted, and the configuration may be such that the shape recovery force Fr of the shape memory alloy material due to the temperature difference in the vertical direction is taken out as the rotational power of the heat engine.
  • the heat transfer medium 2 is made of a liquid or a gas having a certain temperature difference in the vertical direction.
  • the liquid may be water, seawater, a chemical solution, or any other solution.
  • the gas does not need to be particularly limited to air, carbon dioxide, nitrogen, and other gases.
  • the temperature difference in the vertical direction in the sea is, for example, 5 ° C in deep sea but 25 in shallow place. The sea is sufficient as the heat transfer medium of the present invention.
  • the constant temperature difference in the vertical direction in the heat transfer medium 2 is naturally generated by the increase and decrease of the energy in the natural world, even if the temperature difference is added by adding or subtracting artificial energy. May be used.
  • the belt-shaped body 6 wrapped around the right-angled triangle 6 has one side AC across the right angle. It is arranged with its attitude controlled so that it is almost vertical in the sea, part of which is the heat transfer medium 2. Specifically, floats 7a and 7b are provided at the pulleys 3 and 4 so that the pulleys 3 and 4 and the side AB sandwiching the right angle of the belt 6 are floating on the sea. None, the bully 5 is provided with a deuteron 8 at the part, so that the part sinks. As a result, the attitude is controlled so that the side A C of the right triangle is almost vertical in the sea.
  • the pulley 5 may be lowered by a fixing device (not shown) installed on the sea floor instead of the weight 8 so that the bully 5 may sink.
  • the method of controlling the attitude of the engine main body 1 with respect to the heat transfer medium 2 is not limited to the case of the above-described embodiment, but may be the underwater rock wall, the strut, the tower, and the other underwater.
  • the belt-like body 6 may be mounted on a building, mounted on a floating structure in the sea or under the sea, or may be controlled by controlling the attitude of the engine body 1 itself.
  • the heat transfer medium 2 having a certain temperature difference in the engine body 1 in the vertical direction
  • all or a part of one side of the belt-like body 6 wrapped around the right-angled triangle is sandwiched.
  • the thermomechanical solid phase transformation occurs in the heat transfer medium 2 having a temperature difference in the vertical direction, and the pulley This causes the belt-shaped body to repeat reversible expansion and contraction, whereby the belt-shaped body 6 can generate a rotational driving force.
  • the belt-shaped body 6 in such a manner that the whole or a part of one side of the belt-shaped body 6 sandwiching the right angle is controlled to be substantially vertical in the heat transfer medium 2 means that the belt-shaped body 6 is in the heat transfer medium 2. This indicates that the state may be completely buried or partially buried. Furthermore, in the heat transfer medium 2 having a certain temperature difference in the vertical direction, not only one of the liquid system or the gas system but also a system extending over both systems, or the same system Even in this case, those in which the component systems are in different layer states are included.
  • the rotational driving force F changes as follows.
  • the shape memory alloy material may be appropriately selected depending on its use and purpose of use, and is not limited here. Therefore, for example, when the present invention is applied to the marine development field, it is preferable to select a nickel-titanium (Ni-Ti-based) shape memory alloy in consideration of strength, corrosion resistance, and water pressure resistance.
  • Ni-Ti-based nickel-titanium
  • the belt-shaped body undergoes thermomechanical solid-phase transformation in a heat transfer medium having a temperature difference in the vertical direction, and the belt-shaped body repeatedly undergoes reversible expansion and contraction between pulleys. As a result, the belt-shaped body generates rotational driving power, so that it can be applied in various industrial fields as a heat engine that does not require an electric motor, a circulation device, or a hydraulic device as in the past. It is possible.
  • the present invention is particularly applicable to a constant water temperature of about 2 Ot: between ocean surface warm water (20 to 25) and 500 m below sea level; 100 m cold water (5 to 10). This is suitable for the case where power generation is performed using the temperature difference. It can also be used for pumping eutrophic seawater and for efficient artificial culture and fisheries, or as a power source for submarine work and mobile equipment (robots), and for transporting and transferring minerals and other substances from the seabed. It is expected to have a wide range of applications in marine development, such as the application of seawater, mining of marine minerals, and mining. New paper

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toys (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A temperature difference heat engine to be used as a power source for marine temperature difference power generation, pumping-up of eutrophied seawater, and digging of submarine resources, which utilizes thermomechanical solid phase transformation of a shape memory alloy. This engine is composed of an engine body (1) and a heat conductive medium (2), in which the engine body comprises a belt-like body (6) made of a shape memory alloy and passed around pulleys (3), (4), and (5) respectively positioned at three apexes (A), (B) and (C) of a right triangular base frame. The heat conductive medium is constituted of liquid or gas having a certain temperature gradient in the vertical direction. The engine body is attitude-controlled so that the whole or a part of one of the sides forming the right angle of the right-triangular belt-like body extends in approximately vertical direction in the heat conductive medium, whereby reversible elongation and contraction resulting from thermomechanical solid phase transformation are repeatedly applied to the belt-like body at portions between pulleys and thus rotational driving power can be generated in the belt-like body.

