WO1990012341A1 - Optical circuit element of waveguide type - Google Patents

Optical circuit element of waveguide type Download PDF

Info

Publication number
WO1990012341A1
WO1990012341A1 PCT/JP1990/000005 JP9000005W WO9012341A1 WO 1990012341 A1 WO1990012341 A1 WO 1990012341A1 JP 9000005 W JP9000005 W JP 9000005W WO 9012341 A1 WO9012341 A1 WO 9012341A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
waveguides
waveguide
directional coupler
optical circuit
Prior art date
Application number
PCT/JP1990/000005
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Kuzuta
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to DE69017564T priority Critical patent/DE69017564T2/de
Priority to EP90901661A priority patent/EP0417295B1/en
Publication of WO1990012341A1 publication Critical patent/WO1990012341A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/125Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode delta-beta
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/06Polarisation independent

Definitions

  • the present invention relates to a waveguide-type optical circuit element using a directional coupler, and particularly to an optical fiber communication and the like, which has a high effect of confining light in an optical waveguide and has reduced polarization dependence.
  • the present invention relates to a waveguide type optical circuit element.
  • this type of waveguide-type optical circuit device has a directional coupler that forms the main part, as shown in the schematic diagram of FIG.
  • the conventional waveguide type optical circuit element for example ⁇ -independent optical scan I Tutsi is niobium Sanli Chiu beam (hereinafter, L ⁇ N b 0 3) board) two waveguides on the (2) and (3) are formed, and a part of the waveguides (2) and (3) approaches to form a coupling portion (6). It's the left end face of the waveguide (2)! ? When the light with the intensity Po is incident, the light with the intensity P A , ⁇ changes depending on the length L of the coupling portion of the coupling portion (6) which is close to the above-mentioned portion.
  • the first length at which the relation of 1 ⁇ (? +? 8) 0 is established for each of the emitted lights 1 ⁇ and 1 ⁇ is called the complete coupling length.
  • FIG. 11 (A) shows the relationship between the complete bond length and the emission lights P A and P B.
  • the perfect coupling length generally has a length that differs depending on the polarization state of the incident light, that is, whether the mode is the TE mode or the TM mode.
  • the TE mode refers to the polarization state in which the electric field component is parallel to the substrate (1)
  • the TM mode refers to the polarization state in which the electric field component is perpendicular to the substrate (1).
  • the two waveguides (2) and (3) have the same structure.
  • the directional coupler of the polarization-independent optical switch as the conventional waveguide type optical circuit element has a uniform structure by providing a pair of contacts (not shown) at the coupling part (6).
  • an electric field (AiS'LZ7r) is applied, the above-mentioned down state occurs on multiple arcs.
  • FIG. 13 Another conventional waveguide-type optical circuit device, a polarization-free optical switch, is described in ELECTRONICS LETTERS 8th Octorber] 987 Vol.23, No.21, pp. 1167 to 1168. This is shown in Figure 13.
  • the conventional polarization independent light Sui Tutsi is two waveguides on Li N b 0 3 of the substrate (1) (2), are formed (3), ⁇ Ni the waveguide (2), (3) a pair of conductive on g (4), (5) and another pair of electrodes (45), (55) outside the pair of electrodes (4), (5).
  • a polarization-independent optical switch is described in ELECTRONICS LETTERS 15th September 1988 Vol. 24, No. 19, pp. 1198 and 1200. were paired in de act equally X- cut crystal - Nogaa, the conventional polarization-independent optical sweep rate Tutsi is Li Nb_ ⁇ 3 Yo I Do electrooptic effect in the case of the optical crystal TEZTM both Mo By using it, polarization independence was ensured.
  • the present invention has been made to solve the above-described problem, and can reduce the polarization dependence, provide a waveguide with a strong optical confinement effect, and provide a required driving voltage. It is an object of the present invention to obtain a waveguide-type optical circuit device capable of reducing the size.
  • the coupling length of the directional coupler formed in the waveguide-type optical circuit element is set to be approximately three times the complete coupling length of the TE mode in the TE mode, and the TM mode in the TM mode. Approximately one time the full bond length of the mode.
  • the waveguide formed on the substrate can be made thicker, and the light confinement effect of the waveguide can be assured to be extremely high. Can be made smaller.
  • the present invention provides a directional coupler that is installed on a waveguide.
  • the applied electric field g for application of the electric field is defined as a three-divided electric field, and is also an inverted electric field g for alternately inverting the electric field direction.
  • the TE mode and TM mode of the manufactured directional coupler can be achieved.
  • FIG. I is a schematic configuration diagram showing the principle of the waveguide type optical circuit device according to the present invention.
  • Fig. 2 is a graph showing the relationship between the complete coupling length and the output intensity of the channel in the unfolded state.
  • FIG. 4 is a plan view of the device according to one embodiment of the present invention, FIG. 4 is a plan view of the same device showing the applied state of the electric g, FIG. 5 (, CB) is the present embodiment.
  • FIG. 6 is a graph showing the device characteristics of the device according to the present invention, FIG. 6 is a plan structural view of the device according to another embodiment of the present invention, and FIGS. 7 (A), (B), (C) and FIGS.
  • FIG. 11 (A) is a graph showing the relationship between the intensity of the emitted light and the complete coupling length.
  • Fig. 11 (B) is a switching diagram with a uniform ⁇ /?
  • Fig. 12 shows both TETM
  • Fig. 13 shows a schematic diagram of another conventional device
  • Fig. 14 shows a graph of the relationship between the switching voltage and the switching voltage in TE mode.
  • FIG. 1 is a schematic configuration diagram of a polarization-independent optical switch as a waveguide-type optical circuit device for explaining the principle of the present invention.
  • the waveguide type optical circuit element two waveguides on the substrate of Li Nb 0 3 (1) (2), (3) is formed, the waveguide (2), (3) A part of the joints forms a joint (6), and the joint (6) ⁇ the joint length L is about three times the complete joint length TE of the TE mode for the TE mode . ⁇ ⁇ ⁇ ⁇ About the mode ⁇ It is formed to be approximately 1 times the full coupling length of the mode , and the switching voltage V is applied to the waveguides (2) and (3) that form the coupling section (6).
  • directional couplers are formed to form light S (4) and (5) for applying the voltage and to convert the light intensity between both waveguides (2) and (3).
  • FIG. 2 is a light intensity graph showing the relationship between (g) the output power of the channel in the recessed state and the complete coupling length.
  • a numerical range of 2.7 ⁇ L / TE ⁇ 3.3, and for TM mode, a numerical range of 0.7 ⁇ LZ TM ⁇ 1.3 is defined. This numerical range is determined from the viewpoint of input loss. Things. Assuming that the complete coupling lengths are 2.7 ⁇ LZ £ TE ⁇ 3.3 and 0.7 ⁇ L / TM ⁇ 1.3, (8) the channel output light intensity in the lower state is a lower limit of about 75%. It can be. With an output light intensity of about 75% for this channel / ray output light, the input loss is about 11.25 dB, so that even a large input loss is acceptable as a practical range.
  • the complete coupling length of both TENOTM modes can be 2.6 ⁇ L £ TE ⁇ 3.4 and 0.6 ⁇ L / ⁇ ⁇ ⁇ 1.4 .
  • the Ti (titanium) diffusion method is most commonly used as a method for forming waveguides (2) and (3) on a LiNbOs substrate (1). In the waveguides (2) and (3) formed by this Ti diffusion method, it is easy to make the refractive index change ⁇ for extraordinary rays larger than the refractive index change ⁇ for ordinary rays. .
  • the complete coupling length of Li N b 0 3 substrate (1) in TM mode a Z-cut crystal longer than full coupling length for the TE mode.
  • the length of the coupling portion L of the directional coupler can be reduced in both TE / TM modes. It is easily possible to increase the total bond length to about 3.1 times each. By doing so, the thickness of the waveguide formed on the substrate can be increased, and the light confinement effect is considered to be sufficiently large.
  • the electric fields (4) and (5) are divided into three divided electric power til), (121, (13)), and the electric field direction is changed.
  • the directional coupler is configured as an inverted ⁇ / 9 cell 11.
  • the coupling length of this directional coupler is L, and the electrode length of each cell ⁇ (! 3) is (LZ3).
  • the opposite couples are applied with equal and opposite voltages, which reduces the drive voltage required to perform the optical switch operation. .
  • the coupling length L is 2.7 ⁇ L ⁇ TE ⁇ 3.3 and OJ ⁇ L ⁇ TM ⁇ 1,3 for the TE mode , the complete coupling length TE in the TM mode , and TM .
  • the above directional coupler is manufactured so as to satisfy the following relationship. 9), guided light in each divided section Undergoes a change in the propagation constant of + ⁇ / 3, - ⁇ , + AiS, as shown in Fig. 3. This change in the propagation constant is different between the ⁇ mode and the TM mode.], And the difference is expressed by the following equation.
  • ⁇ ⁇ TM TM mode of receiving propagation constant change
  • n e extraordinary refractive index
  • no ordinary refractive index
  • Figure 5 ( ⁇ ), ( ⁇ ), the third diagram, Figure 4 5 shows the device characteristics of the device of the present example with three divided currents shown in FIG.
  • the horizontal axis represents ( ⁇ 'LZ) for the ⁇ mode
  • the vertical axis represents the optical power incident from the waveguide (2) as intensity R 0 as “1”.
  • the waveguide type light such as the variable splitting ratio type optical splitter and the information distribution type optical switch with small polarization dependence is used. Circuit elements can be realized.
  • the value of a is set to a3.8 after equally dividing each of the lengths into L3.
  • the value of a is generally determined by the state of the waveguide confining light, the electro-optic constant, and the like, it is difficult to obtain the optimum device characteristics by freely choosing the value of a. It is. From this, the value of a of the manufactured directional coupler is known, and by setting the length of each electrode from this value, it is possible to obtain the optimal element characteristics.
  • FIG. 6 shows a directional coupler designed from the above viewpoint.
  • each electrode length is LZ3, which is equally divided into three, and each S length is made different according to the value of a. is there.
  • FIG. 9 (A) ⁇ (F) are those that show the fabrication sequence of the present embodiment elements, sea urchin I illustrated, Z - cut of L i Nb 0 3 optical using photolithographic techniques on a substrate (1)
  • a photo-resist (61) of the waveguide pattern is formed (Fig. (A)), and Ti (62) is deposited on the substrate (1) having the photo-resist (61) in the next 5 steps.
  • the photoresist (61) is removed from the substrate (1) using an organic solvent, and the width W, interval G, and height T are removed.
  • a lift-off portion (63) formed of Ti is formed (FIG. 1).
  • the substrate (1) having the lift-off portion (63) of the optical waveguide pattern is heated at a high temperature to serve as a diffusion source.
  • the optical waveguide (64) is manufactured by diffusing the 10 pieces of Ti into the substrate (1) (FIG. (D)). C Then, the surface of the substrate (1) on which the optical waveguide (64) is formed is formed. For example, after a SiO 2 film (65) having a thickness of about 400 A is formed as a buffer layer (FIG. (E)), the surface of the SiO 2 film (65) is An electrode is formed so as to be located on the optical waveguide (64) (FIG. (F) :).
  • the reason why the SiO 2 film (65) is formed is to avoid absorption of light by the metal because the electricity S (66) is composed of a metal.
  • the dimensions of W, G, and T in Fig. 9 (C) and the diffusion conditions must be set appropriately.
  • the waveguide type optical circuit element according to the present invention is useful for optical fiber communication and the like as a polarization independent optical switch and a variable optical branch.

Description

明 細 書 - 導波路型光回路素子
技術分野
この発明は , 方向性結合器を用いた導波路型光回路素子に関 し , 特に光導波路内への光の閉 じ込め効果が高く且つ偏光依存 性を低減した ,光フ アイバ通信等に用いる導波路型光回路素子 に関する。 背景技術
従来 , この種の導波路型光回路素子は , その主要部を形成す る方向性結合器と して , 第 10図の概略構成図に示すものがあつ た。 同図において , 従来の導波路型光回路素子 , 例えば備光無 依存光ス ィ ツチは , ニオブ酸リ チウ ム ( 以下 , L〖 Nb 03 ) の基 板 )上に二本の導波路 (2) , (3)を形成し , 該導波路 (2) , (3)の一部 が接近して結合部 (6)を形成する構成である。 上記一の導波路 (2) の左側入射端面よ !?強度 Poの光を入射する と , 上記一部接近し た結合部 (6)の結合部長 Lの長さに依存して変化し , この変化し た強度 PA , ¾の光を各導波路 (2) ,(3)の右側出射端面から射出す る。 この射出される強度1^ , 1^の各光が1^ (? + ?8 ) 0 の 関係が成立する最初の長さ を完全結合長と呼ぶ。 この完全結 合長 についての射出光 PA , PBとの関係を第 11図 (A)に示す。 ま た , 完全結合長 は , 一般に入射光の偏光伏態 , 即ち , T Eモ 一 ドか T Mモ ー ドかによ 異 ¾る長さをとる。 ここで T Eモー ドとは電界成分が基板 (1)に平行な偏光伏態をさ し , T Mモー ド とは電界成分が基板 (1 )に垂直 ¾偏光伏態をさ している。 お , 上記二本の導波路 (2) , (3)はその構造を互いに等しく構成される。 上記従来の導波路型光回路素子と しての偏光無依存光スィ ッ チの方向性結合器は ,結合部 (6)に一対の電匳(図示を省略する) を設けて一様△ ^型に構成し , 電界を印加することによ 電気 光学効果に基づき入射光をス ィ ツチ ングすることができ る つ こ のス ィ ツチング伏態を第 11図 (B)に一様△ 9 のスィ ツチングダイ ア グラ ムと して示す。 同図において , Θ伏態(バー伏態) は入 射光の強度 P0が射出光の強度 PAと ¾ 他の射出光の強度 PB= 0 の伏態を示し , <8>伏態( ク ロ ス伏態)は入射光の強度 P0が射出 光の強度 ¾とな ]? , 他の射出光の強度 PA= 0の伏態を示す。 ま た , 電界( A iS ' L Z 7r ) を印加すると複数の円弧上において 上記 Θ伏態となる。
次に ,結合部長 L と完全結合長 との比( L Z )が T Mモ 一 ド及び T Eモ ー ドについて共に「1」 ( Lハ = 1 ) として電 界を印加した場合の T E / T M両モ ー ドの ス ィ ツ チ ン グダイァ グラ ムを第 12図に示す。 同図において ,電界を印加して
π ) を増加していぐ と Τ Εモ ー ドカ · ) = 5.2 で Θ伏態とな ]? , さらに電界を印加して 。 を増加 していぐ と , モー ドが(厶 ' 1^ ) = 5.9 で 伏態と¾ る。 このよ うに Τ Ε Ζ Τ Μ両モー ドを 伏態から 伏態へ切]? 替えることによ ]?入射光をス ィ ツチングすること ができる。
また ,他の従来の導波路型光回路素子である偏光無伎存光ス イ ッ チと して ELECTRONICS LETTERS 8th Octorber 】 987 Vol .23 , No.21 第 1167頁〜第 1168頁に記載されたも のが あ これを第 13図に示す。 同図において , 従来の偏光無依存光 スイ ツチは , Li Nb 03の基板 (1)上に二本の導波路 (2) , (3)が形成 され , 該ニ本の導波路 (2) , (3)上に一対の電 g(4) , (5)と該一対の 電¾(4) ,(5)の外側に別の一対の電極 (45) , (55)とが各々配設される 搆成である。
上記構成において , 上記電 S (4) , (5) , (45; , (55)に電圧を印加し, Θ伏態となる上記電圧を T E Z T M両モ ー ドで一致させる条件 は , Li Ν¾ 03 の基板 (1)の電気光学係数 Γ13 と r33 で決定される ( この場合における Δ β ( 印加電圧に対 ) に対する Τ Ε Ζ Τ Μ 両モ ー ドのク ロ ス ト一クを第 14図に示す。 同図において な = △ /STE /△ 5ΤΜである (△ /3ΤΕ ,△ 3ΤΜはそれぞれ Τ Ε , Τ Μモー ドに対する方向性結合器の位相不整合 ) 。 この が 0.25≤な≤ 0.34である場合には , 印加電圧の調整によ j9両モー ドでク ロ ス ト ーク -20 dB以下とすることができ る。 波長 付近での実 測値は " = 0.29 であ!) , 上記条件を満足していることから @状 態になる電圧を T E / T M両モー ドで一致させる ことができ る ことになる。
さ らに , 他の従来の導波路型光回路素子である偏光無依存光 スィ ツチと して ELECTRONICS LETTERS 15 th September 1988 Vol. 24 , No. 19 第 1198頁 いし第 1200頁に記載されたも のがあ , この従来の偏光無依存光スィ ツチは Li Nb〇3のよ う な光学的結晶の場合に電気光学効果が T E Z T M両モ - ドに対 して等しく 作用する X- cutの結晶を用いることによ 偏光無依 存性を確保していた。
従来の導波路型光回路素子は以上のよ う に構成されていたの で , 前記第 12図のス ィ ツ チ ングダイ ア グ ラ ム に示すよ うに T E モ ー ドと T Mモ ー ドとのモ ー ド切替に関する (△ /? · L Z ) 力 異な !) ,偏光無依存性を完全とすることができ ¾いという課題 を有していた。 また他の従来の導波路型光回路素子は T EZ TM の両モ - ドの完全結合長の一致を比較的遮断条件に近い所で得 られるが , 光導波路が薄く , 導波路における光の閉じ込め効果 が弱いため , 導波路伝搬損失や導波路曲が 部分での放射損失 が大き く ¾ ]9やすく , そのため該曲が 部分で導波路幅を大き くする等の対策が必要になるという課題を有していた。 また X 一 cu t の結晶を用いた導波路型光回路素子では利用でき る電気 光学効果の 用が弱いため , 必要な駆動電圧が大き く るとい う課題を有していた。
この発明はかかる課題を解決するためにるされたもので ,偏 光依存性を小さ く でき , かつ光閉 じ込め効果の強い導波路とす ることができるとと もに , 必要な駆動電圧を小さ くすることが でき る導波路型光回路素子を得ることを目的とする。
発明の開示
この発明は , 導波路型光回路素子に形成される方向性結合器 の結合部長を , T E モ ー ドについて T E モ ー ドの完全結合長の 約 3倍とすると共に , T Mモ ー ドについて T M モ ー ドの完全結 合長の約 1 倍と している。 このことによ って , 基板に形成され る導波路を厚くする ことができ , 導波路の光閉じ込め効果を^ めて高く確保でき ること と ¾ , *波路曲が 部分での放射損 失を小さ くすることができる 。
また , この発明は , 方向性結合器を搆成する導波路上に設置 される電界印加用の電 gを , 3分割電 ¾とすると と もに , 電界 方向を交互に反転させる反転 電 gと している。 このこ とに よ って , 光ス ィ ツチ動作を行う ために必要 ¾駆動電圧を小さ く することができると と もに , 製作された方向性結合器の T E モ — ドと T M モ ー ドの伝搬定数変化の比に じて 3 分割電極の電 S長の長さを変えることによ ]) ,最適な素子特性を得ることが できる。 図面の簡単な説明
第 I 図はこの発明に係る導波路型光回路素子の原理を示す概 略構成図 , 第 2図は完全結合長に対する (¾伏態のチ ヤ ンネ 出 力強度の関係のグラ フ , 第 3図はこの発明の一実施例に係る素 子の平面溝造図 , 第 4図は同 じく素子の電 gの印加伏態を示す 平面構造図 , 第 5 図 ( , CB)は本実施例に係る素子の素子特性を 示すグラ フ , 第 6 図はこの発明の他の実施例に係る素子の平面 構造図 , 第 7図 (A) , (B) , (C)及び第 8図 ( , (B)は他の実施例に係 る素子の素子特性を示すグラ フ , 第 9図 (Α)〜(Ρ)は該素子の製造 順序を示す素子正面図 , 第 10図は従来の導波路型光回路素子の 概略構成図 , 第 1 1図 (A)は完全結合長に対する射出光強度の関係 グラ フ , 第 1 1図(B)は一様△ /? の ス ィ ツ チ ングダイ ア グラ ム , 第 12図は T E T M両モ 一 ドのス ィ ツ チ ン グダイ ア グラ ム , 第 13 図は他の従来の素子の概略構成図 , 第 14図は T E モー ドのス ィ ツチ ング電圧に対する揷入損失の関係グラ フ を示す図である。 発明を実施するための最良の形態 この発明をよ 詳細に説述するために ,添付の図面に従って これを説明する。
第 1 図は , この発明の原理を説明するための , 導波路型光回 路素子と しての偏光無依存光ス ィ ッチの概略構成図である。 こ の図において ,導波路型光回路素子は , Li Nb 03の基板 (1)上に 二本の導波路 (2) , (3)を形成し , 該導波路 (2) , (3)の一部が接近し て結合部 (6)を形成し ,該結合部 (6)©結合部長 Lを T Eモ ー ドに ついて T Eモ ー ドの完全結合長 TE の約 3倍とすると共に,ΤΜ モ ー ドについて Τ Μモ ー ドの完全結合長 ΤΜ の約 1倍と して形 成し , 上記結合部 (6)を形成する導波路 (2) , (3)上にスィ ツチング 電圧 Vを印加する電 S(4) , (5)を形成して両導波路 (2) ,(3)間で光 強度を変換する方向性結合器を備えた構成である。
上記素子の動作をチ ヤ ン ネ 出力強度に関し第 2図に基づき 詳述する。 この第 2図は完全結合長に対する (g)伏態のチ ャ ンネ ノレ出力強度の関係を示す光強度グラ フである。 同図において ,
T Eモ ー ドについて 2.7≤ L / TE ≤ 3.3 と し , T Mモ ー ドにつ いて 0.7 ≤ L Z TM≤ 1.3 とする数値範囲が定められ , この数値 範囲は揷入損失の観点よ j?定めたものである。 この各完全結合 長が 2.7 ≤ L Z £TE≤ 3.3 , 0.7 ≤ L / TM≤ 1.3 と した場合には, (8)伏態におけるチ ヤ ンネノレ出力光強度は約 7 5 %程度を下限と する範囲とすることができる。 このチ ャ ンネ /レ出力光強度約 75 %は揷入損失が約一 1.25 dB となることから ,実用範囲と して は揷入損失をよ 多く しても許容できる。 よ って揷入損失を約 一 2 dBの範囲とすれば , T Eノ T M両モ ー ドの完全結合長は 2.6≤ L £TE≤ 3.4 , 0.6≤ L / ΆΊΜ≤ 1.4 とすることもできる。 次に , 上記導波路型光回路素子を製造方法との関係で説明す る。 一般に Li Nb Osの基板 (1)に導波路 (2) , (3)を形成する方法と しては, Ti ( チ タ ン ) 拡散法が最も一般的に用いられる。 この Ti拡散法によ ]?形成した導波路 (2) , (3)では異常光線に対する屈 折率変化△ の方が常光線に対する屈折率変化 Δ ηοよ ) も大き くすることが容易である。 即ち , Z-cut 結晶の Li Nb 03基板 (1) では T Mモ ー ドの完全結合長を T Eモ ー ドの完全結合長よ も 長くすることが容易である。 導波路 (2) , (3)の幅や二本の導波路 間隔 , そして Ti拡散条件を適当に設定することで , 方向性結合 器の結合部長 Lの長さが , T E / T M両モ ー ドの完全結合長に 対してそれぞれ約 3倍 . 1 倍とすることは容易に可能である。 このよ う にすると , 基板に形成される導波路を厚 くすることが でき , 光の閉じ込め効果は十分に大きなものと ¾る。
次に , 上記の導波路型光回路素子の電 Sを 3分割した実施例 を説明する。 第 3図 , 第 4図に示すよ う に , 本実施例は , 電 ¾ (4) , (5)を 3分割電 til) , (121 , (13)とすると と もに , 電界方向を交 互に反転させる反転 Δ /9電 11と して構成している。 即ち , この 方向性結合器の結合部長は Lで , 各電 〜(! 3)の電¾長さは ( L Z 3 ) となってお j9 , 隣あ う電¾対は互いに逆 性で等し い電圧が印加される。 これによ !) , 光スィ ツチ動作を行う ため に必要な駆動電圧を小さ くすることができる。
と ころで , 上記結合部長 Lは ,既述の如く , T Eモ ー ド, TM モー ドの完全結合長 TETM に対して 2.7 ≤ Lノ TE ≤ 3.3 , OJ ^ L ^ TM≤ 1,3 の関係を満たすよ う に上記方向性結合器は 製作されている。 上記電 g構成によ ]9 , 各分割区間内で導波光 は , 第 3図に示すように + Δ /3 , -Α β , +A iS という伝搬定 数変化を受ける。 この伝搬定数変化は , Τ Εモ ー ド , T Mモ ー ドで異な ]? ,その差は次式で示される。 tJ™ = ne3 Γ33 Γ™ = a = 3 ··· (1)
Δ ^ T B nO " ^13 尸 TE ここで△ ^TE : T E モ ー ドの受ける伝搬定数変化
△ ^TM : T Mモ ー ドの受ける伝搬定数変化 ne : 異常光線屈折率 no : 常光線屈折率
r33 , r13 :電気光学定数
ΓΤΕ : Τ Εモ ー ドに対する印加電界の重な 積分 尸 ΤΜ : Τ Μモ ー ドに対する印加電界の重 ]?積分 第 5図 (Α) , (Β)は , 第 3図 , 第 4図に示す 3分割電 の本実施 例素子の素子特性である。 この図で横軸は Τ Μモー ドに対する (△ ' LZ ) を示し ,縦軸は ,導波路 (2)から強度 R0と して入 射する光電力を「1」 と し , 導波路 (3)から入射する光電力「0」 と した場合において ,導波路(3a)から強度 S と して出力される TE モ ー ド光及び T Mモ ー ド光の光電力の , 上記 ¾>の入射光の光電 力に対する電力比 { —10 (^ ( 8ノ ) }を示してぃる。 図中実 線は T Mモー ド光を ,破線は T Eモ ー ド光をそれぞれ示してい る。 第 5図 (A)は , LZ TM= 1.0 , L/ βΤΕ = 3.0 , a = 3.6 の条 件の下での素子特性を示し , 第 5図 (B)は , LZ TM = 0.8 , L/ βτΕ = 2.8 , a = 3.8 の条件の下での素子特性を示している。 第 5図 (A)は , 本実施例素子が光ス ィ ツチと しての特性を有するこ とを示している。 即ち , ( \ ' LZ?r ) = 0では入射光はすべ て S と して出力されているカ , (Αβ 。 L ^ ) = 5.8ではク ロ ス ト ーク = 一 20 dB 以下が得られている。 一方第 5図 (B)は , 方 向性結合器の結合部長 Lを若干変化させ , かつ a = 3.8 と した 場合を示してお , 図示するよ う に , T E / T M両モー ドの出 力光強度は , * LZ ) の変化に対してほとんど等しく変 化している。 伹し結合部長 Lを若干変更したため , ( △ ? ·
) = 0 で約 0.5 dBの揷入損失を許容しなければならない t このよ う な挿入損失の発生にもかかわらず の変 化に対して T E Z T M両モ ー ド光の出力強度が等しく変化する という特徴は他の手段では得がたいものであ , この特性を利 用することによ ]? , 偏光依存性の小さい分岐比可変型光分岐器 や情報分配形光 ス ィ ツ チ等の導波路型光回路素子を実現するこ とができ る。
上記の実施例では , 第 5図 (B)に示すよ う な最適な素子特性を 得る場合 , 電 長をそれぞれ L 3 と均等分割した上で , a の 値を a 3.8 と している。 しかし , 一般に a の値は導波路が光 を閉じ込めている伏態 , 及び電気光学定数などによ って決定さ れるため , a の値を自由に選んで最適な素子特性を得るのは困 難である。 このことから , 製作された方向性結合器の a の値を 知 , この値から各電^の長さを設定することによ ]9最適 ¾素 子特性を得ることができ る。
上記のよ う な観点から設計された方向性結合器を第 6 図に示 す。 第 3図に示す方向性結合器と異 る点は , 各電¾長が均等 に 3分割された L Z 3 で ¾ く , 各電 S長を aの値に応じて異な らせていることである。 a ( Δ/?ΤΜ/Δ 3ΤΕ ) = 3の方向性結合器を L Z TM = 1 , L TE = 3 , u = 0.4 , v = 0.3 , w = 0.4 の値にし , 光スイ ツ チを構成した場合のス ィ ツチ特性を計算した結果を第 7図 ( に 示す。 又 , a = 4 の方向性結合器に上記各値を設定し , 光スィ ツチとしての特性を計算した結果を同図 (B)に示す。 これらの特 性図から明らか ¾ように , 3 ≤ a ≤ 4の広い範囲において,ΤΕ Ζ Τ Μ両モ ー ド光ともク ロ ス ト ー ク一 20 dBの特性を得ること ができる。 又 , 同図 (C)から明らか ¾よ うに , LZ TM= 1, L/ βΤΕ = 3 , u = 0.3 , = 0.4 , = 0.3 の値は , a = 3.4 の 方向性結合器の時最も光スィ ツチと しての特性が優れている。 このように , aの値を知った上で , u , V , wの値を決めるこ とで , 光スィ ツチと しての最適な特性を得ることができる。
更に , a = 3.4 の方向性結合器に L Z ^TM - I , L Z T E = 3, u = 0.375 , ν = 0.25 , w = 0.375 の値を設定し , 分岐比可変 型光分岐器を構成した時の特性を計算した結果を第 8図 (A)に示 すが , この特性図からも明らかなよ うに · L / π ) の変化 に対して T M / T E両モ ー ド光の出力強度は等しく変化する。
更に又 , a = 3.6 , L TM = 1 , L Z TM = 3 , u = 0.3 675 , = 0.265 , w = 0.375と して分岐比町変型光分岐器 を構成した時の特'性を計算した結果を同図 (B)に示すが , この例 でも ( · L / ) の変化に対して T M T E両モ ー ド光の出 力強度は等しく変化する。
以上のように , 電¾長の値を必ずしも均等にせず , aの値に 応じて各電匬長 u , V , w ( u + V + w = 1 :) を設計すること で , 光ス ィ ッ チの場合も , 可変型光分岐器の場合も特性を最適 化することが可能である。
第 9図 (A)〜(F)は本実施例素子の製造順序を示すもので , 図示 するよ うに , Z — c u t の L i Nb 03基板 (1)上に光露光技術を用い て光導波路パタ ー ンのホ ト レ ジ ス ト (61)を形成し( 同図 (A) ) , 次 5 いでホ ト レ ジ ス ト(61)を有する基板 (1)上に Ti (62)を拡散源と して蒸 着し ( 同図 (B) ) , 次いで , ホ ト レ ジ ス ト (61)を有機溶剤を用いて 基板 (1)よ 除去して幅 W , 間隔 G , 高さ Tの, Tiで形成される リ フ ト オ フ部 (63)を形成する ( 同図 ) 。 次いで光導波路パ タ一 ンの リ フ ト オ フ部 (63)を有する基板 (1)を高温で加熱して拡散源と
1 0 しての Tiを基板 (1)中に拡散して光導波路 (64)を 製する(同図 (D))c 次いでこの光導波路 (64)が形成された基板 (1)の表面に例えば約 4 0 0 0 A厚みの S i 02膜 (65)をバ ッ フ ァ層と して形成した後 ( 同 図 (E) ) , この S i 02膜 (65)の表面に , 光導波路 (64)上に位置するよ うに電 ¾腳を形成する ( 同図 (F) :) 。 ここで , S i 02膜 (65)を形成 i s したのは , 電 S(66)が金属で構成されていることから , この金属 による光の吸収を避けるためである。 なお , 上記結合部の条件 を満たすために , 第 9図 (C)中の W , G , T の寸法や拡散条件を 適当に設定する必要がある。
20 産業上の利用可能性
は上のよ うに , この発明にかかる導波路型光回路素子は ,偏 光無依存光スィ ツ チ , 可変型光分岐 と して光フ アイパ通信等 に有用である。
25

Claims

請 求 の 範 囲
1. 二つの導波路 (2) , (3)を近接して配置するとと もに , 該導波 路上に電界印加用の電¾ (4) , (5)を設置して両導波路間で光強 度を変換する方向性結合器を備えた導波路型光回路素子にお いて , 上記方向性結合器の結合部長を , T E モ ー ドについて T E モ ー ドの完全結合長の約 3倍とすると共に , T Mモ ー ド について T Mモ ー ドの完全結合長の約 1 倍としたことを特徴 とする導波路型光回路素子。
2. 二つの導波路 (2) , (3)を近接して配置するとともに , 該導波 路上に電界印加用の電陲 (4) , (5)を設置して両導波路間で光強 度を変換する方向性結合器を備えた導波路型光回路素子にお いて , 上記電隨 (4) , (5)を , 長さの異なる 3分割電 Sとすると ともに電界方向を交互に反転させる反転△ /3電 gとしたこと を特徵とする導波路型光回路素子。
3. 二つの導波路 (2) , (3)を近接して配置するとともに , 該導波 路上に電界印加用の電^ (4) , (5)を設置して両導波路間で光強 度を変換する方向性結合器を備えた導波路型光回路素子にお いて , 上記方向性結合器の結合部長を , T E モ ー ドについて T E モ ー ドの完全結合長の約 3倍とすると共に , T M モ ー ド について T Mモ ー ドの完全結合長の約 1 倍と し , かつ上記電 艇 (4) , (5)を , 3分割電匬とするとともに電界方向を交互に反 転させる反転△ ^電極としたことを特徴とする導波路型光回 路素子。
PCT/JP1990/000005 1989-03-31 1990-01-04 Optical circuit element of waveguide type WO1990012341A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69017564T DE69017564T2 (de) 1989-03-31 1990-01-04 Verfahren und vorrichtung für fernsehrundfunk.
EP90901661A EP0417295B1 (en) 1989-03-31 1990-01-04 Optical circuit element of waveguide type

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8245889 1989-03-31
JP1/82458 1989-03-31
JP1219246A JP2754774B2 (ja) 1989-03-31 1989-08-25 導波路型光回路素子
JP1/219246 1989-08-25

Publications (1)

Publication Number Publication Date
WO1990012341A1 true WO1990012341A1 (en) 1990-10-18

Family

ID=26423468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000005 WO1990012341A1 (en) 1989-03-31 1990-01-04 Optical circuit element of waveguide type

Country Status (5)

Country Link
US (1) US5103491A (ja)
EP (1) EP0417295B1 (ja)
JP (1) JP2754774B2 (ja)
DE (1) DE69017564T2 (ja)
WO (1) WO1990012341A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307658A (zh) * 2013-09-12 2018-07-20 江伟 高密度光子集成的波导超晶格

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668615B1 (fr) * 1990-10-31 1992-12-11 France Etat Separateur de polarisations pour lumiere guidee.
US5375180A (en) * 1993-10-04 1994-12-20 At&T Corp. Process tolerant reverse delta-beta directional coupler switch and method of fabricating same
JPH07318986A (ja) * 1994-05-25 1995-12-08 Nec Corp 導波路型光スイッチ
US7236708B2 (en) * 2001-10-25 2007-06-26 Nippon Telegraph And Telephone Corporation Optical communication system with optical output level control function
JP6662616B2 (ja) * 2015-11-26 2020-03-11 ダイキョーニシカワ株式会社 車両の内装構造
US20230324612A1 (en) * 2020-07-02 2023-10-12 President And Fellows Of Harvard College Electromagnetic waveguides using cascaded mode conversion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110916A (en) * 1980-02-06 1981-09-02 Nec Corp Magnetic-optical thin film optical switch
JPS62299825A (ja) * 1986-06-19 1987-12-26 Fujitsu Ltd 導波路光スイツチ
JPS63142333A (ja) * 1986-12-05 1988-06-14 Oki Electric Ind Co Ltd 導波型光スイツチ
JPH01118821A (ja) * 1987-11-02 1989-05-11 Oki Electric Ind Co Ltd 導波型光スイッチ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291939A (en) * 1978-03-24 1981-09-29 The United States Of America As Represented By The Secretary Of The Navy Polarization-independent optical switches/modulators
US4243295A (en) * 1979-09-19 1981-01-06 Bell Telephone Laboratories, Incorporated Polarization-independent optical directional coupler switch/modulator
US4390236A (en) * 1981-03-19 1983-06-28 Bell Telephone Laboratories, Incorporated Tunable polarization independent wavelength filter
US4679893A (en) * 1983-08-26 1987-07-14 Hughes Aircraft Company High switching frequency optical waveguide switch, modulator, and filter devices
US4711515A (en) * 1984-05-29 1987-12-08 American Telephone And Telegraph Company, At&T Bell Laboratories Electrooptic polarization multiplexer/demultiplexer
EP0317531B1 (en) * 1987-11-20 1993-08-25 Telefonaktiebolaget L M Ericsson Method of disposing a polarization directing optoelectronic coupler and a coupler for carrying out the method
US4865408A (en) * 1989-01-09 1989-09-12 American Telephone And Telegraph Company Low crosstalk reversed Δβ electrodes for directional coupler switch
US4997245A (en) * 1990-01-04 1991-03-05 Smiths Industries Aerospace & Defense Systems Incorporated Polarization independent optical switches

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110916A (en) * 1980-02-06 1981-09-02 Nec Corp Magnetic-optical thin film optical switch
JPS62299825A (ja) * 1986-06-19 1987-12-26 Fujitsu Ltd 導波路光スイツチ
JPS63142333A (ja) * 1986-12-05 1988-06-14 Oki Electric Ind Co Ltd 導波型光スイツチ
JPH01118821A (ja) * 1987-11-02 1989-05-11 Oki Electric Ind Co Ltd 導波型光スイッチ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0417295A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307658A (zh) * 2013-09-12 2018-07-20 江伟 高密度光子集成的波导超晶格
CN108307658B (zh) * 2013-09-12 2020-11-13 罗格斯(新泽西州立)大学 高密度光子集成的波导超晶格

Also Published As

Publication number Publication date
EP0417295B1 (en) 1995-03-08
DE69017564D1 (de) 1995-04-13
EP0417295A1 (en) 1991-03-20
JPH037910A (ja) 1991-01-16
US5103491A (en) 1992-04-07
JP2754774B2 (ja) 1998-05-20
EP0417295A4 (en) 1992-07-22
DE69017564T2 (de) 1995-11-02

Similar Documents

Publication Publication Date Title
US7088875B2 (en) Optical modulator
JP2902642B2 (ja) 集積光学光強度変調器及びその製造方法
Krahenbuhl et al. Performance and modeling of advanced Ti: LiNbO/sub 3/digital optical switches
EP0480364A2 (en) Polarization-independent optical switches/modulators
McCaughan Low-loss polarization-independent electrooptical switches at λ= 1.3 µm
Okayama et al. Reduction of the voltage-length product for a y-branch Digital Optical Switch
JPH07500431A (ja) 光スイッチング装置
WO1990012341A1 (en) Optical circuit element of waveguide type
JPH0756198A (ja) 光ハイブリッドスイッチ
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JP2000028979A (ja) 偏波無依存光制御素子
Yamaguchi et al. Low-Loss Ti-diffused LiNbO 3 Modulator Integrated with Electro-Optic Frequency-Domain Equalizer for High Bandwidth Exceeding 110 GHz
JPH07508598A (ja) 多分岐デジタル光学スイッチ
Okayama et al. Directional coupler switch with reduced voltage-length product
JP2011102891A (ja) 光機能導波路
Mikami et al. Phase tuning in optical directional coupler
JPH05303022A (ja) 単一モード光学装置
JPH0756199A (ja) 偏波無依存導波路型光スイッチ
MIKAMI et al. Directional coupler type light modulator using LiNbO 3 waveguides
JP3119965B2 (ja) 光導波路型光素子
JP3236426B2 (ja) 光結合器
Lee et al. Y-cut LiNbO/sub 3/directional coupler with a self-aligned electrode
Okayama et al. Reversed and uniform Δβ directional coupler optical switch with periodically changing coupling strength
JPH02262128A (ja) 偏光無依存光スイッチ
JPH01201628A (ja) 光スイッチ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1990901661

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWP Wipo information: published in national office

Ref document number: 1990901661

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990901661

Country of ref document: EP