WO1990007972A1 - Desulfurization of exhaust gas - Google Patents

Desulfurization of exhaust gas Download PDF

Info

Publication number
WO1990007972A1
WO1990007972A1 PCT/JP1990/000013 JP9000013W WO9007972A1 WO 1990007972 A1 WO1990007972 A1 WO 1990007972A1 JP 9000013 W JP9000013 W JP 9000013W WO 9007972 A1 WO9007972 A1 WO 9007972A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
desulfurization
liquid
slurry
solid
Prior art date
Application number
PCT/JP1990/000013
Other languages
English (en)
French (fr)
Inventor
Kenichi Nakagawa
Original Assignee
Nichimen Corporation
Fuji Machinery Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichimen Corporation, Fuji Machinery Engineering Co., Ltd. filed Critical Nichimen Corporation
Priority to KR1019900701996A priority Critical patent/KR910700093A/ko
Publication of WO1990007972A1 publication Critical patent/WO1990007972A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound

Definitions

  • the present invention relates to a desulfurization method for exhaust gas containing sulfur oxides such as combustion exhaust gas of heavy oil, coal, etc., and more particularly, to a desulfurization method using light-burned magnesium oxide as a desulfurizing agent.
  • a processing solution consisting of an aqueous solution of a desulfurizing agent or a water slurry flows down from the upper part in a vertical desulfurization tower in a shower shape, and is introduced from the lower side with this processing liquid.
  • the sulfuric acid in the exhaust gas is fixed as sulphate / sulphite by continuously contacting the exhaust gas with the exhaust gas. Is pumped up and circulated together with a continuously supplied new processing liquid, and the increased amount due to the supply is discharged.
  • sodium hydroxide, ammonium hydroxide, magnesium hydroxide, hydroxides such as calcium hydroxide, and basic oxides such as calcium oxide have been known.
  • magnesium hydroxide has been widely used in recent years.
  • magnesium hydroxide is relatively inexpensive, and the desulfurization product is easily soluble in water and calcium-based desulfurization It does not cause the problem of scaling as in the case of chemicals, and can be used in the form of an aqueous solution in which magnesium hydroxide is dissolved by adjusting the pH of the processing solution to about 6.
  • magnesium carbonate (MgCO 3 ) ore such as magnetite, is treated at relatively low temperatures.
  • Pulverized magnesium oxide (MgO) obtained by calcining at about 800 to 1000 ° C can be obtained at a lower cost than magnesium hydroxide, and it also produces clinker. Despite its low-temperature calcination, which is difficult, it is soft and has a high activity as a basic oxide (it is easily hydrated into a hydroxide), but is hardly used as a desulfurizing agent.
  • the first is that magnesium oxide undergoes a hydration reaction to form hydroxide as a pre-stage of desulfurization, and this hydration reaction is similar to the basic oxide calcium oxide (CaO). Therefore, the desulfurization efficiency is inferior because it is much slower.
  • the above-mentioned lightly calcined magnesium oxide is obtained by calcining coarsely crushed ore lump as it is and then pulverizing it.
  • the present invention uses lightly burned magnesium oxide powder as a desulfurizing agent raw material, increases its utilization, and reduces the deposition of residues in the circulation system of the desulfurization tower.
  • the purpose is to provide a method for preventing waste gas and achieving stable and efficient exhaust gas desulfurization at a low processing cost.
  • the inventor has studied to achieve the above object.
  • the reactivity of sulfur oxides in the desulfurization solution was investigated for ordinary magnesium hydroxide and lightly burned magnesium oxide, which are commonly used as desulfurizing agents. It was found that the use of a large amount of inferior light-burned magnesium oxide would increase the amount of magnesium oxide component with good reactivity, so that a reaction efficiency comparable to magnesium hydroxide could be obtained.
  • the above-mentioned problem of residue becomes more serious.
  • an external treatment system comprising a specific process outside the desulfurization tower, hydrates a large amount of light-burned magnesium oxide powder in this external treatment system, and produces a highly reactive oxide therein.
  • An aqueous solution of magnesium hydroxide generated from the magnesium component is supplied as a treatment liquid to the desulfurization tower, while excess, poorly reactive magnesium oxide component is mixed with magnesium carbonate and impurities in the form of a slurry in an external treatment system.
  • the present invention relates to a first and a second embodiment, wherein an exhaust gas containing a sulfur oxide and a treatment liquid containing a desulfurizing agent are continuously brought into gas-liquid contact with each other to absorb the sulfur oxide into the treatment liquid.
  • An external treatment system comprising a second reaction step and a solid-liquid separation step is provided,
  • the desulfurization liquid absorbing the sulfur component supplied from the desulfurization tower is mixed with the slurry supplied from the solid-liquid separation step and reacted.
  • the reactant produced from the first reaction step is mixed with lightly burned magnesium oxide particles and reacted.
  • the reactants produced from the second reaction step are separated into a liquid containing no solids and a slurry sent to the first reaction step,
  • At least a part of the slurry sent from the solid-liquid separation step to the first reaction step is converted into a fine powder slurry by a pulverizing means.
  • inexpensive light-burned magnesium oxide powder can be used as a desulfurizing agent raw material, and its utilization can be greatly increased.
  • magnesium It can be significantly reduced compared to the desulfurization method, and in the desulfurization tower, it is possible to completely prevent the deposition of residues that cause scale adhesion and blockage in the circulating system, thereby enabling low-cost, stable and efficient exhaust gas desulfurization. .
  • the particle By increasing the reaction area, the reactivity of the slurry is increased, and there is an advantage that the utilization rate of the light-burning magnesium oxide is further improved and the processing cost can be further reduced.
  • the drawing is a schematic diagram showing a configuration example of an apparatus used in the exhaust gas desulfurization method of the present invention.
  • A is a desulfurization tower, and a processing solution composed of an aqueous solution of magnesium hydroxide supplied from an external processing system B provided outside the desulfurization tower is caused to flow down from above in a shaping manner, and is introduced into the processing liquid from below.
  • the sulfur oxide is absorbed and fixed as magnesium sulfite in the treatment liquid by the desulfurization reaction by bringing the waste gas containing sulfur oxide into gas-liquid contact.
  • the exhaust gas G 2 which sulfur oxides have been removed is discharged to the column out from above.
  • the desulfurization solution which has absorbed the knob Ri ⁇ yellow oxides, usually M g S 0 3, M g S 0 4, M g (HS 0 3) 2 or the like is mixed It is sent to the upper part via the pump P1 and the pipe L1 together with the newly supplied processing liquid, and is continuously circulated in the desulfurization tower A by repeating this process.
  • the external treatment system B consists of a first reaction tank 1 for the first reaction step, a second reaction tank 2 for the second reaction step, a sedimentation tank 3 for the solid-liquid separation process, and a water slurry of lightly burned magnesium oxide powder.
  • the reaction tanks 1 and 2 are provided with a stirrer 6.
  • the desulfurization liquid supplied from the desulfurization tower A via the pump P2 and the pipe L2 and the slurry supplied from the settling tank 3 via the pump P3 are mixed.
  • the reactants (slurry) are sent to the second reaction tank 2.
  • a large excess of water slurry of lightly burned magnesium oxide powder is supplied from the raw material tank 4, and the slurry and the reactant from the first reaction tank 1 are mixed and reacted.
  • the reaction product is sent to the sedimentation tank 3 and separated into a supernatant and a sedimentation slurry by sedimentation.
  • the supernatant separated here is sent to the desulfurization tower A as a treatment liquid, while the sedimentation slurry is sent to the first reaction tank 1.
  • the reaction in both reactors l 'and 2 is a reaction between magnesium hydroxide produced from solid magnesium oxide through a hydration reaction and sulfur oxides in the desulfurization solution, that is, almost in the desulfurization tower A.
  • excess magnesium hydroxide not consumed in this reaction and magnesium sulfite as a reaction product are dissolved in the supernatant of the settling tank 3.
  • the solid content of the settled slurry is composed of unreacted magnesium oxide components that have not been hydrated in the previous process, that is, low-reactive components, magnesium carbonate and A 1 And impurities such as SiO 2.
  • a wet pulverizer 5 is interposed in the slurry transfer path from the sedimentation tank 3 to the first reaction tank 1 as shown in the figure, and a part or all of the transfer slurry is wet-pulverized to obtain a fine-grain slurry.
  • the above reaction is accelerated by an increase in the surface area of the solid particles, that is, the reaction area.
  • the magnesium oxide component with extremely low reactivity is circulated through the first and second reactors 1 and 2 and the settling tank 3. Is repeated, but with this repetition, it is gradually consumed in the reaction and decreases.
  • the liquid to be treated has a low content of Mg (HS03) 2 due to the reaction in the first reaction tank 1, but a magnesium oxide component having good reactivity is newly added. and because they are large excess supply, M g (HS 0 3) which remained 2 it is converted to almost M g S 0 3.
  • the pH of the efficiently neutralized liquid is about 9, which is detected by the pH detector (PHC) 7a, and the opening and closing control of the supply valve V1 based on this detection signal The amount of slurry supplied from the raw material tank 4 is automatically adjusted.
  • the reaction tank is a single tank, since the highly reactive component in the magnesium oxide newly supplied from the raw material tank 4 reacts preferentially, the reaction returned from the settling tank 3 The component having low reactivity cannot contribute to the reaction, and the component having low reactivity in the above-mentioned new magnesium oxide is not preferable because it is rapidly added and accumulated in the sedimentation tank 3 as an unreacted substance.
  • the extremely insensitive magnesium oxide component, magnesium carbonate, and other impurities that do not react even after repeated circulation through both reactors 1 and 2 and settling tank 3 are gradually accumulated in the circulation system.
  • slurry corresponding to the increased solid content may be periodically discharged from the discharge pipe 8 of the settling tank 3.
  • the supernatant liquid from the sedimentation tank 3 is supplied as a processing liquid, but since this processing liquid does not contain any solids, the circulation system uses the pump P1 and the pipe L 1 can maintain a stable operating state without scaling or blockage due to residue.
  • the pH of the desulfurization solution in the lower tank a is set to about 6, and this pH is detected by a pH detector (PHC) 7b.
  • PLC pH detector
  • the throttle of the automatic control valve V2 By controlling the throttle of the automatic control valve V2 based on this detection signal, the amount of the desulfurized liquid discharged to the first reaction tank 1 is automatically adjusted.
  • the amount of the processing liquid supplied from the settling tank 3 is increased by the amount of the slurry supplied from the raw material tank 4 to the amount of the desulfurized liquid discharged to the first reaction tank 1, but this increase is discharged. It is discharged out of the system through pipe 9.
  • the force using one reaction tank as the first and second reaction steps, and one or both of the two steps are connected to a plurality of reaction tanks connected in series or in parallel with each other. It does not matter if it is configured.
  • the solid-liquid separation step is not limited to the settling tank 3 described above, and a liquid cyclone or other solid-liquid separation device can be employed.
  • lightly burned magnesium oxide used in the present invention those obtained by calcining the above magnesium carbonate ore at a low temperature are preferable, but those obtained from other raw materials, for example, when producing magnesium oxide clinker One night A dust collected from Lee Kiln Etc. can also be used.
  • the desulfurization liquid and the slurry supplied from the settling tank 3 at a rate of 12 OkgZ were mixed and reacted for a residence time of about 10 minutes to form a slurry.
  • the second reaction tank 2 having a volume of 1 m 3 .
  • the reactant from the first reaction tank 1 and the lightly burned magnesium oxide powder (average particle diameter 20 m) slurry continuously supplied from the raw material tank 4 and having a solid concentration of 30% by weight are mixed. The mixture was mixed and reacted for a residence time of about 10 minutes, and the slurry-like reactant was continuously sent to the settling tank 3.
  • the amount of slurry supplied from the raw material tank 4 to the second reaction tank 2 was adjusted so that the pH in the second reaction tank 2 was 9.0 under a steady operation.
  • the settling slurry is described by the pump P3 through the wet mill 5 , And the entire amount of the supernatant liquid per minute was continuously supplied to desulfurization tower A.
  • the average composition of the desulfurization solution accumulated in the lower tank a de ⁇ A is, M g S 0 4 1. 2 wt%, M g S 0 3 1. 32 by weight%, M g (HS 03) 2 1 It was an aqueous solution containing 48% by weight and contained almost no solids.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Description

明 細 書
排ガスの脱硫方法
技術分野
この発明は、 重油、 石炭などの燃焼排ガスのよう に硫黄酸化物を含む排ガスの脱硫方法に関し、 さ ら に詳しく は、 脱硫剤と して軽焼酸化マグネシゥムを 利用した脱硫方法に関する。 背景技術
—般に、 排気ガス脱硫は、 竪型の脱硫塔内におい て上部より脱硫剤の水溶液ないし水スラ リ ーからな る処理液をシャ ワー状に流下させ、 この処理液と下 方より導入される排気ガスとを連続的に接触させる こ とにより、 排ガス中の硫黄酸化物を硫酸塩ゃ亜硫 酸塩と して固定するものであり、 通常では流下後の 処理液 (以下脱硫液という) を連続供給される新た な処理液とともにポンプアップして循環させ、 上記 供給による増量分を排出するようになされている。
上記脱硫剤と しては、 従来より、 水酸化ナ ト リ ウ ム、 水酸化ア ンモニゥム、 水酸化マグネシウム、 水 酸化カルシウムのごとき水酸化物、 酸化カルシウム のごとき塩基性酸化物などが知られているが、 これ らの中でも水酸化マグネシウムが近年において多用 されている。
これは、 水酸化マグネシウムが比較的安価である 上に、 脱硫生成物が水に易溶性でカルシウム系脱硫 剤のようなスヶ一リ ングの問題を生じず、 また処理 液の p Hを 6程度に調整することによつて水酸化マ グネシゥムが溶解した水溶液形態で使用できること などによる。
このような排ガス脱硫では、 いうまでもなく処理 コス トをできるだけ低減することが望まれ、 このた めに上記水酸化マグネシゥムより もさらに安価な脱 硫剤が求められているが、 現状では有用なものは見 出されていない。 たとえば、 マグネサイ トなどの炭 酸マグネ シウム (M g C O3 ) 鉱石を比較的低温
(800〜 1 0 00 °C程度) でか焼して得られる軽 焼酸化マグネシウム (M g O) の粉砕品は、 水酸化 マグネシウムに比較して安価に入手でき、 またク リ ンカ一を生じにくい低温か焼であるため柔らかく、 塩基性酸化物としての活性が大きい (水和されて水 酸化物となりやすい) ものとされているにもかかわ らず、 脱硫剤としてはほとんど利用されていない。
これには次のような理由が考えられる。
その第 1は、 酸化マグネシゥムでは脱硫の前段とし て水酸化物を生成する水和反応を経由するうえ、 こ の水和反応が同様の塩基性酸化物である酸化カルシ ゥム (C a O) に比較して相当に遅いために脱硫効 率に劣ることである。 また第 2には、 上記の軽焼酸 化マグネシウムは、 粗砕した大小様々な鉱石塊をそ のままか焼した後に粉砕したものであるから、 か焼 時に軽焼といえども高温がスと接触する鉱石塊の表 面部では焼成'過度による硬いク リ ンカー状で反応性 の低い部分が生じる一方、 大きい鉱石塊の中心部で は未焼成の炭酸マグネシウムが残り、 また鉱石中に は S i 0 2 や A 1 2 0 3 などの不純物が存在し、 そ の結果と して反応性に大きいばらつきがある酸化マ グネシゥムとそれ以外の成分が混在した不均一な粉 末になることである。
したがって、 この軽焼酸化マグネシウム粉末の水 スラ リ ーを処理液と して用いた場合、 脱硫効率が低 いうえ、 酸化マグネ シウム本来の反応速度が遅いこ とに加えて反応性の高い成分から優先的に消費され. 循環系内に反応性の低い酸化マグネシゥム成分を主 とする未反応物および他の成分が残滓と して沈積す ることから、 この沈積量の増加によって循環用のポ ンプゃ配管にスケール付着や閉塞を生じやすく 、 脱 硫装置の円滑な運転を継続できなく なるという問題 があった。 発明の開示
そ こでこの発明は、 上述の事情に鑑み、 脱硫剤原 料と して軽焼酸化マグネシゥム粉末を用いるととも にその利用率を高め、 かつ上記の脱硫塔の循環系内 における残滓の沈積を防止し、 もって低い処理コス トで安定した効率の良い排ガス脱硫を行える方法を 提供することを目的と している。
この発明者は、 上記目的を達成するために検討を 重ねる過程で、 まず脱硫剤として汎用されている通 常の水酸化マグネシゥムと軽焼酸化マグネシゥムに ついて脱硫液中での硫黄酸化物に対する反応性を調 ベた結果、 不均一で全体として反応性に劣る軽焼酸 化マグネシウムであっても多量に用いれば、 それだ け反応性の良い酸化マグネシゥム成分が多く なるた め、 水酸化マグネシゥムに匹敵する反応効率が得ら れることが判った。 し力、るに、 このような多量の使 用では当然ながら前記の残滓の問題がより深刻にな る。
そこで、 この発明者は、 脱硫塔外に特定の工程か らな-る外部処理系を設け、 この外部処理系において 多量の軽焼酸化マグネシウム粉末を水和し、 その中 の反応性の良い酸化マグネシゥム成分より生じた水 酸化マグネシゥムの水溶液を脱硫塔へ処理液と して 供給する一方、 余剰の反応性の悪い酸化マグネシゥ ム成分を炭酸マグネシゥムおよび不純物とともに外 部処理系中でスラ リ一形態で循環させるとともに、 この循環系統に脱硫塔内の脱硫液の一部を導いて上 記余剰の酸化マグネシウム成分と反応させることに より、 脱硫塔の循環系内では残滓を生じること無く 効率の良い脱硫反応を行うとともに、 外部処理系に おいて軽焼酸化マグネシゥム粉末中の反応性の悪い 成分をも脱硫反応に寄与させて当該粉末の脱硫剤と しての利用率を高め、 もって低コス トで安定した効 率の良い排ガス脱硫が可能となることを見出だし、 この発明をなすに至った。
すなわち、 この発明は、 硫黄酸化物を含む排ガス と脱硫剤を含む処理液とを連続的に気液接触させて 上記硫黄酸化物を処理液中に吸収させる脱硫塔の外 部に、 第 1および第 2の反応工程と固液分離工程と からなる外部処理系を設け、
) 第 1反応工程において、 上記脱硫塔より供給 される硫黄成分を吸収した脱硫液と固液分離工程よ り供給されるスラ リーとを混合して反応させ、
b ) 第 2反応工程において、 第 1反応工程より製 出する反応物と軽焼酸化マグネシゥム粒子とを混合 して反応させ、
c ) 固液分離工程において、 第 2反応工程より製 出する反応物を固形分を含まない液と第 1反応工程 へ送るスラ リ一とに分別し、
d ) この分別された固形分を含まない液を上記処 理液と して脱硫塔内へ供給することを特徴とする排 ガスの脱硫方法に係るものである。
また、 この発明では、 上記脱硫方法において、 固 液分離工程から第 1反応工程へ送るスラ リ一の少な く とも一部を粉砕手段によって微粉スラ リーとする 構成を好適態様と している。
この発明の排ガスの脱硫方法によれば、 脱硫剤原 料と して安価な軽焼酸化マグネシゥム粉末を使用で きるとともに、 その利用率を大き く高め得るため、 処理コス トを従来汎用の水酸化マグネシウムによる 脱硫方法より も大幅に低減可能であり、 しかも脱硫 塔においては循環系のスケール付着や閉鎖の要因と なる残滓の沈積を完全に防止でき、 もって低コス ト で安定した効率の良い排ガス脱硫を行える。
また、 この発明の脱硫方法において、 外部処理系 の固液分離工程より第 1反応工程へ送るスラ リーの 少なく とも一部を粉砕手段によつて微粉スラ リーと する構成を採用すれば、 粒子の反応面積増大により 該スラ リ ーの反応性が高く なり、 もって軽焼酸化マ グネシゥムの利用率がより向上して処理コス トを一 層低減できるという利点がある。 図面の簡単な説明
図面は、 この発明の排ガスの脱硫方法に用いる装 置の構成例を示す模式図である。 発明を実施するための最良の形態
以下に、 この発明の排ガスの脱硫方法を図面に基 づいて説明する。
図において、 Aは脱硫塔であり、 その外部に設け られた外部処理系 Bより供給される水酸化マグネシ ゥム水溶液からなる処理液を上方からシャヮー状に 流下させ、 この処理液と下方より導入される硫黄酸 化物を含有する排ガス とを気液接触させること により、 脱硫反応によって硫黄酸化物が亜硫酸マグ ネシゥムとして処理液中に吸収 · 固定されるととも に、 硫黄酸化物が除去された排ガス G2 が上方より 塔外へ排出される。
脱硫塔 Aの下部槽 aに流下した処理液、 つま り硫 黄酸化物を吸収した脱硫液は、 通常 M g S 03 、 M g S 04 、 M g (H S 03 ) 2 等が混在した組成と なっており、 新たに供給される処理液とともにポン プ P 1 と配管 L 1を介して上部へ送られ、 この繰り 返しによつて脱硫塔 A内を連続的に循環する。
外部処理系 Bは、 第 1反応工程をなす第 1反応槽 1、 第 2反応工程をなす第 2反応槽 2、 固液分離ェ 程をなす沈降槽 3、 軽焼酸化マグネシウム粉末の水 スラ リ一を収容した原料槽 4、 および湿式粉砕機 5 より構成され、 両反応槽 1、 2には攪拌機 6が付設 されている。
第 1反応槽 1では、 脱硫塔 Aより ポ ンプ P 2およ び配管 L 2を介して供給される脱硫液と、 沈降槽 3 よりポンプ P 3を介して供給されるスラ リ一とが混 合されて反応し、 この反応物 (スラ リ ー) は第 2反 応槽 2へ送られる。 第 2反応槽 2では、 原料槽 4よ り軽焼酸化マグネシゥム粉末の水スラ リ一が大過剰 に供給され、 このスラ リーと上記第 1反応槽 1から の反応物とが混合されて反応し、 この反応物は沈降 槽 3へ送られて沈降分離により上澄液と沈降スラ リ 一とに分別される。 こ こで分別された上澄液は処理 液と して脱硫塔 Aへ送られる一方、 沈降スラ リ ーは 第 1反応槽 1へ送られる。 両反応槽 l'、 2における反応は、 いうまでもなく 固形の酸化マグネシゥムより水和反応を経て生成し た水酸化マグネシゥムと脱硫液中の硫黄酸化物との 反応、 つまり脱硫塔 A内とほぼ同様の反応であって、 この反応に消費されなかつた余剰の水酸化マグネシ ゥムと反応生成物の亜硫酸マグネシゥムなどが沈降 槽 3の上澄液中に溶存している。 また沈降スラ リ ー の固形分は、 それまでの過程で水和されなかった未 反応の酸化マグネシゥム成分つまり反応性の低い成 分と、 軽焼酸化マグネシウムの原料粉末に付随する 炭酸マグネシウムおよび A 1 2 0 3 、 S i O 2 など の不純物とから構成される。
第 1反応槽による第 1反応工程においては、 沈降 槽 3からのスラ リ一が上述のように反応性の低いも のではあるが、 脱硫塔 Aからの脱硫液が M g ( H S
0 3 ) 2 を多く含む、 つまり反応性の高いものであ るため、 前者の反応性の悪さが後者の反応性の良さ によって補われて脱硫反応がかなり進行することに なる。 また、 沈降槽 3から第 1反応槽 1へ至るスラ リー移送路に、 図示のごとく湿式粉砕機 5を介在さ せ、 移送スラ リ ーの一部または全部を湿式粉碎して 細粒スラ リーとすれば、 固形粒子の表面積つまり反 応面積の増大によつて上記反応が促進することにな る。
なお、 反応性の著しく低い酸化マグネシウム成分 は、 第 1、 第 2反応槽 1、 2と沈降槽 3を経る循環 を繰り返すことになるが、 この繰り返しに伴って徐 々に反応に消費されて減少する。
第 2反応槽 2においては、 被処理液は第 1反応槽 1での反応を経ているために M g ( H S 0 3 ) 2 の 含有量が少ないが、 反応性の良い酸化マグネシウム 成分が新たにかつ大過剰に供給されるため、 残存し ていた M g ( H S 0 3 ) 2 はほとんど M g S 0 3 に 転化される。 このように効率良く 中和された液の p Hはほぼ 9程度となるが、 これを p H検知器 (P H C ) 7 aにて検知して、 この検知信号に基づく供給 バルブ V 1の開閉制御によって原料槽 4からのスラ リ一供給量を自動的に調整する。
ここで、 反応槽を単槽と した場合には、 原料槽 4 より新たに供給される酸化マグネシゥム中の反応性 の高い成分が優先的に反応することから、 沈降槽 3 から戻されてく る反応性の低い成分は反応に寄与で きず、 上記の新たな酸化マグネシウム中の反応性の 低い成分が未反応物と して沈降槽 3中に急速に加算 蓄積されることになるので好ま しく ない。
なお、 両反応槽 1、 2と沈降槽 3を経る循環を繰 り返しても反応しない極端に反応性の悪い酸化マグ ネシゥム成分と炭酸マグネシゥムおよび他の不純物 は、 循環系内に徐々に蓄積されていくが、 これによ る固形分の增加速度は小さいため、 定期的に沈降槽 3の排出管 8から増加した固形分量に見合うスラ リ 一を排出すれば良い。 一方、 脱 塔 Aにおいては、 沈降槽 3からの上澄 液が処理液として供給されるが、 この処理液中には 固形分が全く含まれないことから、 循環系はポンプ P 1や配管 L 1が残滓によるスケーリ ングゃ閉塞を 生じること無く安定した運転状態を維持できる。 ま た、 スケーリ ングの防止のためには下部槽 aの脱硫 液の p Hを 6程度とすることが望ま しいことから、 この p Hを p H検知器 (P H C ) 7 b にて検知し、 この検知信号による自動制御バルブ V 2の絞り制御 により、 第 1反応槽 1への脱硫液導出量を自動的に 調整する。 沈降槽 3から供給される処理液量は、 第 1反応槽 1へ導出される脱硫液量に対して原料槽 4 からの供給スラ リ一分だけ増加することになるが、 この増加分は排出管 9より系外へ排出される。
なお、 上記の例では、 第 1および第 2の反応工程 としてそれぞれ 1つの反応槽を用いている力 、 両ェ 程の一方または両方を相互に直列または並列に流路 接続した複数の反応槽にて構成しても差支えない。 また、 固液分離工程には、 例示した沈降槽 3に限ら ず、 液体サイクロンその他の固液分離装置を採用で きる。
この発明で使用する軽焼酸化マグネ シウムとして は、 前記の炭酸マグネシウム鉱石を低温か焼して得 られるものが好ま しいが、 他の原料より得られるも の、 例えば酸化マグネシウムク リ ンカ一製造時の口 一夕 リーキルンより発生するダス トを回収したもの なども使用可能である。
次に、 上記装置を用いた脱硫方法の具体例を示す
C重油ボイラーから排出される亜硫酸ガス (S O 2 ) 含有量 1 200 p p mの排ガス を脱硫塔 A 内へ 1 04 NmZ時の割合で導入し、 この排ガスと 塔内上方より シャ ヮー状に流下する処理液とを連続 的に気液接触させて脱硫を行うとともに、 下部槽 a に溜まる脱硫液を p H 5. 9〜 6. 0、 液温 5 5で に調整し、 この脱硫液を 4 50 OkgZ時の割合でポ ンプ P 1を介して抜き出して容量 1 m3 の第 1反応 槽 1へ送り、 また同脱硫液を排出管 9より 1400 kg,時の割合で系外へ排出した。
一方、 第 1反応槽 1では、 この脱硫液と沈降槽 3 から 1 2 OkgZ時の割合で供給されるスラ リーとを 混合して滞留時間約 1 0分と して反応させ、 スラ リ 一状の反応物を連続的に容量 1 m 3 の第 2反応槽 2 へ送った。 第 2反応槽 2では、 第 1反応槽 1からの 反応物と原料槽 4から連続供給される固形分濃度 3 0重量%の軽焼酸化マグネ シウム粉末 (平均粒子径 20 m) スラ リーとを混合して滞留時間約 1 0分 と して反応させ、 スラ リー状の反応物を連続的に沈 降槽 3へ送つた。
なお、 原料槽 4から第 2反応槽 2へのスラ リ ー供 給量は定常稼働下で第 2反応槽 2内の p Hが 9. 0 となるように調整した。 沈降槽 3では、 沈降スラ リ 一をポンプ P 3により湿式粉碎機 5を経て記述割合 で第 1反応槽 1へ送るとともに、 上澄液のオーバー フ口一分の全量を脱硫塔 Aへ連続供給した。
かく して連続的に排ガス脱硫を行ったが、 これに よつて脱硫塔 Aより排出ざれる処理後の排ガス G 2 の亜硫酸ガス濃度は l O p p mであった。 また、 脱 硫塔 Aの下部槽 aに溜まる脱硫液の平均組成は、 M g S 04 1. 2重量%、 M g S 03 1. 32重 量%、 M g ( H S 03 ) 2 1. 48重量%を含む 水溶液であって、 固形分をほとんど含んでいなかつ た。

Claims

3 請求 の 範 囲
1 . 硫黄酸化物を含む排ガスと脱硫剤を含む処理 液とを連続的に気液接触させて上記硫黄酸化物を処 理液中に吸収させる脱硫塔の外部に、 第 1および第 2の反応工程と固液分離工程とからなる外部処理系 を設け、
a ) 第 1反応工程において、 上記脱硫塔より供給 される硫黄成分を吸収した脱硫液と固液分離工程よ り供給されるスラ リ一とを混合して反応させ、 b ) 第 2反応工程において、 第 1反応工程より製出する 反応物と軽焼酸化マグネシゥム粒子とを混合して反 応させ、
c ) 固液分離工程において、 第 2反応工程より製 出する反応物を固形分を含まない液と第 1反応工程 へ送るスラ リ一とに分別し、
d ) この分別された固形分を含まない液を上記処 理液と して脱硫塔内へ供給することを特徵とする排 ガスの脱硫方法。
2 . 固液分離工程から第 1反応工程へ送るスラ リ 一の少なく とも一部を粉砕手段によって微粉末スラ リ一とする請求の範囲第 1項記載の排ガスの脱硫方 法 O
PCT/JP1990/000013 1989-01-10 1990-01-08 Desulfurization of exhaust gas WO1990007972A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900701996A KR910700093A (ko) 1989-01-10 1990-01-08 배기가스의 탈황방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP01/3245 1989-01-10
JP1003245A JPH03143527A (ja) 1989-01-10 1989-01-10 排ガスの脱硫方法
CN90104446.6A CN1057208A (zh) 1989-01-10 1990-06-12 废气脱硫方法
DD90342168A DD297919A5 (de) 1989-01-10 1990-06-27 Abgas-entschwefelungsverfahren

Publications (1)

Publication Number Publication Date
WO1990007972A1 true WO1990007972A1 (en) 1990-07-26

Family

ID=36763286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000013 WO1990007972A1 (en) 1989-01-10 1990-01-08 Desulfurization of exhaust gas

Country Status (5)

Country Link
EP (1) EP0406446A4 (ja)
JP (1) JPH03143527A (ja)
CN (1) CN1057208A (ja)
DD (1) DD297919A5 (ja)
WO (1) WO1990007972A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353132A (zh) * 2022-09-23 2022-11-18 西安交通大学 一种基于氯碱盐泥的七水硫酸镁制备方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994913B2 (ja) * 1993-07-12 1999-12-27 三菱重工業株式会社 酸化マグネシウムによる湿式排煙脱硫装置及びその脱硫方法
DE29517698U1 (de) * 1995-07-29 1996-01-18 Gottfried Bischoff GmbH & Co. KG, 45136 Essen Rauchgasentschwefelungsanlage
JP3751340B2 (ja) * 1995-08-22 2006-03-01 東洋エンジニアリング株式会社 排ガスの脱硫方法
CN100335154C (zh) * 2005-09-09 2007-09-05 清华大学 一种氧化镁烟气脱硫及产物浓浆法氧化回收工艺
CN101607173B (zh) * 2008-06-17 2012-05-23 陆泳凯 外部再生循环亚硫酸镁法烟气或废气的脱硫工艺
CN104445306B (zh) * 2014-12-03 2016-05-11 北京中晶佳镁环境科技股份有限公司 制造硫酸镁的装置与方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600131A (en) * 1969-01-27 1971-08-17 Chemical Construction Corp Removal of sulfur dioxide from waste gases
GB1328403A (en) * 1969-12-15 1973-08-30 Babcock & Wilcox Co System of absorbing so2 gas in effluent gas stream
US4490341A (en) * 1983-09-01 1984-12-25 The M. W. Kellogg Company Flue gas desulfurization process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0406446A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353132A (zh) * 2022-09-23 2022-11-18 西安交通大学 一种基于氯碱盐泥的七水硫酸镁制备方法及系统

Also Published As

Publication number Publication date
EP0406446A4 (en) 1991-07-24
JPH0476725B2 (ja) 1992-12-04
JPH03143527A (ja) 1991-06-19
EP0406446A1 (en) 1991-01-09
DD297919A5 (de) 1992-01-30
CN1057208A (zh) 1991-12-25

Similar Documents

Publication Publication Date Title
CN1036444C (zh) 通过水力旋流器增进烟道气脱硫效能
CN101607173B (zh) 外部再生循环亚硫酸镁法烟气或废气的脱硫工艺
CA2159521C (en) Method for desulfurizing exhaust gas
JPH078796A (ja) 生コンクリートもしくはコンクリート二次製品製造時に排出されるスラッジを用いた二酸化炭素消費材およびその製造方法並びに排ガス中の二酸化炭素消費方法
RO103174B1 (en) Cleansing method of exhaust gas hot steam from a boiler installation or a cement kiln
US4588559A (en) Lime slaking system including a cyclone and classifier for separating calcium hydroxide and grit particles from a slurry thereof
CN104959012A (zh) 除去烟气中二氧化硫并产生石膏的镁-钙基湿法脱硫系统和方法
KR20120033073A (ko) 석회 소성 부산물을 이용하여 제조된 탈황제와 그 제조방법 및 상기 탈황제를 사용하는 배가스 탈황방법
CN102284238A (zh) 一种双碱法烟气脱硫工艺
WO1990007972A1 (en) Desulfurization of exhaust gas
US4482528A (en) Lime slaking and grit removal process utilized in SO2 removal
CN101628199A (zh) 改良型镁法烟气脱硫技术
CN204543981U (zh) 除去烟气中二氧化硫并生产石膏的镁-钙基湿法脱硫系统
US4490341A (en) Flue gas desulfurization process
US3965242A (en) Method for desulfurizing exhaust gas by alkali sulphite-gypsum process
US4508574A (en) Process for improving the fluidity and conveyability of moist calcium sulfate precipitates
US4147755A (en) Air pollution control process
US4191731A (en) Wet process using steel slag for waste gas desulfurization
CN110182838B (zh) 一种烟气脱硫灰的改性工艺系统及方法
CN112279287A (zh) 一种半干法脱硫灰的处理工艺及处理系统
CN114618278B (zh) 一种石灰-石膏法协同利用石灰基脱硫灰的装置系统及方法
RU2014877C1 (ru) Способ очистки отходящих газов от окислов серы
CN217613997U (zh) 以电石渣为原料的双pH控制的单塔双区双循环供浆系统
CN109331620A (zh) 一种钙镁复合脱硫剂及其钙镁复合脱硫工艺
JPH0478419A (ja) 排ガスの脱硫方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990901668

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990901668

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990901668

Country of ref document: EP