Description

曰月 糸田  Satsuki Itoda
温度差熱機関  Temperature difference heat engine
技術分野  Technical field
本発明は、 形状記憶合金の熱機械的固相変態を利用した温度差熱 機関に関し、 主に海洋開発分野、 特に、 海洋温度差発電、 富養海水 汲み上げ、 深海底資源採掘、 開発のための動力源および海底からの 物質運搬等に供して、 好適なものである。 背景技術  The present invention relates to a temperature difference heat engine utilizing thermomechanical solid-state transformation of a shape memory alloy. It is suitable for power supply and material transportation from the sea floor. Background art
従来よ り、 形状記憶合金を利用した熱機関については、 クランク 式、 斜板式、 タービン式、 斜板式など、 いくつかの提案がある。 第 1例のクランク式は、 ギネル ( G i n e 1 ) によつて提案され たもので、 それは、 第 3図に示すように、 中心に固定軸を有する輪 状体と、 当該固定軸に固定された偏心軸を有するクランクと、 当該 クランクの偏心軸にベアリ ングにて回転自在に枢着された回転ベタ ル体と、 当該回転ペタル体と輪状体との間に放射状に形状記憶合金 ( T i N i合金) 製のコイルを連結した機関本体と、 温水との組み 合わせにかかるものであり、 オフセッ トクランク形ェンジンと称さ れている。  There have been several proposals for heat engines using shape memory alloys, such as crank type, swash plate type, turbine type and swash plate type. The crank type of the first example is proposed by Guinel (Gine 1), and as shown in FIG. 3, it has a ring-shaped body having a fixed shaft at the center and a ring-shaped body fixed to the fixed shaft. A crank having an eccentric shaft, a rotating solid body rotatably supported by a bearing on the eccentric shaft of the crank, and a shape memory alloy (Ti) radially between the rotating petal body and the ring-shaped body. This is related to the combination of the engine body with a coil made of Ni alloy) and hot water, and is called an offset crank engine.
第 2例のタービン式エンジンは、 本間らにより提案されてされた もので、 第 4図に示すように、 径の異なる二個のプーリーを所定の 間隔離間させて配設し、 その配設された二個のプーリー間に形状記 憶合金製の索条体の一方の辺に温水をかけ、 他方の辺には冷水をか けて、 当該形状記憶合金製の索条体に部分的な熱機械的固相変態を 起こさせ、 これにより索条体を回転させるようにしたものである。 第 3例は、 第 5図に示すように、 離間して配置した 2枚の円板の 間に複数本の形状記憶合金製のコイルを連結してなるもので、 部分 新たな用紙 的に加熱範囲と冷却範囲とを設定しておき、 形状記憶合金製コイル の熱機械的固相変態による伸縮を利用して円板を傾斜させ、 加熱範 囲と冷却範囲とを回転させることにより、 傾斜板の傾斜方向を回転 するようにした傾斜形エンジンである。 これらは、 いずれも形状記 憶合金の伸縮力を回転動力に変換する部分に大きな回転円盤を有し ている。 The turbine engine of the second example was proposed by Honma et al., And as shown in Fig. 4, two pulleys having different diameters are arranged at a predetermined interval, and are arranged. Apply hot water to one side of the shape memory alloy cable between the two pulleys, and apply cold water to the other side to partially heat the shape memory alloy cable. The mechanical solid-phase transformation is caused to rotate the cord. In the third example, as shown in Fig. 5, a plurality of shape memory alloy coils are connected between two disks that are spaced apart from each other. By setting the heating range and the cooling range in advance, the disk is tilted using the expansion and contraction of the shape memory alloy coil by thermomechanical solid state transformation, and the heating range and the cooling range are rotated. This is an inclined engine that rotates in the direction of inclination of the inclined plate. Each of these has a large rotating disk in the portion that converts the expansion and contraction force of the shape memory alloy into rotational power.
前述のように、 従来の形状記憶合金を利用した熱機関は、 いずれ も大きな回転円盤を有しているために、 実際の製造も大掛かりにな り、 機器重量も増える。 また、 野外への応用に対しても、 気温、 風、 雨、 雪などの外界環境に影響されやすい。 さらに、 大きな円盤 は、 回転に対する外界からの抵抗が大きく、 その分、 動力効率が落 ちてしまう欠点がある。 とくに海洋開発への応用を考えた場合、 従 来の形状記憶合金を利用した熱機関は、 大型円盤の回転に対する海 水の抵抗が大きく、 エンジン出力の大幅な低下は避けられない。  As described above, since all conventional heat engines using shape memory alloys have large rotating disks, the actual production becomes large and the equipment weight increases. It is also susceptible to outdoor applications such as temperature, wind, rain, snow, etc. for outdoor applications. In addition, large disks have the disadvantage that the power from the outside world against rotation is large and the power efficiency is reduced accordingly. In particular, considering the application to marine development, the heat engine using the conventional shape memory alloy has a large resistance to seawater against rotation of a large disk, and a drastic decrease in engine output cannot be avoided.
本発明は、 上記に示すような従来の大型プーリー回転式形状記憶 合金エンジンの欠点を出来るだけ減らし、 高効率の大きな動力を得 ることのできる新規な形状記憶合金を利用した温度差熱機関を提供 せんとするものである。  The present invention provides a temperature difference heat engine using a novel shape memory alloy that can reduce the drawbacks of the conventional large pulley rotary type shape memory alloy engine as described above and obtain high efficiency and large power. It will not be provided.
発明の開示 Disclosure of the invention
本発明は、 上記問題点を解決するため、 次のような手段を構成す るものである。  The present invention has the following means to solve the above problems.
本発明は、 機関本体と伝熱媒体とからなる。 当該機関本体は、 基 枠体の直角三角形の各頂点位置にそれぞれプーリーを配設し、 当該 各プーリ一間に形状記憶合金製のベルト状体をほぼ直角三角形状に 掛け回してなるものであり、 伝熱媒体は、 垂直方向に一定の温度差 を有する液体もしくは気体からなるものである。 しかも、 前記機関 新たな用紙 本体は、 伝熱媒体に対し、 その直角三角形状に掛け回したベルト状 体の直角を挟んだ一辺の全部または一部が伝熱媒体中でほぼ垂直状 態になるよう姿勢制御して配置したものである。 そうすると、 ベル ト状体が垂直方向に温度差のある伝熱媒体の中で熱機械的固相変態 を起こして、 プーリー間でベル卜状体の可逆的な伸縮を繰り返し、 これによつて、 ベルト状体に回転駆動力を発生させるようにした とを特徴とする温度差熱機関である。 The present invention includes an engine body and a heat transfer medium. The engine body has a pulley disposed at each vertex position of a right triangle of a base frame, and a shape memory alloy belt-like body is wrapped between the respective pulleys in a substantially right triangle. The heat transfer medium is made of a liquid or gas having a certain temperature difference in the vertical direction. Moreover, the institution new paper The main body is positioned so that all or part of one side of the belt-shaped body wrapped in a right-angled triangle with respect to the heat transfer medium is placed almost vertically in the heat transfer medium. Things. Then, the belt-shaped body undergoes thermomechanical solid-phase transformation in a heat transfer medium having a temperature difference in the vertical direction, and the belt-shaped body repeatedly undergoes reversible expansion and contraction between the pulleys. A temperature difference heat engine characterized in that a rotational driving force is generated in a belt-shaped body.
なお、 前記基枠体に設けたプーリ一の直角三角形の各頂点位置は 、 移動自在にして、 形状記憶合金製ベルト状体が形成する直角三角 形の形状と角度を調整自在となしたものであり、 これによつて回転 駆動力を制御することができるようにしたことを特徴とする温度差 熱機関である。  The positions of the respective vertices of the right triangle of the pulley provided on the base frame are movable so that the shape and angle of the right triangle formed by the shape memory alloy belt can be adjusted. The temperature difference heat engine is characterized in that the rotational driving force can be controlled by this.
更に、 形状記憶合金製ベルト状体がワイヤ状もしくは平ベル卜状 またはコイル状に形成されていることを特徴とする温度差熱機関で ある。  Further, there is provided a temperature difference heat engine, wherein the shape memory alloy belt-shaped body is formed in a wire shape, a flat belt shape, or a coil shape.
本発明の動作原理は、 第 1図に示すように、 温度差を有する伝熱 媒体の中で、 直角三角形のベル卜状体の垂直方向 A Cおよびそれと 角度 0をなす斜線方向 B Cニ片上の形状記憶合金材料の発生回復力 iSllSlの垂直成分の差 F = lal- Ial - c o s Θによりブーリーは、 上方 ( C— A— B ) 方向に回転して動力を発生するわけである。  As shown in FIG. 1, the principle of operation of the present invention is as follows: a heat transfer medium having a temperature difference, a vertical direction AC of a right-angled triangular belt-like body and a hatched direction BC forming an angle of 0 with the shape of the BC piece. Due to the difference between the vertical component of the memory alloy material and the vertical component of iSllSl, F = lal- Ial-cos Θ causes the boogie to rotate in the upward (C-A-B) direction and generate power.
また、 前記基枠体に設けたプーリーの直角三角形の各頂点位置を 移動自在にして、 形状記憶合金製ベルト状体が形成する直角三角形 の形状と角度 Θを調整自在となし、 これによつて第 2図に示される ように、 回転駆動力 Δ F rを調整制御することができる。  In addition, the positions of the vertices of the right triangle of the pulley provided on the base frame can be freely moved, and the shape and angle 直 of the right triangle formed by the shape-memory alloy belt can be freely adjusted. As shown in FIG. 2, the rotational driving force ΔF r can be adjusted and controlled.
