WO1991004013A1 - Vesicules de lipides paucilamellaires hybrides - Google Patents

Vesicules de lipides paucilamellaires hybrides Download PDF

Info

Publication number
WO1991004013A1
WO1991004013A1 PCT/US1990/005294 US9005294W WO9104013A1 WO 1991004013 A1 WO1991004013 A1 WO 1991004013A1 US 9005294 W US9005294 W US 9005294W WO 9104013 A1 WO9104013 A1 WO 9104013A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
vesicles
derivatives
group
hybrid
Prior art date
Application number
PCT/US1990/005294
Other languages
English (en)
Inventor
Donald F. H. Wallach
Original Assignee
Micro Vesicular Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Vesicular Systems, Inc. filed Critical Micro Vesicular Systems, Inc.
Publication of WO1991004013A1 publication Critical patent/WO1991004013A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0026Structured liquid compositions, e.g. liquid crystalline phases or network containing non-Newtonian phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids

Definitions

  • the present invention relates to the production of hybrid paucilamellar lipid vesicles. More particularly, the present invention concerns lipid vesicles which have phospholipids or glycolipids in addition to single-chain non-ionic, anionic, or zwitterionic surfactants as the major components of the walls (or lipid bilayers) of a paucilamellar lipid vesicle.
  • Lipid vesicles are substantially spherical structures made of materials having a high lipid content, e.g., surfactants or phospholipids.
  • the lipids of these spherical vesicles are organized in the form of lipid bilayers.
  • the lipid bilayers encapsulate an aqueous volume which is either interspersed between multiple onion-like shells of lipid bilayers (forming multilamellar lipid vesicles or "MLV") or the aqueous volume is contained within an amorphous central cavity.
  • MUV multilamellar lipid vesicles
  • the most commonly known lipid vesicles having an amorphous central cavity filled with aqueous medium are the unilamellar lipid vesicles.
  • LUV Large unilamellar vesicles
  • SUV small unilamellar lipid vesicles
  • Lipid vesicles have a variety of uses including adjuvants or carriers for a broad spectrum of materials.
  • PLV paucilamellar lipid vesicle
  • the amount of water encapsulated in the aqueous shells between the lipid bilayers of the MLV's is much smaller than the water which can be encapsulated in the central cavity of LUV's, so LUV's have been considered advantageous in transport of aqueous material.
  • LUV's because of their single lipid bilayer structure, are not as physically durable as MLV's and are more subject to enzymatic degradation.
  • SUV's have neither the lipid or aqueous volumes of the MLV's or LUV's but because of their small size have easiest access to cells in tissues.
  • PLV's which can be considered a sub-class of the MLV's, possess features of both MLV's and LUV's. PLV's appear to have advantages as transport vehicles for many uses as compared with the other types of lipid vesicles. In particular, because of the large unstructured central cavity, PLV's are easily adaptable for transport of large quantities of aqueous- or oil-based materials. Moreover, the multiple lipid bilayers of the PLV's provides PLV's with additional physical strength and resistance to degradation as compared with the single lipid bilayer of the LUV's. As illustrated in the present application and the previously cited United States Patent Application Serial No.
  • the central cavity of the PLV's can be filled wholly or in part with an apolar oil or wax and then can be used as a vehicle for the transport or storage of hydrophobic materials.
  • the amount of hydrophobic material which can be transported by the PLV's with an apolar core is much greater than can be transported by MLV's.
  • the encapsulated mass is the mass of the substance encapsulated per unit mass of the lipid and is often given as a percentage.
  • the captured volume is defined as the amount of the aqueous phase trapped inside the vesicle divided by the amount of lipid in the vesicle structure, normally given in ml liquid/g lipid.
  • Phospholipid vesicles while mimicking membrane structure because of similarity of materials with naturally occurring membranes, have a number of problems.
  • isolated phospholipids are subject to degradation by a large variety of enzymes.
  • the most easily available phospholipids are those from natural sources, e.g., egg yoke lecithin, which contain polyunsaturated acyl chains that are subject to autocatalyzed peroxidation. When peroxidation occurs, the lipid structure breaks down, causing fracture of the lipid vesicle and premature release of any encapsulated material. While hydrogenation may be used to saturate the chains, it is an expensive process which raises the already high cost of the phospholipid starting materials, as well as changing the vesicle stability.
  • L'Oreal uses primarily polyglycols, e.g, see United States Patents Serial Nos. 4,772,471 and 4,217,344, while Micro Vesicular Systems has been using primarily polyoxyethylene fatty acid ethers and esters (see United States Patent Application Serial No. 157,571 and United States Patent No. 4,855,090).
  • the L'Oreal vesicles appear to be classic MLV's while the Micro Vesicular Systems vesicles are primarily PLV's.
  • the presence of a small amount of phospholipid and/or glycolipid to the bilayer structure of the vesicles may be important.
  • a problem with using the phospholipids or glycolipids in conjunction with many synthetic surfactants is that most of the surfactants have a non-ionic head group linked to a single hydrophobic chain while most phospholipids and glycolipids have two hydrophobic chains linked to an ionic head group.
  • Use of both single and multiple chain molecules in the structure of vesicle walls may lead to problems in the packing of the lipids which form the lipid bilayers.
  • an object of the invention is to provide stable hybrid lipid vesicles having a non-ionic, zwitterionic, or anionic surfactant and a phospholipid or glycolipid in the lipid bilayers of the vesicles.
  • a further object of the invention is to provide stable hybrid paucilamellar lipid vesicles encapsulating a water-immiscible material within the central amorphous cavities of the vesicles.
  • Another object of the invention is to provide a method of manufacture of hybrid vesicles.
  • a still further object of the invention is to provide a vehicle for the transport of oil-soluble or water-soluble materials into the skin.
  • the present invention features hybrid paucilamellar lipid vesicles having phospholipids or glycolipids in addition to single-chain non-ionic, anionic, or zwitterionic non-phospholipids in the lipid bilayers. These hybrid vesicles are particularly useful for transport of oil-soluble or water-soluble material into the skin.
  • the hybrid paucilamellar lipid vesicles having phospholipids or glycolipids in addition to non-ionic or zwitterionic surfactants in their lipid bilayers consist of 2-10 lipid bilayers arranged in the form of substantially spherical shells separated by aqueous layers surrounding a large amorphous central cavity free of lipid bilayers.
  • the lipid bilayers have about 0-30% phospholipids and/or glycolipid and 0-75% single-chain non-ionic, anionic, or zwitterionic surfactant, preferably with other materials such as 0-25% of a sterol and 0-5% of a charge-producing agent.
  • the preferred non-ionic surfactants are selected from the group consisting of polyoxyethylene fatty ethers having the formula
  • i lauric, myristic, or palmitic acid or their derivatives, single or double unsaturated octadecyl acids or their derivatives, or double unsaturated eicodienoic acids or their derivatives and n ranges from 2-4;
  • R 2 is caprylic, lauric, myristic, palmitic, ⁇ tearic, or linoleic acid or their derivatives; polyoxyethylene fatty acid esters having the formula
  • R3 is lauric, myristic, palmitic, stearic, or oleic acids or their derivatives, double unsaturated octadecyl acids or their derivatives, or double unsaturated eicodienoic acids or their derivatives and m ranges from 2-4;
  • R4 is a sugar molecule selected from a group consisting of glucosamine, galactosa ine, and N-methylglucamine;
  • c ranges from 10-18 and R5 is an amino acid side chain
  • R7 is selected from the group consisting of single-chain carbonyl derivatives of c 12 _c 20 fatty acids
  • R 8 is selected from the group consisting of long-chain fatty acid esters, most preferably oleoyl propyl betaine having the formula
  • Phospholipids and/or glycolipids particularly useful in the invention include phosphatidylcholines, phosphatidylethanolamines, phosphatidylserines, inositolphosphatides, sphingomyelins, ceramides, cerebrosides, gangliosides, sulfatides, and mixtures and derivatives thereof.
  • Phospholipids or glycolipids with saturated hydrocarbon chain length greater than sixteen are not as useful as smaller chain or unsaturated chain molecules in the invention because they lack some chain fluidity.
  • charge-producing agents include dicetyl phosphate, quaternary ammonium salts, cetyl sulfate, sarcosinamides, phosphatidic acid, phosphatidyl serine, and fatty acids such as oleic acid or palmitic acid.
  • the preferred hybrid paucilamellar vesicles of the invention have a central cavity carrying either water-soluble materials or water-immiscible oily-solution, preferably selected from a group consisting of oils, waxes, natural and synthetic triglycerides, acyl ethers, petroleum derivatives and their analogues and derivatives, encapsulated within the central amorphous cavity.
  • This type of water-immiscible material can act as a carrier for materials which are not soluble in an aqueous phase. In addition, it may also be used for materials which are not dissolvable or soluble in the lipids which form the bilayers.
  • the amount of non-ionic or zwitterionic surfactant which is needed to form stable vesicles is decreased.
  • oil-filled paucilamellar vesicles may be formed using the methods of the invention without the addition of any non-ionic or zwitterionic surfactant.
  • the most stable hybrid vesicles appear to be formed with 10-30% phospholipid and/or glycolipid, 5-20% of a sterol which is cholesterol, about 1% of a charge-producing agent such as oleic acid, and the remainder constituting the surfactant.
  • the invention further features a method of producing the hybrid vesicles of the invention.
  • the phospholipid and/or glycolipid and non-ionic or zwitterionic surfactant are blended, with heating if necessary, until a homogeneous lipid layer is formed. If a water-immiscible oil is to be encapsulated, it is blended in the already formed lipid phase, forming a lipophilic phase. If any oil-soluble or oil-suspendable materials are to be encapsulated within the paucilamellar vesicles, they are first dispersed in the oil.
  • the term "dispersed" as used herein includes dissolution or forming a suspension or colloid to yield a flowable phase. If no oil is used, the lipid phase is the lipophilic phase.
  • a lipophilic phase is blended with an aqueous phase under shear mixing conditions to form the vesicles.
  • Shear mixing is defined as the mixing of the lipophilic phase with the aqueous phase under turbulent or shear conditions which provide adequate mixing to hydrate the lipid and form lipid vesicles. Shear mixing achieved by liquid shear which is substantially equivalent to a relative flow rate for the combined phases of about 5-30 m/s to a 1 mm orifice. The use of shear mixing conditions disrupts any lamellae which may form so that the vesicles are formed without the formation of a separable lamellar phase.
  • the formed lipophilic phase is shear mixed with an excess of aqueous, e.g., 10:1:aqueous:lipid, and the resulting vesicles, which form in under a second, are then separated and can be used any of a variety of other uses.
  • aqueous e.g. 10:1:aqueous:lipid
  • the hybrid vesicles of the invention can be used for a variety of purposes, including the function of a carrier for transport of materials across membranes or skin that would otherwise not be transportable.
  • the vesicles of the invention could be used for any purpose where lipid vesicles such as liposomes are now being used or contemplated.
  • These lipid vesicles are characterized by 2-10 lipid bilayers or shells with small aqueous volumes separating each substantially spherical lipid shell.
  • the innermost lipid bilayer surrounds a large, substantially amorphous central cavity which may be filled with either an aqueous solution or a water-immiscible oil. This central cavity acts as a "cargo hold," allowing delivery of a variety of materials to the desired location.
  • the preferred negative charge producing materials are carboxylic acids such as oleic and palmitic acids, dicetyl phosphate, cetyl sulphate, sacrosinamides, phosphatidic acid, phosphatidyl serine, and mixtures thereof.
  • long chain amines e.g., stearyl amines or oleyl amines
  • cationic local anaesthetics such as lidocaine
  • long chain pyridinium compounds e.g., cetyl pyridinium chloride, quaternary ammonium compounds, or mixtures of these
  • lidocaine long chain amines
  • pyridinium compounds e.g., cetyl pyridinium chloride
  • quaternary ammonium compounds quaternary ammonium compounds
  • the vesicles may also include targeting molecules, either hydrophilic or amphiphilic, which can be used to direct the vesicles to a particular target in order to allow release of the material encapsulated in the vesicle at a specified biological location.
  • targeting molecules either hydrophilic or amphiphilic, which can be used to direct the vesicles to a particular target in order to allow release of the material encapsulated in the vesicle at a specified biological location.
  • hydrophilic targeting molecules can be coupled directly or via a spacer to a residue of the polar portion of the surfactant, or they can be coupled, using state of the art procedures, to molecules such as palmitic acid, long chain amines, or phosphatidyl ethanolamine. If spacers are used, the targeting molecules can be interdigitated into the hydrophilic core of the bilayer membrane via the acyl chains of these compounds.
  • Preferred hydrophilic targeting molecules include monoclonal antibodies, other immunoglobulins, lect
  • targeting molecules which were linked to the lipid bilayers themselves, through the use of a sulfhydryl bond, are preferred.
  • United States Patent Application Serial No. 320,944 describes a linkage of this type which yields high efficiency targeting. Molecules containing sulfhydryl groups are incorporated into the structure of the bilayers and a bifunctional cross-linking reagent is used to link the targeting molecule to the bilayers.
  • amphiphilic targeting molecules are normally not chemically coupled to the surfactant molecules but rather interact with the lipophilic or hydrophobic portions of the molecules constituting the bilayer lamellae of the lipid vesicles.
  • Preferred amphiphilic targeting molecules are neutral glycolipids, galactocerebrosides (e.g., for hepatic galactosyl receptors), or charged glycolipids such as gangliosides.
  • Vesicles made using the methods of the present invention can be used in diagnostic testing, e.g., agglutination testing of immunological systems.
  • the vesicles can also be used as markers or labels for visualization, e.g., swelling or shrinking in the presence of an immune reaction, or for radiography or NMR.
  • Hydrophilic materials which can be encapsulated include minerals such as titanium dioxide and silicas, viruses, macromolecules, immunological adjuvants such as muramyl dipeptide, peptide hormones such as insulin, calcitonin and glucagon, hypothalmic peptides, pituitary hormones, growth factors such as angiogenic, epithelial and epidermal growth factors, lymphokines such as interleukin-2 and interferon, blood proteins such as hemoglobin and Factor VIII, water-soluble plant hormones and pesticides, radionucleotides, contrast materials for radiological and NMR diagnosis, cancer cytostatics, and antibiotics.
  • immunological adjuvants such as muramyl dipeptide, peptide hormones such as insulin, calcitonin and glucagon, hypothalmic peptides, pituitary hormones, growth factors such as angiogenic, epithelial and epidermal growth factors, lymphokines such as interleukin-2 and interferon, blood
  • Oil based materials include an exclusive listing of additional lipophilic materials and materials which form colloids or suspensions in oil. A more complete listing of the types of pharmaceuticals that could be encapsulated in lipid vesicles is included in
  • the paucilamellar lipid vesicles can be made by a variety of devices which provides sufficiently • high shear for shear mixing. There are a large variety of these devices available on the market including a microfluidizer such as is made by Biotechnology Development Corporation, a "French"-type press, or some other device which provides a high enough shear force and the ability to handle heated, semiviscous lipids. If a very high shear device is used, it may be possible to icroemulsify powdered lipids, under pressure, at a temperature below their normal melting points and still form the lipid vesicles of the present invention.
  • a microfluidizer such as is made by Biotechnology Development Corporation
  • a "French"-type press or some other device which provides a high enough shear force and the ability to handle heated, semiviscous lipids. If a very high shear device is used, it may be possible to icroemulsify powdered lipids, under pressure,
  • a device which is particularly useful for making the lipid vesicles of the present invention has been developed by Micro Vesicular Systems, Inc., Vineland, New Jersey and is further described in United States Patent Application Serial No. 163,806, filed Mary 3, 1988. Briefly, this device has a substantially cylindrical mixing chamber with at least one tangentially located inlet orifice. One or more orifices lead to a reservoir for the lipophilic phase, mixed with an oil phase if lipid-core PLV's are to be formed, and at least one of the other orifices is attached to a reservoir for the aqueous phase.
  • the different phases are driven into the cylindrical chamber through pumps, e.g., positive displacement pumps, and intersect in such a manner as to form a turbulent flow within the chamber.
  • the paucilamellar lipid vesicles form rapidly, e.g., less than 1 second, and are removed from the chamber through an axially located discharge orifice.
  • there are four tangentially located inlet orifices and the lipid and aqueous phases are drawn from reservoirs, through positive displacement pumps, to alternating orifices.
  • the fluid stream through the tangential orifices is guided in a spiral flow path from each inlet or injection orifice to the discharge orifice.
  • the flow paths are controlled by the orientation or placement of the inlet or injection orifices so as to create a mixing zone by the intersection of the streams of liquid.
  • the pump speeds, as well as the orifice and feed line diameters, are selected to achieve proper shear mixing for lipid vesicle formation. As noted, in most circumstances, turbulent flow is selected to provide adequate mixing.
  • shear mixing may be carried out using merely a series of syringes and a stopcock joining them.
  • This "syringe method” uses one syringe containing the lipophilic phase, heated if necessary for flowability, which is then linked, via a stopcock, to a second, larger syringe containing an excess of an aqueous phase.
  • the lipid and aqueous phase are then blended rapidly through the stopcock for a short time, e.g, normally less than a minute.
  • This blending causes sufficient shearing to form the paucilamellar vesicles of the invention without the formation of an intermediate or separate lamellar phase. In fact, the formation of a separable lamellar phase would so clog or disrupt the flow as to make this method impossible to use.
  • the oil displaces a portion of the aqueous phase as the vesicles are formed.
  • the oil stabilizes the vesicles, leading to high fracture strength and longer term stability than vesicles made without oil.
  • a very small amount of the surfactant acts as a stabilizing agent, stabilizing the boundary between the aqueous volume and the oil volume, allowing the oil droplet to form.
  • oil-filled vesicles are so stable that paucilamellar oil-filled vesicles can be formed from phospholipids using the methods of the invention without the addition of any non-ionic or zwitterionic surfactant, while aqueous-filled vesicles cannot be formed using the same materials and methods.
  • egg yolk phosphatidylcholine (Lipoid 100, Lipoid ViCt, Ludwigshafen, GFR) , was used in conjunction with a polyoxyethylene ether surfactant to form stable aqueous-based vesicles. These vesicles show high lipid uptake per/g of lipid and small size.
  • Table I lists the ingredients used to make the vesicles of this Example. TABLE 1 .
  • egg yolk phosphatidylcholine was blended with 1 g of polyoxyethylene-2 cetyl ether (Brij 52, ICI Americas, Inc.), 0.25 g cholesterol (Sigma Chemical Co.) and 0.02 g oleic acid (J. T. Baker) as a charge-producing agent at approximately 65 ⁇ C.
  • a homogeneous lipid phase was obtained.
  • One ml of the lipid phase was then shear mixed with 9 ml of phosphate buffered saline for approximately 2 minutes- using a syringe method as described below.
  • the lipophilic phase is placed in a 10 ml syringe and is attached through a stopcock having about a 1 mm orifice to a 25 ml syringe which contains the aqueous phase, phosphate buffered saline.
  • a second 25 ml syringe replaces the 10 ml syringe and the solution is rapidly forced through the stopcock from one syringe to the other.
  • the resulting vesicles form in less than 1 minute.
  • the milky suspension which was obtained by the syringe method was combined with 20% dextran in saline at a centrifuge of 3000 rpm's for 15 minutes in a Beckman GP centrifuge. A liposomal layer separated at the top of the centrifuge tube. Microscopic examination showed spherical paucilamellar lipid vesicles which were not distinguishable from vesicles which did not have the phosphatidylcholine. The mean particle diameter was approximately 0.171 ⁇ and the volume uptake was approximately 7.2 ml of phosphate buffered saline/g lipid.
  • This Example illustrates the oil-based paucilamellar vesicles of the invention.
  • a lipid phase identical to that described in Example 1 was manufactured.
  • One ml of that lipid phase was then blended with 1 ml of mineral oil (Drakeol 19), forming a lipophilic phase.
  • the resulting 2 ml of the lipophilic phase was then blended with 9 ml of phosphate buffered saline using the syringe technique as described above.
  • Example 5-7 illustrate the use of a mixed phospholipid/glycolipid as part of the structure of the paucilamellar vesicles of the invention.
  • Table 3 illustrates the materials used to form the lipid bilayers in this Example.
  • Type VIII Brain Extract 0.76 g Polyoxyethylene-5 Oleyl Ether 1.99 g
  • the type VIII brain extract which is 30% sphingomyelin (a phospholipid), 30% cerebroside (a glycolipid), 10% sulfatide, and the balance other brain lipids is blended with polyoxyethylene-5 oleyl ether, cholesterol and oleic acid at approximately 65°C. to form a lipid phase.
  • Approximately 1 ml of this lipid phase was mixed with 9 ml of phosphate buffered saline using the previously described syringe technique.
  • spherical lipid vesicles encapsulating an aqueous phase could be seen under a microscope.
  • the mean particle diameter was approximately 0.21 ⁇ and the volume uptake was approximately 2.7 ml saline/g lipid.
  • Example 4 the mixed brain extract of Example 4 was used to make oil-centered vesicles.
  • the lipid phase was made as described in Example 4 and 1 ml of the lipid phase was combined with an equal volume of peanut oil.
  • the resulting mixture was made into vesicles using the same syringe technique described in Example 4. After dextran centrifugation, vesicles were separated which had a mean diameter of 1.66 microns and a volume uptake of 3.5 ml liquid/g lipid.
  • Example 4 the same brain extract as was used in Examples 4 and 5 is used to make vesicles, except an entirely different type of surfactant, diethanolamine linoleamide, was added.
  • Table 4 shows the lipids used in the manufacture of the lipid phase of this Example.
  • Type VIII Brain Extract 0.76 g
  • lipid vesicles were observed, showing a mean particle diameter of approximately 0.263 ⁇ .
  • the volume uptake was 5 ml of saline/g lipid.
  • Example 6 the same lipid phase was used as in Example 6 except oil-centered vesicles were made. After the formation of the lipid phase, 1 ml of the lipid phase was blended with 1 ml peanut oil before shear mixing using the syringe technique with 8 ml of the phosphate buffered saline. Upon separation, spherical vesicles with the mean particle diameter of approximately 0.323 ⁇ were observed. The volume uptake was approximately 4.5 ml/g lipid.
  • paucilamellar lipid vesicles having high water or oil uptake can be formed with the materials and methods of the present invention.
  • Other testing has shown that if different methods are used, e.g., the Bangham method for manufacture of lipid vesicles, paucilamellar lipid vesicles are not formed using the same materials but rather classic multilamellar lipid vesicles are formed. These MLV's yield a much lower water uptake as compared with PLV's and they exhibit substantially no oil uptake.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

L'invention concerne des vésicules de lipides paucilamellaires hybrides contenant un phospholipide ou un glycolipide et un agent tensioactif non ionique, anionique ou zwittérionique dans les bicouches lipides. Les vésicules paucilamellaires peuvent avoir une cavité centrale remplie d'eau ou d'huile. Un procédé de production de ces vésicules est également décrit. Les vésicules lipides paucilamellaires résolvent certains problèmes de transport intermembranaire, de stabilité et de coût, et peuvent être utilisées pour le transport de substances au travers de membranes ou de la peau, pour effectuer des tests diagnostiques, ou en tant qu'agents de marquage ou d'étiquettes de visualisation.
PCT/US1990/005294 1989-09-21 1990-09-18 Vesicules de lipides paucilamellaires hybrides WO1991004013A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41064789A 1989-09-21 1989-09-21
US410,647 1989-09-21

Publications (1)

Publication Number Publication Date
WO1991004013A1 true WO1991004013A1 (fr) 1991-04-04

Family

ID=23625626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/005294 WO1991004013A1 (fr) 1989-09-21 1990-09-18 Vesicules de lipides paucilamellaires hybrides

Country Status (2)

Country Link
AU (1) AU6524990A (fr)
WO (1) WO1991004013A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328628A (en) * 1990-09-06 1994-07-12 S. C. Johnson & Son, Inc. Detergent compositions containing liposomes and process therefor
EP0608600A1 (fr) * 1992-09-25 1994-08-03 Unilever Plc Composition cosmétique
FR2714621A1 (fr) * 1994-01-06 1995-07-07 Centre Nat Rech Scient Procédé de préparation de liposomes sans utilisation de solvant organique.
FR2752526A1 (fr) * 1996-08-26 1998-02-27 Dong Kook Pharm Co Ltd Preparation liposomale antihemolytique
DE19640092A1 (de) * 1996-09-28 1998-04-16 Beiersdorf Ag Strukturen mit Lipid-Doppelmembranen, in deren lipophilen Bereich längerkettige Moleküle eintauchen oder durch hydrophobe Wechselwirkungen an solche Moleküle angedockt sind
WO2002089770A2 (fr) * 2001-05-10 2002-11-14 Kuhs Gmbh & Co. Kg Composition pharmaceutique
US7175850B2 (en) 1998-12-23 2007-02-13 Idea Ag Formulation for topical non-invasive application in vivo
US8034796B2 (en) 2004-04-07 2011-10-11 The University Of Georgia Research Foundation, Inc. Glucosamine and glucosamine/anti-inflammatory mutual prodrugs, compositions, and methods
US8361990B2 (en) 2004-04-07 2013-01-29 University Of Georgia Research Foundation, Inc. Glucosamine and glucosamine/anti-inflammatory mutual prodrugs, compositions, and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217344A (en) * 1976-06-23 1980-08-12 L'oreal Compositions containing aqueous dispersions of lipid spheres
US4247411A (en) * 1978-02-02 1981-01-27 L'oreal Storage stability of aqueous dispersions of spherules
US4448765A (en) * 1978-07-03 1984-05-15 National Research Development Corporation Liposomes and their use in treating human or other mammalian patients
US4911928A (en) * 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
US4942038A (en) * 1987-03-13 1990-07-17 Micro Vesicular Systems, Inc. Encapsulated humectant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217344A (en) * 1976-06-23 1980-08-12 L'oreal Compositions containing aqueous dispersions of lipid spheres
US4247411A (en) * 1978-02-02 1981-01-27 L'oreal Storage stability of aqueous dispersions of spherules
US4448765A (en) * 1978-07-03 1984-05-15 National Research Development Corporation Liposomes and their use in treating human or other mammalian patients
US4911928A (en) * 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
US4942038A (en) * 1987-03-13 1990-07-17 Micro Vesicular Systems, Inc. Encapsulated humectant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"LES NIOSOMES", (HANDJANI-VILA et al), 1985, pages 297-313. *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328628A (en) * 1990-09-06 1994-07-12 S. C. Johnson & Son, Inc. Detergent compositions containing liposomes and process therefor
EP0608600A1 (fr) * 1992-09-25 1994-08-03 Unilever Plc Composition cosmétique
FR2714621A1 (fr) * 1994-01-06 1995-07-07 Centre Nat Rech Scient Procédé de préparation de liposomes sans utilisation de solvant organique.
WO1995018601A1 (fr) * 1994-01-06 1995-07-13 Centre National De La Recherche Scientifique (C.N.R.S.) Procede de preparation de liposomes sans utilisation de solvant organique
US6103259A (en) * 1994-01-06 2000-08-15 Capsulis Process for the preparation of liposomes without the use of an organic solvent
FR2752526A1 (fr) * 1996-08-26 1998-02-27 Dong Kook Pharm Co Ltd Preparation liposomale antihemolytique
DE19640092A1 (de) * 1996-09-28 1998-04-16 Beiersdorf Ag Strukturen mit Lipid-Doppelmembranen, in deren lipophilen Bereich längerkettige Moleküle eintauchen oder durch hydrophobe Wechselwirkungen an solche Moleküle angedockt sind
US7175850B2 (en) 1998-12-23 2007-02-13 Idea Ag Formulation for topical non-invasive application in vivo
WO2002089770A2 (fr) * 2001-05-10 2002-11-14 Kuhs Gmbh & Co. Kg Composition pharmaceutique
WO2002089770A3 (fr) * 2001-05-10 2003-04-17 Kuhs Kosmetik Gmbh & Co Kg Composition pharmaceutique
US8034796B2 (en) 2004-04-07 2011-10-11 The University Of Georgia Research Foundation, Inc. Glucosamine and glucosamine/anti-inflammatory mutual prodrugs, compositions, and methods
US8361990B2 (en) 2004-04-07 2013-01-29 University Of Georgia Research Foundation, Inc. Glucosamine and glucosamine/anti-inflammatory mutual prodrugs, compositions, and methods

Also Published As

Publication number Publication date
AU6524990A (en) 1991-04-18

Similar Documents

Publication Publication Date Title
US5628936A (en) Hybrid paucilamellar lipid vesicles
US5234767A (en) Hybrid paucilamellar lipid vesicles
JP2589173B2 (ja) 少層脂質小胞
US5474848A (en) Paucilamellar lipid vesicles
US5147723A (en) Paucilamellar lipid vesicles
AU633631B2 (en) Paucilamellar lipid vesicles using charge-localized, single chain, nonphospholipid surfactants
US5104736A (en) Reinforced paucilamellar lipid vesicles
CA1098410A (fr) Traduction non-disponible
AU603659B2 (en) Lipid vesicles formed of surfactants and steroids
Weiner et al. Liposomes as a drug delivery system
US5000960A (en) Protein coupling to lipid vesicles
Cullis et al. Physical properties and functional roles of lipids in membranes
Brandl Liposomes as drug carriers: a technological approach
US5160669A (en) Method of making oil filled paucilamellar lipid vesicles
WO1991004013A1 (fr) Vesicules de lipides paucilamellaires hybrides
WO1996040061A1 (fr) Procede d'encapsulation de materiaux pharmaceutiques
JP4820002B2 (ja) グルコシドパウキラメラベシクル
KR101402794B1 (ko) 지질 이중막 구체 및 지질 이중막 구체를 포집하고 있는 다중 지질 이중막 구체의 제작법
Wallach et al. Some Large-Scale, Nonmedical Applications of Nonphospholipid Liposomes
KR800001360B1 (ko) 리포솜의 제조법
NZ247547A (en) Process for preparing heterovesicular lipid vesicles or liposomes; vesicles containing a chloride and an active agent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA FI HU JP NO SU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB IT LU ML MR NL SE SN TD TG

NENP Non-entry into the national phase

Ref country code: CA