WO1990010214A1 - Sonde dynamometrique pour la mesure de parametres d'un liquide - Google Patents

Sonde dynamometrique pour la mesure de parametres d'un liquide Download PDF

Info

Publication number
WO1990010214A1
WO1990010214A1 PCT/FR1989/000085 FR8900085W WO9010214A1 WO 1990010214 A1 WO1990010214 A1 WO 1990010214A1 FR 8900085 W FR8900085 W FR 8900085W WO 9010214 A1 WO9010214 A1 WO 9010214A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
probe
photoreceptor
probe according
oscillating element
Prior art date
Application number
PCT/FR1989/000085
Other languages
English (en)
Inventor
Milenko Radosavljevic
Original Assignee
Milenko Radosavljevic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR8712473A priority Critical patent/FR2620226A1/fr
Application filed by Milenko Radosavljevic filed Critical Milenko Radosavljevic
Priority to EP89903170A priority patent/EP0423125A1/fr
Priority to PCT/FR1989/000085 priority patent/WO1990010214A1/fr
Publication of WO1990010214A1 publication Critical patent/WO1990010214A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • G01N11/162Oscillations being torsional, e.g. produced by rotating bodies

Definitions

  • the present invention relates to a dynamometric probe intended for the detection, observation and measurement of variations in physical, chemical, biochemical or biological characteristics of a medium to be studied.
  • the primary object of the invention is to provide an instrument for observation and measurement, in real time, of slow variations in physical, chemical, biochemical or biological parameters of a liquid medium of any viscosity.
  • the dynamometric probe according to the invention is characterized in that it comprises an oscillating element carried by an axial support defining a pivot axis of this element, a motor device of the electromagnetic type which applies to the oscillating element alternating forces determined for make it oscillate, a braking member in the form of a pallet or a rod which is integral with the oscillating element and which is immersed in said medium, and a displacement sensor which measures the angular displacement of the oscillating element which delivers a corresponding electrical signal.
  • the dynamometric probe is an instrument whose structure and operating conditions provide it with a sensitivity such that it makes it possible to detect variations in the molecular structures of the medium studied, the causes of which can be of a physical, chemical, biochemical or biological nature. It delivers an electrical signal, analog or digital, the maximum amplitude of which directly depends on this structure. The signal delivered lends itself to any analog or digital processing, thus allowing qualitative and quantitative analyzes, comparative analyzes as well as statistical analyzes of the processes. - £ - observed. It allows, in particular, the graphical tracing of the evolution of the physico-chemical, biochemical or biological state of the environment studied, tracing which represents the image in real time, of the evolution of this state.
  • the amplitude of the signal delivered characterizes this state under precise physical conditions and can therefore be used to identify this state, i.e. to measure d 'one of the characteristic parameters of this state.
  • the dynamometric probe delivers a signal whose amplitude is a linear function of the concentration of a solution, under given physical conditions. Calibrated, the probe can therefore constitute an instrument for measuring the concentration of a solution.
  • the dynamometric probe is thus an instrument for qualitative and quantitative observation of events in a liquid, capable of carrying out both static and dynamic measurements of any parameter characteristic of the environment studied.
  • the applications relate to all industries and laboratories which use or treat more or less viscous liquid or pasty media, in particular the chemical industry in general, the petrochemical industry, the pharmaceutical industry, the food industry, various laboratories. study and analysis, medical and others.
  • the axial support consists of a twist wire which is fixed at its two ends and which defines the pivot axis of the oscillating element.
  • the oscillating element can be formed by a rigid arm arranged perpendicular to its pivot axis, the displacement sensor being disposed near one end of this arm.
  • the center of gravity of the swinging arm and the motor device are located near the pivot axis, and the braking member is disposed near one end of the arm.
  • the motor device in a first embodiment, comprises a fixed stator and a mobile magnetic assembly fixed to the oscillating element in a symmetrical arrangement relative to the pivot axis.
  • the motor device comprises an electric coil in the form of a mobile frame which is integral with the oscillating element and which is in a magnetic field at the intensity of the constant magnetic induction.
  • the braking member in the form of a cylindrical rod or a pallet is arranged vertically in the liquid medium to be studied and so as to offer maximum resistance to the movement of the oscillating element.
  • the displacement sensor is an optoelectronic sensor comprising a photo-emitter delivering a constant light flux, a photoreceptor which receives the light flux coming from the photo-emitter and which delivers an electrical signal whose intensity is a direct function of the light flux received, a shutter strip which is integral with the oscillating element and which has the role of closing, depending on the angular position of the oscillating element, the light flux picked up by the photoreceptor.
  • the photoreceptor delivers an electrical signal at its output, the instantaneous amplitude of which is directly proportional to the light flux received.
  • the photoreceptor can be part of an optoelectronic generator of periodic signals, intended to deliver an electrical output signal whose frequency is a direct function of the light flux received by the photoreceptor.
  • This output signal can for example be a sawtooth signal.
  • FIG. 1 is a schematic side elevation view of a preferred embodiment of a dynamometric probe according to the invention, comprising an oscillating arm and an optoelectronic displacement sensor, - if - Figure 2 is a schematic plan view of the swinging arm and its motor device,
  • FIG. 3 is a schematic elevation view illustrating another embodiment
  • the figure is a simplified electrical diagram of an optoelectronic displacement sensor usable with the probes according to Figures 1 to 3.
  • the dynamometric probe comprises a torsion wire 1 with a low torsional constant, fixed at its two ends to a frame 2, 3 so that the tension of the wire is adjustable.
  • a rigid arm made of very light materials is attached to the middle of the torsion wire and perpendicular to it by a fixing device 5.
  • the torsion wire 1 and the arm located in the same plane, form an integral assembly whose arm can perform a rotational movement around the axis defined by the twist wire 1.
  • Two magnetized pads 6 and 7 of negligible weight are secured to the arm and are arranged symmetrically with respect to the axis of rotation. The distance between the pads 6 and 7 can be provided adjustable in certain applications.
  • a single pad 6 or 7 may be sufficient. Facing the magnetized pads 6, 7, is placed the ferromagnetic core 8 in the shape of a U of an electric coil 9.
  • the coil 9 being supplied with alternating current, the polarity of the magnetized pads C s oriented so that, when a pad undergoes a force of attraction, the other undergoes a force of repulsion.
  • an alternating current of low maximum amplitude corresponds an oscillatory movement of the arm around its axis materialized by the twist wire 1.
  • a pallet 10 of suitable shape At one end of the arm k is fixed interchangeably a pallet 10 of suitable shape, by means of a fixing system 1 1.
  • a strip 12 acting as an optical shutter.
  • a photo-emitter 13 and a photoreceptor 1 the spectrum of which is preferably in the infrared, form a photocouple, and are arranged on either side of the shutter strip 12.
  • the width of the strip 12 must be sufficient to completely block the light beam received by the photoreceptor 14.
  • the photocouple 13, 14 At rest, that is to say at zero current in the coil 9, the photocouple 13, 14 is positioned relative to the active edge 2 1 of the strip 1 2 so that the photoreceptor 14 receives exactly half of the total light flux received without obturation.
  • the photo-emitter 13 is supplied by a constant current source 1 5.
  • the strip 12 During the oscillatory movement of the arm 4, the strip 12 more or less blocks the emitted beam, which allows, for an intensity of the photo-emitter 13 assumed constant, to collect at the output of the photoreceptor
  • the current of the photoreceptor 14 can be amplified directly by a current amplifier 17, in order to increase the reading sensitivity of the deflection angle of the arm 4.
  • a load resistor 18 in series with the photoreceptor 14, it is then possible to collect at the terminals of the load a potential difference proportional to the current of the photoreceptor. As this current is proportional to the angle of deflection of the arm 4, the same goes for the potential difference.
  • a voltage amplifier 19 is used.
  • the coil 9 is supplied by a source 16 of sinusoidal alternating current at fixed frequency, constant maximum amplitude. but adjustable.
  • the pallet 10 plunges into the sample of the liquid to be studied 22.
  • the arm 4 being subjected to a driving torque due to the sinusoidal forces of constant maximum amplitude which are exerted on the pellets 6 and 7, describes a movement oscillating around its axis of rotation materialized by the wire 1.
  • the liquid medium 22 exerts a resistive torque which opposes the engine torque and thus limits the maximum amplitude of the angle of deflection of the arm 4.
  • the maximum amplitude resulting from the movement depends on the physical structure or the chemical nature of the liquid medium studied 22 and therefore reflects the relative physical or chemical state of the medium.
  • the photocouple 1 3, 1 4 delivers an electrical signal whose maximum amplitude is directly proportional to the maximum amplitude of the _ é - oscillatory movement of the arm 4.
  • any variation in the physical state of the medium 22 results in a variation of the maximum amplitude of the angle of rotation of the arm 4 and consequently of the maximum amplitude of the current of the photoreceptor 14 or of the potential difference linked to the latter.
  • the structure of the probe described above corresponds to an optimal structure which ensures maximum sensitivity and resolving power. Under these conditions, it can be hoped, if sufficient care is taken with its mechanical production, that it will be operational in mediums with very low viscosity and even at the limit usable in mediums in the vapor state or gas of a certain density.
  • the structure previously described can be modified to a certain extent.
  • the torsion wire 1 can be replaced by a rigid axis possibly provided with a spiral spring acting as a return spring, a system similar to the balance spring with a clock.
  • the motor torque of the probe can be achieved by a mobile frame device, similar to the mobile frame of a galvanometer and similarly secured to the twist wire 1 or the rigid axis and the coil of which is supplied by a sinusoidal alternating motor current.
  • the assembly then replaces the magnetized pads 6 and 7 as well as the coil 9 with its core 8.
  • the optoelectronic displacement sensor described above can be replaced by another type of optoelectronic sensor, illustrated in FIG. 4, also of high sensitivity.
  • the latter comprises an optoelectronic generator 23 of signals, for example sawtooth 24, where the photoreceptor 14 is an integral part of the generator used.
  • the result of the reading of the displacement is presented directly in digital form, the benefit , in good of applications, is certain.
  • the structure of the signal generator corresponds to the general simplified diagram of FIG. 4 for the sawtooth signals.
  • the operating principle is based on the charging or discharging of a capacitor through a photoreceptor.
  • the capacitor 27 is charged through the photoreceptor 14 with a charging speed which is directly proportional to the light flux received.
  • a threshold comparator 29 detects the maximum voltage admitted at the terminals of the capacitor 27 and commands the closing of a switch 2S through which the capacitor 27 discharges, after which the cycle begins again. It is understood that the frequency of the signal delivered 24 depends on the illumination received by the photoreceptor. For some applications, the use of a PIN type photoreceptor may prove useful.
  • the maximum angle of deflection of the arm 4 can be measured by other means and in particular by means of a potentiometer secured to the rotating mechanical part, thus replacing the photocouple 13, 14 and the lamella 12.
  • a potentiometer secured to the rotating mechanical part, thus replacing the photocouple 13, 14 and the lamella 12.
  • the latter solution may be advantageous in the case where we are dealing with very viscous media, even elastic solid media, and where the twist wire 1 is replaced by a rigid axis integral with the potentiometer. This structure ensures great compactness for the entire probe.
  • the rigid arm 4 consists of two integral branches, of comparable or non-comparable lengths, located on either side of the twist wire 1 or of the rigid axis.
  • the shutter 12 can be arranged on the same side of the arm as the pallet 10 or on the other side depending on whether the arms of the arm are of comparable length or not.
  • FIG. 3 illustrates an embodiment in which the asymmetry in length of the arms of the arm
  • the shape of the motor current flowing through the coil 9 is sinusoidal.
  • a periodic current of rectangular shape or a step of current may be more suitable in certain applications such as studying or measuring the viscosity of particular media.
  • a linearly growing current in time can be useful in studying the response of a medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Micromachines (AREA)

Abstract

L'invention concerne une sonde dynamométrique particulièrement sensible qui permet la détection de variations de structures moléculaires d'un milieu liquide ainsi que la mesure statique et dynamique, en temps réel, des paramètres physiques, chimiques, biochimiques et biologiques du même milieu. Un bras (4) solidaire d'un fil de torsion (1) porte à une de ses extrémités une palette interchageable (10) ainsi qu'une lamelle obturatrice (12). Le bras (4), sous l'effet moteur d'un dispositif électromagnétique (6, 7, 9), oscille autour du fil de torsion (1). La palette (10) plonge dans le milieu à étudier (22) qui freine son mouvement. Un capteur optoélectronique (13 à 15), comprenant la lamelle obturatrice (12), mesure le déplacement angulaire du bras (4) et délivre un signal électrique, sous forme analogique ou numérique. Les applications concernent toutes les industries et laboratoires traitant les milieux liquides plus au moins visqueux tels l'industrie chimique, la pétrochimie, l'industrie pharmaceutique, l'industrie agro-alimentaire, divers laboratoires d'études et d'analyses médicales ou autres.

Description

SONDE DYNAMO ETRIQUE POUR LA MESURE DE PARAMETRES D'UN LIQUIDE
La présente invention concerne une sonde dynamométrique destinée à la détection, l'observation et la mesure des variations de caractéristiques physiques, chimiques, biochimiques ou biologiques d'un milieu à étudier.
L'invention a pour but premier de fournir un instrument d'observation et de mesure, en temps réel, de variations lentes de paramètres physiques, chimiques, biochimiques ou biologiques d'un milieu liquide de viscosité quelconque.
La sonde dynamométrique selon l'invention est caractérisée en ce qu'elle comporte un élément oscillant porté par un support axial définissant un axe de pivotement de cet élément, un dispositif moteur du type électromagnétique qui applique à l'élément oscillant des forces alternées déterminées pour le faire osciller, un organe de freinage se présentant sous forme d'une palette ou d'une tige qui est solidaire de l'élément oscillant et qui est plongé dans ledit milieu, et un capteur de déplacement qui mesure le déplacement angulaire de l'élément oscillant et qui délivre un signal électrique correspondant.
Ainsi on mesure la résistance qu'oppose le milieu étudié au mouvement d'une palette plongeant dans ce milieu. On mesure donc une force par l'intermédiaire d'un couple appliqué à la palette, d'où la dénomination de sonde dynamométrique.
La sonde dynamométrique est un instrument dont la structure et les conditions de fonctionnement lui assurent une sensibilité telle qu'elle permet de détecter les variations de structures moléculaires du milieu étudié, dont les causes peuvent être de nature physique, chimique, biochimique ou biologique. Elle délivre un signal électrique, analogique ou numérique, dont l'amplitude maximale dépend directement de cette structure. Le signal délivré se prête à tout traitement analogique ou numérique, permettant ainsi des analyses qualitatives et quantitatives, des analyses comparées ainsi que des analyses statistiques des processus -£- observés. Il permet, en particulier, le tracé graphique de l'évolution de l'état physico-chimique, biochimique ou biologique du milieu étudié, tracé qui représente l'image en temps réel, de l'évolution de cet état.
Ainsi parmi les applications nombreuses on peut citer le tracé, en temps réel, des processus enzymatiques, ou bien le tracé thromboélastographi- que qui, en plus de données habituelles, fournit des données nouvelles non contenues dans le tracé de HARTERT et donne ainsi à ces examens un intérêt nouveau.
Si l'état du milieu n'est pas évolutif, l'amplitude du signal délivré caractérise cet état dans des conditions physiques précises et peut par conséquent servir à l'identification de cet état, c'est-à-dire à la mesure d'un des paramètres caractéristiques de cet état. Ainsi par exemple, la sonde dynamométrique délivre un signal dont l'amplitude est une fonction linéaire de la concentration d'une solution, dans des conditions physiques données. Etalonnée, la sonde peut donc constituer un instrument de mesure de la concentration d'une solution.
La sonde dynamométrique est ainsi un instrument d'observation qualitative et quantitative d'événements au sein d'un liquide, capable d'effectuer des mesures aussi - bien statiques que dynamiques d'un paramètre caractéristique quelconque du milieu étudié. Les applications concernent toutes les industries et laboratoires qui utilisent ou traitent des milieux liquides ou pâteux plus ou moins visqueux, notamment l'industrie chimique en général, la pétrochimie, l'industrie pharmaceu¬ tique, l'industrie agro-alimentaire, divers laboratoires- d'étude et d'analyses, médicales et autres.
Dans une forme de réalisation particulière d'une sonde selon l'invention, le support axial est constitué d'un fil de torsion qui est fixé à ses deux extrémités et qui définit l'axe de pivotement de l'élément oscillant.
L'élément oscillant peut être formé par un bras rigide disposé perpendiculairement à son axe de pivotement, le capteur de déplacement étant disposé à proximité d'une extrémité de ce bras. De préférence, le centre de gravité du bras oscillant et le dispositif moteur se trouvent à proximité de l'axe de pivotement, et l'organe de freinage est disposé à proximité d'une extrémité du bras. Le dispositif moteur, dans une première forme de réalisation, comporte un stator fixe et un ensemble aimanté mobile fixé à l'élément oscillant dans une disposition symétrique par rapport à l'axe de pivotement. Dans une autre forme de réalisation, le dispositif moteur comporte une bobine électrique en forme de cadre mobile qui est solidaire de l'élément oscillant et qui se trouve dans un champ magnétique à l'intensité de l'induction magnétique constante.
L'organe de freinage sous forme d'une tige cylindrique ou d'une palette est disposé verticalement dans le milieu liquide à étudier et de manière à offrir une résistance maximale au mouvement de l'élément oscillant.
Selon une forme préférée de l'invention, le capteur de déplacement est un capteur optoélectronique comportant un photo-émetteur délivrant un flux lumineux constant, un photorécepteur qui reçoit le flux lumineux provenant du photo-émetteur et qui délivre un signal électrique dont l'intensité est une fonction directe du flux lumineux reçu, une lamelle obturatrice qui est solidaire de l'élément oscillant et qui a pour rôle d'obturer, en fonction de la position angulaire de l'élément oscillant, le flux lumineux capté par le photorécepteur. Ainsi, le photorécepteur délivre à sa sortie un signal électrique dont l'amplitude instantanée est directement proportionnelle au flux lumineux reçu. En variante, le photorecepteur peut faire partie d'un générateur optoélectronique de signaux périodiques, destiné à délivrer un signal électrique de sortie dont la fréquence est une fonction directe du flux lumineux reçu par le photorécepteur. Ce signal de sortie peut être par exemple un signal en dents de scie.
La structure et le fonctionnement d'une sonde selon l'invention sont décrits ci-dessous par des exemples de réalisation, donnés à titre non limitatif et en référence au dessin annexé, dans lequel :
La figure 1 est une vue schématique en élévation latérale d'une forme préférée de réalisation d'une sonde dynamométrique selon l'invention, comportant un bras oscillant et un capteur optoélectronique de déplacement, - if - La figure 2 est une vue schématique en plan du bras oscillant et de son dispositif moteur,
La figure 3 est une vue schématique en élévation illustrant une autre forme de réalisation, et
La figure est un schéma électrique simplifié d'un capteur optoélectro¬ nique de déplacement utilisable avec les sondes selon les figures 1 à 3.
En référence aux figures 1 et 2, la sonde dynamométrique comporte un fil de torsion 1 à constante de torsion faible, fixé à ses deux extrémités à un bâti 2, 3 de manière à ce que la tension du fil soit réglable. Un bras rigide en matériaux très légers est rattaché au milieu du fil de torsion et perpendiculairement à celui-ci par un dispositif de fixation 5. Le fil de torsion 1 et le bras , situés dans un même plan, forment un ensemble solidaire dont le bras peut effectuer un mouvement de rotation autour de l'axe défini par le fil de torsion 1. Deux pastilles aimantées 6 et 7 de poids négligeable sont solidaires du bras et sont disposées symétrique¬ ment par rapport à l'axe de rotation. La distance entre les pastilles 6 et 7 peut être prévue réglable dans certaines applications. Dans le cas de sondes à structure simplifiée, une seule pastille 6 ou 7 peut être suffisante. Face aux pastilles aimantées 6, 7, est placé le noyau ferromagnétique 8 en forme de U d'une bobine électrique 9. La bobine 9 étant alimentée en courant alternatif, la polarité des pastilles aimantées Cs orientée de façon que, lorsqu'une pastille subit une force d'attraction, l'autre subit une force de répulsion. Ainsi, à un courant alternatif d' amplitude maximale faible correspond un mouvement oscillatoire du bras autour de son axe matérialisé par le fil de torsion 1.
A une extrémité du bras k est fixée de manière interchangeable une palette 10 de forme appropriée, par l'intermédiaire d'un système de fixation 1 1. D'autre part, à distance fixe de l'axe de rotation, sur l'un ou l'autre côté du bras est fixée une lamelle 12 faisant office d'un obturateur optique. Un des bords de la lamelle 12, parallèle au bras , appelé bord actif 21, est aligné sur l'axe central du bras , axe qui coupe l'axe de rotation confondu avec le fil de torsion. Un photo-émetteur 13 et un photorécepteur 1 , dont le spectre se situe de préférence dans l'infrarouge, forment un photocouple, et sont disposés de part et d'autre de la lamelle obturatrice 12. La largeur de la lamelle 12 doit être suffisante pour permettre d'obturer totalement le faisceau lumineux reçu par le photorécepteur 14. Au repos, c'est-à-dire à courant nul dans la bobine 9, le photocouple 13, 14 est positionné par rapport au bord actif 2 1 de la lamelle 1 2 de façon que le photorécepteur 14 reçoit exactement la moitié du flux lumineux total reçu sans obturation. Le photo-émetteur 13 est alimenté par une source à courant constant 1 5. Lors du mouvement oscillatoire du bras 4, la lamelle 12 obture plus ou moins le faisceau émis, ce qui permet, pour une intensité du photo-émet- teur 13 supposée constante, de recueillir à la sortie du photorécepteur
14 un courant proportionnel à l'angle de déviation supposé faible du bras 4. Le courant du photorécepteur 14 peut être amplifié directement par un amplificateur de courant 17, afin d'augmenter la sensibilité de lecture de l'angle de déviation du bras 4.
En introduisant une résistance de charge 18 en série avec le photoré¬ cepteur 14, on peut alors recueillir aux bornes de la charge une différence de potentiel proportionnelle au courant du photorécepteur. Comme ce courant est proportionnel à l'angle de déviation du bras 4, il en va de même pour la différence de potentiel. Dans ce cas, pour augmenter la sensibilité de lecture de l'angle de déviation, on utilise un amplificatçur de tension 19. Dans les applications courantes, la bobine 9 est alimentée par une source 16 de courant alternatif sinusoïdal à fréquence fixe, amplitude maximale constante mais réglable.
De ce qui précède on déduit le fonctionnement de l'ensemble dans l'observation des processus physico-chimiques ou biochimiques, au sein d'un milieu liquide. En effet, la palette 10 plonge dans l'échantillon du liquide à étudier 22. Le bras 4, étant soumis à un couple moteur dû aux forces sinusoïdales d'amplitude maximale constante qui s'exercent sur les pastilles 6 et 7, décrit un mouvement oscillatoire autour de son axe de rotation matérialisé par le fil 1. Par l'intermédiaire de la palette 10, le milieu liquide 22 exerce un couple résistant qui s'oppose au couple moteur et limite ainsi l'amplitude maximale de l'angle de déviation du bras 4. L'amplitude maximale résultante du mouvement dépend de la structure physique ou de la nature chimique du milieu liquide étudié 22 et traduit donc l'état physique ou chimique relatif du milieu. Le photocouple 1 3, 1 4 délivre un signal électrique dont l'amplitude maximale est directement proportionnelle à l'amplitude maximale du _ é - mouvement oscillatoire du bras 4. Ainsi, toute variation de l'état physique du milieu 22 se traduit par une variation de l'amplitude maximale de l'angle de rotation du bras 4 et par conséquent de l'amplitude maximale du courant du photorécepteur 14 ou de la différence de potentiel liée à ce dernier.
La structure de la sonde décrite ci-dessus correspond à une structure optimale qui lui assure une sensibilité et un pouvoir de résolution maximaux. Dans ces conditions on peut espérer, si l'on accorde suffisamment de soins à sa réalisation mécanique, qu'elle soit opération¬ nelle dans des milieux à viscosité très faible et même à la limite utilisable dans des milieux à l'état de vapeur ou de gaz d'une certaine densité.
Au contraire, si l'on ne recherche pas des sensibilités extrêmes de la sonde et à fortiori si l'on a affaire à des milieux liquides très visqueux, à la limite même à des solides à élasticité suffisante, tels certains produits alimentaires, les viandes par exemple, la structure précédem¬ ment décrite peut être modifiée dans une certaine mesure. Ainsi, le fil de torsion 1 peut être remplacé par un axe rigide muni éventuellement d'un ressort en spirale faisant office d'un ressort de rappel, système similaire au balancier à spiral d'une horloge.
De même, le couple moteur de la sonde peut être réalisé par un dispositif à cadre mobile, semblable au cadre mobile d'un galvanomètre et solidaire de manière analogue du fil de torsion 1 ou de l'axe rigide et dont la bobine est alimentée par un courant moteur alternatif de forme sinusoïdale. L'ensemble remplace alors les pastilles aimantées 6 et 7 ainsi que la bobine 9 avec son noyau 8.
Le capteur optoélectronique de déplacement précédemment décrit peut être remplacé par un autre type de capteur optoélectronique, illustré par la figure 4, de grande sensibilité également. Ce dernier comprend un générateur optoélectronique 23 de signaux par exemple en dents de scie 24, où le photorécepteur 14 fait partie intégrante du générateur utilisé.
Une variation du flux lumineux reçu par le photorécepteur 14, due au déplacement de la lamelle 12, entraîne une variation de la fréquence du signal issu du générateur 23. Ici le résultat de la lecture du déplacement se présente directement sous forme numérique dont l'intérêt, dans bien des applications, est certain.
Quant à la structure du générateur de signaux, elle correspond au schéma général simplifié de la figure 4 pour les signaux en dents de scie. Le principe de focntionnement est basé sur la charge ou la décharge d'une capacité à travers un photorécepteur. En considérant le schéma, on voit que la capacité 27 se charge à travers le photorécepteur 14 avec une vitesse de charge qui est directement proportionnelle au flux lumineux reçu. Un comparateur à seuil 29 détecte la tension maximale admise aux bornes de la capacité 27 et commande la fermeture d'un interrupteur 2S à travers lequel la capacité 27 se décharge, après quoi le cycle recommence. On conçoit que la fréquence du signal délivré 24 dépend de l'éclairement reçu par le photorécepteur. Pour certaines apliications, l'utilisation d'un photorécepteur du type PIN peut s'avérer uti le.
La mesure de l'angle maximal de déviation du bras 4 peut être réalisée par d'autres moyens et en particulier par l'intermédiaire d'un potentio¬ mètre solidaire de la partie mécanique en rotation, remplaçant ainsi le photocouple 13, 14 et la lamelle 12. Cette dernière solution peut être intéressante dans le cas où l'on a affaire à des milieux très visqueux, voire milieux solides élastiques, et où le fil de torsion 1 est remplacé par un axe rigide solidaire du potentiomètre. Cette structure assure une grande compacité à l'ensemble de la sonde.
Le bras rigide 4 est constitué de deux branches solidaires, de longueurs comparables ou non, situées de part et d'autre du f i l de torsion 1 ou de l'axe rigide. L'obturateur 12 peut être disposé de même côté du bras que la palette 10 ou de l'autre côté suivant que les branches du bras sont à longueur comparable ou non. La figure 3 illustre une forme de réalisation dans laquelle la disymétrie de longueur des branches du bras
4' confère un moindre volume à l'ensemble. Dans ce cas les deux branches, de longueurs inégales, sont équilibrées en masse par un contrepoids 20 situé sur l'extrémité de la plus courte branche.
Pour la plupart des applications la forme du courant moteur qui traverse la bobine 9 est de forme sinusoïdale. Cependant, un courant périodique de forme rectangulaire ou un échelon de courant peuvent convenir mieux dans certaines applications telles que l'étude ou la mesure de la viscosité des milieux particuliers. De même, un courant à croissance linéaire dans le temps peut s'avérer utile dans l'étude de la la réponse d'un milieu. Un homme du métier pourra prévoir bien d'autres modifications et variantes par rapport aux exemples mentionnés ci-dessus, sans pour autant sortir du cadre de la présente invention.

Claims

Revendications
1. Sonde dynamométrique destinée à la détection, l 'observation et la mesure des variations de paramètres physiques, chimiques, biochimiques ou biologiques d'un milieu à étudier, ladite sonde comportant :
- un élément oscillant (4, 4') porté par un support axial ( 1 ) définissant un axe de pivotement de cet élément,
un dispositif moteur électromagnétique (6 à 9) agencé pour appliquer à l 'élément oscillant un couple déterminé pour le faire pivoter autour de son axe,
un organe de freinage ( 10) se présentant sous forme d'une palette ou d'une tige solidaire de l'élément oscillant et qui plonge dans ledit milieu (22),
et un capteur de déplacement ( 12 à 19) mesurant l 'am plitude maximale du mouvement angulaire de l'élément oscillant en délivrant un signal électrique correspondant, caractérisée en ce que l'élément oscillant comporte un bras oscillant (4, 4') disposé transversalement par rapport à son axe de pivotement, et en ce que ledit organe de freinage ( 10) est monté sur ce bras et se trouve à distance de l'axe de pivotement
2. Sonde selon la revendication 1, caractérisée en ce que le support axial comporte un fil de torsion ( 1) qui est fixé à ses deux extrémités et qui définit l'axe de pivotement du bras oscillant.
3. Sonde selon la revendication 1 ou 2, caractérisée en ce que le capteur de déplacement est disposé à proximité d'une extrémité de ce bras.
4. Sonde selon la revendication 3, caractérisée en ce que le centre de gravité du bras oscillant (4, 4') et le dispositif moteur se trouvent à proximité de l'axe de pivotement ( 1 ), et en ce que l'organe de freinage ( 10) est disposé à proximité d'une extrémité du bras.
5. Sonde selon l'une des revendications 1 à 4, caractérisée en ce que le dispositif moteur comporte un stator fixe (8, 9) et un ensemble aimanté mobile (6, 7) fixé aux bras oscillant dans une disposition symétrique par rapport à l'axe de pivotement.
6. Sonde selon l'une des revendications précédentes, caractérisée en ce que l'organe de freinage sous forme d'une tige cylindrique ou d'une palette (10) est disposé verticalement dans le milieu du liquide à étudier (22) et de manière à offrir une résistance maximale au mouvement du bras oscillant (4, 4').
7. Sonde selon l'une des revendications précédentes, caractérisée en ce que le capteur de déplacement est un capteur optoélectronique comportant un photoémetteur ( 13) délivrant un flux lumineux constant, un photorécepteur ( 14) agencé pour recevoir le flux lumineux provenant du photoémetteur et pour délivrer un signal électrique dont l'amplitude est une fonction directe du flux lumineux reçu, et une lamelle obturatrice (12) qui est solidaire de l'élément oscillant (4, 4') et qui a pour rôle d'obturer, en fonction de la position angulaire de l'élément oscillant, le flux lumineux capté par le photorécepteur (14).
8. Sonde selon la revendication 7, caractérisée en ce que le photorécep¬ teur (14) fait partie d'un générateur optoélectronique de signaux périodiques (23), destiné à délivrer un signal électrique de sortie (24) dont la fréquence est une fonction directe du flux lumineux reçu par le photorécepteur.
PCT/FR1989/000085 1987-09-07 1989-03-02 Sonde dynamometrique pour la mesure de parametres d'un liquide WO1990010214A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR8712473A FR2620226A1 (fr) 1987-09-07 1987-09-07 Sonde dynamometrique pour la mesure statique et dynamique, en temps reel, de divers parametres physico-chimiques, biochimiques ou biologiques d'un milieu liquide
EP89903170A EP0423125A1 (fr) 1987-09-07 1989-03-02 Sonde dynamometrique pour la mesure de parametres d'un liquide
PCT/FR1989/000085 WO1990010214A1 (fr) 1987-09-07 1989-03-02 Sonde dynamometrique pour la mesure de parametres d'un liquide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8712473A FR2620226A1 (fr) 1987-09-07 1987-09-07 Sonde dynamometrique pour la mesure statique et dynamique, en temps reel, de divers parametres physico-chimiques, biochimiques ou biologiques d'un milieu liquide
PCT/FR1989/000085 WO1990010214A1 (fr) 1987-09-07 1989-03-02 Sonde dynamometrique pour la mesure de parametres d'un liquide

Publications (1)

Publication Number Publication Date
WO1990010214A1 true WO1990010214A1 (fr) 1990-09-07

Family

ID=9354727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1989/000085 WO1990010214A1 (fr) 1987-09-07 1989-03-02 Sonde dynamometrique pour la mesure de parametres d'un liquide

Country Status (3)

Country Link
EP (1) EP0423125A1 (fr)
FR (1) FR2620226A1 (fr)
WO (1) WO1990010214A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620226A1 (fr) * 1987-09-07 1989-03-10 Radosavljevic Milenko Sonde dynamometrique pour la mesure statique et dynamique, en temps reel, de divers parametres physico-chimiques, biochimiques ou biologiques d'un milieu liquide
RU2061218C1 (ru) * 1992-07-22 1996-05-27 Всероссийский научно-исследовательский институт природных газов и газовых технологий Устройство для определения свойств текучих сред
FR2991771B1 (fr) * 2012-06-08 2014-06-13 Chr Hansen France Sas Dispositif de controle de la coagulation d'un fluide, notamment du lait, et procede de controle associe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1318008A (fr) * 1963-05-10
FR2148804A5 (fr) * 1971-08-04 1973-03-23 Rhone Poulenc Sa
US4164136A (en) * 1976-07-16 1979-08-14 Exxon Research & Engineering Co. Method and apparatus for investigating the mobility of a substance
FR2444255A1 (fr) * 1978-12-11 1980-07-11 Applic Tech Et Dispositif de mesure de deplacements
EP0015550A1 (fr) * 1979-03-05 1980-09-17 Fresenius AG Procédé et dispositif de détermination des propriétés visco-élastiques de fluides
EP0018905A1 (fr) * 1979-04-27 1980-11-12 Probio Dms Dispositif de mesure de paramètres de coagulation ou de lyse
US4332158A (en) * 1980-05-09 1982-06-01 Osborne Howard S Slump testing device
JPS59211843A (ja) * 1983-05-17 1984-11-30 Yokohama Rubber Co Ltd:The 室温反応型樹脂のゲル化時間測定方法及び装置
FR2620226A1 (fr) * 1987-09-07 1989-03-10 Radosavljevic Milenko Sonde dynamometrique pour la mesure statique et dynamique, en temps reel, de divers parametres physico-chimiques, biochimiques ou biologiques d'un milieu liquide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1318008A (fr) * 1963-05-10
FR2148804A5 (fr) * 1971-08-04 1973-03-23 Rhone Poulenc Sa
US4164136A (en) * 1976-07-16 1979-08-14 Exxon Research & Engineering Co. Method and apparatus for investigating the mobility of a substance
FR2444255A1 (fr) * 1978-12-11 1980-07-11 Applic Tech Et Dispositif de mesure de deplacements
EP0015550A1 (fr) * 1979-03-05 1980-09-17 Fresenius AG Procédé et dispositif de détermination des propriétés visco-élastiques de fluides
EP0018905A1 (fr) * 1979-04-27 1980-11-12 Probio Dms Dispositif de mesure de paramètres de coagulation ou de lyse
US4332158A (en) * 1980-05-09 1982-06-01 Osborne Howard S Slump testing device
JPS59211843A (ja) * 1983-05-17 1984-11-30 Yokohama Rubber Co Ltd:The 室温反応型樹脂のゲル化時間測定方法及び装置
FR2620226A1 (fr) * 1987-09-07 1989-03-10 Radosavljevic Milenko Sonde dynamometrique pour la mesure statique et dynamique, en temps reel, de divers parametres physico-chimiques, biochimiques ou biologiques d'un milieu liquide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Colloid Journal of the USSR, Vol. 36, No. 2 Mars/Avril 1974 (publie Sept. '74) Plenum Publishing Corp. (New York, NY, US) A.A. TRAPEZNIKOV et al.: "Dynamic Properties of Colloidal Systems and use of the Resonance Method of Investigation", pages 380-383 *
Journal of Physics E Scientific Instruments, Vol. 10, No. 4, Avril 1977 H. BARTESCH et al.: "An Automatically Driven Torsion Pendulum for the Continuous Measurement of Amplitude and Amplitude-Independent Damping" pages 416-420 *
PATENT ABSTRACTS OF JAPAN, Vol. 9, No. 83 (P-348)(1806), 12 Avril 1985; & JP-A-59211843 (Yokohama Gomu K.K.) 30 Novembre 1984 *

Also Published As

Publication number Publication date
FR2620226A1 (fr) 1989-03-10
EP0423125A1 (fr) 1991-04-24

Similar Documents

Publication Publication Date Title
US4641027A (en) Indicating positions
FR2601447A1 (fr) Appareil de mesure de niveau
CA1317123C (fr) Methode et appareil d'essai rheologique
FR2550332A1 (fr) Profilmetre optique multifocal par dispersion
FR2807162A1 (fr) Sonde d'analyse de surface pour un microscope a force atomique et microscope a force atomique la comportant
EP0426550B1 (fr) Appareil pour déterminer le coéfficient de dilatation hydrique des élements d'une structure composite
WO1990010214A1 (fr) Sonde dynamometrique pour la mesure de parametres d'un liquide
US5315254A (en) Method and apparatus for non-contact charge measurement
EP0489651A1 (fr) Capteur tachymétrique intrinsèque à fibre optique
CN110940443A (zh) 基于锆钛酸铅镧透明陶瓷巨弹光效应的力学传感器
FR3098918A1 (fr) Microscope a force atomique
EP1131599B1 (fr) Dispositif pour la mesure dimensionnelle et le controle des defauts des fibres optiques en production
FR2674962A1 (fr) Detecteur d'angle pour debitmetre a faible couple.
EP0158557B1 (fr) Dispositif d'élimination des bruits d'activation d'un gyromètre laser et gyromètre laser utilisant ledit dispositif
JPH02176415A (ja) 位置センサとそれを用いたトルクセンサ
CN1200302C (zh) 圆柱扭转调谐光纤光栅传感解调器
Xing et al. A bubble-level tilt sensor with a large measurement range
SU1293577A1 (ru) Устройство дл измерени силы трени
FR2831663A1 (fr) Dispositif capteur pour determiner des sollicitations mecaniques et dispositifs de mesure et d'analyse incorporant un tel capteur
RU2679925C1 (ru) Торсиометр
EP0519051B1 (fr) Capteur de vibrations suivant deux directions orthogonales
FR2745385A1 (fr) Capteur des grandeurs cinematiques d'un mobile conducteur
FR2722565A1 (fr) Dispositif de mesure des variations de longueur d'eprouvettes sous chargement mecanique ou thermomecanique
FR2558594A1 (fr) Procede de mesure de la durete d'un materiau et dispositif pour la mise en oeuvre de ce procede
JPS6311820A (ja) ワイヤ−ト−シヨンバランス

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989903170

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989903170

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989903170

Country of ref document: EP