本発明は、 上記のようにベルト状体が垂直方向に温度差のある伝 熱媒体の中で熱機械的固相変態を起こして、 ブーリー間でベルト状 体の可逆的な伸縮を繰り返し、 これによつて、 ベルト状体に回転駆 新たな用紙 動力を発生させるものであるため、 従来のように他に電動モータと か循環機器とか油圧機器とかが不必要になる。 そのため、 機関全体 の構成、 作動システム自体を大幅に簡素化できるし、 システム全体 でのエネルギーロスや故障を減じさせることができる。 図面の簡単な説明 According to the present invention, as described above, the belt-like body undergoes thermomechanical solid-phase transformation in a heat transfer medium having a temperature difference in the vertical direction, and reversibly expands and contracts the belt-like body between the boogies. The new paper is driven by a belt Since it generates power, there is no need for an electric motor, a circulation device, or a hydraulic device as in the past. Therefore, the configuration of the entire engine and the operation system itself can be greatly simplified, and energy loss and failure of the entire system can be reduced. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明に係る温度差熱機関の一実施例を示す模式図で、 第 2図は同作動原理図、 第 3図、 第 4図、 第 5図は従来提案されて きた形状記憶合金を利用した温度差熱機関の模式図である。 発明を実施するための最良の形態  FIG. 1 is a schematic view showing an embodiment of a temperature difference heat engine according to the present invention, FIG. 2 is a diagram showing the principle of operation, FIG. 3, FIG. 4, and FIG. 5 are shape memories conventionally proposed. It is a schematic diagram of a temperature difference heat engine using an alloy. BEST MODE FOR CARRYING OUT THE INVENTION
本発明について、 実施例に基づき詳細に説明する。 ' 第 1図に示すように、 本発明は、 機関本体 1 と伝熱媒体 2 との組 み合わせに係るものである。 当該機関本体 1は、 基枠体の直角三角 形の各頂点位置 A, B, Cにそれぞれプーリー 3 , 4, 5を配設 し、 当該各プーリー 3, 4, 5間に形状記憶合金製のベルト状体 6 をほぼ直角三角形状に掛け回してなるものである。  The present invention will be described in detail based on examples. ′ As shown in FIG. 1, the present invention relates to a combination of an engine body 1 and a heat transfer medium 2. The engine body 1 is provided with pulleys 3, 4, and 5 at the respective vertex positions A, B, and C of the right-angled triangle of the base frame, and a shape memory alloy made between the pulleys 3, 4, and 5 is provided. The belt-like body 6 is wound around a substantially right triangle.
図示実施例における基枠体 9 というのは、 直角三角形の各頂点位 置 A, B , Cに配設したプーリー 3, 4, 5の軸芯 3 A, 4 Bを連 結したフレーム 9 aと、 軸芯 3 A, 5 Cとを連結したフレーム 9 b とで構成されており、 そのフレーム 9 aとフレーム 9 bとは、 その フレーム 9 a, 9 bの長さを調整可能なものに構成されている。 し かし、 当該基枠体 9は、 図示実施例のような形状のフレーム構造体 に限定されるものではなく、 直角三角形の各頂点位置 A B Cにブー リー 3 , 4 , 5が配設維持できるようなものであればどのような構 造体であってもよい。  The base frame 9 in the illustrated embodiment is a frame 9a in which the shaft cores 3A and 4B of the pulleys 3, 4, and 5 disposed at the vertices A, B, and C of the right triangle are connected. And a frame 9b connecting the shaft cores 3A and 5C. The frame 9a and the frame 9b are configured such that the length of the frames 9a and 9b can be adjusted. Have been. However, the base frame 9 is not limited to the frame structure having the shape as shown in the illustrated embodiment, and the boogies 3, 4, and 5 can be disposed and maintained at each vertex position ABC of the right triangle. Any structure may be used as long as it has such a structure.
前記形状記憶合金製のベルト状体 6は、 ワイヤー、 平ベルト、 コ ィル等のいずれでもよいが、 プーリー 3 , 4, 5間を掛け回した 新たな用紙 際、 その張力が調整できるようになし、 垂直方向の温度差による形 状記憶合金素材の形状回復力 F rを熱機関の回転動力として取り出 すように構成されておればよい。 The belt-shaped body 6 made of the shape memory alloy may be any of a wire, a flat belt, a coil, etc., but a new paper wound around the pulleys 3, 4, and 5 At this time, the tension may be adjusted, and the configuration may be such that the shape recovery force Fr of the shape memory alloy material due to the temperature difference in the vertical direction is taken out as the rotational power of the heat engine.
次に、 伝熱媒体 2は、 垂直方向に一定の温度差を有する液体もし くは気体からなるものである。 ここに液体とは、 水、 海水、 化学溶 液、 その他の溶液など何でもよい。 また、 当該気体も、 空気、 炭酸 ガス、 窒素、 その他のガス等と、 と く に限定する必要はものはな い。 特に、 本発明の活用が見込まれている海洋開発の際には、 海で 垂直方向に温度差のあるところ、 例えば海の深い所では 5 °Cである が浅い場所では 2 5 であるような海であれば本発明の伝熱媒体と して充分である。 また、 伝熱媒体 2における垂直方向への一定の温 度差というのは、 その温度差を人工的なエネルギーの加減よつて付 けたものであっても、 自然界のエネルギーの増減によって自然に生 じたものであってもよい。  Next, the heat transfer medium 2 is made of a liquid or a gas having a certain temperature difference in the vertical direction. Here, the liquid may be water, seawater, a chemical solution, or any other solution. In addition, the gas does not need to be particularly limited to air, carbon dioxide, nitrogen, and other gases. In particular, in the case of ocean development where the application of the present invention is expected, the temperature difference in the vertical direction in the sea is, for example, 5 ° C in deep sea but 25 in shallow place. The sea is sufficient as the heat transfer medium of the present invention. The constant temperature difference in the vertical direction in the heat transfer medium 2 is naturally generated by the increase and decrease of the energy in the natural world, even if the temperature difference is added by adding or subtracting artificial energy. May be used.
つぎに、 構成要素である前記機関本体 1 と伝熱媒体 2 との関係つ いて説明すると、 図示実施例は、 その直角三角形状に掛け回したベ ルト状体 6の直角を挟んだ一辺 A Cの一部が伝熱媒体 2である海の 中でほぽ垂直状態になるよう姿勢制御して配置したものである。 具 体的には、 プーリー 3, 4の部分に浮子 7 a, 7 bを設け、 当該 プーリー 3, 4部分とベルト状体 6の直角を挟んだ一辺 A Bが、 海 上に浮いている状態となし、 ブーリー 5の部分には重子 8を設け て、 その部分が沈むように構成してある。 その結果、 直角三角形の 一辺 A Cが海の中でほぼ垂直状態になるよう姿勢制御しているので ある。 なお、 ブーリー 5の部分が沈むようにするため、 重子 8に変 えて、 海底に設置した固定装置 (図示しない。 ) によりプーリー 5 の部分が沈むように構成してもよいこと勿論である。 このように、 機関本体 1の伝熱媒体 2に対する姿勢制御の方法は、 上記実施例の ような場合の他にも、 海中の岩壁や、 支柱、 やぐら、 その他の海中  Next, the relationship between the engine body 1 and the heat transfer medium 2, which are the constituent elements, will be described. In the illustrated embodiment, the belt-shaped body 6 wrapped around the right-angled triangle 6 has one side AC across the right angle. It is arranged with its attitude controlled so that it is almost vertical in the sea, part of which is the heat transfer medium 2. Specifically, floats 7a and 7b are provided at the pulleys 3 and 4 so that the pulleys 3 and 4 and the side AB sandwiching the right angle of the belt 6 are floating on the sea. None, the bully 5 is provided with a deuteron 8 at the part, so that the part sinks. As a result, the attitude is controlled so that the side A C of the right triangle is almost vertical in the sea. It should be noted that the pulley 5 may be lowered by a fixing device (not shown) installed on the sea floor instead of the weight 8 so that the bully 5 may sink. As described above, the method of controlling the attitude of the engine main body 1 with respect to the heat transfer medium 2 is not limited to the case of the above-described embodiment, but may be the underwater rock wall, the strut, the tower, and the other underwater.
た 用 建造物に取り付けてもよいし、 海上や海中の浮遊構造体などに装着' してもよいし、 機関本体 1 自体の姿勢制御によって行ってもよい。 このように、 前記機関本体 1を垂直方向に一定の温度差を有する 伝熱媒体 2中に、 その直角三角形状に掛け回したベルト状体 6の直 角を挟んだ一辺の全部または一部が伝熱媒体 2中でほぼ垂直状態に なるよう姿勢制御して配置すると、 ベルト状体 6が垂直方向に温度 差のある伝熱媒体 2の中で熱機械的固相変態を起こして、 プーリー 間でベルト状体の可逆的な伸縮を繰り返し、 これによつて、 ベルト 状体 6に回転駆動力を発生させることができる。 For It may be mounted on a building, mounted on a floating structure in the sea or under the sea, or may be controlled by controlling the attitude of the engine body 1 itself. Thus, in the heat transfer medium 2 having a certain temperature difference in the engine body 1 in the vertical direction, all or a part of one side of the belt-like body 6 wrapped around the right-angled triangle is sandwiched. When the belt-like body 6 is arranged with its posture controlled so as to be almost vertical in the heat transfer medium 2, the thermomechanical solid phase transformation occurs in the heat transfer medium 2 having a temperature difference in the vertical direction, and the pulley This causes the belt-shaped body to repeat reversible expansion and contraction, whereby the belt-shaped body 6 can generate a rotational driving force.
尚、 ここでベルト状体 6の直角を挟んだ一辺の全部又は一部が伝 熱媒体 2中でほぼ垂直状態になるよう姿勢制御して配置するとは、 ベルト状体 6が伝熱媒体 2中に完全に埋没する状態であってもよい し、 一部が埋没するような状態であってもよいことを示している。 またさらに、 垂直方向に一定の温度差を有する伝熱媒体 2の中に は、 液体系または気体系のいずれか一方の場合だけでなく両系にま たがるような態様、 或は同じ系であっても成分系が異なる層状態に なっているものも含まれる。  Here, to arrange the belt-shaped body 6 in such a manner that the whole or a part of one side of the belt-shaped body 6 sandwiching the right angle is controlled to be substantially vertical in the heat transfer medium 2 means that the belt-shaped body 6 is in the heat transfer medium 2. This indicates that the state may be completely buried or partially buried. Furthermore, in the heat transfer medium 2 having a certain temperature difference in the vertical direction, not only one of the liquid system or the gas system but also a system extending over both systems, or the same system Even in this case, those in which the component systems are in different layer states are included.
次に、 本実施例の場合の回転駆動力 Fについて考察すると、 第 2 図に示すように次の通り となる。  Next, when considering the rotational driving force F in the case of the present embodiment, as shown in FIG.
F = I "a I - I b* I - F = I "a I-I b * I-
I f I = I ~a I c o s e I f I = I ~ a I co se
F = I ^ I ( 1 - C 0 S Θ )  F = I ^ I (1-C 0 S Θ)
例えば、 0の角度が変われば、 回転駆動力 Fが次のように変化す る。  For example, if the angle of 0 changes, the rotational driving force F changes as follows.
Θ = 3 0 。の場合 F = 0 . 1 3 4 | "a |  Θ = 30. F = 0. 1 3 4 | "a |
Θ = 4 5 。の場合 F = 0 . 2 9 3 I "a I  Θ = 4 5. F = 0. 2 9 3 I "a I
θ = 6 0 。の場合 F = 0 . 5 0 I "a I  θ = 60. F = 0 .5 0 I "a I
従って、 前記基枠体に設けたプーリーの直角三角形の各頂点位置 新たな用紙 '移動自在にすることによって、 形状記憶合金製ベルト状体が形成 する直角三角形の形状と角度を調整自在とすれば、 これによつて回 転駆動力を制御することができる。 Therefore, each vertex position of the right triangle of the pulley provided on the base frame body 'If the shape and angle of the right triangle formed by the shape memory alloy belt can be adjusted freely by making it movable, it is possible to control the rotation driving force.
なお、 形状記憶合金素材については、 その用途や使用目的によつ て適当なものを選定すればよく、 ここでは限定するものではない。 従って、 例えば、 本発明を海洋開発分野へ応用する場合には、 強度 性、 耐食性、 耐水圧性を考慮して、 ニッケル一チタン (N i— T i 系) の形状記憶合金を選定するのが好適となる。 本発明は、 上記のようにベルト状体が垂直方向に温度差のある伝 熱媒体の中で熱機械的固相変態を起こして、 プーリー間でベルト状 体の可逆的な伸縮を繰り返し、 これによつて、 ベルト状体に回転駆 動力を発生させるものであるため、 従来のように他に電動モータと か循環機器とか油圧機器とかが不必要な熱機関として、 種々の産業 分野で応用が可能である。  It should be noted that the shape memory alloy material may be appropriately selected depending on its use and purpose of use, and is not limited here. Therefore, for example, when the present invention is applied to the marine development field, it is preferable to select a nickel-titanium (Ni-Ti-based) shape memory alloy in consideration of strength, corrosion resistance, and water pressure resistance. Becomes According to the present invention, as described above, the belt-shaped body undergoes thermomechanical solid-phase transformation in a heat transfer medium having a temperature difference in the vertical direction, and the belt-shaped body repeatedly undergoes reversible expansion and contraction between pulleys. As a result, the belt-shaped body generates rotational driving power, so that it can be applied in various industrial fields as a heat engine that does not require an electric motor, a circulation device, or a hydraulic device as in the past. It is possible.
当該機関全体の構成、 作動システム自体を大幅に簡素化できる し、 システム全体でのエネルギーロスや故障を減じさせることがで きる点に利点がある。  There are advantages in that the configuration of the entire engine and the operation system itself can be greatly simplified, and energy loss and failures in the entire system can be reduced.
従って、 本発明は、 特に、 海洋表面温水 ( 2 0〜2 5 ) と海面 下 5 0 0〜; 1 0 0 0 mの冷水 ( 5〜 1 0 ) 間の 2 O t:程度の恒常 的な温度差を利用して、 発電を行うような場合に好適である。 ま た、 富養海水汲み上げや効率よい人工養殖漁業への応用、 或は、 海 底作業 ·移動機器 (ロボッ ト) への電力源としての利用、 海底から の鉱物等の物質の運搬や移動への応用、 海底鉱物の採掘、 採鉱えの 応用など、 海洋開発への幅広い応用が期待される。 新たな用紙  Therefore, the present invention is particularly applicable to a constant water temperature of about 2 Ot: between ocean surface warm water (20 to 25) and 500 m below sea level; 100 m cold water (5 to 10). This is suitable for the case where power generation is performed using the temperature difference. It can also be used for pumping eutrophic seawater and for efficient artificial culture and fisheries, or as a power source for submarine work and mobile equipment (robots), and for transporting and transferring minerals and other substances from the seabed. It is expected to have a wide range of applications in marine development, such as the application of seawater, mining of marine minerals, and mining. New paper

Claims

言青 求 の 範 囲 Scope of demand
( 1 ) 基枠体の直角三角形の各頂点位置にそれぞれプ一リ一を配設 し、 当該各プ一リ一間に形状記憶合金製のベルト状体をほぽ直角三 角形状に掛け回してなる機関本体と、 垂直方向に一定の温度差を有 する液体もしく は気体からなる伝熱媒体とからなり、 前記機関本体 は、 伝熱媒体に対し、 その直角三角形状に掛け回したベルト状体の 直角を挟んだ一辺の全部または一部が伝熱媒体中でほぼ垂直状態に なるよう姿勢制御して配配置し、 ベルト状体が垂直方向に温度差の ある伝熱媒体の中で熱機械的固相変態を起こして、 プ一.丄リ一間でベ ルト状体の可逆的な伸縮を繰り返し、 これによつて、 ベルト状体に 回転駆動力を発生させるようにしたこ とを特徴とする温度差熱機  (1) At each apex position of the right triangle of the base frame, a plies are arranged, and a belt made of a shape memory alloy is wrapped between the respective plies in a substantially right-angled triangular shape. And a heat transfer medium made of a liquid or a gas having a certain temperature difference in the vertical direction, and the engine body is wound around the heat transfer medium in a right triangle shape. The belt-shaped body is placed in a heat transfer medium having a temperature difference in the vertical direction, with the posture controlled so that all or part of one side across the right angle of the body is almost vertical in the heat transfer medium. The thermo-mechanical solid-phase transformation causes reversible expansion and contraction of the belt between the plastics, thereby producing a rotational driving force on the belt. Characterized by a temperature difference heat machine
( 2 ) 基枠体に設けたプーリーの直角三角形の各頂点位置を移動自在 にして、'形状記憶合金製ベルト状体が形成する直角三角形の形状と 角度を調整自在となし、 これによつて回転駆動力を制御することが できるようにしたことを特徴とする特許請求の範囲第 1項記載の温 度差熱機関。 (2) The positions of the vertices of the right triangle of the pulley provided on the base frame can be freely moved, and the shape and angle of the right triangle formed by the shape memory alloy belt can be freely adjusted. 2. The temperature difference heat engine according to claim 1, wherein the rotational driving force can be controlled.
(3) 形状記憶合金製ベルト状体がワイヤ状もしくは平ベル卜状また はコイル状に形成されていることを特徴とする特許請求の範囲第 1 項もしくは第 2項記載の温度差熱機関。 (3) The temperature difference heat engine according to claim 1 or 2, wherein the shape memory alloy belt-shaped member is formed in a wire shape, a flat belt shape, or a coil shape.
PCT/JP1990/001459 1989-11-09 1990-11-09 Temperature difference heat engine WO1991007589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1/130643U 1989-11-09
JP1989130643U JPH0368573U (en) 1989-11-09 1989-11-09

Publications (1)

Publication Number Publication Date
WO1991007589A1 true WO1991007589A1 (en) 1991-05-30

Family

ID=15039158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001459 WO1991007589A1 (en) 1989-11-09 1990-11-09 Temperature difference heat engine

Country Status (2)

Country Link
JP (1) JPH0368573U (en)
WO (1) WO1991007589A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05009904A (en) * 2005-09-15 2007-03-15 Monika Hasbach Lugo Ball segment and coupling elements which are used to form a functional ball.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075846A (en) * 1976-05-04 1978-02-28 Massachusetts Institute Of Technology Thermal engine with entrapped working medium
JPS5677575A (en) * 1979-11-30 1981-06-25 Sharp Corp Heat driven engine
US4275561A (en) * 1978-08-03 1981-06-30 Wang Frederick E Energy conversion system
JPS5773866A (en) * 1980-10-24 1982-05-08 Sharp Corp Thermal drive engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075846A (en) * 1976-05-04 1978-02-28 Massachusetts Institute Of Technology Thermal engine with entrapped working medium
US4275561A (en) * 1978-08-03 1981-06-30 Wang Frederick E Energy conversion system
JPS5677575A (en) * 1979-11-30 1981-06-25 Sharp Corp Heat driven engine
JPS5773866A (en) * 1980-10-24 1982-05-08 Sharp Corp Thermal drive engine

Also Published As

Publication number Publication date
JPH0368573U (en) 1991-07-05

Similar Documents

Publication Publication Date Title
JP2016007874A (en) Floating solar power generation system
US7215036B1 (en) Current power generator
JP4184803B2 (en) Gyro wave power generator and wave-dissipating device using the same
US6734576B2 (en) Eolic marine electrical generator GEEM
US8664784B2 (en) Louvered turbine for generating electric power from a water current
US7649275B2 (en) Apparatus and method for generating electric power from a subsurface water current
US20090022597A1 (en) Apparatus For The Generation Of Power From A Flowing Fluid
US20200347818A1 (en) Wave Energy Converting Systems Using Internal Inertias and Optimized Floating Bodies Having a Water Head That Drives a Water Turbine at Stable Speed
BRPI0622157A2 (en) completely submerged wave power converter
US20140245941A1 (en) Arrangement of floating platforms
CN101675243A (en) Device and method for collecting the kinetic energy of a naturally moving fluid
JP2011138997A (en) Photovoltaic power generation device
US20100123316A1 (en) Power generator barge
KR101671065B1 (en) Offshore wind power equipment of floating type
KR101548085B1 (en) Offshore wind power equipment of floating type
WO1991007589A1 (en) Temperature difference heat engine
KR20160033341A (en) Offshore wind power equipment of floating type
JPH07224750A (en) Hydraulic power device
TW201945640A (en) Floating vertical-axis wind turbine with twin turbines
JPS6260985A (en) Twin crank type shape-memory heat engine
GB2224058A (en) Description and applications of an easy disconnect, motion decoupling top joint for OTEC
JPH11210612A (en) Tidal electric power generating method
JP6117498B2 (en) Ocean current and tidal current generator
CN109083799A (en) A kind of turnover panel, turnover panel pick up can unit and turnover plate type vertical axis ocean current generator
US20240068434A1 (en) Offshore floater system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA