WO1989007741A1 - Agencement de regulation continue de la puissance de refroidissement de machines frigorifiques - Google Patents

Agencement de regulation continue de la puissance de refroidissement de machines frigorifiques Download PDF

Info

Publication number
WO1989007741A1
WO1989007741A1 PCT/CH1988/000036 CH8800036W WO8907741A1 WO 1989007741 A1 WO1989007741 A1 WO 1989007741A1 CH 8800036 W CH8800036 W CH 8800036W WO 8907741 A1 WO8907741 A1 WO 8907741A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
arrangement
control valve
suction
valve
Prior art date
Application number
PCT/CH1988/000036
Other languages
German (de)
English (en)
Inventor
Andres Josef Hegglin
Original Assignee
Andres Josef Hegglin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andres Josef Hegglin filed Critical Andres Josef Hegglin
Priority to PCT/CH1988/000036 priority Critical patent/WO1989007741A1/fr
Publication of WO1989007741A1 publication Critical patent/WO1989007741A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to a device for the continuous control of the cooling capacity of refrigeration machines of the type assumed in the preamble of claim 1.
  • the control intervention takes place directly in the refrigerant flow.
  • Suction throttle controls have a control valve in the suction line between the evaporator and the compressor. If the cooling requirement drops, they throttle the circulating refrigerant flow by closing the control valve. This reduces the cooling capacity of the chiller. In order to ensure the minimum gas flow to the compressor, either a bybass must be provided above the control valve or the necessary quantity of replacement gas must be made available by adding hot gas and spraying it into the suction line.
  • suction throttle controls have significant disadvantages:
  • the suction throttle valve In order to achieve good controllability, the suction throttle valve must have the greatest possible throttle resistance. This additional resistance has to be overcome by higher compressor performance and work.
  • the throttling generated by the control valve leads to a decrease in gas velocity in the suction line and can thereby impair the del return flow in the compressions.
  • Hot gas bypass control is via a control valve in the short-circuit line between the pressure side after the compressor and the pressure side.
  • the short circuit in front of the compressor opens on the suction side, while in the case of indirect hot gas bypass control the short circuit between the expansion valve and evaporator opens into the liquid line.
  • a post-injection valve is required for direct hot gas admixture.
  • the free Placement of the evaporator in relation to the compressor is restricted.
  • an electronically operated control valve (item 1, fig 1) is proposed, which can be positioned using a large number of control variables. It primarily regulates the cooling capacity as required.
  • the overheating is not regulated to a constant ratio, but varies depending on the load.
  • the performance of the refrigeration machine is optimized by filling the evaporator with refrigerant until an electronic differential controller throttles the refrigerant supply when the adjustable, minimal overheating is undershot.
  • the controller As a function of the deviation between the controlled variable x and the reference variable w, the controller (RR fig 1) generates an actuating signal yR which positions the valve. Increasing deviations (x - w) lead to the control valve opening. As a result, more refrigerant flows and the cooling capacity increases corresponding. If the cooling requirement drops, the control valve reduces the refrigerant flow. If the valve closes, the compressor (item 5. fig 1) would empty the evaporator and be switched off by the low pressure pressostat (NP fig 2). In order to ensure the minimum amount of gas required for the compressor in part-load operation, a short-circuit line (item 5. fig 2) is provided between the high and low pressure sides from the compressor to the evaporator.
  • This short-circuit line is tightly closed by an automatic hot gas bypass valve (item 7. fig 2) above a certain suction pressure ps.
  • an automatic hot gas bypass valve (item 7. fig 2) above a certain suction pressure ps.
  • the suction pressure ps falls below a value mechanically set on the hot gas bypass valve, it opens the short-circuit line.
  • the suction pressure ps thus stabilizes at the set pressure level, regardless of the control valve position.
  • a minimum temperature difference ⁇ t (ts - to) is maintained by a further control circuit consisting of the temperature sensors to (evaporation temperature) and ts (suction gas temperature) (to, ts fig 2) .
  • This difference is continuously compared with the setpoint ⁇ tw and converted into a control signal y ⁇ t by the differential controller (DR fig 2).
  • the control signal increases with increasing temperature difference ⁇ t (also called overheating) and weakens accordingly with decreasing overheating.
  • the control valve then throttles the refrigerant supply into the evaporator until the desired minimal overheating is reached.
  • the overheating usually drops at full cooling capacity because the control valve (item 1.
  • fig 1 opens fully.
  • the cooling capacity of a refrigeration machine can be significantly optimized through precise, brief overheating control. The scarcer the overheating is chosen, the better the filling degree of evaporator. The cooling capacity emitted by the evaporator increases accordingly.
  • a logic module (LM fig 2) continuously compares the control signals of the power control yR and the superheat control y ⁇ t. It always selects the smaller one between the two steep signals. If the control signal yR is greater than or equal to y ⁇ t, y ⁇ t is fed to the control valve (item 1. fig 1.2.3). As a rule, the maximum load case is then available.
  • the superheating controller thus acts exclusively on the control valve. If, on the other hand, the control signals change to yR less than y ⁇ t, the logic module (LM fig 2,3) selects the control signal yR. Then there is partial load, the evaporator fill level drops and the overheating increases. The control signal y ⁇ t thus increases, while the control signal yR weakens when the cooling requirement drops. The control valve then begins to throttle the refrigerant flow. As a result, the evaporation and suction pressure ps also decrease. If the evaporation pressure falls below a certain fixed ps, the automatic hot gas bypass valve opens and supplies the compressor with the necessary replacement gas.
  • a tightly closing "open-to" valve can be provided between the pressure side and the hot gas bypass. It blocks the flow in the short-circuit line during pump-down.
  • the sensor signal ts (fig 3) can be used as part of an additional control loop for monitoring them.
  • the suction gas regulator (RS fig 3) generates an actuating signal yS that is immediate and unconditional on the The control valve acts as soon as ts rises above the setpoint ws. Through its opening, liquid refrigerant flows into the evaporator and cools the inflowing hot gas until the suction gas temperature again corresponds to the target temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

Un agencement de régulation continue de la puissance de refroidissement de machines frigorifiques, qui comprennent un circuit fermé de refroidissement formé d'un évaporateur (3), d'un compresseur (5) et d'un condenseur (2), présente au lieu d'une soupape de détente une soupape de régulation (1) commandée par des dispositifs électroniques de régulation. Les paramètres de régulation du milieu à refroidir sont comparés dans un appareil de régulation (RR) à des valeurs prédéterminées de consigne. La position de la soupape de régulation est déterminée en fonction de la différence entre les valeurs de régulation et les valeurs de consigne. La position de la soupape détermine le flux de milieu de refroidissement et par conséquent la puissance de refroidissement. On obtient un remplissage optimal de l'évaporateur à pleine charge en contrôlant au moyen d'un régulateur additionnel (DR) la différence minimale entre la température du gaz d'aspiration et la température d'évaporation. Afin d'éviter sous une charge partielle une chute excessive de la pression d'évaporation, un régulateur automatique par dérivation de gaz chaud (7) agencé entre la ligne de haute pression et l'évaporateur fournit du gaz d'appoint au compresseur dès que la pression d'aspiration tombe au-dessous d'un seuil déterminé. Afin de protéger le compresseur contre une température excessive du gaz d'aspiration, le régulateur (RS) du gaz d'aspiration ouvre la soupape de régulation jusqu'à ce que la température du gaz d'aspiration revienne à une valeur admissible.
PCT/CH1988/000036 1988-02-15 1988-02-15 Agencement de regulation continue de la puissance de refroidissement de machines frigorifiques WO1989007741A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CH1988/000036 WO1989007741A1 (fr) 1988-02-15 1988-02-15 Agencement de regulation continue de la puissance de refroidissement de machines frigorifiques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH1988/000036 WO1989007741A1 (fr) 1988-02-15 1988-02-15 Agencement de regulation continue de la puissance de refroidissement de machines frigorifiques

Publications (1)

Publication Number Publication Date
WO1989007741A1 true WO1989007741A1 (fr) 1989-08-24

Family

ID=4544749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1988/000036 WO1989007741A1 (fr) 1988-02-15 1988-02-15 Agencement de regulation continue de la puissance de refroidissement de machines frigorifiques

Country Status (1)

Country Link
WO (1) WO1989007741A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577743A (en) * 1969-06-10 1971-05-04 Vilter Manufacturing Corp Control for refrigeration systems
FR2539855A1 (fr) * 1983-01-25 1984-07-27 Comp Generale Electricite Procede et dispositif de reglage du taux de detente dans une vanne de detente du fluide frigorifique d'un cycle de pompe a chaleur
US4478051A (en) * 1983-05-06 1984-10-23 Tyler Refrigeration Corporation Electronic temperature control system
US4506518A (en) * 1981-06-17 1985-03-26 Pacific Industrial Co. Ltd. Cooling control system and expansion valve therefor
EP0138094A2 (fr) * 1983-10-01 1985-04-24 Asea Brown Boveri Aktiengesellschaft Réfrigérateur
EP0147356A2 (fr) * 1983-12-22 1985-07-03 Carrier Corporation Système de régulation d'un robinet détendeur électronique dans un système frigorifique
GB2168467A (en) * 1984-12-14 1986-06-18 Sanden Corp Refrigerating apparatus for an air conditioner and a refrigerator of a vehicle
EP0229942A2 (fr) * 1986-01-22 1987-07-29 Otto Egelhof GmbH & Co. Procédé de régulation de l'écoulement de réfrigérant vers l'évaporateur d'une installation frigorifique ou d'une pompe à chaleur

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577743A (en) * 1969-06-10 1971-05-04 Vilter Manufacturing Corp Control for refrigeration systems
US4506518A (en) * 1981-06-17 1985-03-26 Pacific Industrial Co. Ltd. Cooling control system and expansion valve therefor
FR2539855A1 (fr) * 1983-01-25 1984-07-27 Comp Generale Electricite Procede et dispositif de reglage du taux de detente dans une vanne de detente du fluide frigorifique d'un cycle de pompe a chaleur
US4478051A (en) * 1983-05-06 1984-10-23 Tyler Refrigeration Corporation Electronic temperature control system
EP0138094A2 (fr) * 1983-10-01 1985-04-24 Asea Brown Boveri Aktiengesellschaft Réfrigérateur
EP0147356A2 (fr) * 1983-12-22 1985-07-03 Carrier Corporation Système de régulation d'un robinet détendeur électronique dans un système frigorifique
GB2168467A (en) * 1984-12-14 1986-06-18 Sanden Corp Refrigerating apparatus for an air conditioner and a refrigerator of a vehicle
EP0229942A2 (fr) * 1986-01-22 1987-07-29 Otto Egelhof GmbH & Co. Procédé de régulation de l'écoulement de réfrigérant vers l'évaporateur d'une installation frigorifique ou d'une pompe à chaleur

Similar Documents

Publication Publication Date Title
EP0344397B1 (fr) Chambre d'essai climatique
EP0410330B1 (fr) Procédé et dispositif de fonctionnement d'une installation frigorifique
DE4430468C2 (de) Regeleinrichtung einer Kühlvorrichtung
DE102006029973B4 (de) Ejektorkreislaufsystem
DE102015112439A1 (de) Kälteanlage
DE102013005476A1 (de) Kühl- und/oder Gefriergerät
EP1965160B1 (fr) Procédé destiné à la commande d'une installation de refroidissement à compression et installation de refroidissement à compression
EP1355207A1 (fr) Procédé de fonctionnement pour un système frigorifique à compression et système frigorifique à compression
DE3340736C2 (fr)
EP1350068B1 (fr) Procede pour reguler un appareil de refroidissement
EP0152608B1 (fr) Procédé de commande d'une installation frigorifique complexe
WO1989007741A1 (fr) Agencement de regulation continue de la puissance de refroidissement de machines frigorifiques
CH676634A5 (en) Continuous output regulator for refrigerator and heat pump - positions regulating valve in liq. line to evaporator electronically by requirement-dependent setting signals
EP3922926B1 (fr) Procédé de régulation d'un processus de dégivrage d'un évaporateur d'une installation de réfrigération à compression et installation de réfrigération à compression
DE4100749C2 (fr)
DE102019119751B3 (de) Verfahren zum Betreiben eines Kältekreislaufs eines Kraftfahrzeugs und Kältekreislauf
EP1709372B1 (fr) Evaporation a haut rendement dans des dispositifs frigorifiques et procede correspondant d'obtention de conditions stables avec des differences de temperature minimales et/ou requises des produits a refroidir par rapport a la temperature d'evaporation
DE60225877T2 (de) Begrenzungsverfahren des Verflüssigungsdruckes in einer Kältemaschine
EP0325163A1 (fr) Procédé de fonctionnement d'une installation frigorifique et installation frigorifique pour la mise en oeuvre du procédé
DE102020123960B4 (de) Verfahren zum Betreiben einer Wärmepumpe und Wärmepumpe
EP3922924B1 (fr) Procédé de fonctionnement d'une installation de réfrigération à compression et installation de réfrigération à compression
EP3922931B1 (fr) Installation de réfrigération à compression et procédé de fonctionnement de celle-ci
EP2706312B1 (fr) Procédé destiné au fonctionnement d'une machine frigorifique et machine frigorifique
DE102007052531B4 (de) Verfahren und Vorrichtung zur elektronischen Regelung für Kälteanlagen
DE19529763A1 (de) Kälteerzeugungseinrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR DK JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE